
 
 
 

Ingres® 2006

Embedded SQL Companion Guide 
 

®

 



  

 

 

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for 
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres") 
at any time.  

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, 
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected 
by the copyright laws of the United States and international treaties.  

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for 
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy. 
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of 
the license for the software are permitted to have access to such copies.  

This right to print copies is limited to the period during which the license for the product remains in full force and 
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the 
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres 
the reproduced copies or to certify to Ingres that same have been destroyed.  

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT 
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE 
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS 
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR 
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.  

The use of any product referenced in this Documentation and this Documentation is governed by the end user's 
applicable license agreement.  

The manufacturer of this Documentation is Ingres Corporation.  

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section 
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor 
provisions.  

Copyright © 2005-2006 Ingres Corporation. All Rights Reserved.  

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names, 
service marks, and logos referenced herein belong to their respective companies. 

     



  

 

Contents    iii 
 

Contents 
 

Chapter 1: About This Guide 

Purpose of This Manual ........................................................................................................ 1-1 
Audience ........................................................................................................................... 1-1 
Contents............................................................................................................................ 1-2 
Enterprise Access Compatibility............................................................................................. 1-2 
Conventions ....................................................................................................................... 1-3 

Statements and Commands ............................................................................................ 1-3 
System-Specific Text ........................................................................................................... 1-4 
Related Manuals ................................................................................................................. 1-4 

Chapter 2: Embedded SQL for C 

Embedded SQL Statement Syntax for C.................................................................................. 2-1 
Margin ......................................................................................................................... 2-1 
Terminator ................................................................................................................... 2-1 
Labels.......................................................................................................................... 2-2 
Line Continuation .......................................................................................................... 2-2 
Comments.................................................................................................................... 2-2 
String Literals ............................................................................................................... 2-3 
The Create Procedure Statement ..................................................................................... 2-5 
Creating Sub-Processes in ESQL/C Programs ..................................................................... 2-5 

C Variables and Data Types .................................................................................................. 2-5 
Variable and Type Declarations........................................................................................ 2-5 
The Scope of Variables ................................................................................................. 2-29 
Variable Usage ............................................................................................................ 2-32 
Data Type Conversion .................................................................................................. 2-44 

The SQL Communications Area ........................................................................................... 2-51 
The Include SQLCA Statement....................................................................................... 2-51 
Contents of the SQLCA ................................................................................................. 2-52 
Using the SQLCA for Error Handling................................................................................ 2-53 
Using the SQLSTATE Variable ........................................................................................ 2-57 

Dynamic Programming for C ............................................................................................... 2-58 
The SQLDA Structure ................................................................................................... 2-58 
Declaring and Allocating an SQLDA Variable .................................................................... 2-60 
Using the SQLVAR ....................................................................................................... 2-62 
Setting SQLNAME for Dynamic FRS ................................................................................ 2-66 



  

 

iv     Embedded SQL Companion Guide 

Advanced Processing..........................................................................................................2-67 
User-Defined Error, DBevent, and Message Handlers .........................................................2-68 
User-Defined Data Handlers for Large Objects ..................................................................2-69 

Preprocessor Operation ......................................................................................................2-76 
Include File Processing..................................................................................................2-76 
Coding Requirements for Writing Embedded SQL Programs ................................................2-80 
Command Line Operations.............................................................................................2-82 
Linking Embedded SQL Programs—Windows.....................................................................2-86 
Linking Embedded SQL Programs—UNIX..........................................................................2-87 
Linking Embedded SQL Programs—VMS...........................................................................2-88 
Embedded SQL/C Preprocessor Errors .............................................................................2-89 

C++ Programming.............................................................................................................2-90 
Creating ESQL/C++ Programs........................................................................................2-90 
Building ESQL/C++ Programs ........................................................................................2-94 
Sample Application.......................................................................................................2-96 

Preprocessor Error Messages ...............................................................................................2-98 
Sample Applications...........................................................................................................2-99 

The Department-Employee Master/Detail Application.........................................................2-99 
The Table Editor Table Field Application ......................................................................... 2-106 
The Professor-Student Mixed Form Application ............................................................... 2-113 
The SQL Terminal Monitor Application ........................................................................... 2-122 
A Dynamic SQL/Forms Database Browser ...................................................................... 2-133 

Multi-Threaded Applications .............................................................................................. 2-142 
Current Session ......................................................................................................... 2-142 
SQLCA Diagnostic Area ............................................................................................... 2-143 

Chapter 3: Embedded SQL for COBOL 

Embedded SQL Statement Syntax for COBOL.......................................................................... 3-1 
Margin......................................................................................................................... 3-1 
COBOL Sequence Numbers ............................................................................................. 3-2 
Terminator ................................................................................................................... 3-2 
Labels ......................................................................................................................... 3-3 
Line Continuation .......................................................................................................... 3-4 
Comments ................................................................................................................... 3-4 
String Literals ............................................................................................................... 3-5 
The Create Procedure Statement ..................................................................................... 3-6 

COBOL Data Items and Data Types ....................................................................................... 3-7 
Variable and Type Declarations ....................................................................................... 3-7 
Data Types..................................................................................................................3-10 
Scope of Variables........................................................................................................3-24 
Variable Usage.............................................................................................................3-25 



  

Contents    v 

Data Type Conversion .................................................................................................. 3-31 
The SQL Communications Area ........................................................................................... 3-38 

The Include SQLCA Statement....................................................................................... 3-38 
Contents of the SQLCA ................................................................................................. 3-38 
Using the SQLCA for Error Handling................................................................................ 3-40 
Using the SQLSTATE Variable ........................................................................................ 3-45 

Dynamic Programming for COBOL ....................................................................................... 3-45 
The SQLDA Record....................................................................................................... 3-46 
Declaring the SQLDA Record ......................................................................................... 3-49 
Using the SQLVAR Table ............................................................................................... 3-51 
Pointing at COBOL Data Items....................................................................................... 3-54 
Setting SQLNAME for Dynamic FRS ................................................................................ 3-55 

Advanced Processing ......................................................................................................... 3-58 
User-Defined Error, DBevent, and Message Handlers ........................................................ 3-58 
User-Defined Data Handlers for Large Objects ................................................................. 3-62 

Preprocessor Operation...................................................................................................... 3-68 
Include File Processing ................................................................................................. 3-68 
Including Source Code with Labels ................................................................................. 3-72 
Coding Requirements for Writing Embedded SQL Programs................................................ 3-72 
Command Line Operations ............................................................................................ 3-78 
Source Code Format .................................................................................................... 3-81 
The COBOL Compiler—Windows and UNIX....................................................................... 3-82 
The COBOL Compiler—VMS........................................................................................... 3-84 
Incorporating Ingres into the Micro Focus RTS—UNIX ....................................................... 3-85 
Embedded SQL/COBOL Preprocessor Errors..................................................................... 3-91 

Preprocessor Error Messages .............................................................................................. 3-91 
Sample Applications .......................................................................................................... 3-95 

The Department-Employee Master/Detail Application ........................................................ 3-95 
The Table Editor Table Field Application .........................................................................3-105 
The Professor–Student Mixed Form Application ...............................................................3-115 
The SQL Terminal Monitor Application............................................................................3-128 
A Dynamic SQL/Forms Database Browser.......................................................................3-144 

Chapter 4: Embedded SQL for Fortran 

Embedded SQL Statement Syntax for Fortran ......................................................................... 4-1 
Margin ......................................................................................................................... 4-1 
Terminator ................................................................................................................... 4-2 
Labels.......................................................................................................................... 4-2 
Line Continuation .......................................................................................................... 4-2 
Comments.................................................................................................................... 4-3 
String Literals ............................................................................................................... 4-4 



  

 

vi     Embedded SQL Companion Guide 

The Create Procedure Statement ..................................................................................... 4-5 
Fortran Variables and Data Types.......................................................................................... 4-6 

Variable and Type Declarations ....................................................................................... 4-6 
The Scope of Variables..................................................................................................4-20 
Variable Usage.............................................................................................................4-22 
Data Type Conversion...................................................................................................4-27 

The SQL Communications Area ............................................................................................4-31 
The Include SQLCA Statement .......................................................................................4-31 
Contents of the SQLCA..................................................................................................4-32 
Using the SQLCA for Error Handling ................................................................................4-33 
Using the SQLSTATE Variable.........................................................................................4-38 

Dynamic Programming for Fortran........................................................................................4-38 
The SQLDA Structure....................................................................................................4-39 
Declaring an SQLDA Variable .........................................................................................4-43 
Using the SQLVAR ........................................................................................................4-44 
Setting SQLNAME for Dynamic FRS .................................................................................4-47 

Advanced Processing..........................................................................................................4-49 
User-Defined Error, DBevent, and Message Handlers .........................................................4-49 
User-Defined Data Handlers for Large Objects ..................................................................4-51 

Preprocessor Operation ......................................................................................................4-60 
Include File Processing..................................................................................................4-60 
Including Files – Windows..............................................................................................4-63 
Coding Requirements for Writing Embedded SQL Programs ................................................4-65 
Command Line Operations.............................................................................................4-66 
Linking an Embedded SQL Program.................................................................................4-71 
Embedded SQL/Fortran Preprocessor Errors .....................................................................4-74 

Preprocessor Error Messages ...............................................................................................4-75 
Sample Applications...........................................................................................................4-77 

The Department-Employee Master/Detail Application.........................................................4-77 
The Table Editor Table Field Application ...........................................................................4-83 
The Professor-Student Mixed Form Application .................................................................4-89 
The SQL Terminal Monitor Application .............................................................................4-98 
A Dynamic SQL/Forms Database Browser ...................................................................... 4-110 

Chapter 5: Embedded SQL for Ada 

Embedded SQL Statement Syntax for Ada.............................................................................. 5-1 
Margin......................................................................................................................... 5-1 
Terminator ................................................................................................................... 5-1 
Labels ......................................................................................................................... 5-2 
Line Continuation .......................................................................................................... 5-2 
Comments ................................................................................................................... 5-2 



  

Contents    vii 

String Literals ............................................................................................................... 5-3 
The Create Procedure Statement ..................................................................................... 5-4 

Ada Variables and Data Types............................................................................................... 5-4 
Embedded SQL/Ada Declarations ..................................................................................... 5-4 
The Scope of Variables ................................................................................................. 5-28 
Variable Usage ............................................................................................................ 5-30 
Data Type Conversion .................................................................................................. 5-38 

The SQL Communications Area ........................................................................................... 5-42 
The Include SQLCA Statement....................................................................................... 5-42 
Contents of the SQLCA ................................................................................................. 5-43 
Using the SQLCA for Error Handling................................................................................ 5-44 
Using the SQLSTATE Variable ........................................................................................ 5-50 

Dynamic Programming for Ada............................................................................................ 5-50 
The SQLDA Record....................................................................................................... 5-50 
Declaring an SQLDA Record Variable .............................................................................. 5-53 
Using the SQLVAR ....................................................................................................... 5-55 
Setting SQLNAME for Dynamic FRS ................................................................................ 5-58 

Advanced Processing ......................................................................................................... 5-59 
User-Defined Error, DBevent, and Message Handlers ........................................................ 5-60 
User-Defined Data Handlers for Large Objects ................................................................. 5-61 

Preprocessor Operation...................................................................................................... 5-67 
Include File Processing ................................................................................................. 5-67 
Coding Requirements for Writing Embedded SQL Programs................................................ 5-69 
Command Line Operations ............................................................................................ 5-70 
Embedded SQL/Ada Preprocessor Errors ......................................................................... 5-75 

Preprocessor Error Messages .............................................................................................. 5-75 
Sample Applications .......................................................................................................... 5-78 

The Department-Employee Master/Detail Application ........................................................ 5-78 
The Table Editor Table Field Application .......................................................................... 5-84 
The Professor-Student Mixed Form Application................................................................. 5-90 
The SQL Terminal Monitor Application............................................................................. 5-97 
A Dynamic SQL/Forms Database Browser.......................................................................5-107 

Chapter 6: Embedded SQL for BASIC 

Embedded SQL Statement Syntax for BASIC........................................................................... 6-1 
Margin ......................................................................................................................... 6-1 
BASIC Line Numbers ...................................................................................................... 6-1 
Terminator ................................................................................................................... 6-2 
Labels.......................................................................................................................... 6-2 
Line Continuation .......................................................................................................... 6-3 
Comments.................................................................................................................... 6-3 



  

 

viii     Embedded SQL Companion Guide 

String Literals ............................................................................................................... 6-5 
Integer Literals ............................................................................................................. 6-5 
The Create Procedure Statement ..................................................................................... 6-5 
Decimal Literals ............................................................................................................ 6-6 

BASIC Variables and Data Types ........................................................................................... 6-6 
Variable Declarations ..................................................................................................... 6-7 
The Scope of Variables..................................................................................................6-19 
Variable Usage.............................................................................................................6-21 
Data Type Conversion...................................................................................................6-27 

The SQL Communications Area ............................................................................................6-31 
The Include SQLCA Statement .......................................................................................6-31 
Contents of the SQLCA..................................................................................................6-32 
Using the SQLCA for Error Handling ................................................................................6-33 
Using the SQLSTATE Variable.........................................................................................6-38 

Dynamic Programming for BASIC.........................................................................................6-38 
The SQLDA Record .......................................................................................................6-39 
Declaring an SQLDA Variable .........................................................................................6-41 
Using the SQLVAR ........................................................................................................6-42 
Setting SQLNAME for Dynamic FRS .................................................................................6-45 

Advanced Processing..........................................................................................................6-46 
User-Defined Error, DBevent, and Message Handlers .........................................................6-46 
Sample Programs.........................................................................................................6-47 
User-Defined Data Handlers for Large Objects ..................................................................6-50 

Preprocessor Operation ......................................................................................................6-52 
Command Line Operations.............................................................................................6-52 
Include File Processing..................................................................................................6-57 
Coding Requirements for Writing Embedded SQL Programs ................................................6-58 
Embedded SQL/BASIC Preprocessor Errors ......................................................................6-59 

Preprocessor Error Messages ...............................................................................................6-59 
Sample Applications...........................................................................................................6-62 

The Department-Employee Master/Detail Application.........................................................6-62 
The Table Editor Table Field Application ...........................................................................6-67 
The Professor-Student Mixed Form Application .................................................................6-72 
The SQL Terminal Monitor Application .............................................................................6-79 
A Dynamic SQL/Forms Database Browser ........................................................................6-86 

Chapter 7: Embedded SQL for Pascal 
Embedded SQL Statement Syntax for Pascal........................................................................... 7-1 

Margin......................................................................................................................... 7-1 
Terminator ................................................................................................................... 7-1 
Labels ......................................................................................................................... 7-2 



  

Contents    ix 

Line Continuation .......................................................................................................... 7-2 
Comments.................................................................................................................... 7-2 
String Literals ............................................................................................................... 7-4 
The Create Procedure Statement ..................................................................................... 7-4 
Decimal Literals............................................................................................................. 7-5 

Pascal Variables and Data Types ........................................................................................... 7-5 
Embedded SQL/Pascal Declarations.................................................................................. 7-6 
The Scope of Objects ................................................................................................... 7-30 
Variable Usage ............................................................................................................ 7-32 
Data Type Conversion .................................................................................................. 7-39 

The SQL Communications Area ........................................................................................... 7-45 
The Include SQLCA Statement....................................................................................... 7-45 
Contents of the SQLCA ................................................................................................. 7-45 
Using the SQLCA for Error Handling................................................................................ 7-46 
Using the SQLSTATE Variable ........................................................................................ 7-51 

Dynamic Programming for Pascal ........................................................................................ 7-51 
The SQLDA Record....................................................................................................... 7-52 
Declaring an SQLDA Record Variable .............................................................................. 7-53 
Using the SQLVAR ....................................................................................................... 7-55 
Setting SQLNAME for Dynamic FRS ................................................................................ 7-57 

Advanced Processing ......................................................................................................... 7-58 
User-Defined Error, DBevent, and Message Handlers ........................................................ 7-58 
Sample Programs ........................................................................................................ 7-60 
User-Defined Data Handlers for Large Objects ................................................................. 7-62 

Preprocessor Operation...................................................................................................... 7-64 
Command Line Operations ............................................................................................ 7-64 
Include File Processing ................................................................................................. 7-69 
Coding Requirements for Writing Embedded SQL Programs................................................ 7-71 
Embedded SQL/Pascal Preprocessor Errors ...................................................................... 7-73 

Preprocessor Error Messages .............................................................................................. 7-73 
Sample Applications .......................................................................................................... 7-77 

The Department-Employee Master/Detail Application ........................................................ 7-77 
The Table Editor Table Field Application .......................................................................... 7-84 
The Professor-Student Mixed Form Application................................................................. 7-90 
The SQL Terminal Monitor Application............................................................................. 7-97 
A Dynamic SQL/Forms Database Browser.......................................................................7-105 

Index 





  

Chapter 1: About This Guide    1–1 

Chapter 1: About This Guide 
 

This chapter briefly describes the Embedded SQL Companion Guide and 
discusses how to use this manual most effectively. The chapter also describes 
conventions used in Ingres documentation, and lists other manuals that are 
relevant to this manual. 

Purpose of This Manual 
This guide describes how to use Ingres Embedded SQL with the following 
programming languages:  

 C and C++ 

 COBOL 

 Fortran 

 Ada 

 BASIC 

 Pascal 

For the most part, embedded SQL is identical in syntax and functionality 
across all supported host programming languages. Therefore, the 
documentation describes it independently of any one host language in the SQL 
Reference Guide, which covers database statements, and in the Forms-based 
Application Development Tools User Guide, which covers forms statements. 
The host language-dependent details of its use are described in this 
Companion Guide. 

Audience 
This manual is designed for programmers who have a working knowledge of 
SQL and C, COBOL, and Fortran. It must be read in conjunction with the SQL 
Reference Guide and the Forms-based Application Development Tools User 
Guide, as it discusses only those issues on which the various host languages 
diverge. 



Contents 

1–2     Embedded SQL Companion Guide 

Contents 
Each chapter in this guide discusses embedded SQL for a particular language. 
Each chapter contains the following sections:  

 

Section Description 

Embedded SQL Statement 
Syntax  

Language-specific issues of embedded SQL 
statement syntax 

Variables and Data Types Declaration and use of language-specific 
program variables in embedded SQL 

The SQL Communications Area The SQL Communications Area as 
implemented in the language 

Dynamic Programming Dynamic SQL as implemented in the 
language 

Advanced Processing User-defined handlers 

Preprocessor Operation The operation of the embedded SQL 
preprocessor for the language and the steps 
required to create, compile, and link an 
embedded SQL program 

Preprocessor Error Messages A list of embedded SQL preprocessor error 
messages specific to the language 

Remaining sections Sample programs that illustrate many 
embedded SQL features 

Enterprise Access Compatibility 
This document assumes that your installation does not include an Enterprise 
Access product. If your installation does include one or more Enterprise Access 
products, check your OpenSQL documentation for information about syntax 
that may differ from that described in this manual. 

Areas that may differ include: 

 Varchar data type length 

 Legal row size 

 Command usage 

 Name length 

 Table size 



Conventions 

Chapter 1: About This Guide    1–3 

Conventions 
This section describes the conventions that Ingres documentation uses for 
consistency and clarity. 

Statements and Commands 

Ingres documentation handles statements and commands as follows. 

Terminology 

The documentation observes the following distinction in terminology: 

 A command is an operation that you execute at the operating system 
levelA statement is an operation that you embed in a program or execute 
interactively from an Ingres terminal monitor 

A statement can be written in Ingres/4GL, a host programming language 
(such as Fortran), or a database query language (SQL or QUEL). 

Syntax 

This manual uses the following conventions to describe statement and 
command syntax specifications: 

 

Convention  Usage 

Boldface   Indicates keywords, symbols or punctuation that you must 
type as shown 

Italics  Represent a variable name for which you must supply an 
actual value 

[ ] (brackets)  Indicate an optional item 

{ } (braces)  Indicate an optional item that you can repeat as many 
times as appropriate 

 | (vertical bar)  Used between items in a list to indicate that you should 
choose one of the items 

The following example illustrates the syntax conventions: 

create table tablename (columnname  format 
 {,columnname format}) 
 [with_clause] 



System-Specific Text 

1–4     Embedded SQL Companion Guide 

System-Specific Text 
Although Ingres generally operates the same way on all systems, you need to 
know about a few system-specific differences. Where information differs by 
system, read the information that follows the name of your system, as follows: 

UNIX  
This text is specific to the UNIX environment.   

VMS
 

This text is specific to the VMS environment.   

Windows  
This text is specific to the Windows environment.   

The symbol  indicates the end of the system-specific text.  

In some instances, system-specific differences are indicated by using 
parenthesis ( ). For example: Filename specifies a filename or a system 
environment variable (UNIX) or a logical name extension (VMS) that points to 
the file name.  

Related Manuals 
This guide is part of a series of manuals that describe the full range of Ingres 
products.  

To learn more about Ingres concepts and functions related to embedded SQL, 
see the following manuals: 

 SQL Reference Guide 

 Character-based Querying and Reporting Tools User Guide 

 Forms-based Application Development Tools User Guide 



  

 

Chapter 2: Embedded SQL for C    2–1 

Chapter 2: Embedded SQL for C 
 

This chapter describes the use of Ingres Embedded SQL with the C and C++ 
programming languages. 

Embedded SQL Statement Syntax for C 
This section describes the language-specific issues inherent in embedding SQL 
database and forms statements in a C or C++ program. An embedded SQL 
database statements has the following general syntax: 

[margin] exec sql SQL_statement terminator 

The syntax of an embedded SQL/FORMS statement is almost identical: 

[margin] exec frs SQL/FORMS_statement terminator 

For information on SQL statements, see the SQL Reference Guide. For 
information on SQL/FORMS statements, see the Forms-based Application 
Development Tools User Guide. 

The following sections describe the various syntactical elements of these 
statements as implemented in C. 

Margin 

There are no specified margins for embedded SQL statements in C. The exec 
keyword can begin anywhere on the source line. 

Terminator 

The terminator for C is the semicolon (;). The following example shows a 
select statement embedded in a C program: 

exec sql select ename  
    into :namevar 
    from employee 
    where eno = :numvar; 

Do not follow an embedded statement on the same line with a C statement or 
another embedded statement. This causes preprocessor syntax errors on the 
second statement. Use only comments and white space (blanks and tabs) after 
the C terminator to the end of the line. 



Embedded SQL Statement Syntax for C 

2–2     Embedded SQL Companion Guide 

Labels 

Like C statements, embedded SQL statements can have a label prefix. The 
label must begin with an alphabetic character or an underscore. The label 
must be the first word on the line (optionally preceded by white space), and 
must be terminated with a colon (:). For example: 

close_cursor: exec sql close cursor1; 

The label can appear anywhere a C label can appear. However, although the 
preprocessor accepts a label before any exec sql or exec frs prefix, you cannot 
label some lines. For example, although the preprocessor accepts the 
following, the compiler does not because labels are not allowed before 
declarations: 

include_sqlca: exec sql include sqlca; 

As a general rule, use labels only with executable statements. 

Line Continuation 

There are no line continuation rules for embedded SQL statements in C. 
Statements extend to the C terminator. Blank lines can also be included. 

Comments 

You can include C comments, delimited by /* and */ anywhere in an 
embedded SQL statement that a blank is allowed, with the following 
exceptions: 

 Between the margin and the word exec (whether or not you have a C label 
prefix). 

 Between the word exec and the word sql or frs. In the following example, 
comments cause both statements to be interpreted as C host code: 

 /* Initial comment */ exec sql include sqlca; 
 exec /* Between */ sql commit; 

 Between words that are reserved when they appear together. For the list 
of double reserved words contained in the list of keywords, see the SQL 
Reference Guide. 

 In string constants. 

 In parts of statements that are dynamically defined. For example, a 
comment in a string variable specifying a form name is interpreted as part 
of the form name. 



Embedded SQL Statement Syntax for C 

Chapter 2: Embedded SQL for C    2–3 

 Between component lines of embedded SQL/FORMS block-type 
statements. All block-type statements (such as activate and unloadtable) 
are compound statements that include a statement section delimited by 
begin and end. Comment lines must not appear between the statement 
and its section. The preprocessor interprets such comments as C host 
code, which causes preprocessor syntax errors. (However, comments can 
appear on the same line as the statement.) 

For example, the following statement causes a syntax error on the C 
comment: 

    exec frs unloadtable empform  
         employee (:namevar = ename); 
    /* Illegal comment before statement body */ 
    exec frs begin; /* Comment legal here */ 
         strcat(msgbuf, namevar); 
    exec frs end; 

 Between any components in a statement composed of more than one 
compound statement. An example of such a statement is the display 
statement, which typically consists of the display clause, an initialize 
section, activate sections, and a finalize section. C comments are 
translated as host code and cause syntax errors on subsequent statement 
components. 

You can also use the SQL comment delimiter (--) to indicate that the rest of 
the line is a comment. For example: 

exec sql delete            --Delete all employees 
    from employee; 

String Literals 

Use single quotes to delimit embedded SQL string literals. To embed a single 
quote in a string literal, you must double it. For example: 

exec sql insert 
into comments (anecdotes) 
 values ('single'' quote followed by double " quote'); 

This insert writes the string: 

single' quote followed by double " quote 

Into the anecdotes column of the comments table. 

In embedded SQL statements, the double quote and backslash need not be 
escaped because they have no special meaning. 



Embedded SQL Statement Syntax for C 

2–4     Embedded SQL Companion Guide 

To continue a string literal to additional lines, use the backslash (\) character. 
Any leading spaces on the next line are considered part of the string. This 
follows the C convention. For example, the following message statement is 
legal: 

exec frs message 'Please correct errors found in\ 
      updating the  database tables.' 

Use C conventions in the declaration section. You must use double quotes to 
delimit most C strings. For example: 

char *dbname = "personnel"; 

String Literals and Statement Strings 

The Dynamic SQL statements prepare and execute immediately, both use 
statement strings that specify an SQL statement. To specify the statement 
string, use a string literal or character string variable, as follows: 

exec sql execute immediate 'drop employee'; 
 str = "drop employee"; 
exec sql execute immediate :str; 

As with regular embedded SQL string literals, the statement string delimiter is 
the single quote. However, quotes embedded in statement strings must 
conform to SQL runtime rules when the statement executes. For example, the 
following dynamic insert statement: 

exec sql prepare s1 from 
  'insert into t1 values (''single''''double"slash\ '')'; 

is equivalent to the statement: 

str = "insert into t1 values 
    ('single''double\"slash\\ ')"; 
 exec sql prepare s1 from :str; 

In fact, the string literal that the embedded SQL/C preprocessor generates for 
the first example matches the string literal assigned to the variable str in the 
second example. The runtime evaluation of the above statement string is: 

insert into t1 values ('single''double"slash\ '); 

Avoid using a string literal for a statement string whenever it contains quotes 
or the backslash character. Instead, build the statement string using the C 
language’s rules for string literals together with the SQL rules for the runtime 
evaluation of the string. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–5 

The Create Procedure Statement 

The create procedure statement has language-specific syntax rules for line 
continuation, string literal continuation, comments, and the final terminator. 
These syntax rules follow the rules discussed in this section. For example, the 
final terminator is a semicolon. Although the preprocessor treats the create 
procedure statement as a single statement which is terminated with a 
semicolon, you must terminate all statements in the body of the procedure 
with a semicolon. 

The following example shows a create procedure statement that follows the 
embedded SQL for C (ESQL/C) syntax rules: 

exec sql 
 create procedure proc (parm integer) as 
 declare 
     var integer; 
 begin 
    if parm > 10 then /* Use C comment delimiter*/ 
    message 'C strings can continue (use backslash)    \over lines'; 
    insert into tab values (:parm); 
    endif; 
 end; 

Creating Sub-Processes in ESQL/C Programs 

Since child processes created by fork(), vfork(), or exec() system calls do not 
share the parent processes’ status information, processes created in this way 
may experience protocol problems. The recommended method for creating 
sub-processes is to use exec sql call system. 

C Variables and Data Types 
This section describes how to declare and use C program variables in 
embedded SQL.  

Variable and Type Declarations 

The following sections describe the various variable and type declarations. 

Embedded SQL Variable Declaration Sections 

Embedded SQL statements use C variables to transfer data from the database 
or form into the program. You must declare C variables to SQL before you can 
use them in any embedded SQL statement. 



C Variables and Data Types 

2–6     Embedded SQL Companion Guide 

Declare C variables to SQL in a declaration section. For example: 

exec sql begin declare section; 

C variable and type declarations. 

exec sql end declare section; 

Do not place a label in front of the exec sql end declare section statement 
because it causes a preprocessor syntax error. 

Embedded SQL variable declarations are global to the program file from the 
point of declaration onwards. You can incorporate multiple declaration sections 
into a single program, as is the case when a few different C procedures issue 
embedded statements using local variables. Each procedure can have its own 
declaration section. For more information on the declaration of variables and 
types that are local to C procedures, see The Scope of Variables in this 
chapter. 

Reserved Words in Declarations 

The following C keywords are reserved. Therefore, you cannot declare types or 
variables with the same name as these keywords: 

 

auto 
char 
const 
define 
double 
enum 

extern 
float 
globalconstdef 
globaldef 
globalconstref 
globalref 

int 
long 
register 
short 
static 
struct 

typedef 
union 
unsigned 
varchar 
volatile 

Not all C compilers reserve every keyword listed. However, the embedded 
SQL/C preprocessor does reserve all these words. 

The embedded SQL preprocessor does not distinguish between uppercase and 
lowercase in keywords. When it generates C code, it converts any uppercase 
letters in keywords to lowercase. 

For example, although the following declarations are initially unacceptable to 
the C compiler, the preprocessor converts them into legitimate C code: 

# defINE ARRSIZE 256; /*"defINE"converts to "define" */ 
INT numarr[ARRSIZE];  /*"INT" is equivalent to "int" */ 

The rule just described is true only for keywords. The preprocessor does 
distinguish between case in program-defined types and variables. 

Variable and type names must be legal C identifiers beginning with an 
underscore or alphabetic character. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–7 

Data Types 

The embedded SQL/C preprocessor accepts the C data types shown in the 
following table. This table maps these types to their corresponding Ingres 
types. For further information on exact type mapping between Ingres and C 
data, see Data Type Conversion in this chapter. 

 

C Data Type Ingres Data Type 

long integer 

int integer 

short integer 

char (no indirection) integer 

double float 

float float 

char * (character pointer) character 

char [ ] (character buffer) character 

unsigned integer 

unsigned int integer 

unsigned long integer 

unsigned short integer 

unsigned char integer 

long int integer 

short int integer 

long float float 

Integer Data Type The embedded SQL preprocessor accepts all C integer data types. Even though 
some integer types do have C restrictions (for example, a variable of type 
short must have a value that can fit into two bytes) the preprocessor does not 
check these restrictions. At runtime, data type conversion is effected according 
to standard C numeric conversion rules. For details on numeric type 
conversion, see Data Type Conversion in this chapter.  



C Variables and Data Types 

2–8     Embedded SQL Companion Guide 

The type adjectives long, short, or unsigned can qualify the integer type. 

In the type mappings table previously shown, the C data type char has three 
possible interpretations, one of which is the Ingres integer data type. The 
adjective unsigned can qualify the char data type when using it as a single-
byte integer. If you declare a variable of the char data type without any C 
indirection, such as an array subscript or a pointer operator (the asterisk), it is 
considered a single-byte integer variable. For example: 

char age; 

The above example is a legal declaration and can be used as an integer 
variable. If the variable is declared with indirection, then it is considered an 
Ingres character string. 

You can use an integer variable with any numeric-valued object to assign or 
receive numeric data. For example, you can use it to set a field in a form or to 
select a column from a database table. You can also specify simple numeric 
objects, such as table field row numbers as shown in the following example: 

char  age;              /* Single-byte integer */ 
short empnums[MAXNUMS]; /* Array of 2-byte integers */ 
long  *global_index;    /* Pointer to 4-byte integer */ 
unsigned int overtime; 

 

Floating-point Data 
Type 

The preprocessor accepts float and double as legal floating-point data types. 
The internal format of double variables is the standard C runtime format. 

 

VMS
 

If you declare long floating variables to interact with the Ingres runtime 
routines, you should not compile your program with the g_float command 
line qualifier (assuming that you are using the VAX C compiler). This 
qualifier changes the long float internal storage format, causing runtime 
numeric errors.  



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–9 

You can only use a floating-point variable to assign or receive floating-point 
numeric data. You cannot use it to specify numeric objects, such as table field 
row numbers. The preprocessor accepts long float as a synonym for double, 
for example: 

float  salary; 
 double sales; 

is equivalent to: 

float salary; 
 long float sales; 

Both are accepted by the preprocessor. 

Character String Data 
Type 

Any variables built up from the char data type, except simple variables 
declared without any C indirection, are compatible with any Ingres character 
string objects. As previously mentioned, a variable of type char declared 
without any C indirection is considered an integer variable. 

The preprocessor treats an array of characters and a pointer to a character 
string in the same way. Always null terminate a character string if you are 
assigning it to an Ingres object. Ingres automatically null terminates any 
character string values that are retrieved into C character string variables. 
Consequently, any variable that you use to receive Ingres values should be 
declared as the maximum object length, plus one extra byte for the C null 
character. For more information, see Runtime Character Type Conversion in 
this chapter. 

The following example declares three character variables—one integer and two 
strings: 

char age      /* Single byte integer */ 
char *name;   /* Use as a pointer to a static string */ 
char buf[16]; /* Use to receive string data */ 

Character strings containing embedded single quotes are legal in SQL, for 
example: 

mary's 

User variables may contain embedded single quotes and need no special 
handling unless the variable represents the entire search condition of a where 
clause: 

where :variable 



C Variables and Data Types 

2–10     Embedded SQL Companion Guide 

In this case you must escape the single quote by reconstructing the :variable 
string so that any embedded single quotes are modified to double single 
quotes, as in: 

mary''s 

Otherwise, a runtime error will occur.  

For more information on escaping single quotes, see String Literals in this 
chapter. For more information on character strings that contain embedded 
nulls, see The Varying Length String Type in this chapter. 

# Define Declaration 

The preprocessor accepts the # define directive, which defines a name to be a 
constant_value. The preprocessor accepts the constant_name when it is in an 
embedded SQL statement and treats it as if a constant_value had been given. 

The syntax for the # define statement is: 

# define constant_name constant_value 

Syntax Notes: 

 The constant_value must be an integer, floating-point, or character string 
literal. It cannot be an expression or another name. It cannot be left 
blank, as happens if you intend to use it later with the # ifdef statement. 
If the value is a character string constant, you must use double quotes to 
delimit it. Do not delimit it with single quotes to make the constant_name 
be interpreted as a single character constant, because the preprocessor 
translates the single quotes into double quotes. For example, the 
preprocessor interprets both of the following names as string constants, 
even though the first might be intended as a character constant: 

# define quitflag 'Q' 
 # define errormsg "Fatal error occurred." 

 The preprocessor does not accept casts before constant_value. In general, 
the preprocessor does not accept casts, and it interprets data types from 
the literal value. 

 Do not terminate the statement with a semicolon. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–11 

You can only use a defined constant to assign values to Ingres objects. 
Attempting to retrieve Ingres values into a constant causes a preprocessor 
error. For example: 

exec sql begin declare section; 
 # define MINEMPNUM 1 
# define MAXSALARY 150000.00 
# define DEFAULTNM "No-name" 
exec sql end declare section; 

Embedded SQL statements in the program can reference :constant_name. For 
example: 

exec frs putform formname (salary= :MAXSALARY); 

Variable Declarations Syntax 

The syntax of a variable declaration is: 

              [storage_class] [class_modifier] type_specification 
                            declarator {, declarator}; 

where each declarator is: 

              variable_name [= initial_value] 

Syntax Notes: 

 Storage_class is optional but, if specified, can be any of the following: 

auto 

extern 

register 

static 

varchar 

 

VMS
 

The following storage_classes are VMS only: 

globaldef 
globalref   

The storage class provides no data type information to the preprocessor. The 
varchar storage class is described in more detail later. 

 Class_modifier is optional, and can be one of the following: 

const 

volatile 



C Variables and Data Types 

2–12     Embedded SQL Companion Guide 

The class modifier provides no information to the preprocessor, and is 
merely passed through to the C compiler. Use of const and volatile 
keywords in ESQL/C data declarations is supported to the extent specified 
in the ANSI/ISO SQL-92 standard for embedded SQL C. That does not 
include all the possible uses of const and volatile that are accepted by the 
C compiler. 

 Begin a variable or type name with an alphabetic character, but follow it 
with alphanumeric characters or underscores. 

 Although register variables are supported, be careful when using them in 
embedded SQL statements. In input/output statements, such as the insert 
and select statements, you can pass a variable by reference with the 
ampersand operator (&). Some compilers do not allow you to use register 
variables this way. 

 The type_specification must be an embedded SQL/C type, a type built up 
with a typedef declaration (and known to the preprocessor), or a structure 
or union specification. Typedef declarations and structures are discussed in 
detail later. 

 Precede the variable_name by an asterisk (*), to denote a pointer 
variable, or follow it with a bracketed expression ([expr]), to denote an 
array variable. Pointers and arrays are discussed in more detail later. 

 Begin the variable_name, which must be a legal C identifier name, with an 
underscore or alphabetic character. 

 Variable names are case sensitive; that is, a variable named empid is 
different from one named Empid. 

 Do not use a previously defined typedef name for a variable name. This 
also applies to any variable name that is the name of a field in a structure 
declaration. 

 The preprocessor does not parse initial_value. Consequently, the 
preprocessor accepts any initial value, even if it can later cause a C 
compiler error. For example, the preprocessor accepts both of the 
following initializations, even though only the first is a legal C statement: 

char    *msg = "Try again"; 
int      rowcount = {0, 123}; 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–13 

The following example illustrates typical variable declarations: 

extern int   first_employee; 
 auto long    update_mode = 1; 
 static char  *names[3] = {"neil","mark","barbara"}; 
static char  *names[3] = {"john","bob","tom"}; 
char         **nameptr = names; 
 short        name_counter; 
 float        last_salary = 0.0, cur_salary = 0.0; 
 double       stat_matrix[STAT_ROWS][STAT_COLS]; 
 const char   xyz[] = “xyz”; 

Type Declarations Syntax 

The syntax of a type declaration is: 

              typedef type_specificationtypedef_name {, typedef_name}; 

Syntax Notes: 

 The typedef keyword acts somewhat like a storage class specifier in a 
variable declaration, the only difference being that the resulting 
typedef_name is marked as a type name and not as a variable name. 

 The type_specification must be an embedded SQL/C type known to the 
preprocessor, a type built up with a typedef declaration, or a structure or 
union specification. Structures are discussed in more detail later. 

 Use an asterisk (*) before the typedef_name to denote a pointer type, or 
follow it with a bracketed expression ([expr]) to denote an array type. 
Pointers and arrays are discussed in more detail later. 

 The preprocessor accepts an initial_value after typedef_name, 
although you should avoid putting one there because it does not signify 
anything. Most C compilers allow an initial_value that is ignored after the 
typedef_name. 

 Once you declare a typedef name, it is reserved for all subsequent 
declarations in the current scope. Thus variable names (including variable 
names that are names of fields in structure declarations) cannot have the 
same name as a previously defined typedef name. 

The following example illustrates the use of type declarations: 

typedef   short INTEGER2; 
 typedef   char  CHAR_BUF[2001], *CHAR_PTR; 
  
INTEGER2   i2; 
 CHAR_BUF   logbuf; 
 CHAR_PTR   name_ptr = (char *)0; 



C Variables and Data Types 

2–14     Embedded SQL Companion Guide 

Array Declarations Syntax 

The syntax of a C array declaration is: 

              array_name[dimension] {[dimension]} 

In the context of a simple variable declaration, the syntax is: 

              type_specification array_variable_name[dimension] {[dimension]}; 

In the context of a type declaration, the syntax is: 

              typedef type_specification array_type_name[dimension] 
{[dimension]}; 

Syntax Notes: 

 The preprocessor does not parse the dimension specified in the brackets. 
Consequently, the preprocessor accepts any dimensions. However, it also 
accepts illegal dimensions, such as non-numeric expressions, although 
these later cause C compiler errors. For example, the preprocessor accepts 
both of the following declarations, even though only the second is legal C: 

 typedef int SQUARE["bad expression"]; 
    /* Non-constant expression */ 
 int     cube_5[5][5][5]; 

 You can specify any number of dimensions. The preprocessor notes the 
number of dimensions when the variable or type is declared. When you 
later reference the variable, it must have the correct number of indices. 

 You can initialize an array variable, but the preprocessor does not verify 
that the initial value is an array aggregate. 

 Variables cannot have grouping parentheses in their references or 
declarations. 

 An array of characters is considered to be the pseudo character string 
type. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–15 

The following example illustrates the use of array declarations: 

# define COLS 5 
 
typedef short SQUARE[COLS][COLS]; 
 SQUARE        sq; 
  
static  int   matrix[3][3] = 
                { {11, 12, 13}, 
                {21, 22, 23}, 
                {31, 32, 33} }; 
 
char    buf[50]; 

Pointer Declarations Syntax 

The syntax of a C pointer declaration is: 

              * {*} pointer_name 

In the context of a simple variable declaration, the syntax is: 

              type_specification *{*} pointer_variable_name; 

In the context of a type declaration, the syntax is: 

              typedef type_specification *{*} pointer_type_name; 

Syntax Notes: 

 You can specify any number of asterisks. The preprocessor notes the 
number specified when the variable or type is declared. When the variable 
is later referenced, it must have the correct number of asterisks. 

 You can initialize a pointer variable, but the preprocessor does not verify 
that the initial value is an address. 

 A pointer to the char data type is considered to be the pseudo character 
string type. 

 Do not put grouping parentheses in variable references or  
variable declarations. 

 You can use arrays of pointers. 

The following example illustrates the use of pointer declarations: 

extern int    min_value; 
 int           *valptr = &min_value; 
 char          *tablename = "employee"; 



C Variables and Data Types 

2–16     Embedded SQL Companion Guide 

Structure Declarations Syntax 

A C structure declaration has three variants, depending on whether it has a 
tag and/or a body. The following sections describe these variants. 

A Structure with a Tag and a Body 

The syntax of a C structure declaration with a tag and a body is: 

              struct tag_name { 
                       structure_declaration {structure_declaration} 
              } 

where structure_declaration is: 

              type_specification member {, member}; 

In the context of a simple variable declaration, the syntax is: 

              struct tag_name { 
                       structure_declaration {structure_declaration} 
              } [structure_variable_name]; 

In the context of a type declaration, the syntax is: 

              typedef struct tag_name { 
                       structure_declaration {structure_declaration} 
              } structure_type_name; 

Syntax Notes: 

 Wherever the keyword struct appears, the keyword union can appear 
instead. The preprocessor treats them as equivalent. 

 Each member in a structure_declaration has the same rules as a variable 
of its type. For example, as with variable declarations, the 
type_specification of each member must be a previously defined type or 
another structure. Also, you can precede the member name by asterisks or 
follow it with brackets. Because of the similarity between structure 
members and variables, the following discussion focuses only on those 
areas in which they differ. 

struct person 
{ 
   charname[40]; 
   struct 
   { 
      int day, month, year; 
   } birth_date; 
 } owner; 

 The preprocessor permits an initial value after each member name. Do 
not, however, put one there, because it causes a compiler syntax error. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–17 

 If you do not specify structure_variable_name, the declaration is 
considered a declaration of a structure tag. 

 You can initialize a structure variable, but the preprocessor does not verify 
that the initial value is a structure aggregate. 

The following example illustrates the use of tags and body: 

# define MAX_EMPLOYEES 1500 
 
typedef struct employee 
{ 
       char    name[21]; 
       short   age; 
       double  salary; 
 } employee_desc; 
 employee_desc employees[MAX_EMPLOYEES]; 
 employee_desc *empdex = &employees[0]; 

A Structure with a Body and No Tag 

The syntax of a C structure declaration with a body and no tag is: 

              struct { 
               structure_declaration {structure_declaration} 
              } 
where structure_declaration is the same as in the previous section. 
In the context of a simple variable declaration, the structure’s syntax is: 

              struct { 
                       structure_declaration {structure_declaration} 
              } structure_variable_name; 

In the context of a type declaration, the structure’s syntax is: 

              typedef struct { 
                       structure_declaration {structure_declaration} 
              } structure_type_name; 

Syntax Notes: 

 All common clauses have the same rules as in the previous section. For 
example, struct and union are treated as equivalent, and the same rules 
apply to each structure member as to variables of the same type. 

 Specify the structure_variable_name when there is no tag. 
The actual structure definition applies only to the variable being declared. 



C Variables and Data Types 

2–18     Embedded SQL Companion Guide 

The following example illustrates the use of a body with no tag: 

# define MAX_EMPLOYEES 1500 
 
struct 
{ 
        char      name[21]; 
        short     age; 
        double    salary; 
 } employees[MAX_EMPLOYEES]; 

A Structure with a Tag and No Body 

The syntax of a C structure declaration with a tag and no body is: 

              struct tag_name 

In the context of a simple variable declaration, the syntax is: 

              struct tag_name structure_variable_name; 

In the context of a type declaration, the syntax is: 

              typedef struct tag_name structure_type_name; 

Syntax Notes: 

 All common clauses have the same rules as in the previous section. For 
example, struct and union are treated as equivalent, and you can initialize 
the structure without the preprocessor checking for a structure aggregate. 

 The tag_name must refer to a previously defined structure or union. The 
preprocessor does not support forward structure declarations. Therefore, 
when referencing a structure tag in this type of declaration, you must have 
already defined the tag. In the declaration below, the tag new_struct must 
have been previously declared: 

typedef struct new_struct *NEW_TYPE; 

The following example illustrates the use of a tag and no body: 

union a_name 
{ 
   char    nm_full[30]; 
   struct 
   { 
 
          char nm_first[10]; 
          char nm_mid[2]; 
          char nm_last[18]; 
    } nm_parts; 
 }; 
 
union a_name empnames[MAX_EMPLOYEES]; 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–19 

Enumerated Integer Types 

An enumerated type declaration, enum, is treated as an integer declaration. 
The syntax of an enumerated type declaration is: 

              enum [enum_tag] 
                         { enumerator [= integer_literal] 
                                {, enumerator [= integer_literal]} } [enum_vars]; 

The outermost braces ({ and }) represent braces that you have to type. 

Syntax Notes: 

 If you use the enum_tag, the list of enumerated literals (enumerators) and 
enum variables (enum_vars) is optional, like a structure tag without a 
body. The two declarations that follow are equivalent. The first declaration 
declares an enum_tag, while the second declaration uses that tag to 
declare a variable. 

First declaration: 

enum color {RED, WHITE, BLUE};/* Tag, 
     no variable */ 
enum color col;     /* Tag, no body, 
     has variable */ 

Second declaration: 

enum color {RED, WHITE, BLUE} col;/* Tag, body, 

has variable */ 

If you do not use the enum_tag, the declaration must include a list of 
enumerators, in the same way as a structure declaration. 

 You can use the enum declaration with any other variable declaration, type 
declaration, or storage class. For example, the following declarations are 
all legal: 

typedef enum {dbTABLE, dbCOLUMN, dbROW, dbVIEW, 
     dbGRANT} dbOBJ; 
 dbOBJ   obj, objs[10]; 
 extern  dbOBJ *obj_ptr; 

 Enumerated variables are treated as integer variables and enumerated 
literals are treated as integer constants. 



C Variables and Data Types 

2–20     Embedded SQL Companion Guide 

The Varying Length String Type 

As mentioned in the section describing character strings, all C character 
strings are null-terminated. Ingres data of type char or varchar can contain 
random binary data including the zero-valued byte (the null byte or \0 in C 
terms). If a program uses a C char variable to retrieve or set binary data that 
includes nulls, the runtime system is not able to differentiate between 
embedded nulls and the null terminator. 

In order to set and retrieve binary data that can include nulls, a new C storage 
class, varchar, has been provided for varying length string variables. varchar 
identifies the following variable declaration as a structure that describes a 
varying length string, namely, a 2-byte integer representing the count, and a 
fixed length character array. Like other storage classes, described in a 
previous section, the keyword varchar must appear before the variable 
declaration: 

varchar struct { 
    short       current_length; 
    char        data_buffer[MAX_LENGTH]; 
 } varchar_structure; 

Syntax Notes: 

 The word varchar is reserved and can be in uppercase or lowercase. 

 The varchar keyword is not generated to the output C file. 

 The varchar storage class can only refer to a variable declaration, not to a 
type declaration. For example, the following declaration is legal because it 
declares the variable vch: 

 varchar struct { 
 short       buf_size; 
 char        buf[100]; 
 } vch; 

But the varchar declaration of the structure tag vch (without a variable) is 
not legal and generates an error: 

varchar struct vch { 
     short       buf_size; 
     char        buf[100]; 
 }; 

 You can replace the structure definition of a varchar variable declaration 
by a structure tag or typedef reference. For example, the following typedef 
and varchar declarations are legal: 

    typedef struct vch_ { 
        short       vch_count; 
        char        vch_data[VCH_MAX]; 
    } VCH; 
    varchar VCH vch_1;         /* Typedef referenced */ 
    varchar struct vch_ vch_2; /* Structure tag */ 
                               /* referenced */ 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–21 

 You can use the varchar storage class for any type of variable declaration, 
including external and static variables, and to qualify nested structure 
members.  

For example, the following declarations are all legal: 

    static varchar struct _txt { 
        short       tx_len; 
        char        tx_data[TX_MAX]; 
    } txt_var, *txt_ptr, txt_arr[10]; 
  
    struct { 
          char    ename[20]; 
          int     eage; 
          varchar struct _txt ecomments; 
    } emp; 
  
    typedef short   buf_size; 
    typedef char    buf[512]; 
  
    varchar struct { 
        buf_size  len; 
        buf       data; 
    } vchar; 

The Varying Length Binary Type 

The Ingres data type varbyte behaves just like varchar except that it bypasses 
character set translation when transmitted across Heterogeneous Ingres/Net. 

A special varbyte structure type exists, which behaves exactly like the varchar 
structure type except that the associated internal data type is varbyte instead 
of varchar. Typedefs and struct tag declarations are supported in exactly the 
same way as for varchar. 

Note that when a retrieved byte value does not fit into the embedded variable 
provided it will be truncated and a “Warning - string data, right truncation” 
condition is set via SQLSTATE and sqlca.sqlwarn1. This is identical to the 
handling of string truncation for character data. 

Syntax Notes: 

 The word varbyte is reserved and can be in uppercase or lowercase. 

 The varbyte keyword is not generated to the output C file. 

 The varbyte storage class can only refer to a variable declaration, not to a 
type declaration. For example, the following declaration is legal because it 
declares the variable vbyt: 

    varbyte struct { 
        short       buf_size; 
        char        buf[100]; 
    } vbyt; 



C Variables and Data Types 

2–22     Embedded SQL Companion Guide 

But the varbyte declaration of the structure tag vbyt (without a variable) 
is not legal and generates an error: 

    varbyte struct vbyt { 
        short       buf_size; 
        char        buf[100]; 
    }; 

 You can replace the structure definition of a varbyte variable declaration 
by a structure tag or typedef reference. For example the following typedef 
and varbyte declarations are legal: 

    typedef struct vbyt_ { 
       short       vbyt_count; 
       char        vbyt_data[VCH_MAX]; 
    } VBYT; 
  
    varbyte VBYT vbyt 1;        /* Typedef referenced */ 
    varbyte struct vbyt_ vch_2; /* Structure tag */ 
                                /* referenced */ 

 You can use the varbyte storage class for any type of variable declaration, 
including external and static variables, and to qualify nested structure 
members. For example, the following declarations are legal: 

    static varbyte struct _txt { 
           short       tx_len; 
           char        tx_data[TX_MAX]; 
    } txt_var, *txt_ptr, txt_arr[10]; 
    struct v_ { 
            short    length; 
            char     data[MAXLEN]; 
    }; 
    VARBYTE struct v_ my_varbyte; 
  
       typedef short   buf_size; 
       typedef char    buf[512]; 
  
       varbyte struct { 
             buf_size  len; 
             buf       data; 
    } vbyte; 

The DCLGEN Utility 

DCLGEN (Declaration Generator) is a structure-generating utility that maps the 
columns of a database table into a structure that you can include in a 
declaration section. 

The following command invokes DCLGEN from the operating system level: 

dclgen language dbname tablename filename structurename 

where: 

 language is the embedded SQL host language, in this case, C. 

 dbname is the name of the database containing the table. 

 tablename is the name of the database table. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–23 

 filename is the output file into which the structure declaration is placed. 

 structurename is the name of the host language structure that the 
command generates. The structure tag is the structure name followed by 
an underscore character (_). 

This command creates the declaration file filename, containing a structure 
corresponding to the database table. The file also includes a declare table 
statement that serves as a comment and identifies the database table and 
columns from which the structure was generated. 

When the file is generated, use an embedded SQL include statement to 
incorporate it into the variable declaration section. The following example 
demonstrates how to use DCLGEN in a C program. 

Assume the Employee table was created in the Personnel database as: 

exec sql create table employee 
  (eno      smallint not null, 
  ename     char(20) not null, 
  age       integer1, 
  job       smallint, 
  sal       decimal(14,2) not null, 
  dept      smallint) 
  with  journaling; 

and the DCLGEN system-level command is: 

dclgen c personnel employee employee.dcl emprec 

This command creates the employee.dcl file, which contains a comment and 
two statements. The first statement is the declare table description of 
employee, which serves as a comment. The second statement is a declaration 
of the C structure emprec. The contents of the employee.dcl file are: 

/* Table employee description from database personnel */ 
exec sql declare employee table 
   (eno        smallint not null, 
   ename       char(20) not null, 
   age         integer1, 
   job         smallint, 
   sal         decimal(14,2) not null, 
   dept        smallint); 
  
struct emprec_ { 
   short     eno; 
   char      ename[21]; 
   short     age; 
   short     job; 
   double    sal; 
   short     dept; 
 } emprec; 

The length of the ename buffer is increased by one byte to accommodate the 
C null terminator. Also, the integer1 data type is mapped to short rather than 
char. 



C Variables and Data Types 

2–24     Embedded SQL Companion Guide 

To include this file in an embedded SQL declaration section, use the embedded 
SQL include statement: 

exec sql begin declare section; 
       exec sql include 'employee.dcl'; 
 exec sql end declare section; 

You can then use the emprec structure in a select, fetch, or insert statement. 

The field names in the structure that DCLGEN generates are identical to the 
column names in the specified table. Therefore, if the column names in the 
table contain any characters that are illegal for host language variable names, 
you must modify the name of the field before attempting to use the variable in 
an application. 

DCLGEN and Large Objects 

When a table contains a large object column, DCLGEN will issue a warning 
message and map the column to a zero length character string variable. You 
must modify the length of the generated variable before attempting to use the 
variable in an application. 

For example, assume that the job_description table was created in the 
personnel database as: 

create table job_description (job smallint, 
     description long varchar); 

and the DCLGEN system-level command is: 

dclgen c personnel job_description jobs.dcl jobs_rec 

The contents of the jobs.dcl file would be: 

/*Table job_description description from database 
     personnel*/ 
 exec sql declare job_description table 
  (job              smallint, 
  description      long varchar); 
 struct jobs_rec_ { 
  short job; 
  char  description[0]; 
   } jobs_rec; 

Indicator Variables 

An indicator variable is a 2-byte integer variable. You can use an indicator 
variable in an application in three ways: 

 In a statement that retrieves data from the database, you can use an 
indicator variable to determine if its associated host variable was assigned 
a null. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–25 

 In a statement that writes data to the database, or to a form field, you can 
use an indicator variable to assign a null to the database column, form 
field, or table field column. 

 In a statement that retrieves character (or byte) data, you can use the 
indicator variable as a check that the associated host variable was large 
enough to hold the full length of the returned string. However you can also 
use SQLSTATE to do this and it is the preferred method. 

The base type for a null indicator variable must be the integer type short. Any 
type specification built up from short is legal. For example: 

short   ind;       /* Indicator variable */ 
typedef short  IND; 
  
IND   ind_arr[10]; /* Array of indicators */ 
IND   *ind_ptr;    /* Pointer to indicator */ 

The word indicator is reserved and cannot be used to define a type in a 
typedef statement. 

When using an indicator array with a host structure, as described in Using 
Indicator Variables, you must declare the indicator array as an array of short 
integers (or a type built up from short). In the above example, you can use 
the variable ind_arr as an indicator array with a structure assignment. 

Compiling and Declaring External Compiled Forms 

You can precompile your forms in the Visual-Forms Editor (VIFRED). By doing 
so, you save the time otherwise required at runtime to extract the form’s 
definition from the database forms catalogs. When you compile a form in 
VIFRED, VIFRED creates a file in your directory describing the form in the C 
language. The following system specific section contains the remaining 
information you will need to declare your forms. 

Windows Forms 

 

Windows
 

VIFRED prompts you for the name of the file with the description. After 
creating the file, you can use the following cl command to compile it into 
linkable object code: 

cl -c filename 

The C compiler usually returns warning messages during this operation. You 
can suppress these, if you wish, with the -w flag on the cl command line. This 
command results in an object file that contains a global symbol with the same 
name as your form. 



C Variables and Data Types 

2–26     Embedded SQL Companion Guide 

Before the embedded SQL/FORMS statement addform can refer to this global 
object, you must declare it in an embedded SQL declaration section, with the 
following syntax: 

extern int *formname; 

Syntax Notes: 

 The formname is the actual name of the form. VIFRED gives this name to 
the address of the external object. The formname is also used as the title 
of the form in other embedded SQL/FORMS statements. 

 The extern storage class associates the object with the external form 
definition. 

 Although you declareformname as a pointer, you should not precede it 
with an asterisk when using it in the addform statement. 

The example below shows a typical form declaration and illustrates the 
difference between using the form’s object definition and the form’s name: 

exec sql begin declare section; 
     extern int *empform; 
  
     ... 
  
exec sql end declare section; 
  
      ... 
  
exec frs addform :empform; /* the global object */  
exec frs display empform; /* The name of the form */ 
      ...  

UNIX Forms 

 

UNIX
 

VIFRED prompts you for the name of the file with the description. After 
creating the file, you can use the following cc command to compile it into 
linkable object code: 

 cc -c filename 

The C compiler usually returns warning messages during this operation. You 
can suppress these, if you wish, with the -w flag on the cc command line. This 
command results in an object file that contains a global symbol with the same 
name as your form. 

Before the embedded SQL/FORMS statement addform can refer to this global 
object, you must declare it in an embedded SQL declaration section, with the 
following syntax: 

extern int *formname; 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–27 

Syntax Notes: 

 The formname is the actual name of the form. VIFRED gives this name to 
the address of the external object. The formname is also used as the title 
of the form in other embedded SQL/FORMS statements. 

 The extern storage class associates the object with the external form 
definition. 

 Although you declare formname as a pointer, you should not precede it 
with an asterisk when using it in the addform statement. 

The example below shows a typical form declaration and illustrates the 
difference between using the form’s object definition and the form’s name: 

exec sql begin declare section; 
         extern int *empform; 
  
         ... 
  
exec sql end declare section; 
  
         ... 
  
exec frs addform :empform; /* the global object */ 
exec frs display empform; /* The name of the form */ 
 
         ...  

VMS Forms 

 

VMS
 

After the file is created, you can use the following command to assemble it 
into a linkable object module. 

macro filename 

This command produces an object file that contains a global symbol with the 
same name as your form. Before the embedded SQL/FORMS statement 
addform can refer to this global object, you must declare it in an embedded 
SQL declaration section, with the following syntax: 

globalref int *formname; 

Syntax Notes: 

 The formname is the actual name of the form. VIFRED gives this name to 
the address of the external object. The formname is also used as the title 
of the form in other embedded SQL/FORMS statements. 

 The globalref storage class associates the object with the external form 
definition. 

 Although you declare formname as a pointer, you should not precede it 
with an asterisk when using it in the addform statement. 



C Variables and Data Types 

2–28     Embedded SQL Companion Guide 

The example below shows a typical form declaration and illustrates the 
difference between using the form’s object definition and the form’s name: 

exec sql begin declare section; 
           globalref int *empform; 
  
           ... 
  
exec sql end declare section; 
  
           ... 
  
exec frs addform :empform; /* The global object */ 
exec frs display empform;  /* The name of the form */ 
 
           ...  

Concluding Example 

The following example demonstrates some simple embedded SQL/C 
declarations:  

exec sql include sqlca; /* include error handling */ 
exec sql begin declare section; 
 # define max_persons 1000 
 
  typedef struct datatypes_/* Structure of all types */ 
   { 
      char    d_byte; 
      short   d_word; 
      long    d_long; 
      float   d_single; 
      double  d_double; 
      char   *d_string; 
   } datatypes; 
  datatypes d_rec; 
  
  char        *dbname = "personnel"; 
   char        *formname, *tablename, *columnname; 
  
  varchar struct { 
      short   len; 
      char    binary_data[512]; 
   } binary_chars; 
  
  enum color {RED, WHITE, BLUE} col; 
  
  unsigned int  empid; 
   short int     vac_balance; 
  struct person_   /* Structure with a union */ 
   { 
      char      age; 
      long      flags; 
      union 
      { 
         char full_name[30]; 
         struct { 
             char firstname[12], lastname[18]; 
         } name_parts; 
      } person_name; 
   } person, *newperson, person_store[MAX_PERSONS]; 
  
exec sql include 'employee.dcl'; /* From DCLGEN */ 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–29 

 

Windows
 

extern int *empform, *deptform; /* Compiled forms */ 

exec sql end declare section;  

UNIX
 

extern int *empform, *deptform; /* Compiled forms */ 

exec sql end declare section;  

VMS
 

globalref int *empform, *deptform; /* Compiled forms */ 

exec sql end declare section;  

The Scope of Variables 

The preprocessor references all variables declared in an embedded SQL 
declaration section and accepts them from the point of declaration to the end 
of the file. This may not be true for the C compiler, which only allows variables 
to be referred to in the scope of the nearest enclosing program block in which 
they were declared. If you have two unrelated procedures in the same file, 
each of which contains a variable with the same name to be used by 
embedded SQL, you do not have to redeclare the variable in a declaration 
section. The preprocessor uses the data type information supplied by the first 
declaration. 

If you do redeclare the variable, the preprocessor confirms that both 
declarations have compatible data types and the same indirection level. The 
indirection level is the sum of the number of pointer operators preceding the 
variable declaration name and the number of array dimensions following the 
name. This redeclaration can only occur for simple, non-structured variable or 
formal procedure parameter declarations. Do not redeclare structures, 
typedefs, enumerated types and arrays even if used in a different context. 

If you declare a variable name in two incompatible instances, the preprocessor 
generates an error and continues to process any references to the variable 
using only its first declaration. You can solve the problem by renaming the 
variables declared in the second and any subsequent declarations. 

In the following program fragment, the variable dbname is passed as a 
parameter between two procedures. In the first declaration section, the 
variable is a local variable. In the second declaration section, the variable is a 
formal parameter passed as a string to be used with the connect statement. In 
both cases, the data type attributes are compatible character strings. 



C Variables and Data Types 

2–30     Embedded SQL Companion Guide 

For example: 

exec sql include sqlca; 
 Access_Db() 
{ 
    exec sql begin declare section; 
      char dbname[20]; 
    exec sql end declare section; 
  
    /* Prompt for and read database name */ 
    printf("Database: "); 
    gets(dbname); 
    Open_Db(dbname); 
     ... 
 } 
 
Open_Db(dbname) 
 exec sql begin declare section; 
    char *dbname; 
 exec sql end declare section; 
 { 
    exec sql whenever sqlerror stop; 
    exec sql connect :dbname; 
    ... 
 } 

The above example is the first to demonstrate a formal parameter to a 
procedure in a declaration section. In this particular example, you do not need 
to declare the parameter, in which case the preprocessor uses the character 
string data type of the initial declaration of dbname. For example: 

Open_Db(dbname) 
 char *dbname; 
 { 
       exec sql whenever sqlerror stop; 
       exec sql connect :dbname; 
       ... 
 } 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–31 

To enhance the readability of the examples in this document, formal 
parameters are not declared. Instead, local variables are declared that can be 
initialized to formal parameters. 

For example, the Open_Db procedure above could also be written as: 

Open_Db(dbname) 
 char *dbname; 
 { 
       exec sql begin declare section; 
                    char *dbnm = dbname; 
       exec sql end declare section; 
  
       exec sql whenever sqlerror stop; 
       exec sql connect :dbnm; 
       ... 
 } 

Take special care when using variables in a declare cursor statement. The 
variables used in such a statement must also be valid in the scope of the open 
statement for that same cursor. The preprocessor actually generates the code 
for the declare at the point that the open is issued and, at that time, evaluates 
any associated variables. For example, in the following program fragment, 
even though the variable number is valid to the preprocessor at the point of 
both the declare cursor and open statements, it is not a valid variable name 
for the C compiler at the point that the open is issued. 

For example: 

Init_Csr1() /* This example contains an error */ 
{ 
  exec sql begin declare section; 
   int number; /* A local variable */ 
  exec sql end declare section; 
  
  exec sql declare cursor1 cursor for 
   select ename, age 
   from employee 
   where eno = :number; 
  
  /* Initialize "number" to a particular value */ 
    ... 
 } 
 
Process_Csr1() 
{ 
   exec sql begin declare section; 
      char ename[16]; 
      int age; 
   exec sql end declare section; 
  
   exec sql open cursor1; /* Illegal evaluation of 
                               "number" */ 
    exec sql fetch cursor1 into :ename, :age; 
    ... 
 } 



C Variables and Data Types 

2–32     Embedded SQL Companion Guide 

Variable Usage 

C variables that you declare in an embedded SQL declaration section can 
substitute for most elements of embedded SQL statements that are not 
keywords. Of course, the variable and its data type must make sense in the 
context of the element. When you use a C variable in an embedded SQL 
statement, precede it with a colon. You must further verify that the statement 
using the variable is in the scope of the variable’s declaration. As an example, 
the following select statement uses the variables namevar and numvar to 
receive data, and the variable idno as an expression in the where clause: 

exec sql select ename, eno 
       into :namevar, :numvar 
       from employee 
       where eno = :idno; 

Various rules and restrictions apply to the use of C variables in embedded SQL 
statements. The following sections describe the usage syntax of different 
categories of variables and provide examples of such use. 

Simple Variables 

The following syntax refers to a simple scalar-valued variable (integer, 
floating-point or character string): 

:simplename 

Syntax Notes: 

 If you use the variable to send values to the database, or a field on a 
form, it can be any scalar-valued variable or # define constant, 
enumerated variable or enumerated literal. 

 If you use the variable to receive values from the database or a field on a 
form, it can only be a scalar-valued variable or enumerated variable. 
Character strings that you declare as: 

char *character_string_pointer; 

or: 

char character_string_buffer[]; 

are considered scalar-valued variables and must not include any 
indirection when referenced. External compiled forms that are declared as: 

extern int *compiled_formname; (UNIX) 

globalref int *compiled_formname; (VMS) 

should not include any indirection when referenced in the addform 
statement: 

exec frs addform :compiled_formname; 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–33 

The following program fragment demonstrates a typical message handling 
routine. It passes two scalar-valued variables as parameters: “buffer”, a 
character string, and “seconds”, an integer variable. 

Print_Message(buffer, seconds) 
 exec sql begin declare section; 
       char *buffer; 
       short seconds; 
 exec sql end declare section; 
 { 
       exec frs message :buffer; 
       exec frs sleep :seconds; 
       ... 
 } 

Note: Ingres supports Unicode using Unicode Transformation Format 16 
(UTF-16), representing Unicode code points in 16 bits (two octets). Embedded 
C for Ingres allows for variables of the C data type wchar_t to contain Ingres 
Unicode data. The C Standard does not specify a size for the wchar_t data 
type, however, if the compilation platform uses at least 16 bits for the data 
type wchar_t, it can be used for Ingres embedded C programs. When Ingres 
updates variables of the type wchar_t, only the low 16 bits are used; any extra 
high bits are set to zero. When Ingres reads values from wchar_t variables, 
only the low 16 bits are used and any extra high bits are ignored.  

Array Variables 

The following syntax refers to an array variable: 

:arrayname [subscript] {[subscript]} 

Syntax Notes: 

 You must subscript the variable, because only scalar-valued elements 
(integers, floating-point and character strings) are legal SQL values. 

 When you reference the array, the number of indices is noted but the 
embedded SQL preprocessor does not parse the subscript values. 
Consequently, even though the preprocessor confirms that you used the 
correct number of array indirections, the preprocessor accepts illegal 
subscript values. You must make sure that the subscript is legal. For 
example, the preprocessor accepts both of the following references, even 
though only the first is correct: 

float salary_array[5]; 
:salary_array[0] 
:salary_array[+-1-+]A character string, declared as an array of characters, 
is not considered an array and cannot be subscripted in order to reference a 
single character. In fact, single characters are illegal string values, as 
all character string values must be null-terminated. 

For example, if the following variable were declared: 

static char abc[3] = {'a', 'b', 'c'}; 



C Variables and Data Types 

2–34     Embedded SQL Companion Guide 

you could not access the character “a” with the reference: 

:abc[0] 

To perform such a task, declare the variable as an array of three single 
character strings: 

static char *abc[3] = {"a","b","c"}; 

 As with standard C, any variable that can be denoted with array 
subscripting can also be denoted with pointers. This is because the 
preprocessor only records the number of indirection levels used when 
referencing a variable. The indirection level is the sum of the number of 
pointer operators preceding the variable reference name and the number 
of array subscripts following the name. For example, if a variable is 
declared as an array: 

int age_set[2]; 

it can be referenced as either an array: 

:age_set[0] 

or a pointer: 

:*age_set 

 Do not precede references to elements of an array with the ampersand 
operator (&) to denote the address of the element. 

 Any arrays of indicator variables that you use with structure assignments 
must not include subscripts. 

The following example uses the variable “i” as a subscript. This variable does 
not need to be declared in the declaration section, as it is not parsed. 

exec sql begin declare section; 
  char *formnames[3={"empform","deptform","helpform"}; 
exec sql end declare section; 
 int I; 
 for (i = 0; i < 3; i++) 
         exec frs forminit :formnames[i]; 

Pointer Variables 

The following syntax refers to a pointer variable: 

:*{*}pointername 

Syntax Notes: 

 Refer to the variable indirectly, because only scalar-valued elements 
(integers, floating-point, and character strings) are legal SQL values. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–35 

 When you declare the variable, the preprocessor notes the number of 
preceding asterisks. Later references to the variable must have the same 
indirection level. The indirection level is the sum of the number of pointer 
operators (asterisks) preceding the variable declaration name and the 
number of array subscripts following the name. 

 A character string, declared as a pointer to a character, is not considered a 
pointer and cannot be subscripted in order to reference a single character. 
As with arrays, single characters are illegal string values because any 
character string value must be null-terminated. For example, assuming the 
following declaration: 

char *abc = "abc"; 

you could not access the character “a” with the reference: 

:*abcExternal compiled forms that you declare as: 

 

UNIX
 

 extern int *compiled_formname;  

VMS
 

 globalref  *compiled_formname;  

These external compiled forms must not include any indirection when 
referenced in the addform statement. 

 As with standard C, any variable that you can denote with pointer 
indirection can also be denoted with array subscripting. This is true 
because the preprocessor only records the number of indirection levels 
used when referencing a variable. For example, if you declare a variable as 
a pointer: 

int *age_pointer; 

it can be referenced as either a pointer: 

:*age_pointer; 

or an array: 

:age_pointer[0]; 

The next section describes pointers to structures and members of structures. 

The following example, uses a pointer to insert integer values into a database 
table: 

exec sql begin declare section; 
        int *numptr; 
 exec sql end declare section; 
 static int numarr[6] = {1, 2, 3, 4, 5, 0}; 
 
for (numptr = numarr; *numptr; numptr++) 
    exec sql insert into items (number) values (:*numptr); 



C Variables and Data Types 

2–36     Embedded SQL Companion Guide 

Structure Variables 

You can use a structure variable in two different ways. First, you can use the 
structure as a simple variable, implying that all its members are used. This 
would be appropriate in the embedded SQL select, fetch, and insert 
statements. Second, you can use a member of a structure to refer to a single 
element. Of course, this member must be a scalar value (integer, floating-
point or character string). 

Using a Structure as a 
Collection of 
Variables 

The syntax for referring to a complete structure is the same as referring to a 
simple variable: 

:structurename 

Syntax Notes: 

 The structurename refers to a main or nested structure. It can be an 
element of an array of structures. Any variable reference that denotes a 
structure is acceptable. For example: 

 :emprec               /* A simple structure */ 
 :struct_array[i]      /* An element of an array of structures */ 
 :struct.minor2.minor3 /* A nested structure at level 3 */ 

 To use the final structure of the reference as a collection of variables, it 
must have no nested structures or arrays. The preprocessor enumerates 
all the members of the structure, which must have scalar values. The 
preprocessor generates code as though the program had listed each 
structure member in the order in which it was declared. 

The following example uses the employee.dcl file generated by DCLGEN, to 
retrieve values into a structure: 

exec sql begin declare section; 
  exec sql include 'employee.dcl'; /* See above for 
         description */ 
exec sql end declare section; 
  
exec sql select * 
  into :emprec 
  from employee 
  where eno = 123; 

The example above generates code as though the following statement had 
been issued instead: 

exec sql select * 
   into :emprec.eno, :emprec.ename, :emprec.age, 
    :emprec.job, :emprec.sal, :emprec.dept 
   from employee 
   where eno = 123; 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–37 

The following example fetches the values associated with all the columns of a 
cursor into a record: 

exec sql begin declare section; 
   exec sql include 'employee.dcl'; /* See above for 
     description */ 
exec sql end declare section; 
  
exec sql declare empcsr cursor for 
   select * 
   from employee 
   order by ename; 
   ... 
  
exec sql fetch empcsr into :emprec; 

The next example inserts values by looping through a locally declared array of 
structures whose elements have been initialized: 

exec sql begin declare section; 
   exec sql declare person table 
   (pname    char(30), 
    page     integer1, 
     paddr    varchar(50)); 
   struct person_ 
   { 
    char      name[31]; 
    short     age; 
    char      addr[51]; 
   } person[10]; 
   int   i; 
 exec sql end declare section; 
  
... 
  
for (i = 0; i < 10; i++) 
{ 
 exec sql insert into person 
  values (:person[i]); 
 } 

The insert statement in the example above generates code as though the 
following statement had been issued instead: 

exec sql insert into person 
   values (:person[i].name, :person[i].age, 
   :person[i].addr); 

Using a Structure 
Member 

The syntax embedded SQL uses to refer to a structure member is the same 
as 
in C: 

:structure.member{.member} 



C Variables and Data Types 

2–38     Embedded SQL Companion Guide 

Syntax Notes: 

 The structure member in the above statement must be a scalar value 
(integer, floating-point or character string). There can be any combination 
of arrays and structures, but the last object referenced must be a scalar 
value. Thus, the following references are all legal: 

 :employee.sal   /* Member of a structure */ 
 :person[3].name /* Element member of an array */ 
 :structure.mem2.mem3.age /* Deeply nested member */ 

 Any array elements referred to within the structure reference, and not at 
the very end of the reference, are not checked by the preprocessor. 
Consequently, both of the following references are accepted, even though 
one must be wrong, depending on whether person is an array: 

 :person[1].age 
 :person.ageStructure references can also include pointers to structures. The 
arrow operator (->) denotes these structures. The preprocessor treats the arrow 
operator exactly like the dot operator and does not check that the arrow is used 
when referring to a structure pointer and that the dot is used when referring to 
a structure variable. 

For example, the preprocessor accepts both of the following references to 
a structure, even though only the second one is legal C: 

 Struct 
 { 
  char *name; 
  int   number; 
 } people[10], *one_person; 
  
 :people[i]->name  /* Should use the dot operator */ 
 :one_person->name /* Correct use of pointer 
      qualifier */In general, the preprocessor supports 
unambiguous and direct references to structure members, as in the following 
example: 

 :ptr1->struct2.mem3[ind4]->arr5[ind6][ind7] 

In this case, the last object denoted, arr5[ind6][ind7],  must specify a 
scalar-valued object. References to structure variables cannot contain 
grouping parentheses. For example, assuming you declare struct1 
correctly, the following reference causes a syntax error on the left 
parenthesis: 

 :(struct1.mem2)->num3 

The only exception to this rule occurs when grouping a reference to the 
first and main member of a structure by starting the reference with a left 
parenthesis followed by an asterisk. Note that the two operators, “(” and 
“*” must be bound together without separating spaces, as in the following 
example: 

 :(*ptr1)->mem2 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–39 

The following example uses the emprec structure that DCLGEN generates to 
put values into the empform form: 

exec sql begin declare section; 
   struct emprec_ { 
   short   eno; 
   char    ename[21]; 
   short   age; 
   short   job; 
   double  sal; 
   short   dept; 
   } emprec; 
 exec sql end declare section; 
  ... 
  
exec frs putform empform 
   (eno = :emprec.eno, ename = :emprec.ename, 
    age = :emprec.age, job  = :emprec.job, 
    sal = :emprec.sal, dept = :emprec.dept); 

Using an Enumerated 
Variable (Enum) 

The syntax for referring to an enumerated variable or enumerated literal is 
the same as referring to a simple variable: 

:enum_name; 

Enumerated variables are treated as integer variables when referenced and 
you can use them to retrieve data from and assign data to Ingres. The 
enumerated literals are treated as declarations of integer constants and follow 
the same rules as integer constants declared with the # define statement. Use 
enumerated literals only to assign data to Ingres. 



C Variables and Data Types 

2–40     Embedded SQL Companion Guide 

The following program fragment demonstrates a simple example of the 
enumerated type color: 

exec sql begin declare section; 
  
  exec sql declare clr table (num integer,color integer); 
  typedef enum {RED, WHITE, BLUE} color; 
  color col_var, *col_ptr; 
  static COLOR col_arr[3] = {BLUE, WHITE, RED}; 
 int i; 
 exec sql end declare section; 
   /* Mapping from color to string */ 
 
static char *col_to_str_arr[3] = {"RED","WHITE", "BLUE"}; 
#   define ctos(c) col_to_str_arr[(int)c] 
  
/* Fill rows with color array */ 
for (i = 0; i < 3; i++) 
     exec sql insert into clr values (:i+1, :col_arr[i]); 
  
/* 
** Retrieve the rows - demonstrating a COLOR variable  
** and pointer, and arithmetic on a stored COLOR value. 
** Results are: 
**    [1] BLUE, RED 
**    [2] WHITE, BLUE 
**    [3] RED, WHITE 
*/ 
col_ptr = &col_arr[0]; 
 exec sql select num, color, color+1 
  into :i, :col_var, :*col_ptr 
  from clr; 
 exec sql begin; 
   printf("[%d] %s, %s\n", i, ctos(col_var), 
              ctos(*col_ptr%3)); 
 exec sql end; 

Using a Varying 
Length String Variable 
(Varchar or Varbyte) 

The syntax for referring to a varchar (or varbyte) variable is the same as 
referring to a simple variable: 

 

:varchar_name; 

Syntax Notes: 

 When using a variable declared with the varchar (or varbyte) storage 
class, you cannot reference the two members of the structure individually 
but only the structure as a whole. For example, the following declaration 
and select statement are legal: 

 varchar struct { 
         short       buf_size; 
         char        buf[100]; 
  
 } vch; 
    select data into :vch from objects; 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–41 

But the following statement generates an error on the use of the member 
“buf_size”: 

 select data, length(data) 
        into :vch, :vch.buf_size 
        from objects; 

 When you use the variable to retrieve Ingres data, the 2-byte length field 
is assigned the length of the data, and the data is copied into the fixed 
length character array. The data is not null-terminated. You can use a 
varchar (or varbyte) variable to retrieve data in the select, fetch, 
inquire_sql, getform, finalize, unloadtable, getrow, and inquire_frs 
statements. 

 When you use the variable to set Ingres data, the program must assign 
the length of the data (in the character array) to the 2-byte length field. 
You can use a varchar (or varbyte) variable to set data in the insert, 
update, putform, initialize, loadtable, putrow, and set_frs statements. 

Using Indicator Variables 

The syntax for referring to an indicator variable is the same as for a simple 
variable, except that an indicator variable is always associated with a host 
variable: 

:host_variable:indicator_variable; 

or 

:host_variable indicator :indicator_variable; 

Syntax Notes: 

 The indicator variable can be a simple variable, an array element or a 
structure member that yields a short integer. For example: 

    short     ind_var, *ind_ptr, ind_arr[5]; 
  
                           :var_1:ind_var 
                           :var_2:*ind_ptr 
                           :var_3:ind_arr[2] 

 If the host variable associated with the indicator variable is a structure, 
the indicator variable should be an array of short integers. In this case, the 
array should not be dereferenced with a subscript. 

 When you use an indicator array, the first element of the array 
corresponds to the first member of the structure, the second element to 
the second member, and so on. Array elements begin at subscript 0, and 
not at 1 as in other languages. 



C Variables and Data Types 

2–42     Embedded SQL Companion Guide 

The following example uses the employee.dcl file that DCLGEN generated to 
retrieve values into a structure and null indicators into the empind array: 

exec sql begin declare section; 
  exec sql include 'employee.dcl'; 
   /* See above for description */ 
  short    empind[10]; 
 exec sql end declare section; 
  
exec sql select * 
  into :emprec:empind 
  from employee; 

The above example generates code as though the following statement had 
been issued: 

exec sql select * 
  into:emprec.eno:empind[0], :emprec.ename:empind[1], 
 :emprec.age:empind[2], :emprec.job:empind[3], 
 :emprec.sal:empind[4], :emprec.dept:empind[5], 
 from employee; 

Using Varchar Variables for Logical Key Data Types 

It is recommended that you use varchar variables to retrieve or insert Ingres 
logical key data types instead of char(8) or char(16) compatible variables. If 
logical key data contain embedded nulls, the Ingres runtime system may not 
be able to detect the end-of-string terminator on char variables; using varchar 
will eliminate this confusion between null-terminated strings and null data. 
System maintained logical keys are very likely to contain binary data including 
null bytes; therefore, you should always use a varchar variable when dealing 
with system maintained logical keys. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–43 

For example: 

exec sql begin declare section; 
  
exec sql declare keytab table 
  (tkey table_key with system_maintained, 
  okey object_key with sytem_maintained, 
  row integer); 
  
exec sql declare savetab table 
  (tsave table_key not system_maintained, 
  osave object_key not system_maintained); 
  
#define tablen 8 /* Table_key length */ 
#define objlen 16 /* Object_key length */ 
varchar struct 
{ 
    short   obj_len; 
    char    obj_data[OBJLEN]]; 
 } objvar; 
  
varchar struct 
{ 
    short   tab_len; 
    char    tab_data[TABLEN]; 
 } tabvar; 
  
int     indx; 
 short   tabind, objind; 
  
exec sql end declare section; 
. . . 
  
exec sql insert into keytab (row) values (1); 
/* 
** Retrieve the table key and object key values 
** that were just inserted by the system. Then 
** INSERT the table key and object key values into 
** another table with non-system maintained logical keys. 
*/ 
exec sql inquire_sql (:tabvar:tabind = table_key, 
     :objvar:objind= object_key); 
 if (tabind == -1 || objind == -1) 
   printf ("No logical key values available.\n"); 
else 
     exec sql insert into savetab (tsave, osave) 
     values (table_key(:tabvar), object_key(:objvar)); 
  
/* 
** Select data from a table that contains logical key 
** data types. 
*/ 
exec sql select tsave, osave into :tabvar, :objvar 
   from savetab; 
exec sql begin; 
   /*Print out the table key value in Hex */ 
      printf (" Table key value = 0x"); 
        for (indx = 0; indx < tabvar.tab_len; indx++) 
 
     { 
           printf ("%02x", (unsigned char) 
    tabvar.tab_data[indx]); 
      }  
      printf ("\n"); 
exec sql end; 



C Variables and Data Types 

2–44     Embedded SQL Companion Guide 

Declaring Function Arguments  

If you intend to use function arguments in ESQL statements, you must declare 
the variable to the ESQL/C compiler. In non-ANSI style C functions, you can 
declare function arguments directly; for example: 

void myfunct(arg1, arg2) 
  
exec sql begin declare section; 
  int arg1;  
 
exec sql end declare section; 
  int arg2; 

In ANSI style functions, you cannot use the function argument variable 
directly. You must declare a local variable for use in ESQL statements, and 
copy the value from the function argument to the variable. For example: 

void myANSIfunct(int arg1, int arg2) 
  
exec sql begin declare section; 
  int localarg1; 
  
exec sql end declare section; 
  int localarg2; 
  localarg1 = arg1; 
  
/* Now use localarg1 in your ESQL statements */ 
... 

Data Type Conversion 

A C variable declaration must be compatible with the Ingres value it 
represents. Numeric Ingres values can be set by and retrieved into numeric 
variables, and Ingres character values can be set by and retrieved into 
character variables. 

Data type conversion occurs automatically for different numeric types such as 
from floating-point database column values into integer C variables, and for 
character strings, such as from varying-length Ingres character fields into 
fixed-length C character string buffers. 

Ingres does not automatically convert between numeric and character types. 
You must use the Ingres type conversion operators, the Ingres ascii function, 
or a C conversion routine for this purpose. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–45 

The following table shows the default type compatibility for each Ingres data 
type: 

 

Ingres Type C Type 

char(N) char [N+1] 

varchar(N) char [N+1] 

char(N)(with embedded nulls) varchar 

varchar(N)(with embedded nulls) varchar 

integer1 short 

integer2 short 

smallint short 

integer int 

integer long 

float4 float 

bigint long (64-bit); long long (32-bit)

float double 

date char [26] 

money double 

table_key varchar 

object_key varchar 

decimal double 

long varchar  char[ ] 

long varchar (with embedded nulls) varchar 

byte varbyte 

varbyte varbyte 

long byte varbyte 



C Variables and Data Types 

2–46     Embedded SQL Companion Guide 

Runtime Numeric Type Conversion 

The Ingres runtime system provides automatic data type conversion between 
numeric-type values in the database and the forms system and numeric C 
variables. It follows the standard type conversion rules (according to standard 
C numeric conversion rules). For example, if you assign a float variable to an 
integer-valued field, the digits after the decimal point of the variable’s value 
are truncated.  Runtime errors are generated for overflow on conversion. 

Unsigned integers can be assigned to and retrieved from the database 
wherever plain integers are used. However, take care when using an unsigned 
integer whose positive value is large enough to cause the high order bit to be 
set. Integers such as these are treated as negative numbers in Ingres 
arithmetic expressions and are displayed as negative numbers by the Forms 
Runtime system. 

The Ingres money type is represented as an 8-byte floating-point value 
compatible with a C double. 

Runtime Character Type Conversion 

Automatic conversion occurs between Ingres character string values and C 
character string variables. The string-valued Ingres objects that can interact 
with character string variables are: 

 Ingres names, such as form and column names 

 database columns of type character 

 database columns of type varchar 

 form fields of type character 

 database columns of type long varchar 

Several considerations apply when dealing with character string conversions, 
both to and from Ingres. 

References in this section to character string variables do not refer to single 
byte integers declared with the char type, but to the character string pointer: 

char *character_string_pointer; 

or to the character string buffer: 

char character_string_buffer[length]; 

Character string pointers are always assumed to be pointing at legal string 
values. Any pointer that has not been initialized to point at a string value 
causes a runtime error, resulting in program failure or the overwriting of space 
in memory. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–47 

The conversion of C character string variables used to represent Ingres names 
is simple: trailing blanks are truncated from the variables, because the blanks 
make no sense in that context. For example, the string literals empform   and 
empform refer to the same form. 

The conversion of other Ingres objects is a bit more complicated. First, the 
storage of character data in Ingres differs according to whether the medium of 
storage is a database column of type character, a database column of type 
varchar, or a character form field. Ingres pads columns of type character with 
blanks to their declared length. Conversely, it does not add blanks to the data 
in columns of type varchar or long varchar, or in form fields. 

Second, the C convention is to null terminate character strings, and the Ingres 
runtime system assumes that all strings are null-terminated. For example, the 
character string abc is stored as the string literal abc followed by the C null 
character, \0, requiring four bytes. 

Fixed length character string variables cannot contain embedded nulls, 
because the runtime system cannot differentiate between embedded nulls and 
the trailing null terminator. For a complete description of variables that contain 
embedded nulls and the C varchar storage class, see The Varying Length 
String Type in this chapter. 

When retrieving character data from an Ingres database column or form field 
into a C character string variable, be sure to always supply enough room in 
the variable to accommodate the maximum size of the particular object, plus 
one byte for the C null character. (Consider the maximum size to be the length 
of the database column or the form field.)  If the character string buffer is too 
small to contain the complete string value together with the null character, the 
runtime system may overwrite other space in memory. 

If the length of a character string variable is known to the preprocessor, as in 
the declaration: 

char character_string_buffer[fixed_length]; 

then the runtime system copies at most the specified number of characters 
including the trailing null character. In cases where the fixed length of the 
variable (less one for the null) is smaller than the data to be copied, the data 
is truncated. The specified length must be at least 2, because one character 
and the terminating null are retrieved. If the length is exactly 1, the data is 
overwritten by the terminating null. 



C Variables and Data Types 

2–48     Embedded SQL Companion Guide 

Furthermore, take note of the following conventions: 

 Data stored in a database column of type character is padded with blanks 
to the length of the column. The variable receiving such data will contain 
those blanks, followed by the null character. If the receiving variable was 
declared with a fixed length known to the preprocessor, such as: 

   char myvar[25] 

and the data retrieved is longer than the buffer, the variable will receive 
only as many characters as will fit (including the terminating null). If the 
data received is shorter than the variable, the behavior is determined by 
the setting of the -blank_pad preprocessor flag. By default, the 
terminating null is placed at the end of the retrieved data, without padding 
out any space remaining in the variable. But if a module is preprocessed 
with the -blank_pad flag then receiving variables are blank padded to their 
full defined length (less one space reserved for the terminating null). The 
-blank_pad behavior is specified by the ANSI SQL92 standard. 

 Data stored in a database column of type varchar is not padded with 
blanks. The character string variable receives only the actual characters in 
the column, plus the terminating null character. 

 Data stored in a character form field contains no trailing blanks. The 
character string variable receives only the actual characters in the field, 
plus the terminating null character. 

When inserting character data into an Ingres database column or form field 
from a C variable, the following conventions are in effect: 

 When data is inserted from a C variable into a database column of type 
character and the column is longer than the variable, the column is padded 
with blanks. If the column is shorter than the variable, the data is 
truncated to the length of the column. 

 When data is inserted from a C variable into a database column of type 
varchar or long varchar and the column is longer than the variable, no 
padding of the column takes place. However, all characters in the variable, 
including trailing blanks, are inserted. Therefore, you may want to 
truncate any trailing blanks in character string variables before storing 
them in varchar columns. If the column is shorter than the variable, the 
data is truncated to the length of the column. 

 When data is inserted from a C variable into a character form field and the 
field is longer than the variable, no padding of the field takes place. In 
addition, all trailing blanks in the data are truncated before the data is 
inserted into the field. If the field is shorter than the data (even after all 
trailing blanks have been truncated), the data is truncated to the length of 
the field. 

 When comparing data in character or varchar database columns with data 
in a character variable, all trailing blanks are ignored. Initial and 
embedded blanks are significant. 



C Variables and Data Types 

Chapter 2: Embedded SQL for C    2–49 

For a more complete discussion of the significance of blanks in string 
comparisons, see the SQL Reference Guide. 

Caution! As just described, the conversion of character string data between 
Ingres objects and C variables often involves the trimming or padding of 
trailing blanks, with resultant change to the data. If trailing blanks have 
significance in your application, give careful consideration to the effect of any 
data conversion. Take care not to use the standard strcmp function to test for 
a change in character data, since blanks are significant. 

The Ingres date data type is represented as 25-byte character string. Your 
program should allow 26 characters to accommodate the C null. 

Using Varchar to 
Receive and Set 
Character Data 

You can also use the C varchar storage class to retrieve and set character 
data. Typically, varchar variables are used when simple C char variables are 
not sufficient, as when null bytes are embedded in the character data. In 
those cases the runtime system cannot differentiate between embedded nulls 
and the null terminator of the string. 

When using varchar variables, the 2-byte length specifier indicates how many 
bytes are used in the fixed length character array. The runtime system sets 
this length after a data retrieval, or the program sets it before assigning data 
to Ingres. This length does not include a null terminator, as the null terminator 
is not copied or included in the data. The runtime system copies, at most, the 
size of the fixed length data buffer into the variable. 

You can also use varchar variables to retrieve character data that does not 
contain embedded nulls. Here too, the null terminator is not included in the 
data. 

Because varchar variables never include a null terminator, the program should 
avoid sending the data member of varchar variables to C functions that 
assume null-terminated strings (such as strlen and strcmp). 



C Variables and Data Types 

2–50     Embedded SQL Companion Guide 

The following program fragment demonstrates the use of the varchar storage 
class for C variables: 

exec sql begin declare section; 
 exec sql declare vch table 
  (row  integer, 
  data  varchar(10)); /* Note the VARCHAR type */ 
  static varchar struct vch_ { 
   short   vch_length; 
   char    vch_data[10]; 
 } vch_store[3] = { 
               /* Statically initialized data with nulls */ 
          {3, {'1', '2', '3'}}, 
          {6, {'1', '2', '3', '\0', '5', '6'}}, 
          {8, {'\0', '2', '3', '4', '\0', '6', '7', '8'}} 
}; 
  varchar struct vch_ vch_res; 
  int i, j; 
 exec sql end declare section; 
  
exec sql whenever sqlerror call sqlprint; 
  
/* 
** Add all three rows of data from table above (including mulls).  
** Note that the members of the varchar structure are not mentioned. 
*/ 
for (i = 0; i < 3; i++) 
{ 
   exec sql insert into vch 
                  values (:i+1, :vch_store[i]); 
 } 
/* 
** Now SELECT the data back. Note that the runtime system implicitly  
** assigns to the length field the size of the data. 
*/ 
exec sql select * 
  into :i, :vch_res 
  from vch; 
 exec sql begin; 
  
     /* 
     ** Print the values of each row. Before printing the values, 
     ** convert all embedded nulls to the ‘?’ character for printing. 
     ** The results are: 
     **         [1] ’123’ 
     **         [2] ’123?56’ 
     **         [3] ’?234?678’ 
     */ 
     for (j = 0; j < vch_res.vch_length; j++) 
     { 
         if (vch_res.vch_data[j] == '\0') 
               vch_res.vch_data[j] = '?'; 
     } 
     printf("[%d] '%.*s'\n", i, vch_res.vch_length, 
                                   vch_res.vch_data); 
     /* 
     ** Note the printf format used here is %.*s rather than %s 
     ** because Ingres does not null terminate varchar data. 
     */ 
 
exec sql end; 



The SQL Communications Area 

Chapter 2: Embedded SQL for C    2–51 

The SQL Communications Area 
This section describes the SQL Communications Area (SQLCA) as implemented 
in C.  

The Include SQLCA Statement 

In order to handle SQL database errors, you can issue the include sqlca 
statement at the outermost scope of your C file. If the file is made up of one 
main procedure that issues embedded SQL statements, it must be the first 
embedded SQL statement in the procedure: 

Emp_Update() 
{ 
    exec sql include sqlca; 
    /* Declarations and embedded statements */ 
} 

If the file is made up of a few procedures that issue embedded SQL 
statements, the include sqlca must be issued outside any of the procedures: 

exec sql include sqlca; 
 Emp_Util_1() 
{ 
    /* 
    ** Declarations & embedded statements for Emp_Util_1 
    */ 
} 
Emp_Util_2() 
{ 
    /* 
    ** Declarations & embedded statements for Emp_Util_2 
    */ 
} 

The include sqlca statement instructs the preprocessor to generate code that 
includes references to the SQLCA structure for error handling on database 
statements. It generates a C include directive to a file that defines the SQLCA 
structure. 

You only need to issue the include sqlca statement if you intend to use the 
SQLCA for error handling. Some error handling mechanism should be included 
before all executable embedded SQL database statements because the default 
action is to ignore errors, which is rarely desirable. 



The SQL Communications Area 

2–52     Embedded SQL Companion Guide 

Contents of the SQLCA 

One of the results of issuing the include sqlca statement is the declaration of 
the SQLCA structure, which you can use for error handling in the context of 
database statements. You need to issue the statement only once per source 
file because it generates an extern structure declaration. The structure 
declaration for the SQLCA is: 

typedef struct { 
char      sqlcaid[8]; 
 long      sqlcabc; 
 long      sqlcode; 
 struct { 
   short     sqlerrml; 
   char      sqlerrmc[70]; 
 } sqlerrm; 
 char    sqlerrp[8]; 
 long    sqlerrd[6]; 
 struct { 
   char      sqlwarn0; 
   char      sqlwarn1; 
   char      sqlwarn2; 
   char      sqlwarn3; 
   char      sqlwarn4; 
   char      sqlwarn5; 
   char      sqlwarn6; 
   char      sqlwarn7; 
 } sqlwarn; 
 char     sqlext[8]; 
 } IISQLCA; 

extern IISQLCA sqlca; 

The nested structure sqlerrm is a varying length character string consisting of 
the two variables sqlerrml and sqlerrmc described in the SQL Reference Guide. 
For a full description of all the SQLCA structure members, see the SQL 
Reference Guide. 

The SQLCA is initialized at load-time. The sqlcaid and sqlcabc fields are 
initialized to the string SQLCA and the constant 136, respectively. 

Note: that the preprocessor is not aware of the structure declaration. 
Therefore, you cannot use members of the structure in an embedded SQL 
statement. 

For example, the following statement, attempting to insert the string SQLCA 
into a table, generates an error: 

exec sql insert into employee (ename) 
 /* This statement is illegal */ 
    values (:sqlca.sqlcaid); 

Also note that the string-valued fields in the SQLCA are not null-terminated. 
Consequently, if you copy their values into other C variables, you must add 
the C null character afterwards. 

All modules linked together share the same SQLCA. 



The SQL Communications Area 

Chapter 2: Embedded SQL for C    2–53 

Using the SQLCA for Error Handling 

User-defined error, message and dbevent handlers offer the most flexibility for 
handling errors, database procedure messages, and database events. For 
more information, see the Advanced Processing section in this chapter. 

However, you can do error handling with the SQLCA implicitly by using 
whenever statements, or explicitly by checking the contents of the SQLCA 
fields sqlcode, sqlerrd, and sqlwarn0. 

Error Handling with the Whenever Statement 

The syntax of the whenever statement is:  

exec sql whenever condition action; 

The condition is dbevent, sqlwarning, sqlerror, sqlmessage, or not found. The 
action is continue, stop, goto a label, or call a C procedure. For a detailed 
description of this statement, see the SQL Reference Guide. 

In C, all labels and procedure names must be legal C identifiers, beginning 
with an alphabetic character or an underscore. If the label is an embedded 
SQL reserved word, specify it in quotes. The label targeted by the goto action 
must be in the scope of all subsequent embedded SQL statements until 
another whenever statement is encountered for the same action. This is 
necessary because the preprocessor may generate the C statement: 

if (condition) goto label; 

after an embedded SQL statement. If the scope of the label is invalid, the C 
compiler generates an error. 

The same scope rules apply to procedure names used with the call action. The 
reserved procedure sqlprint, which prints errors or database procedure 
messages and then continues, is always in the scope of the program. When a 
whenever statement specifies a call as the action, the target procedure is 
called, and after its execution, control returns to the statement following the 
statement that caused the procedure to be called. Consequently, after 
handling the whenever condition in the called procedure, you may want to 
take some action, instead of merely issuing a C return statement. The C return 
statement causes the program to continue execution with the statement 
following the embedded SQL statement that generated the error. 

You can also use user-defined handlers for error handling. For more 
information, see the SQL Reference Guide. 



The SQL Communications Area 

2–54     Embedded SQL Companion Guide 

The following example demonstrates use of the whenever statements in the 
context of printing some values from the Employee table. The comments do 
not relate to the program but to the use of error handling: 

exec sql include sqlca; 
  
Db_Test() 
 
{ 
    exec sql begin declare section; 
         short eno; 
         char  ename[21]; 
         char  age; 
    exec sql end declare section; 
       exec sql declare empcsr cursor for  
         select eno, ename, age 
         from employee; 
    /* 
    ** An error when opening the personnel database will 
    ** cause the error to be printed and the program 
    ** to abort. 
    */ 
    exec sql whenever sqlerror stop; 
    exec sql connect personnel; 
    /* Errors from here on will cause the program to 
    ** clean up 
    */ 
    exec sql whenever sqlerror call Clean_Up; 
  
    exec sql open empcsr; 
  
    printf("Some values from the \"employee\" table.\n"); 
 
    /* 
    ** When no more rows are fetched, close the cursor 
    */ 
    exec sql whenever not found goto close_csr; 
    /* 
    ** The last executable embedded SQL statement was an 
    ** OPEN, so we know that the value of "sqlcode" 
    ** cannot be SQLERROR or NOT FOUND. 
    */ 
    while (1) /* Loop is broken by NOT FOUND */ 
    { 
        exec sql fetch empcsr 
            into :eno, :ename, :age; 
  
            /* 
            ** This "printf" does not execute after the 
            ** previous FETCH returns the NOT FOUND 
            ** condition. 
            */ 
            printf("%d, %s, %d\n", eno, ename, age); 
    } 
 
    /* 
    ** From this point in the file onwards, ignore all 
    ** errors. Also turn off the NOT FOUND condition, 
    ** for consistency 
    */ 
    exec sql whenever sqlerror continue; 
    exec sql whenever not found continue; 
 Close_Csr: 
    exec sql close empcsr; 
    exec sql disconnect; 
 } 



The SQL Communications Area 

Chapter 2: Embedded SQL for C    2–55 

 
/* 
** Clean_Up: Error handling procedure (print error and disconnect). 
*/ 
 
Clean_Up() 
{ 
    exec sql begin declare section; 
        char errmsg[101]; 
    exec sql end declare section; 
  
    exec sql inquire_sql (:errmsg = ERRORTEXT); 
    printf("Aborting because of error:\n%s\n", errmsg); 
    exec sql disconnect; 
  
    exit(-1); /* Do not return to Db_Test */ 
} 

The Whenever Goto 
Action In Embedded 
SQL Blocks 

An embedded SQL block-structured statement is delimited by the words 
begin and end. For example, the select loop and unloadtable loops are all 
block-structured statements. You can only terminate these statements by the 
methods specified for the particular statement in the SQL Reference Guide. 
For example, the select loop is terminated either when all the rows in the 
database result table are processed or by an endselect statement. The 
unloadtable loop is terminated either when all the rows in the forms table 
field are processed or by an endloop statement. 

Therefore, if you use a whenever statement with the goto action in an SQL 
block, you must avoid going to a label outside the block. Such a goto causes 
the block to be terminated without issuing the runtime calls necessary to clean 
up the information that controls the loop. (For the same reason, you must not 
issue a C return or goto statement that causes control to leave or enter the 
middle of an SQL block.) The target label of the whenever goto statement 
should be a label in the block. However, if it is a label for a block of code that 
cleanly exits the program, the above precaution need not be taken. 

The above information does not apply to error handling for database 
statements issued outside an SQL block, or to explicit hard-coded error 
handling. See the example of hard-coded error handling in The Table Editor 
Table Field Application in this chapter. 

Explicit Error Handling 

The program can also handle errors by inspecting values in the SQLCA 
structure at various points. For further details, see the SQL Reference Guide. 

The following example is functionally the same as the previous example, 
except that the error handling is hard-coded in C statements: 



The SQL Communications Area 

2–56     Embedded SQL Companion Guide 

exec sql include sqlca; 
  
# define NOT_FOUND 100 
 
Db_Test() 
{ 
    exec sql begin declare section; 
        short   eno; 
        char    ename[21]; 
        char    age; 
    exec sql end declare section; 
  
    exec sql declare empcsr cursor for 
        select eno, ename, age 
        from employee; 
  
    /* Exit if database cannot be opened */ 
    exec sql connect personnel; 
    if (sqlca.sqlcode < 0) 
    { 
        printf("Cannot access database.\n"); 
        exit(-1); 
    } 
/* Error if cannot open cursor */ 
exec sql open empcsr; 
 if (sqlca.sqlcode < 0) 
    Clean_Up("OPEN \"empcsr\""); 
 
printf("Some values from the \"employee\" 
    table.\n"); 
 
/*  
** The last executable embedded SQL statement was an OPEN, so we know 
** that the value of "sqlcode" cannot be SQLERROR or NOT FOUND. 
*/ 
while (sqlca.sqlcode == 0) 
/* Loop broken by NOT FOUND */ 
{ 
 
        exec sql fetch empcsr 
            into :eno, :ename, :age; 
  
        if (sqlca.sqlcode < 0) 
             Clean_Up("FETCH <"empcsr\""); 
 
        /* Do not print the last values twice */ 
        else if (sqlca.sqlcode != NOT_FOUND) 
        printf("%d, %s, %d\n", eno, ename, age); 
    } 
 
    exec sql close empcsr; 
    exec sql disconnect; 
  
} 
 
/* 
** Clean_Up: Error handling procedure 
*/ 
 
Clean_Up(stmt) 
 char    *stmt; 
 { 
    exec sql begin declare section; 
        char *err_stmt = stmt; 
        char errmsg[101]; 
    exec sql end declare section; 



The SQL Communications Area 

Chapter 2: Embedded SQL for C    2–57 

  
    exec sql inquire_sql (:errmsg = ERRORTEXT); 
    printf("Aborting because of error in %s:\n%s\n", 
        err_stmt, errmsg); 
    exec sql disconnect; 
  
    exit(-1); /* Do not return to Db_Test */ 
} 

Determining the Number of Affected Rows 

The third element of the SQLCA array sqlerrd indicates how many rows were 
affected by the last row-affecting statement. This element is referenced by 
sqlerrd[2] rather than sqlerrd[3] as in other languages, because C subscripts 
begin at number 0. 

The following program fragment, which deletes all employees whose employee 
numbers are greater than a given number, demonstrates how to use sqlerrd: 

exec sql include sqlca; 
 Delete_Rows(lower_bound) 
 int lower_bound; 
 { 
    exec sql begin declare section; 
        int lower_bound_num = lower_bound; 
    exec sql end declare section; 
  
    exec sql delete from employee 
        where eno > :lower_bound_num; 
  
    /* Print the number of employees deleted */ 
    printf("%d row(s) were deleted.\n", 
     sqlca.sqlerrd[2]); 
 } 

Using the SQLSTATE Variable 

You can use the SQLSTATE variable in an embedded SQL for C (ESQL/C) 
program to return status information about the last SQL statement that was 
executed. SQLSTATE must be declared in a declaration section and must be in 
uppercase. Also, it is valid across all sessions, so you only need to declare one 
SQLSTATE per application. 

To declare this variable, use: 

char SQLSTATE [6]; 

or: 

char *SQLSTATE; 
 /* Where SQLSTATE points to a buffer 6 bytes long. * 



Dynamic Programming for C 

2–58     Embedded SQL Companion Guide 

Dynamic Programming for C 
Ingres provides Dynamic SQL and Dynamic FRS to allow you to write generic 
programs. Dynamic SQL allows a program to build and execute SQL 
statements at runtime.  For example, an application can include an expert 
mode in which the runtime user can type in select queries and browse the 
results at the terminal. Dynamic FRS allows a program to interact with any 
form at runtime. For example, an application can load in any form, allowing 
the runtime user to retrieve new data from the form and insert it into the 
database. 

The Dynamic SQL and Dynamic FRS statements are described in the SQL 
Reference Guide and the Forms-based Application Development Tools User 
Guide, respectively. This section discusses the C-dependent issues of dynamic 
programming. For a complete example of using Dynamic SQL to write an SQL 
Terminal Monitor application, see The SQL Terminal Monitor Application in this 
chapter. For an example of using both Dynamic SQL and Dynamic FRS to 
browse and update a database using any form, see A Dynamic SQL/Forms 
Database Browser in this chapter. 

The SQLDA Structure 

The SQL Descriptor Area (SQLDA) is used to pass type and size information 
about an SQL statement, an Ingres form, or a table field, between Ingres and 
your program. 

In order to use the SQLDA, issue the include sqlda statement at the outermost 
scope of the source file. The include sqlda statement generates a C include 
directive to a file that defines the SQLDA type. The file does not declare an 
SQLDA variable; the program must declare a variable of the specified type. 
You can also code this structure directly instead of using the include sqlda 
statement. You can choose any name for the structure. 



Dynamic Programming for C 

Chapter 2: Embedded SQL for C    2–59 

The definition of the SQLDA (as specified in the include file) is: 

# define IISQ_MAX_COLS 1024 /*Maximum number of columns*/ 
typedef struct sqlvar 
{ 
    /* Single SQLDA variable */ 
    short sqltype; 
    short sqllen; 
    char  *sqldata; 
    short *sqlind; 
    struct { 
                short sqlnamel; 
                char  sqlnamec[34]; 
            } sqlname; 
 } IISQLVAR; 
  
typedef struct sqda 
{ 
    /* SQLDA structure */ 
    char      sqldaid[8]; 
    long      sqldabc; 
    short     sqln; 
    short     sqld; 
    IISQLVAR  sqlvar[IISQ_MAX_COLS]; 
 } IISQLDA; 
  
/* Structure for Data handlers */ 
 
typdef struct sq_datahdlr_ { 
  char *sqlarg;             /*optional argument to pass*/ 
  int  (*sqlhdlr)();/*user-defined datahandler function*/ 
} IISQLHDR 
/* Type codes */ 
# define IISQ_DTE_TYPE   3  /* Date:Output */ 
# define IISQ_MNY_TYPE   5  /* Money:Output */ 
# define IISQ_DEC_TYPE   10 /* Decimal:Output*/ 
# define IISQ_CHA_TYPE   20 /* Char:Input,Output */ 
# define IISQ_VCH_TYPE   21 /* Varchar:Input,Output */ 
# define IISQ_LVCH_TYPE  22 /* LongVarchar:Input,Output*/ 
# define IISQ_BYTE_TYPE  23 /* Byte:Input,Output*/ 
# define IISQ_VBYTE_TYPE 24 /* Varbyte:Input,Output*/ 
# define IISQ_LBYTE_TYPE 25 /* Long Byte:Input,Output*/ 
# define IISQ_INT_TYPE   30 /* Integer:Input,Output */ 
# define IISQ_FLT_TYPE   31 /* Float:Input,Output */ 
# define IISQ_CHR_TYPE   32 /* C - not seen.*/ 
# define IISQ_TXT_TYPE   37 /* Text - not seen */ 
# define IISQ_OBJ_TYPE   45 /* 4GL Object: Output */ 
# define IISQ_HDLR_TYPE  46 /* IISQLHDLR: Datahandler */ 
# define IISQ_TBL_TYPE   52 /* Table field: Output */ 
# define IISQ_DTE_LEN    25 /* Date length */ 
/* Allocation sizes */ 
# define IISQDA_HEAD_SIZE 16 
# define IISQDA_VAR_SIZE  sizeof(IISQLVAR) 

The actual definition in the included file is a C macro, which you can use to 
declare your own sized SQLDA. For more detail, see Declaring and Allocating 
an SQLDA Variable in this chapter.  

Structure Definition and Usage Notes: 

 The type definition of the SQLDA is called IISQLDA. This is done so that an 
SQLDA variable can be called SQLDA without causing a compile-time 
conflict. 



Dynamic Programming for C 

2–60     Embedded SQL Companion Guide 

 The sqlvar array is a varying length array, which has a default dimension 
of IISQ_MAX_COLS (1024) elements. The real dimension is determined 
when the structure is dynamically allocated. Dynamic allocation is 
described later. If a variable of type IISQLDA is statically declared, then by 
default the program has a variable of IISQ_MAX_COLS or 1024 sqlvar 
elements. 

 The sqlvar array begins at subscript 0, not at 1. 

 If your program defines its own SQLDA type, you must confirm that the 
structure layout is identical to that of the IISQLDA type, although you can 
declare a different number of sqlvar elements. 

 The nested structure sqlname is a varying length character string 
consisting of a length and data area. The sqlnamec field contains the name 
of a result field or column after the describe (or prepare into) statement. 
The length of the name is specified by sqlnamel. Unlike regular C character 
data, the characters in the sqlnamec field are not null-terminated. You can 
also set the sqlname structure by a program using Dynamic FRS. (See 
Setting SQLNAME for Dynamic FRS in this chapter.) 

 The list of type codes represent the types that are returned by the 
describe statement, and the types used by the program when retrieving or 
setting data using an SQLDA. The type code IISQ_TBL_TYPE indicates a 
table field, and is set by the FRS when describing a form which contains a 
table field. 

 The allocation sizes are defined so that a program can allocate a 
sequential block of memory with one SQLDA head and any number of 
SQLDA variables. Dynamic allocation is described later. 

Declaring and Allocating an SQLDA Variable 

Once the SQLDA definition has been included (or hard coded), the program 
can declare an SQLDA variable. You must declare this variable outside a 
declare section, because the preprocessor does not understand the special 
meaning of the SQLDA. When you use the variable, the preprocessor accepts 
any object name and assumes that the variable points at a legal SQLDA. The 
actual SQLDA area must be either dynamically allocated or statically declared 
and pointed at by the variable. 



Dynamic Programming for C 

Chapter 2: Embedded SQL for C    2–61 

Dynamic Allocation of an SQLDA 

In order to dynamically allocate an SQLDA, you must call an allocation routine 
(such as the C calloc function) and cast the result as a pointer to an SQLDA. 
The allocation call must include one header (IISQDA_HEAD_SIZE) and any 
number of variables (N * IISQDA_VAR_SIZE). For example, the following 
program fragment dynamically allocates an SQLDA with number variables, and 
points the variable sqlda at the allocated memory. As soon as the SQLDA is 
allocated, the sqln field is set to record how many array elements were 
allocated: 

exec sql include sqlda; 
  
IISQLDA *sqlda;     /* Pointer to an SQLDA */ 
... 
  
/* 
** ’number’ has been assigned a positive number. 
** Note that the result of the allocation call, calloc, 
** is cast to be a pointer to an SQLDA.  
** The calloc routine is passed 2 parameters 
** (number of objects, and size of a single object). 
*/ 
sqlda = (IISQLDA *)calloc(1, IISQDA_HEAD_SIZE + 
       (number * IISQDA_VAR_SIZE)); 
  
if (sqlda == (IISQLDA *)0)        /* Memory error */ 
{ 
    /* Print error and exit */ 
    err_exit("Failure allocating %d SQLDA elements\n",     
           number); 
 } 
 
sqlda->sqln = number;              /* Set the size */ 
... 
  
exec sql describe s1 into :sqlda; 

If you change the above allocation call to: 

sqlda = (IISQLDA *)calloc(1, sizeof(IISQLDA)); 

then IISQ_MAX_COLS elements is allocated. This number of elements is the 
current maximum for data retrievals. In this case, the sqln field should be set 
to IISQ_MAX_COLS. 

Static Declaration of an SQLDA 

As previously mentioned, you can statically declare an SQLDA as well as 
dynamically allocate one. The C file that is included when issuing the include 
sqlda statement specifies some C macros that help a program tailor the size of 
the statically declared SQLDA. In fact, the IISQLDA type definition is derived 
from that macro. 



Dynamic Programming for C 

2–62     Embedded SQL Companion Guide 

If a program requires a statically declared SQLDA with the same number of 
variables as the IISQLDA type, then it can use code like the following: 

exec sql include sqlda; 
  
IISQLDA   _sqlda; 
 IISQLDA   *sqlda = &_sqlda; 
  
sqlda->sqln = IISQ_MAX_COLS; /* Set the size */ 
... 
  
exec sql describe s1 into :sqlda; 

Even though a pointer to an SQLDA is required when describing or executing a 
statement, it is also acceptable to use the syntax: 

exec sql describe s1 into :&_sqlda; 

You must confirm that the SQLDA object being used is a pointer to a valid 
SQLDA. 

If a program requires a statically declared SQLDA with a different number of 
variables (not IISQ_MAX_COLS), it can use the macro IISQLDA_TYPE. This 
macro is described in more detail in the eqsqlda.h include file that is generated 
by include sqlda. (If you are not familiar with C macros then skip the following 
discussion). The syntax of IISQLDA_TYPE is: 

IISQLDA_TYPE(tag_name, sqlda_name, number_of_sqlvars); 

IISQLDA_TYPE is a macro that declares object sqlda_name (a type definition 
or a variable) of an SQLDA-like structure with tag tag_name, and with 
num_of_sqlvars SQLDA variables. For example, the following declaration 
declares a local SQLDA, called sqlda10 with 10 variables. The variable sqlda10 
is not a pointer. 

IISQLDA_TYPE(da10_, sqlda10, 10); 

The following example declares a static SQLDA with 32 variables, and a pointer 
to the SQLDA: 

static IISQLDA_TYPE(da32_, sqlda32, 32); 
 struct da32_ *da32_ptr = &sqlda32; 

Using the SQLVAR 

The SQL Reference Guide discusses the legal values of the sqlvar array. The 
describe and prepare into statements assign type, length, and name 
information into the SQLDA. This information refers to the result columns of a 
prepared select statement, the fields of a form, or the columns of a table field. 
When the program uses the SQLDA to retrieve or set Ingres data, it must 
assign the type and length information that now refers to the variables being 
pointed at by the SQLDA. 



Dynamic Programming for C 

Chapter 2: Embedded SQL for C    2–63 

C Variable Type Codes 

The type codes shown in The SQLDA Structure are the types that describe 
Ingres result fields and columns. For example, the SQL types long varchar, 
date, decimal and money do not describe a program variable, but rather data 
types that are compatible with the C types char and double. When these types 
are returned by the describe statement, the type code must be changed to a 
compatible C or SQL/C type. 

The following table describes the type codes to use with C variables that will 
be pointed at by the sqldata pointers: 

 

ESQL/C Type Codes 
(sqltype) 

Length (sqllen) C Variable Type 

IISQ_INT_TYPE 1 char 

IISQ_INT_TYPE 2 short 

IISQ_INT_TYPE 4 int, long 

IISQ_FLT_TYPE 4 float 

IISQ_FLT_TYPE 8 double 

IISQ_CHA_TYPE LEN char  var[LEN +1] 

IISQ_VCH_TYPE LEN varchar with data array [LEN] 

IISQ_HDLR_TYPE 0 IISQHDLR 

One-byte integer data types are specified as a char variable with no specified 
array dimension. Do not confuse this data type with string data types that are 
specified as a char variable with a fixed array dimension. 

You can specify nullable data types (those variables that are associated with a 
null indicator) by assigning the negative of the type code to the sqltype field. 
If the type is negative, a null indicator must be pointed at by using the sqlind 
field. 

Character Data and the SQLDA 

As with regular embedded SQL statements, there are special rules for C 
character data. The describe statement returns IISQ_CHA_TYPE for fixed 
length character strings (char), IISQ_VCH_TYPE for varying length character 
strings (varchar),and IISQ_LVCH_TYPE for long strings (long varchar). For 
example, two columns of type char(5) and varchar(100) return types and 
lengths IISQ_CHA_TYPE:5 and IISQ_VCH_TYPE:100. The lengths specify the 
maximum lengths for both columns and do not include the C null terminator. 



Dynamic Programming for C 

2–64     Embedded SQL Companion Guide 

A column of type long varchar will return IISQ_LVCH_TYPE: 0. The length 
returned is zero because this character type may be of any size up to 2 
gigabytes. Long varchar is an Ingres SQL datatype, so when using the SQLDA 
to retrieve or set data of a long varchar column into a host variable, 
IISQ_CHA_TYPE or IISQ_VCH_TYPE must be used. For information on how to 
specify user-defined data handlers for retrieving or setting large object data 
through the SQLDA, see Data Handlers and the SQLDA in this chapter. 

When using the SQLDA to retrieve character data, the length you supply for 
fixed length C char variables must include the space for the null terminator. As 
with normal retrieval of character data, the data is copied (up to the specified 
length) and a null terminator is then added.  

For example, the type specification: 

/* 
** Assume ‘sqlda’ is a pointer to a dynamically allocated SQLDA 
*/ 
 
sqlda->sqlvar[0].sqltype = IISQ_CHA_TYPE; 
 sqlda->sqlvar[0].sqllen  = 5; 

assumes that 5 bytes of data can be copied, and that there is one extra byte 
for the null terminator, such as in the declaration: 

char buf[6]; 

If there are more than five bytes to copy, the data is truncated at five bytes 
and the null terminator is put into the sixth byte. If there are less than five 
bytes to copy, fewer bytes are copied and a null terminator is added. This rule 
is identical to the normal rule of character retrieval. The specified length must 
be at least 2 because one character and the terminating null are retrieved. If 
the length is exactly 1, data is overwritten. 

If you may be retrieving character data with embedded nulls (such as binary 
streams of data), then you must use the embedded SQL/C varchar storage 
class. You can also use varchar variables to retrieve any character data even if 
there are no embedded nulls. The Dynamic SQL rules for retrieving into 
varchar variables are the same as the normal retrieval rules: the runtime 
system sets the 2-byte length field of the varchar data to the amount of data 
that was copied. The length specified in the sqllen field must be the size of the 
fixed length data buffer in the varchar variable. 

For example, the type specification: 

sqlda->sqlvar[0].sqltype = IISQ_VCH_TYPE; 
 sqlda->sqlvar[0].sqllen  = 100; 

assumes that up to 100 bytes of data can be copied, such as in the 
declaration: 

varchar struct { 
     short     len; 
     char      buf[100]; 
 } vch; 



Dynamic Programming for C 

Chapter 2: Embedded SQL for C    2–65 

In the case of varchar, the data is not null-terminated. 

You can also use the SQLDA to set Ingres data, as in the statements: 
 
exec sql execute statement_name USING DESCRIPTOR 

      descriptor_name; 
  
exec frs putform form_name USING DESCRIPTOR 
      descriptor_name; 

When setting character data using pointers to fixed C char data, the data must 
be null-terminated, and the length specified in sqllen is ignored. It is good 
programming style to set the length to zero. For example, the type 
specification: 

sqlda->sqlvar[0].sqltype = IISQ_CHA_TYPE; 
 sqlda->sqlvar[0].sqllen  = 0; 

can refer to the any C string value. 

When setting character data using pointers to varchar variables, the sqllen 
must specify the size of the fixed size data array, and the 2-byte length field 
must specify the current length of data. 

Binary Data and the SQLDA 

The describe statement may return any of the three binary types: 
IISQ_BYTE_TYPE, IISQ_VBYTE_TYPE or IISQ_LBYTE_TYPE. However, only 
IISQ_BYTE_TYPE AND IISQ_VBYTE_TYPE can be used when actually sending 
and retrieving data. The long byte data type must be changed to byte or 
varbyte if it is less than 32K, or else replaced by a data handler reference 
type. 

Pointing at C Variables 

In order to fill an element of the sqlvar array, you must set the type 
information and assign a valid address to sqldata. The address can be that of a 
dynamically allocated data area or a legal variable address. The address 
should always be cast to a pointer to a character (char *), as that is the base 
type of the sqldata field. 

For example, the following fragment sets the type information and points at a 
dynamically allocated 4-byte integer and an 8-byte nullable floating-point 
variable: 



Dynamic Programming for C 

2–66     Embedded SQL Companion Guide 

/* Assume sqlda is a pointer to a dynamically allocated SQLDA */ 
 
sqlda->sqlvar[0].sqltype  = IISQ_INT_TYPE; 
sqlda->sqlvar[0].sqllen   = sizeof(long); 
sqlda->sqlvar[0].sqldata  = (char *)calloc(1, 
       sizeof(long)); 
sqlda->sqlvar[0].sqlind   = (short *)0; 
  
sqlda->sqlvar[1].sqltype  = -IISQ_FLT_TYPE; 
sqlda->sqlvar[1].sqllen   = sizeof(double); 
sqlda->sqlvar[1].sqldata  = (char *)calloc(1, 
       sizeof(double)); 
sqlda->sqlvar[1].sqlind   = (short *)calloc(1, 
       sizeof(short)); 

You can replace the three calls to the calloc allocation routine by references to 
program variables, such as: 

... 
sqlda->sqlvar[0].sqldata = (char *)&long_var; 
... 
sqlda->sqlvar[1].sqldata = (char *)&double_var; 
sqlda->sqlvar[1].sqlind  = (short *)&short_var; 

Of course, in the latter case, it is appropriate to maintain a pool of available 
variables to use, such as arrays of differently typed variables. 

When pointing at character data, you should allocate sqllen bytes plus one for 
the null, as in: 

/* Assume ’sqltype’ and ’sqllen’ are set by DESCRIBE */ 
sqlda->sqlvar[0].sqltype  = IISQ_CHA_TYPE; 
sqlda->sqlvar[0].sqllen   = some length; 
sqlda->sqlvar[0].sqldata  =       (char*)calloc(1,sqlda-sqlvar[0].sqllen + 1); 

When pointing at varchar data, you should allocate sqllen bytes plus two (or 
sizeof(short)) for the 2-byte length field. For example: 

sqlda->sqlvar[0].sqltype  = IISQ_VCH_TYPE; 
sqlda->sqlvar[0].sqllen   = 50; 
sqlda->sqlvar[0].sqldata  = (char *)calloc(1, 
    sizeof(short) + 50); 

You may also set the SQLVAR to point to a data handler for large object 
columns. For details, see Advanced Processing in this chapter. 

Setting SQLNAME for Dynamic FRS 

Using the sqlvar with Dynamic FRS statements requires a few extra steps. 
These extra steps relate to the differences between Dynamic FRS and Dynamic 
SQL and are described in the Forms-based Application Development Tools User 
Guide and SQL Reference Guide respectively. 



Advanced Processing 

Chapter 2: Embedded SQL for C    2–67 

When using the SQLDA in a forms input or output using clause, the value of 
sqlname must be set to a valid field or column name. If a previous describe 
statement set the name, the program must retain or reset it. If the name 
refers to a hidden column in a table field, the program must set it directly. If 
your program sets sqlname directly, it must also set sqlnamel and sqlnamec. 
You do not need to pad the name portion with blanks or null-terminate it. 

For example, a dynamically named table field has been described, and the 
application always initializes any table field with a hidden 6-byte character 
column called rowid. 

The code used to retrieve a row from the table field including the hidden 
column and _state variable has to construct the two named columns: 

... 
  
char  rowid[6+1]; 
 int   rowstate; 
  
... 
  
exec frs describe table :formname :tablename 
     into :sqlda; 
  
... 
  
/* C is zero-based so save before incrementing */ 
col_num = sqlda-sqld++; 
 
/* Set up to retrieve rowid */ 
sqlda->sqlvar[col_num].sqltype = IISQ_CHA_TYPE; 
sqlda->sqlvar[col_num].sqllen  = 6; 
sqlda->sqlvar[col_num].sqldata = rowid; 
sqlda->sqlvar[col_num].sqlind  = (short *)0; 
sqlda->sqlvar[col_num].sqlname.sqlnamel = 5; 
strcpy(sqlda->sqlvar[col_num].sqlname.sqlnamec, 
    "rowid"); 
 
col_num = sqlda-sqld++; 
 
/* Set up to retrieve _STATE */ 
sqlda->sqlvar[col_num].sqltype = IISQ_INT_TYPE; 
sqlda->sqlvar[col_num].sqllen  = sizeof(int); 
sqlda->sqlvar[col_num].sqldata = &rowstate; 
sqlda->sqlvar[col_num].sqlind  = (short *)0; 
sqlda->sqlvar[col_num].sqlname.sqlnamel = 6; 
strcpy(sqlda-sqlvar[col_num].sqlname.sqlnamec, 
    "_state"); 
... 
  
exec frs getrow :formname :tablename using descriptor :sqlda; 

Advanced Processing 
This section describes user-defined handlers. It includes information about 
user-defined error, dbevent, and message handlers as well as data handlers 
for large objects. 



Advanced Processing 

2–68     Embedded SQL Companion Guide 

User-Defined Error, DBevent, and Message Handlers 

You can use user-defined handlers to capture errors, messages, or events 
during the processing of a database statement. Use these handlers instead of 
the sql whenever statements with the SQLCA when you want to do the 
following: 

 Capture more than one error message on a single database statement. 

 Capture more than one message from database procedures fired by rules. 

 Trap errors, events, and messages as the DBMS raises them. If an event is 
raised when an error occurs during query execution, the WHENEVER 
mechanism detects only the error and defers acting on the event until the 
next database statement is executed. 

User-defined handlers offer you flexibility. If, for example, you want to trap an 
error, you can code a user-defined handler to issue an inquire_sql to get the 
error number and error text of the current error. You can then switch sessions 
and log the error to a table in another session; however, you must switch back 
to the session from which the handler was called before returning from the 
handler. When the user handler returns, the original statement continues 
executing. User code in the handler cannot issue database statements for the 
session from which the handler was called. 

The handler must be declared to return an integer. However, the preprocessor 
ignores the return value. 

Syntax Notes: 

Use the following syntax to specify the three types of handlers: 

exec sql set_sql (errorhandler    = error_routine|0); 
exec sql set_sql (dbeventhandler  = event_routine|0); 
exec sql set_sql (messagehandler  = message_routine|0); 

 The errorhandler, dbeventhandler, and messagehandler denote a 
user-defined handler to capture errors, events, and database messages 
respectively, as follows: 

– error_routine is the name of the function the Ingres runtime system 
calls when an error occurs. 

– event_routine is the name of the function the Ingres runtime system 
calls when an event is raised. 

– message_routine is the name of the function the Ingres runtime 
system calls whenever a database procedure generates a message. 

 Errors that occur in the error handler itself do not cause the error handler 
to be re-invoked. You must use inquire_sql to handle or trap any errors 
that may occur in the handler. 



Advanced Processing 

Chapter 2: Embedded SQL for C    2–69 

 Unlike regular variables, you must not declare the handler in an ESQL 
declare section; therefore, do not use a colon before the handler 
argument. (However, you must declare the handler to the compiler.) 

 If you specify a zero (0) instead of a name, the zero will unset  
the handler. 

User-defined handlers are also described in the SQL Reference Guide. 

Declaring and Defining User-Defined Handlers 

The following example shows how to declare a handler for use in the set_sql 
errorhandler statement for ESQL/C: 

exec sql include sqlca; 
  
main() 
{ 
      int error_func(); 
    exec sql connect dbname; 
    exec sql set_sql (errorhandler = error_func); 
      . .  
} 
 
int 
error_func() 
{ 
      exec sql begin declare section; 
            int errnum; 
      exec sql end declare section; 
  
      exec sql inquire_sql (:errnum = ERRORNO); 
      printf ("Error number is %d", errnum); 
      return 0; 
 } 

If you are using ANSI C function prototypes, declare the handler function 
prototype as follows: 

int error_funct(void); 

where the handler is defined as follows: 

int error_funct(void) 
 { 
  ... 
 } 

User-Defined Data Handlers for Large Objects 

You can use user-defined data handlers to transmit large object column values 
to or from the database a segment at a time. For more details on large 
objects, the data handler clause, the get data statement and the put data 
statement, see the SQL Reference Guide and the Forms-based Application 
Development Tools User Guide. 



Advanced Processing 

2–70     Embedded SQL Companion Guide 

ESQL/C Usage Notes 

When using ESQL/C, the following notes apply: 

 The data handler, and the data handler argument, should not be declared 
in an ESQL declare section. Therefore do not use a colon before the data 
handler or its argument. 

 You must ensure that the data handler argument is a valid C pointer. ESQL 
will not do any syntax or datatype checking of the argument. 

 The data handler must be declared to return an integer. However, the 
actual return value will be ignored. 

Data Handlers and the SQLDA 

You may specify a user-defined data handler as an SQLVAR element of the 
SQLDA, to transmit large objects to/from the database. The eqsqlda.h file 
included via the include sqlda statement defines an IISQLHDLR type that may 
be used to specify a data handler and its argument. It is defined: 

typedef struct sq_datahdlr 
   { 
     char *sqlarg;    /* optional argument to pass */ 
     int  (*sqlhdlr)();  /* user-defined datahandler */ 
  } IISQLHDLR; 

The file does not declare an IISQLHDLR variable; the program must declare a 
variable of the specified type and set the values: 

IISQLHDLR    data_handler; 
char         *arg; 
int          Get_Handler(); 
data_handler.sqlarg = arg; 
data_handler.sqlhdlr = Get_Handler; 

The sqltype, sqllen and sqldata fields of the SQLVAR element of the SQLDA 
should then be set as follows: 

/* 
** assume sqlda is a pointer to a dynamically allocated ** SQLDA 
*/ 
sqlda->sqlvar[i].sqltype = IISQ_HDLR_TYPE; 
sqlda->sqlvar[i].sqllen  = 0; 
sqlda->sqlvar[i].sqldata = (char*)&data_handler; 

To indicate nullability for a column set sqltype to negative IISQ_HDLR_TYPE, 
as shown in the following code fragment: 

sqlda->sqlvar[i].sqltype = -IISQ_HDLR_TYPE; 



Advanced Processing 

Chapter 2: Embedded SQL for C    2–71 

Sample Programs 

The programs in this section are examples of how to declare and use 
user-defined data handlers in an ESQL/C program. There are examples of a 
handler program, a put handler program, a get handler program and a 
dynamic SQL handler program. 

If you precompile these examples using the -prototypes flag (for ANSI C style 
function declarations), you must declare the functions using a generic pointer 
argument. For example: 

int Put_Handler(void *hdlr_arg) 

Handler Program This example assumes that the book table was created with the statement: 

exec sql create table book (chapter_num integer, 
    chapter_name char(50), chapter_text long 
   varchar); 

This program inserts a row into the book table using the data handler 
Put_Handler to transmit the value of column chapter_text from a text file to 
the database in segments. Then it selects the column chapter_text from the 
table book using the data handler Get_Handler to retrieve the chapter_text 
column a segment at a time. 



Advanced Processing 

2–72     Embedded SQL Companion Guide 

/* 
** For this example the argument to the datahandlers 
** will be a pointer to a HDLR_PARAM structure. 
*/ 
 
typedef struct hdlr_arg_struct 
{ 
   char *arg_str; 
   int   arg_int; 
 } HDLR_PARAM; 
  
main() 
{ 
 
/* Do not declare the datahandlers or the datahandler argument to the ESQL 
** preprocessor. The argument passed to a datahandler must be a pointer. 
*/ 
    int Put_Handler(); 
    int Get_Handler(); 
 
    HDLR_PARAM hdlr_arg; 
  
    /* 
    ** The indicator variable must be declared to ESQL. 
    */ 
     exec sql begin declare section; 
         short indvar; 
         int   chapter_num; 
     exec sql end declare section; 
  
    /* 
    ** Insert a long varchar value chapter_text into the table book 
    ** using the datahandler Put_Handler. The argument passed to the 
    ** datahandler is the address of structure hdlr_arg. 
    */ 
 
    . . . 
  
    . . . 
  
    exec sql insert into book (chapter_num, 
  
  chapter_name, 
             chapter_text) 
             values (5,'One dark and stormy night',        
       datahandler(Put_Handler(&hdlr_arg))); 
  
. . . 
  
    /* 
    ** Select the column chapter_num and the long 
    ** varchar column chapter_text from the table 
    ** book. The Datahandler (Get_Handler) will be 
    ** invoked for each non null value of the column 
    ** chapter_text retrieved. For null values the 
    ** indicator variable will be set to “-1” and the   
    ** datahandler will not be called 
    */ 
. . . 
  
. . . 
  
exec sql select chapter_num, chapter_text into         
   :chapter_num, 
      datahandler(Get_Handler(&hdlr_arg)):indvar 
           from book; 



Advanced Processing 

Chapter 2: Embedded SQL for C    2–73 

 exec sql begin; 
      process row... 
 exec sql end; 
  
    . . . 
  
} 
 
 

Put Handler This example shows how to read the long varchar chapter_text from a text 
file and insert it into the database a segment at a time: 

Int 
Put_Handler(hdlr_arg) 
 HDLR_PARAM *hdlr_arg; 
 { 
 
    /* 
    ** Host variables in the put data statement must 
    ** be declared to the ESQL preprocessor 
    */ 
 
    exec sql begin declare section; 
        char seg_buf[1000]; 
        int  seg_len; 
        int  data_end; 
    exec sql declare section; 
  
    int more_data; 
  
    open file... 
  
    data_end = 0; 
    more_data = 1; 
  
    while (more_data == 1) 
    { 
 read segment of less than 1000 chars from 
  file into seg_buf... 
 if (end_of_file) 
  { 
    data_end = 1; 
    more_data = 0; 
  
   } 
 
    seg_len = number_of_bytes_read; 
  
    exec sql put data (segment       = :seg_buf, 
                        segmentlength = :seg_len, 
                        dataend       = :data_end); 
    }; 
 
    . . 
    close file... 
    set hdlr_arg fields to return appropriate 
        values... 
    . . . 
 } 



Advanced Processing 

2–74     Embedded SQL Companion Guide 

Get Handler This example shows how to get the long varchar chapter_text from the 
database and write it to a text file: 

Get_Handler(hdlr_arg) 
 HDLR_PARAM *hdlr_arg; 
 { 
 
    /* Host variables in the get data statement must 
    ** be declared to the ESQL preprocessor 
    */ 
 
    exec sql begin declare section; 
        char seg_buf[2000]; 
        int  seg_len; 
        int  data_end; 
        int  max_len; 
    exec sql end declare section; 
    . . . 
  
    process information passed in via the 
         hdlr_arg... 
    open file... 
  
 
    /* Get a maximum segment length of 2000 bytes. */ 
 
    max_len = 2000; 
    data_end = 0; 
    while (data_end == 0) 
    { 
    /* 
    ** segmentlength: will contain the length of the 
    ** segment retrieved 
    ** seg_buf: will contain a segment of the column 
    ** chapter_text 
    ** data_end: will be set to ‘1’ when the entire 
    ** value in chapter_text has been retrieved 
    */ 
 
    exec sql get data (:seg_buf  = segment, 
                       :seg_len  = segmentlength, 
                       :data_end = dataend) 
                        with maxlength = :max_len; 
  
    write segment to a file... 
    } 
    . . . 
    set hdlr_arg fields to return appropriate 
         values... 
    . .  
 
} 

Dynamic SQL Handler 
Program 

The following is an example of a dynamic SQL handler program. This 
program fragment shows the declaration and usage of a data handler in a 
dynamic SQL program, using the SQLDA. It uses the data handler 
Get_Handler() and the HDLR_PARAM structure described in the previous 
example. 



Advanced Processing 

Chapter 2: Embedded SQL for C    2–75 

main() 
{ 
 
    exec sql include sqlda; 
  
    /* Declare the SQLDA and IISQLHDLR structures */ 
    IISQLDA   _sqlda; 
    IISQLDA   *sqlda = &_sqlda; 
    IISQLHDLR datahdlr_struct; 
  
    /* 
    ** Do not declare the datahandlers or the 
    ** datahandler argument to the ESQL preprocessor 
    */ 
 
    int Get_Handler(); 
    HDLR_PARAM hdlr_arg; 
    int base_type; 
    int col_num; 
  
    /* Declare null indicator to ESQL */ 
 
    exec sql begin declare section; 
        short indvar; 
        char stmt_buf[100]; 
    exec sql end declare section; 
  
    . . . 
  
    /* 
    ** Set the IISQLHDLR structure with the appropriate 
    ** datahandler and datahandler argument. 
    */ 
 
    datahdlr_struct.sqlarg = &hdlr_arg; 
    datahdlr_struct.sqlhdlr = Get_Handler; 
    sqlda->sqln = IISQ_MAX_COLS; 
    /* Describe the statement into the SQLDA */ 
 
    strcpy(stmt_buf, "select * from book"); 
    exec sql prepare stmt from :stmt_buf; 
    exec sql describe stmt into sqlda; 
  
    . . . 
  
    /* 
    ** Determine the base_type of the SQLDATA 
    ** variables 
    */ 
 
    for (col_num = 0; col_num < sqlda->sqln; 
   col_num++) 
    { 
        base_type = abs(sqlda- 
   >sqlvar[col_num].sqltype); 
  
        /* 
        ** Set the sqltype, sqldata and sqlind for 
        ** each column. The long varchar column 
        ** chapter text will be set to use a 
        ** datahandler 
        */ 
 
        if (base_type == IISQ_LVCH_TYPE) 
        { 
           sqlda->sqlvar[col_num].sqltype =-IISQ_HDLR_TYPE 



Preprocessor Operation 

2–76     Embedded SQL Companion Guide 

           sqlda->sqlvar[col_num].sqldata =  
                           (char *)&datahdlr_struct; 
           sqlda->sqlvar[col_num].sqlind = &indvar; 
        } 
        else 
           . . . 
  
    } 
    /* 
    ** The datahandler (Get_Handler) will be 
    ** invoked for each non null value of column 
    ** chapter_text retrieved. For null values 
    ** the indicator variable will be set to 
    ** “-1” and the datahandler will not be called 
    */ 
 
    . .  
 
    exec sql execute immediate :stmt_buf using :sqlda; 
    exec sql begin; 
        process rows... 
    exec sql end; 
  
    . . . 

Preprocessor Operation 
This section describes the embedded SQL preprocessor for C and the steps 
required to create, compile, and link an embedded SQL program.  

Include File Processing 

The embedded SQL include statement provides a means to include external 
files in your program’s source code. Its syntax is: 

exec sql include filename; 

where filename is a quoted string constant specifying a file name, or a system 
environment variable (UNIX) or a logical name (VMS) that points to the file 
name. If you do not give an extension to the filename (or to the file name 
pointed at by the environment variable), the default C input file extension .sc 
is assumed. 

This statement is normally used to include variable declarations, although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 



Preprocessor Operation 

Chapter 2: Embedded SQL for C    2–77 

The included file is preprocessed and an output file with the same name but 
with the default output extension .c is generated. You can override this default 
output extension with the -o.ext flag on the command line. The reference in 
the original source file to the included file is translated in the output file to the 
specified include output file. If the -o flag is used (without an extension), then 
the output file is not generated for the include statement. This is useful for 
program libraries that are using make or VMS dependencies. 

If you use both the -o.ext and the -o flags, then the preprocessor generates 
the specified extension for the translated include statements in the program 
but does not generate new output files for the statements. 

For example, assuming that no overriding output extension is explicitly given 
on the command line. The embedded SQL statement: 

exec sql include 'employee.dcl'; 

is preprocessed to the C statement: 

# include "employee.c" 

The employee.dcl file is translated into the C file employee.c. 

As another example, assume that a source file called inputfile contains the 
following include statement: 

exec sql include 'mydecls'; 

 

Windows
 

The name MYDECLS can be defined as a system environment variable 
pointing to the file c/dev/headers/myvars.sc by means of the following 
command at the system level: 

setenv MYDECLS="c:\dev\headers\myvars" 

Because the extension .sc is the default input extension for embedded SQL 
include files, you do not need to specify it when defining an environment 
variable for the file. 

Assume now that inputfile is preprocessed with the command: 

esqlc -o.h inputfile 

The command line specifies .h as the output file extension for include files. As 
the file is preprocessed, the include statement shown earlier is translated into 
the C statement: 

# include "c:\dev\headers\myvars.h" 

The C file c:\dev\headers\myvars.h is generated as output for the original 
include file, c:\dev\headers\myvars.sc. 

You can also specify include files with a relative path. For example, if you 
preprocess the file c:\dev\mysource\myfile.sc. the embedded SQL statement: 



Preprocessor Operation 

2–78     Embedded SQL Companion Guide 

exec sql include '..\headers\myvars.sc'; 

is preprocessed to the C statement: 

# include "..\headers\myvars.c" 

The C file c:\dev\headers\myvars.c is generated as output for the original 
include file, c:\dev\headers\myvars.sc.  

 

UNIX
 

The name MYDECLS can be defined as a system environment variable 
pointing to the file /dev/headers/myvars.sc by means of the following 
command at the system level: 

setenv MYDECLS "/dev/headers/myvars" 

Because the extension .sc is the default input extension for embedded SQL 
include files, you do not need to specify it when defining an environment 
variable for the file. 

Assume now that inputfile is preprocessed with the command: 

esqlc -o.h inputfile 

The command line specifies .h as the output file extension for include files. As 
the file is preprocessed, the include statement shown earlier is translated into 
the C statement: 

# include "/dev/headers/myvars.h" 

The C file /dev/headers/myvars.h is generated as output for the original 
include file, /dev/headers/myvars.sc. 

You can also specify include files with a relative path. For example, if you 
preprocess the file /dev/mysource/myfile.sc. the embedded SQL statement: 

exec sql include '../headers/myvars.sc'; 

is preprocessed to the C statement: 

# include "../headers/myvars.c" 

The C file /dev/headers/myvars.c is generated as output for the original 
include file, /dev/headers/myvars.sc.  

 

VMS
 

The name mydecls can be defined as a system logical name pointing to the 
file dra1:[headers]myvars.sc by means of the following command at the 
system level: 

define mydecls dra1:[headers]myvars 

Because the extension .sc is the default input extension for embedded SQL 
include files, it need not be specified when defining a logical name for the file. 



Preprocessor Operation 

Chapter 2: Embedded SQL for C    2–79 

Assume now that inputfile is preprocessed with the command: 

esqlc -o.h inputfile 

The command line specifies .h as the output file extension for include files. As 
the file is preprocessed, the include statement shown earlier is translated into 
the C statement: 

# include "dra1:[headers]myvars.h" 

The C file dra1:[headers]myvars.h is generated as output for the original 
include file, dra1:[headers]myvars.sc. 

You can also specify include files with a relative path. For example, if you 
preprocess the file dra1:[mysource]myfile.sc, the embedded SQL statement: 

exec sql include '[-.headers]myvars.sc' 

is preprocessed to the C statement: 

# include "[-.headers]myvars.c" 

The C file dra1:[headers]myvars.c is generated as output for the original 
include file, dra1:[headers]myvars.sc.  

Including Source Code with Labels 

Some embedded SQL statements generate labels in the output code. If you 
include a file containing such statements, you must be careful to include the 
file only once in a given C scope. Otherwise, you may find that the compiler 
later complains that the generated labels are defined more than once in that 
scope. 

The statements that generate labels are the select statement and all the 
embedded SQL/Forms block-type statements, such as display and unloadtable. 



Preprocessor Operation 

2–80     Embedded SQL Companion Guide 

Coding Requirements for Writing Embedded SQL Programs 

The following sections describe embedded SQL coding requirements. 

Comments Embedded in C Output 

Each embedded SQL statement generates one comment and few lines of C 
code. You may find that the preprocessor translates 50 lines of embedded SQL 
into 200 lines of C. This can confuse you if you are trying to debug the original 
source code. To facilitate debugging, a comment corresponding to the original 
embedded SQL source precedes each group of C statements associated with a 
particular statement. (Note that a comment precedes only executable 
embedded SQL statements.) Each comment is one line long and informs the 
reader of the file name line number and the type of statement in the original 
sources file. The -# flag to the esqlc command makes the C comment a C 
compiler directive, causing any error messages generated by the C compiler to 
refer to the original file and line number; this can be useful in some cases. 

One consequence of the generated comment is that you cannot comment out 
embedded statements by putting the opening comment delimiter on an earlier 
line. You have to put the delimiter on the same line, before the exec word, to 
cause the preprocessor to treat the complete statement as a C comment. 

Embedding Statements Inside C If Blocks 

As mentioned above, the preprocessor can produce several C statements for a 
single embedded SQL statement. However, all of the statements that the 
preprocessor generates are delimited by left and right braces, composing a C 
block. Thus the statement: 

if (!dba) 
 exec sql select passwd 
  into :passwd 
  from security 
  where usrname = :userid; 

produces legal C code, even though the SQL select statement produces more 
than one C statement. However, two or more embedded SQL statements 
generate multiple C blocks, so you must delimit them yourself, just as you 
delimit two C statements in a single if block. 



Preprocessor Operation 

Chapter 2: Embedded SQL for C    2–81 

For example: 

if (!dba) 
 { 
    exec frs message 'Confirming your user id'; 
    exec sql select passwd 
        into :passwd 
        from security 
        where usrname = :userid; 
 } 

 

VMS
 

Because the preprocessor generates a C block for every embedded SQL 
statement, the VAX C compiler may generate the Internal Table Overflow 
error when a single procedure has a very large number of embedded SQL 
statements and local variables. You can correct this problem by splitting the 
file or procedure into smaller components.  

Embedded SQL Statements that Do Not Generate Code 

The following embedded SQL declarative statements do not generate any C 
code: 

declare cursor 

declare table 

declare statement 

whenever 

These statements must not contain labels and must not be coded as the only 
statements in C constructs that do not allow null statements. For example, 
coding a declare cursor statement as the only statement in a C if statement 
not bounded by left and right braces causes compiler errors: 

if (using_database) 
      exec sql declare empcsr cursor for 
             select ename from employee; 
 else 
       printf("You have not accessed the database.\n"); 

The preprocessor generates the code: 

if (using_database) 
 else 
      printf("You have not accessed the database.\n"); 

This is an illegal use of the C else clause. 



Preprocessor Operation 

2–82     Embedded SQL Companion Guide 

Command Line Operations 

The following sections describe commands that you can use to turn your 
embedded SQL/C source program into an executable program. These 
commands preprocess, compile, and link your program. 

The Embedded SQL Preprocessor Command 

The following command line invokes the C preprocessor: 

esqlc {flags} {filename} 

where flags are those shown in the following table: 

 

 Flag  Description 

 -blank_pad Informs the preprocessor to generate code that complies 
with ANSI and ISO Entry SQL92 data retrieval rules for 
fixed length char variables. At runtime, data selected 
into fixed length char host variables will be padded with 
blanks up to the declared length of the variable less one 
byte for the C null terminator. 

 -noblank_pad Informs the preprocessor to generate code that complies 
with current Ingres data retrieval rules. At runtime, data 
selected into fixed length char host variables will not be 
blank-padded, it will be null terminated to the length of 
the data retrieved. The default is  

-noblank_pad 

 -check_eo Causes ESQL/C applications to check fixed length host 
string variables for an end of string null terminator. If 
one is not found an error condition is raised. This feature 
is provided for ISO Entry SQL92 conformity. 

 -nocheckeos Turns off the above checking. This option is the default. 

 -d Adds debugging information to the runtime database 
error messages generated by embedded SQL. The source 
file name, line number and the erroneous statement 
itself are printed along with the error message. 

 -f[filename] Writes preprocessor output to the named file. If you do 
not specify filename, the output is sent to standard 
output, one screen at a time. 

 -iN Sets integer size to N bytes. N is 1, 2, or 4. The default 
is 4. 



Preprocessor Operation 

Chapter 2: Embedded SQL for C    2–83 

 Flag  Description 

 -l Writes preprocessor error messages to the 
preprocessor’s listing file, as well as to the terminal. The 
listing file includes preprocessor error messages and 
your source text in a file named filename.lis, where 
filename is the name of the input file. 

 -lo Like -l, but the generated C code also appears in the 
listing file. 

 -o Directs the preprocessor not to generate output files for 
include files. This flag does not affect the translated 
include statements in the main program. The 
preprocessor generates a default extension for the 
translated include file statements unless you use the 
-o.ext flag.  

 -o. ext Specifies the extension the preprocessor gives to both 
the translated include statements in the main program 
and the generated output files. If you do not specify this 
flag, the default extension is .c. If you use this flag in 
combination with the -o flag, then the preprocessor 
generates the specified extension for the translated 
include statements but does not generate output files for 
the include statements. 

 -prototypes Directs the preprocessor to include a header file 
containing ANSI style function prototypes for the Ingres 
runtime routines. The default is -noprototypes (the 
prototypes in the header file are not ANSI style) 

 -s Reads input from standard input and generates C code to 
standard output. This is useful for unfamiliar testing 
statements. If you specify the -l option with this flag, the 
listing file is called stdin.lis. To terminate the interactive 
session, type Ctrl + D (UNIX) or Ctrl + Z (VMS). 

 -sqlcode Indicates the file declares an integer variable named 
SQLCODE to receive status information from SQL 
statements. That declaration need not be in an exec sql 
begin/end declare section. This feature is provided for 
ISO Entry SQL92 conformity. However, the ISO 92 
specification describes SQLCODE as a deprecated feature 
and recommends using the SQLSTATE variable. 

 -nosqlcode Tells the preprocessor not to assume the existence of a 
status variable named SQLCODE. The default is 
-nosqlcode. 

 -w Prints warning messages. 



Preprocessor Operation 

2–84     Embedded SQL Companion Guide 

 Flag  Description 

 -wopen This flag is identical to -wsql=open. However, -wopen is 
supported only for backwards capability. For more 
information, see -wsql=open. 

 -#|-p Generates # line directive to the C compiler (by default, 
they are in comments). This flag can prove helpful when 
debugging the error messages from the C compiler. 

 -
wsql=entry_SQL92 

Causes the preprocessor to flag any usage of syntax or 
features that do not conform to the ISO Entry SQL92 
entry level standard. (This is also known as the FIPS 
flagger option.) 

 -wsql=open Use open only with OpenSQL syntax.  

-wsql = open generates a warning if the preprocessor 
encounters an embedded SQL statement that does not 
conform to OpenSQL syntax. (For OpenSQL syntax, see 
the OpenSQL Reference Guide.) This flag is useful if you 
intend to port an application across different Enterprise 
Access products. The warnings do not affect the 
generated code and the output file may be compiled. 
This flag does not validate the statement syntax for any 
Enterprise Access product whose syntax is more 
restrictive than that of OpenSQL. 

Windows
 

-? Shows the command line options for esqlc.  

UNIX
 

-- Shows the command line options for esqlc.  

VMS
 

-? Shows the command line options for esqlc.  

The embedded SQL/C preprocessor assumes that input files are named with 
the extension.sc. You can override this default by specifying the file extension 
of the input file(s) on the command line. The output of the preprocessor is a 
file of generated C statements with the same name and the extension.c. 

If you enter the command without specifying any flags or a filename, a list of 
flags available for the command are displayed. 

The following table presents the options available with esqlc: 

 



Preprocessor Operation 

Chapter 2: Embedded SQL for C    2–85 

Command Comment 

esqlc file1 Preprocesses file1.sc to file1.c 

esqlc -l file2.xc Preprocesses file2.xc to file2.c and creates listing 
file2.lis 

esqlc -s Accepts input from standard input 

esqlc -ffile3.out file3 Preprocesses file3.sc to file3.out 

esqlc Displays a list of flags available for this command 

The C Compiler 

The preprocessor generates C code. You can then use the cc command to 
compile this code. 

 

Windows
 

The preprocessor generates C code. You can then use the cl command to 
compile this code. You can use all of your compiler options.  

For example, to pre-process and compile the file “test1” with the cl compiler, 
issue the following command: 

esqlc test1.sc 
cl -c test1.c   

 

UNIX
 

You can use all of the cc command line options. 

The following example preprocesses and compiles the file test1: 

esqlc test1.sc 
cc -c test1.c   

 

VMS
 

Most of the cc command line options can be used. You should not use the 
g_float qualifier (to the VAX C compiler) if floating-point values in the file are 
interacting with Ingres floating-point objects. 

As of Ingres II 2.0/0011 (axm.vms/00) Ingres uses member alignment and 
IEEE floating-point formats. Embedded programs must be compiled with 
member alignment turned on. In addition, embedded programs accessing 
floating-point data (including the MONEY data type) must be compiled to 
recognize IEEE floating-point formats.  

The following example preprocesses and compiles the file test1. Note that both 
the embedded SQL preprocessor and the C compiler assume the default 
extensions. 

esqlc test1 
cc/list test1   



Preprocessor Operation 

2–86     Embedded SQL Companion Guide 

Note: For any operating system specific information on compiling and linking 
ESQL/C programs, see the Readme file. 

Linking Embedded SQL Programs—Windows 
 

Windows
 

Embedded SQL programs require procedures from an Ingres library. The 
required library is listed below and must be included in your compile or link 
command after all user modules. You must specify the library in the order 
shown in the following examples. 

Programs Without Embedded Forms  

The following example demonstrates the link command of an embedded SQL 
program called dbentry that was preprocessed and compiled. 

link -out:dbentry.exe dbentry.obj ^ 
$II_SYSTEM%\ingres\lib\ingres.lib 

Compiling and Linking Precompiled Forms  

In order to use such a precompiled form in your program, you must follow the 
steps described here. 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in C. VIFRED lets 
you select the name for the file. After creating the C file this way, you can 
compile it into linkable object code. 

For example, if you were to use the cl compiler: 

cl -c filename 

The output of this command is a file with the extension .obj. You then link this 
object file with your program by listing it in the link command, as in the 
following example, which includes the compiled form empform.obj: 

link -out:formentry.exe formentry.obj empform.obj ^ 
  %II_SYSTEM%\ingres\lib\ingres.lib  



Preprocessor Operation 

Chapter 2: Embedded SQL for C    2–87 

Linking Embedded SQL Programs—UNIX  
 

UNIX
 

Embedded SQL programs require procedures from an Ingres library. The 
required library is listed below and must be included in your compile or link 
command after all user modules. You must specify the library in the order 
shown in the following examples. 

Programs Without Embedded Forms 

The following example demonstrates the link command of an embedded SQL 
program called dbentry that was preprocessed and compiled. 

cc -o dbentry dbentry.o\ 
 $II_SYSTEM/ingres/lib/libingres.a \ 
-lm -lc 

You must include both the math library and the C runtime library. 

Ingres shared libraries are available on some Unix platforms. To link with 
these shared libraries replace libingres.a in your link command with: 

-L $II_SYSTEM/ingres/lib -linterp.1 -lframe.1 -lq.1 \ 
     -lcompat.1 

To verify if your release supports shared libraries check for the existence of 
any of these four shared libraries in the $II_SYSTEM/ingres/lib directory. For 
example: 

ls -l $II_SYSTEM/ingres/lib/libq.1.* 

Compiling and Linking Precompiled Forms  

The technique of declaring a precompiled form to the FRS is discussed in the 
Forms-based Application Development Tools User Guide. To use such a form in 
your program, you must also follow the steps described here. 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in C. VIFRED lets 
you select the name for the file. After creating the C file this way, you can 
compile it into linkable object code with the cc command: 

cc -c filename 

The output of this command is a file with the extension .o.  



Preprocessor Operation 

2–88     Embedded SQL Companion Guide 

You then link this object file with your program by listing it in the link 
command, as in the following example, which includes the compiled form 
empform.o: 

cc -o formentry formentry.o \ 
 empform.o \ 
  $II_SYSTEM/ingres/lib/libingres.a \ 
  -lm –lc  

Linking Embedded SQL Programs—VMS 
 

VMS
 

Embedded SQL programs require procedures from several VMS shared 
libraries in order to run properly. Once you have preprocessed and compiled 
an embedded SQL program, you can link it. Assuming the object file for your 
program is called dbentry, use the following link command: 

$link dbentry.obj,- 
 ii_system:[ingres.files]esql.opt/opt,- 
 sys$library:vaxcrtl.olb/library 

The last line in the link command shown above serves to link the C runtime 
library for certain basic C functions, such as printf. You need to include this 
line only if you use those functions in your program. 

Assembling and Linking Precompiled Forms 

The technique of declaring a precompiled form to the FRS is discussed in the 
Forms-based Application Development Tools User Guide. To use such a form in 
your program, you must also follow the steps described here. 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in the VAX-11 
MACRO language. VIFRED lets you select the name for the file. Once you have 
created the MACRO file this way, you can assemble it into linkable object code 
with the VMS command: 

macro filename 

The output of this command is a file with the extension .obj. You then link this 
object file with your program by listing it in the link command, as in the 
following example: 

$link formentry,- 
 empform.obj,- 
 ii_system:[ingres.files]esql.opt/opt,- 
 sys$library:vaxcrtl.olb/library 



Preprocessor Operation 

Chapter 2: Embedded SQL for C    2–89 

Linking an Embedded SQL Program Without Shared Libraries  

While the use of shared libraries in linking embedded SQL programs is 
recommended for optimal performance and ease of maintenance, non-shared 
versions of the libraries have been included in case you require them. 
Non-shared libraries required by embedded SQL are listed in the esql.noshare 
options file. The options file must be included in your link command after all 
user modules. Libraries must be specified in the order given in the options file. 

The following example demonstrates the link command of an embedded SQL 
program called dbentry that has been preprocessed and compiled: 

$link dbentry,- 
 ii_system:[ingres.files]esql.noshare/opt 

Placing User-Written Embedded SQL Routines in Shareable Images  

When you plan to place your code in a shareable image, note the following 
about the psect attributes of your global or external variables: 

 As a default, some compilers mark global variables as shared (SHR: every 
user who runs a program linked to the shareable image sees the same 
variable) and others mark them as not shared (NOSHR: every user who 
runs a program linked to the shareable image gets a private copy of the 
variable). 

 Some compilers support modifiers you can place in your source code 
variable declaration statements to explicitly state which attributes to 
assign a variable. 

 The attributes that a compiler assigns to a variable can be overridden at 
link time with the psect_attr link option. This option overrides attributes of 
all variables in the psect. 

Consult your compiler reference manual for further details.  

Embedded SQL/C Preprocessor Errors 

To correct most errors, you may wish to run the embedded SQL preprocessor 
with the listing (-l) option on. The listing is sufficient for locating the source 
and reason for the error. 

For preprocessor error messages specific to C and C++, see Preprocessor 
Error Messages in this chapter. 



C++ Programming 

2–90     Embedded SQL Companion Guide 

C++ Programming 
This section tells you how to embed ESQL statements in C++ programs, how to 
build ESQL/C++ programs, and what restrictions to observe in ESQL/C++ 
programs. The ESQL/C++ preprocessor is available only on the UNIX platform. 

Creating ESQL/C++ Programs 

The ESQL/C++ precompiler supports the same features as the ESQL/C 
precompiler, plus the additional features described in this section. 

Program Comments 

You can use either C-style comment delimiters (/* */) or C++ comment 
delimiters (//) in ESQL/C++ programs. 

For example: 

/* Declare data */ 
exec sql begin declare section; 
 int idno; 
  // identification number 
 exec sql end declare section; 



C++ Programming 

Chapter 2: Embedded SQL for C    2–91 

Declaring Data 

ESQL/C++ supports C data types, including pointers and structures. To 
declare data in ESQL/C++ applications, use the data types and techniques 
described in C Variables and Data Types in this chapter. 

You cannot declare an entire class to ESQL/C++; however, you can declare 
the class members. For example: 

Wrong: 

exec sql begin declare section; 
  class Employee { 
  char *     name;     // Name 
  char *  address;     // Address 
  char *  title;       // Title  
  int     age; 
  public: 
       Employee();      // Constructor 
       ~Employee();     // Destructor 
       void operator=(const Employee&);     // Assignment 
       void print();    // Print 
       void select(char *);    // Select 
}; 
exec sql end declare section; 

Right: 

class Employee { 
exec sql begin declare section; 
  char *     name;     // Name 
  char *  address;     // Address 
  char *  title;       // Title  
  int     age; 
 exec sql end declare section; 
 public: 
     Employee();       // Constructor 
     ~Employee();      // Destructor 
     void operator=(const Employee&);     // Assignment 
     void print();     // Print 
     void select(char *);     // Select 
}; 

Transferring Data Between Programs and the Database 

To transfer data between your application and the database, you can use 
either of the following techniques: 

 Declare class members to ESQL, and use them in ESQL DML statements 
(select, update, insert, and delete) in class member functions. 

 Copy data between class members and local variables. Use the local 
variables in ESQL statements to transfer data between your application 
and the database. 



C++ Programming 

2–92     Embedded SQL Companion Guide 

Names of variables that are declared to the ESQL/C++ precompiler must be 
unique in the scope of the source file. If you declare class members, avoid 
using the same name for members in different classes. 

Declaring Function Parameters 

To declare function parameters to ESQL/C++, use local variables. In the 
following example, the local variables ptrsqlvar1 and locsqlvar2 are declared to 
the ESQL precompiler. The function parameters sqlvar1 and sqlvar2 are copied 
to ptrsqlvar1 and locsqlvar2 when their values are required for use in ESQL 
statements. 

int myfunc (int sqlvar1, int sqlvar2) 
 { 
  exec sql begin declare section 
    int *ptrsqlvar1;   /* Use local pointer */ 
    int locsqlvar2;   /*Use local variable */ 
  exec sql end declare section 
  ptrsqlvar1 = &sqlvar1; 
  locsqlvar2 = sqlvar2; 
 // Use local variables in SQL statement: 
  exec sql insert into mytable 
    values (ptrsqlvar1, locsqlvar2); 
... 
 } 

DCLGEN and ESQL/C++ 

DCLGEN does not generate classes for C++. DCLGEN generates structures as 
it does for C. However, you can specify C++ as the language parameter (by 
specifying cc). 

For example: 

dclgen cc mydatabase mytable myfile.dcl mystructure 

Ingres Runtime Library Prototypes 

In each ESQL/C++ file you precompile, the precompiler automatically includes 
header files containing function prototypes for the Ingres runtime library 
routines. 

4GL Restriction 

You cannot call an ESQL/C++ routine from 4GL, Vision, or OpenROAD. 



C++ Programming 

Chapter 2: Embedded SQL for C    2–93 

Creating User-Defined Handlers 

(For basic information about user-defined handlers, see User-Defined Error, 
DBevent, and Message Handlers and User-Defined Data Handlers for Large 
Objects in this chapter.) 

To declare user-defined handlers in ESQL/C++ programs, you must declare 
them to the C++ compiler as C functions. For example: 

// Function prototype for event handler 
extern "C" int event_func(void); 

To direct the DBMS to call the handler routine when a database event is 
raised, your application must issue the following SQL statement: 

exec sql set_sql(dbeventhandler=event_func); 

You cannot overload a function that you intend to use as a handler routine. 

User-defined handlers (data handlers) for long varchar and long byte I/O 
require an argument to be passed to the data handler. The argument must be 
defined as a generic pointer (void *) in the function prototype, and must be 
cast to the correct data type in the data handler routine. 



C++ Programming 

2–94     Embedded SQL Companion Guide 

The following example illustrates the construction of a data handler in C++: 

// Handler prototype 
// ESQL/C++ requires extern "C" 
extern "C" int Put_Handler(void *hdlr_arg); 
 typedef struct hdlr_param_ 
{ 
       char * arg_str; 
       int arg_int; 
 } HDLR_PARAM; 
 void 
main() 
{ 
       HDLR_PARAM hdlr_arg; 
       // Connect to the database 
       exec sql connect testdatabase; 
       exec sql insert into book(idno, long_text) values (1, 
          datahandler(Put_Handler(&hdlr_arg))); 
       exec sql disconnect; 
 } 
 
// Argument is declared as a generic pointer 
int Put_Handler(void *hdlr_arg) 
 { 
       exec sql begin declare section; 
          char seg_buf[50]; 
          int seg_length; 
          int data_end; 
       exec sql end declare section; 
 // Cast argument for ESQL/C++ 
 ((HDLR_PARAM *)hdlr_arg)->arg_int = 0; 
 rloop: 
   read data from a file 
    fill seg_buf and set seg_length 
   at end of loop sent data_end to 1 
   exec sql put data (segment = :seg_buf, 
             segmentlength = :seg_length, 
             dataend = :data_end); 
 end rloop 
       return 0; 
 } 

Building ESQL/C++ Programs 

To build an ESQL/C++ program, you must precompile the ESQL/C++ source 
into a C++ program, compile the resulting C++ program, and link it with the 
Ingres runtime library. 

To precompile ESQL/C++ programs, use the esqlcc command. The default 
extension for ESQL/C++ source files is .scc. The default extension for the C++ 
file generated by the precompiler is .cc. The syntax of the C++ precompiler 
command is as follows: 

esqlcc flags filename 



C++ Programming 

Chapter 2: Embedded SQL for C    2–95 

where filename is the name of the file containing the ESQL/C++ source for 
your application, and flags are one or more of the flags described in Command 
Line Operations in the Preprocessor Operation section, or the following 
ESQL/C++ flag: 

 

Flag  Description  

 -extension = ext Specifies the extension for the C++ file created 
by the precompiler. 

To display a list of valid ESQL/C++ precompiler flags, issue the esqlcc 
command with no arguments. 

To compile and link the resulting C++ program, invoke your C++ compiler. 
You must link the program with libingres.a (the Ingres runtime library). The 
following example illustrates the commands you must issue to build an 
ESQL/C++ application named inventory: 

esqlcc -extension=cpp inventory.scc 

CC -c inventory inventory.cpp 

CC -o inventory inventory.o \ 

$II_SYSTEM/ingres/lib/libingres.a -lC 



C++ Programming 

2–96     Embedded SQL Companion Guide 

Sample Application 

The following code is a sample ESQL/C++ application that illustrates the 
requirements described in this section: 

***************************** Main Routine *************************** 
# include <stream.h> 
// Simple ESQL/C++ program that uses the class Employee 
// declared in employee.h. 
// This program asks for a employee id, and then retrieves and prints 
// that employee's information. 
 #include "employee.h" 
main() 
{ 
// Connect to the database 
exec sql connect testdatabase; 
char     buf[20];     // Input buffer 
// Prompt for Employee id 
while (1) 
   { 
       Employee      a;     // Declare Employee object 
       cout << "\nPlease enter employee id (or 'e' to exit): " << flush; 
       cin >> buf; 
       if (buf[0] == 'e') 
        break; 
       a.select(buf);     // Select employee info from database 
       a.print();     // Print employee info 
   } 
exec sql disconnect; 
 } 

************************ Member functions ****************************** 
# include <string.h> 
# include <stream.h> 
exec sql include 'employee.sh'; 
// Employee member routines 
  
// Constructor - declare storage for all the character fields and 
// Initialize to empty. 
// 
Employee::Employee() 
{ 
 name = new char[MAXDATA]; 
 name[0] = '\0'; 
 address = new char[MAXDATA]; 
 address[0] = '\0'; 
 title = new char[MAXDATA]; 
 title[0] = '\0'; 
 age = 0; 
  
} 
// Destructor 
Employee::~Employee() 
{ 
 delete name; 
 delete address; 
 delete title; 
 } 
// Assignment Operator 
void Employee::operator=(const Employee& a) 
 { 
int n; 
 n = strlen(a.name); 
 for ( int i = 0; i <n ; i++) 
     name[i] = a.name[i]; 



C++ Programming 

Chapter 2: Embedded SQL for C    2–97 

 } 
//Member functions 
void Employee::print() 
{ 
cout << "Employee Info \n"; 
cout << "------------- \n"; 
if (name[0] == '\0') 
   cout << "** Employee Not found **\n"; 
else 
{ 
   cout << "Name    = " << name << '\n'; 
   cout << "Address = " << address << '\n'; 
   cout << "Title = " << title << '\n'; 
   cout << "Age = " << age << '\n'; 
} 
} 
void Employee::select(char *empid) 
{ 
// Use a local variable to store function argument so it can 
// be declared to ESQL 
exec sql begin declare section; 
     char     *sqlempid; 
exec sql end declare section; 
sqlempid = empid; 
exec sql select name, address, title, age into 
     :name, :address, :title, :age 
     from employee where empid = :sqlempid; 
 } 

********************** Class header file employee.h ******************** 
// Declare an employee class for C++ 
class Employee { 
exec sql begin declare section; 
char *     name;     // Name 
char *  address;     // Address 
char *  title;     // Title 
int     age; 
exec sql end declare section; 
public: 
     Employee();     // Constructor 
     ~Employee();     // Destructor 
     void operator=(const Employee&);     // Assignment 
     void print();     // Print 
     void select(char *);     // Select 
}; 
const int     MAXDATA = 60 



Preprocessor Error Messages 

2–98     Embedded SQL Companion Guide 

Preprocessor Error Messages 
The following is a list of error messages specific to the C language: 

E_DC000A “Table ‘employee’ contains column(s) of unlimited length.” 

Explanation: Character strings(s) of zero length have been generated. This 
causes a compile-time error. You must modify the output file to specify an 
appropriate length. 

E_E00001 “The #define statement may be used only with values, not names. Use 
typedef if you wish to make ’%0c’ a synonym for a type.” 

Explanation: The #define directive accepts only integer, floating-point or 
string literals as the replacement token. You may not use arbitrary text as the 
replacement token. To define type names you should use typedef. The 
embedded preprocessor #define is not as versatile as the C #define. 

E_E00002 “Cast of #define value is ignored.” 

Explanation: The preprocessor ignores a cast of the replacement value in a 
#define statement. Casts, in general, are not supported by the embedded C 
preprocessor. Remove the cast from the #define statement. 

E_E00003 “Incorrect indirection on variable’%0c’. Variable is subscripted, [], or 
dereferenced, *,%1c time(s) but declared with indirection of%2c.” 

Explanation: This error occurs when the address or value of a variable is 
incorrectly expressed because of faulty indirection. For example, the name of 
an integer array has been given instead of a single array element, or, in the 
case of character string variables, a single element of the string (that is, a 
character) has been given instead of a pointer to the string or the name of the 
array. 

Either redeclare the variable with the intended indirection or change its use in 
the current statement. 

E_E00004 “Last component of structure reference’%0c’ is illegal.” 

Explanation: This error occurs when the preprocessor encounters an 
unrecognized name in a structure reference. The user may have incorrectly 
typed the name of structure element or may have failed to declare it to the 
preprocessor. 

Check for misspellings in component names and that all of the structure 
components have been declared to the preprocessor. 



Sample Applications 

Chapter 2: Embedded SQL for C    2–99 

E_E00008 “Incorrect declaration of C varchar variable is ignored. The members of a 
varchar structure variable may consist only of a short integer and a fixed 
length character array.” 

Explanation: Varchar variables (variables declared with the varchar storage 
class) must conform to an exact varying length string template so that Ingres 
can map to and from them at runtime. The length field must be exactly two 
bytes (derived from a short), and the character string field must be a single-
dimensioned C character array. The varchar clause must be associated with a 
variable declaration and not with a type definition or structure tag declaration. 

Check the varchar structure declaration. Make sure that both structure 
members are declared properly. 

E_E00009 “Missing’=’ in the initialization part of a C declaration.” 

Explanation: The preprocessor allows automatic initialization of variables and 
expects the regular C syntax. Insert an equals sign between the variable and 
the initializing value. 

Sample Applications 
This section contains sample applications. 

The Department-Employee Master/Detail Application  

This application uses two database tables joined on a specific column. This typical 
example of a department and its employees demonstrates how to process two 
tables as a master and a detail. 

The program scans through all the departments in a database table, in order 
to reduce expenses. Based on certain criteria, the program updates 
department and employee records. The conditions for updating the data are 
the following: 

Departments 

 If a department has made less than $50,000 in sales, the department is 
dissolved. 

Employees 

 If an employee was hired since the start of 1998, the employee is 
terminated. 



Sample Applications 

2–100     Embedded SQL Companion Guide 

 If the employee’s yearly salary is more than the minimum company wage 
of $14,000 and the employee is not nearing retirement (over 58 years of 
age), the employee takes a 5% pay cut. 

 If the employee’s department is dissolved and the employee is not 
terminated, the employee is moved into a state of limbo to be resolved by 
a supervisor. 

This program uses two cursors in a master/detail fashion. The first cursor is for 
the Department table, and the second cursor is for the Employee table. The 
declare table statements at the beginning of the program describe both tables. 
The cursors retrieve all the information in the tables, some of which is 
updated. The cursor for the Employee table also retrieves an integer date 
interval whose value is positive if the employee was hired after January 1, 
1998. The tables contain no null values. 

Each row that is scanned, from both the Department table and the Employee 
table, is recorded into the system output file. This file serves both as a log of 
the session and as a simplified report of the updates that were made. 

Each section of code is commented for the purpose of the application and also to 
clarify some of the uses of the embedded SQL statements. The program illustrates 
table creation, multi-statement transactions, all cursor statements, direct updates, 
and error handling. 

Note: The application uses function prototypes and ifdef statements to enable 
you to build it using either the ESQL/C or ESQL/C++ precompiler. 

Sample Program 



Sample Applications 

Chapter 2: Embedded SQL for C    2–101 

# include <stdio.h> 
EXEC SQL INCLUDE SQLCA; 
/* The department table */ 
EXEC SQL DECLARE dept TABLE 
  (name           char(12) NOT NULL,    /* Department name */ 
   totsales       money NOT NULL,       /* Total sales */ 
   employees      smallint NOT NULL);   /* Number of employees */ 
 
/* The employee table */ 
EXEC SQL DECLARE employee TABLE 
  (name           char(20) NOT NULL,    /* Employee name */ 
   age            integer1 NOT NULL,    /* Employee age */ 
   idno           integer NOT NULL,     /* Unique employee id */ 
   hired          date NOT NULL,        /* Date of hire */ 
   dept           char(12) NOT NULL,    /* Department of work */ 
   salary         money NOT NULL);      /* Yearly salary */ 
 
/* "State-of-Limbo" for employees who lose their department */ 
EXEC SQL DECLARE toberesolved TABLE 
  (name           char(20) NOT NULL, 
   age            integer1 NOT NULL, 
   idno           integer NOT NULL, 
   hired          date NOT NULL, 
   dept           char(12) NOT NULL, 
   salary         money NOT NULL); 
EXEC SQL BEGIN DECLARE SECTION; 
# define MIN_DEPT_SALES    50000.00   /* Minimum sales of department */ 
# define MIN_EMP_SALARY    14000.00   /* Minimum employee salary */ 
# define NEARLY_RETIRED    58 
# define SALARY_REDUC      0.95 
EXEC SQL END DECLARE SECTION; 
/* 
** Function prototypes for C++ only so that this is compatible 
** with old-style C compilers 
*/ 
# ifdef __cplusplus 
void Init_Db(void); 
void End_Db(void); 
void Process_Depts(void); 
void Process_Employees( char *dept_name, short deleted_dept, short *emps_term ); 
void Close_Down(void); 
# endif /* __cplusplus */ 
/* 
 
** Procedure: MAIN 
** Purpose:   Main body of the application. Initialize the database, 
**            process each department and terminate the session. 
** Parameters: 
**            None 
*/main() 
{ 
  printf( "Entering application to process expenses.\n" ); 
  Init_Db(); 
  Process_Depts(); 
  End_Db(); 
  printf( "Successful completion of application.\n" ); 
 } 
 
/* 
** Procedure: Init_Db 
** Purpose:   Initialize the database. 
**            Connect to the database, and abort if an error. Before 
**            processing employees, create the table for employees 
**            who lose their department, "toberesolved". 
** Parameters: 
**            None 



Sample Applications 

2–102     Embedded SQL Companion Guide 

*/ 
 
# ifdef __cplusplus 
void 
Init_Db(void) 
# else 
Init_Db() 
 
# endif /* __cplusplus */ 
{ 
 
  EXEC SQL WHENEVER SQLERROR STOP; 
  EXEC SQL CONNECT personnel; 
  
   
printf( "Creating \"To_Be_Resolved\" table.\n" ); 
  EXEC SQL CREATE TABLE toberesolved 
  (name                 char(20) NOT NULL, 
  age                   integer1 NOT NULL, 
  idno                  integer NOT NULL, 
  hired                 date NOT NULL, 
  dept                  char(12) NOT NULL, 
  salary                money NOT NULL); 
  
} 
 
/* 
** Procedure: End_Db 
** Purpose:   Commit the multi-statement transaction and access  
**            to the database. 
** Parameters: 
**            None 
*/ 
 
# ifdef __cplusplus 
void 
End_Db(void) 
# else 
End_Db() 
# endif /* __cplusplus */ 
{ 
  EXEC SQL COMMIT; 
  EXEC SQL DISCONNECT; 
 } 
 
/* 
** Procedure: Process_Depts 
** Purpose:   Scan through all the departments, processing each one. 
**            If the department has made less than $50,000 in sales,  
**            the department is dissolved. For each department, process 
**            all  employees (they may even be moved to another table). 
**            If an employee was terminated, then update the department's 
**            employee counter. 
** Parameters: 
**            None 
*/ 
 
# ifdef __cplusplus 
void  
Process_Depts(void) 
# else 
Process_Depts() 
# endif /* __cplusplus */ 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    struct dept_ {           /* Corresponds to the "dept" table */ 



Sample Applications 

Chapter 2: Embedded SQL for C    2–103 

      char    name[13]; 
      double  totsales; 
      short   employees; 
    } dept; 
    short   emps_term = 0;           /* Employees terminated */ 
  EXEC SQL END DECLARE SECTION; 
  short       deleted_dept;               /* Was the dept deleted? */ 
  char        *dept_format;               /* Formatting value */ 
 
  EXEC SQL DECLARE deptcsr CURSOR FOR 
    SELECT name, totsales, employees 
    FROM dept 
    FOR DIRECT UPDATE OF name, employees; 
  
  /* All errors from this point on close down the application */ 
  EXEC SQL WHENEVER SQLERROR CALL Close_Down; 
  EXEC SQL WHENEVER NOT FOUND GOTO Close_Dept_Csr; 
  
  EXEC SQL OPEN deptcsr; 
  
  while (sqlca.sqlcode == 0) 
  { 
    EXEC SQL FETCH deptcsr INTO :dept; 
    /* Did the department reach minimum sales? */ 
    if (dept.totsales < MIN_DEPT_SALES) 
    { 
      EXEC SQL DELETE FROM dept 
        WHERE CURRENT OF deptcsr; 
      deleted_dept = 1; 
      dept_format = "  --  DISSOLVED  --"; 
    } 
    else 
    { 
      deleted_dept = 0; 
      dept_format = ""; 
    } 
 
    /* Log what we have just done */ 
    printf( "Department: %14s, Total Sales: %12.3f %s\n", 
        dept.name, dept.totsales, dept_format ); 
  
    /* Now process each employee in the department */ 
    Process_Employees( dept.name, deleted_dept, &emps_term ); 
  
    /* If  employees were terminated, record this fact */ 
    if (emps_term > 0 && !deleted_dept) 
    { 
      EXEC SQL UPDATE dept 
        SET employees = :dept.employees - :emps_term 
        WHERE CURRENT OF deptcsr; 
    } 
 
  } 
  Close_Dept_Csr: 
    EXEC SQL WHENEVER NOT FOUND CONTINUE; 
    EXEC SQL CLOSE deptcsr; 
 } 
 
/* 
** Procedure: Process_Employees 
** Purpose:   Scan through all the employees for a particular department. 
**            Based on given conditions the employee may be terminated or 
**            given a salary reduction: 
**            1. If an employee was hired since 1998, the employee is 
**               terminated. 
**            2. If the employee's yearly salary is more than minimum 



Sample Applications 

2–104     Embedded SQL Companion Guide 

**               company wage of $14,000 and the employee is not close to 
**               retirement (over 58 years of age), the employee 
**               takes a 5% salary reduction. 
**            3. If the employee's department is dissolved and the employee 
**               is not terminated, then the employee is moved into the 
**               "toberesolved" table. 
** Parameters: 
**             dept_name     - Name of current department. 
**             deleted_dept  - Is current department being dissolved? 
**             emps_term     - Set locally to record how many employees 
**                            were terminated for the current department. 
*/ 
 
# ifdef __cplusplus 
void 
Process_Employees( char *dept_name, short deleted_dept, short *emps_term ) 
# else 
Process_Employees( dept_name, deleted_dept, emps_term 
) 
char    *dept_name; 
short   deleted_dept; 
short   *emps_term; 
# endif /* __cplusplus */ 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    struct emp_ {       /* Corresponds to "employee" table */ 
      char    name[21]; 
      short   age; 
      int     idno; 
      char    hired[26]; 
      float   salary; 
      int     hired_since_98; 
    } emp; 
    char    *dname = dept_name; 
  
  EXEC SQL END DECLARE SECTION; 
  char         *title;             /* Formatting values */ 
  char         *description; 
  
  /* 
  ** Note the use of the INGRES function to find out who has been 
  ** hired since 1998. 
  */ 
  EXEC SQL DECLARE empcsr CURSOR FOR 
    SELECT name, age, idno, hired, salary, 
      int4(interval('days', hired-date('01-jan-1998'))) 
    FROM employee 
    WHERE dept = :dname 
    FOR DIRECT UPDATE OF name, salary; 
  
 
  /* All errors from this point on close down the application */ 
  EXEC SQL WHENEVER SQLERROR CALL Close_Down; 
  EXEC SQL WHENEVER NOT FOUND GOTO Close_Emp_Csr; 
  
  EXEC SQL OPEN empcsr; 
  
  *emps_term = 0;                  /* Record how many */ 
  while (sqlca.sqlcode == 0) 
  { 
    EXEC SQL FETCH empcsr INTO :emp; 
  
    if (emp.hired_since_98 > 0) 
     { 
      EXEC SQL DELETE FROM employee 
        WHERE CURRENT OF empcsr; 



Sample Applications 

Chapter 2: Embedded SQL for C    2–105 

      title = "Terminated:"; 
      description = "Reason: Hired since 1998."; 
      (*emps_term)++; 
  
    } 
    else 
    { 
      /* Reduce salary if not nearly retired */ 
      if (emp.salary > MIN_EMP_SALARY) 
        { 
        if (emp.age < NEARLY_RETIRED) 
        { 
          EXEC SQL UPDATE employee 
            SET salary = salary * :SALARY_REDUC 
            WHERE CURRENT OF empcsr; 
          title = "Reduction: "; 
          description = "Reason: Salary."; 
        } 
        else 
        { 
          /* Do not reduce salary */ 
          title = "No Changes:"; 
          description = "Reason: Retiring."; 
        } 
 
      } 
 
      else    /* Leave employee alone */ 
      { 
        title = "No Changes:"; 
        description = "Reason: Salary."; 
      } 
 
      /* Was employee's department dissolved? */ 
      if (deleted_dept) 
      { 
        EXEC SQL INSERT INTO toberesolved 
          SELECT * 
          FROM employee 
          WHERE idno = :emp.idno; 
  
        EXEC SQL DELETE FROM employee 
          WHERE CURRENT OF empcsr; 
      } 
    } 
 
 
    /* Log the employee's information */ 
    printf( "  %s %6d, %20s, %2d, %8.2f; %s\n", 
      title, emp.idno, emp.name, emp.age, emp.salary, 
      description ); 
  } 
 
  Close_Emp_Csr: 
    EXEC SQL WHENEVER NOT FOUND CONTINUE; 
    EXEC SQL CLOSE empcsr; 
 } 
 
/* 
** Procedure: Close_Down 
** Purpose:   Error handler called any time after Init_Db has been 
**            successfully completed. In all cases, print the cause of 
**            the error and abort the transaction, backing out changes. 
**            Note that disconnecting from the database will implicitly 
**            close any open cursors. 
** Parameters: 



Sample Applications 

2–106     Embedded SQL Companion Guide 

**            None 
*/ 
 
# ifdef __cplusplus 
void 
Close_Down(void) 
# else 
Close_Down() 
# endif /* __cplusplus */ 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    char       errbuf[101]; 
  EXEC SQL END DECLARE SECTION; 
  
  EXEC SQL WHENEVER SQLERROR CONTINUE;  /* Turn off error handling */ 
 
  EXEC SQL INQUIRE_INGRES (:errbuf = ERRORTEXT); 
  printf( "Closing Down because of database error:\n" ); 
  printf( "%s\n", errbuf ); 
  
  EXEC SQL ROLLBACK; 
  EXEC SQL DISCONNECT; 
  exit( -1 ); 
 } 

The Table Editor Table Field Application 

This application edits the Person table in the Personnel database. It is a forms 
application that allows the user to update a person’s values, remove the 
person, or add new persons. Various table field utilities are provided with the 
application to demonstrate how they work. 

The objects used in this application are shown in the following table: 

 

Object Description 

personnel The program’s database environment. 

person A database table with three columns: 

Name (char(20)) 

Age (smallint) 

Number (integer) 

Number is unique. 

personfrm The VIFRED form with a single table field. 



Sample Applications 

Chapter 2: Embedded SQL for C    2–107 

Object Description 

persontbl A table field in the form, with two columns:name 
(char(20)) 

age (integer) 

When initialized the table file includes the hidden column 
number (integer). 

At the start of the application, a database cursor is opened to load the table 
field with data from the Person table.  After loading the table field, you can 
browse and edit the displayed values.  You can add, update, or delete entries.  
When finished, the values are unloaded from the table field, and your updates 
are transferred back into the Person table. 

Note: The application uses function prototypes and ifdef statements to enable 
you to build it using either the ESQL/C or ESQL/C++ precompiler. 

Sample Program 

# include <stdio.h> 



Sample Applications 

2–108     Embedded SQL Companion Guide 

# include <string.h> 
 
EXEC SQL INCLUDE SQLCA; 
  
EXEC SQL DECLARE person TABLE 
  (name     char(20),       /* Person name */ 
   age      smallint,       /* Age */ 
   number   integer);       /* Unique id number */ 
 
/* 
** Function prototypes for C++ only so that this is compatible 
** with old-style C compilers 
*/ 
# ifdef __cplusplus 
int Load_Table(void); 
# endif /* __cplusplus */ 
 
/* 
** Procedure: MAIN 
** Purpose:   Entry point into Table Editor program. 
*/ 
 
main() 
{ 
/* Table field row states */ 
# define stUNDEF      0   /* Empty or undefined row */ 
# define stNEW        1   /* Appended by user */ 
# define stUNCHANGED  2   /* Loaded by program - not updated */ 
# define stCHANGE     3   /* Loaded by program - since changed */ 
# define stDELETE     4   /* Deleted by program */ 
 
# define NOT_FOUND  100   /* SQLCA value for no rows */ 
 
  EXEC SQL BEGIN DECLARE SECTION; 
  
    /* Person information */ 
    char pname[21];      /* Full name (with C null) */ 
    int  page,           /* Age of person */ 
         pnumber;        /* Unique person number */ 
    int  maxid;          /* Max person id number */ 
 
    /* Table field entry information */ 
    int  state,          /* State of data set entry */ 
         record,         /* Record number */ 
         lastrow;        /* Last row in table field */ 
 
 
    /* Utility buffers */ 
    char msgbuf[100],    /* Message buffer */ 
         respbuf[256];   /* Response buffer */ 
  EXEC SQL END DECLARE SECTION; 
  
  int update_error;            /* Update error from database */ 
  int xact_aborted;            /* Transaction aborted */ 
 
  /* Set up error handling for main program */ 
  EXEC SQL WHENEVER SQLWARNING CONTINUE; 
  EXEC SQL WHENEVER NOT FOUND CONTINUE; 
  EXEC SQL WHENEVER SQLERROR STOP; 
  
  /* Start up INGRES and the INGRES/FORMS system */ 
  EXEC SQL CONNECT 'personnel'; 
  
  EXEC FRS FORMS; 



Sample Applications 

Chapter 2: Embedded SQL for C    2–109 

  
  /* Verify that the user can edit the "person" table */ 
  EXEC FRS PROMPT NOECHO ('Password for table editor: ', :respbuf); 
  
  if (strcmp(respbuf, "MASTER_OF_ALL") != 0) 
  { 
    EXEC FRS MESSAGE 'No permission for task. Exiting . . .'; 
    EXEC FRS ENDFORMS; 
    EXEC SQL DISCONNECT; 
    exit( 1 ); 
  } 
 
  /* We assume no SQL errors can happen during screen updating */ 
  EXEC SQL WHENEVER SQLERROR CONTINUE; 
  
  EXEC FRS MESSAGE 'Initializing Person Form . . .'; 
  EXEC FRS FORMINIT personfrm; 
  
  /* 
  **  Initialize "persontbl" table field with a data set in FILL mode, 
  **  so that the runtime user can append rows. To keep track of 
  **  events occurring to original rows loaded into the table field, 
  **  hide the unique person number. 
  */ 
  EXEC FRS INITTABLE personfrm persontbl FILL (number = integer); 
  
  maxid = Load_Table(); 
 
  EXEC FRS DISPLAY personfrm UPDATE; 
  EXEC FRS INITIALIZE; 
  
  EXEC FRS ACTIVATE MENUITEM 'Top'; 
  EXEC FRS BEGIN; 
    /* 
    ** Provide menu items, as well as the system FRS key, 
    ** to scroll to both extremes of the table field. 
    */ 
    EXEC FRS SCROLL personfrm persontbl TO 1; 
  EXEC FRS END; 
  
  EXEC FRS ACTIVATE MENUITEM 'Bottom'; 
  EXEC FRS BEGIN; 
    EXEC FRS SCROLL personfrm persontbl TO END;  /* Forward */ 
  EXEC FRS END; 
  
 
  EXEC FRS ACTIVATE MENUITEM 'Remove'; 
  EXEC FRS BEGIN; 
    /* 
    ** Remove the person in the row the user's cursor is on. 
    ** If there are no persons, exit operation with message. 
    ** Note that this check cannot really happen, as there is 
    ** always an UNDEFINED row in FILL mode. 
    */ 
    EXEC FRS INQUIRE_FRS table personfrm 
        (:lastrow = lastrow(persontbl)); 
    if (lastrow == 0) 
    { 
      EXEC FRS MESSAGE 'Nobody to Remove'; 
      EXEC FRS SLEEP 2; 
      EXEC FRS RESUME FIELD persontbl; 
    } 
    EXEC FRS DELETEROW personfrm persontbl; /* Record later */ 
  EXEC FRS END; 
  
  EXEC FRS ACTIVATE MENUITEM 'Find'; 



Sample Applications 

2–110     Embedded SQL Companion Guide 

  EXEC FRS BEGIN; 
    /* 
    ** Scroll user to the requested table field entry. 
    ** Prompt the user for a name, and if one is typed in, 
    ** loop through the data set searching for it. 
    */ 
    EXEC FRS PROMPT ('Person''s name : ', :respbuf); 
    if (respbuf[0] == '\0') 
      EXEC FRS RESUME FIELD persontbl; 
  
    EXEC FRS UNLOADTABLE personfrm persontbl  
      (:pname = name, 
       :record = _record, 
       :state = _state); 
    EXEC FRS BEGIN; 
  
      /* Do not compare with deleted rows */ 
      if ((strcmp(pname, respbuf) == 0) && 
          (state != stDELETE)) 
      { 
        EXEC FRS SCROLL personfrm persontbl 
          TO :record; 
        EXEC FRS RESUME FIELD persontbl; 
      } 
 
    EXEC FRS END; 
  
    /* Fell out of loop without finding name */ 
    sprintf(msgbuf, 
      "Person \"%s\" not found in table [HIT RETURN] ", 
      respbuf); 
    EXEC FRS PROMPT NOECHO (:msgbuf, :respbuf); 
  EXEC FRS END; 
  
  EXEC FRS ACTIVATE MENUITEM 'Exit'; 
  EXEC FRS BEGIN; 
    EXEC FRS VALIDATE FIELD persontbl; 
    EXEC FRS BREAKDISPLAY; 
  EXEC FRS END; 
  EXEC FRS FINALIZE; 
  
 
  /* 
  ** Exit person table editor and unload the table field. If any 
  ** updates, deletions or additions were made, duplicate these 
  ** changes in the source table. If the user added new people, 
  ** assign a unique id to each person before adding the person to 
  ** the table. To do this, increment the previously-saved maximum 
  ** id number with each insert. 
  */ 
 
  /* Do all the updates in a transaction */ 
  EXEC SQL SAVEPOINT savept; 
  
  /* 
  ** Hard code the error handling in the UNLOADTABLE loop, as 
  ** we want to cleanly exit the loop. 
  */ 
  EXEC SQL WHENEVER SQLERROR CONTINUE; 
  
  update_error = 0; 
  xact_aborted = 0; 
  
  EXEC FRS MESSAGE 'Exiting Person Application . . .'; 
  EXEC FRS UNLOADTABLE personfrm persontbl 
    (:pname = name, :page = age, 



Sample Applications 

Chapter 2: Embedded SQL for C    2–111 

     :pnumber = number, :state = _state); 
  EXEC FRS BEGIN; 
  
    /* Appended by user. Insert with new unique id. */ 
    if (state == stNEW) 
    { 
      maxid = maxid + 1; 
      EXEC SQL INSERT INTO person (name, age, number) 
        VALUES (:pname, :page, :maxid); 
    } 
    /* Updated by user. Reflect in table. */ 
    else if (state == stCHANGE) 
    { 
      EXEC SQL UPDATE person SET 
        name = :pname, age = :page 
        WHERE number = :pnumber; 
    } 
    /* 
    ** Deleted by user, so delete from table. Note that only 
    ** original rows, not rows appended at runtime, are 
    ** saved by the program. 
    */ 
    else if (state == stDELETE) 
    { 
      EXEC SQL DELETE FROM person 
        WHERE number = :pnumber; 
    } 
    /* Else UNDEFINED or UNCHANGED - No updates */ 
 
 
    /* 
    ** Handle error conditions - 
    ** If an error occurred, abort the transaction. 
    ** If no rows were updated, inform user and prompt 
    ** for continuation. 
    */ 
    if (sqlca.sqlcode < 0)     /* Error */ 
    { 
      EXEC SQL INQUIRE_INGRES (:msgbuf = ERRORTEXT); 
      EXEC SQL ROLLBACK TO savept; 
      update_error = 1; 
      xact_aborted = 1; 
      EXEC FRS ENDLOOP; 
    } 
    else if (sqlca.sqlcode == NOT_FOUND) 
    { 
      sprintf(msgbuf, 
        "Person \"%s\" not updated. Abort all updates? ", 
        pname); 
      EXEC FRS PROMPT (:msgbuf, :respbuf); 
      if (respbuf[0] == 'Y' || respbuf[0] == 'y') 
      { 
        EXEC SQL ROLLBACK TO savept; 
        xact_aborted = 1; 
        EXEC FRS ENDLOOP; 
      } 
    } 
 
  EXEC FRS END; 
  
  if (!xact_aborted) 
    EXEC SQL COMMIT;       /* Commit the updates */ 
 
  EXEC FRS ENDFORMS;         /* Terminate the FORMS and INGRES */ 
  EXEC SQL DISCONNECT; 
  



Sample Applications 

2–112     Embedded SQL Companion Guide 

  if (update_error) 
  { 
    printf( "Your updates were aborted because of error:\n" ); 
    printf( msgbuf ); 
    printf( "\n" ); 
  } 
 
} /* Main Program */ 
 
/* 
** Procedure: Load_Table 
** Purpose:   Load the table field from the "person" table. The 
**            columns "name" and "age" will be displayed, and 
**            "number" will be hidden. 
** Parameters: 
**            None 
** Returns: 
**            Maximum employee number 
*/ 
# ifdef __cplusplus 
int 
Load_Table(void) 
# else 
int 
Load_Table() 
# endif /* __cplusplus */ 
 
 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    /* Person information */ 
    char pname[21];      /* Full name */ 
    int  page,           /* Age of person */ 
         pnumber;        /* Unique person number */ 
    int  maxid;          /* Max person id number to return */ 
  EXEC SQL END DECLARE SECTION; 
  
  EXEC SQL DECLARE loadtab CURSOR FOR  
    SELECT name, age, number 
    FROM person; 
  
  /* Set up error handling for loading procedure */ 
  EXEC SQL WHENEVER SQLERROR GOTO Load_End; 
  EXEC SQL WHENEVER NOT FOUND GOTO Load_End; 
  
  EXEC FRS MESSAGE 'Loading Person Information . . .'; 
  
  /* Fetch the maximum person id number for later use */ 
  EXEC SQL SELECT max(number) 
    INTO :maxid 
    FROM person; 
  
  EXEC SQL OPEN loadtab; 
  
  while (sqlca.sqlcode == 0) 
  { 
    /* Fetch data into record and load table field */ 
    EXEC SQL FETCH loadtab INTO :pname, :page, :pnumber; 
  
    EXEC FRS LOADTABLE personfrm persontbl 
      (name = :pname, age = :page, number = :pnumber); 
  } 
 
  Load_End: 
       EXEC SQL WHENEVER SQLERROR CONTINUE; 
       EXEC SQL CLOSE loadtab; 



Sample Applications 

Chapter 2: Embedded SQL for C    2–113 

  
  return maxid; 
  
} /* Load_Table */ 

The Professor-Student Mixed Form Application 

This application lets the user browse and update information about graduate 
students who report to a specific professor. The program is structured in a 
master/detail fashion, with the professor being the master entry, and the 
students the detail entries. The application uses two forms—one to contain 
general professor information and another for detailed student information. 

The objects used in this application are shown in the following table: 

 

Object Description 

personnel The program’s database environment. 

professor A database table with two columns: 

pname (char(25)) 

pdept (char(10)) 

See its declare table statement in the program for a full 
description. 



Sample Applications 

2–114     Embedded SQL Companion Guide 

Object Description 

student A database table with seven columns: 

sname (char(25)) 

sage (integer1) 

sbdate (char(25)) 

sgpa (float4) 

sidno (integer) 

scomment (varchar(200)) 

sadvisor (char(25)) 

See its declare table statement for a full description. The 
sadvisor column is the join field with the pname column in 
the Professor table. 

masterfrm The main form has fields pname and pdept, which 
correspond to the information in the Professor table and 
the studenttbl table field. The pdept field is display-only. 
This form is a compiled form. 

studenttbl A table field in masterfrm with the sname and sage 
columns. When initialized, it also has five hidden columns 
corresponding to information in the Student table. 

studentfrm The detail form, with seven fields, which corresponds to 
information in the Student table. Only the sgpa, 
scomment, and sadvisor fields are updatable. All other 
fields are display-only. This form is a compiled form. 

grad A global structure, whose members correspond in name 
and type to the columns of the Student database table, 
the studentfrm form, and the studenttbl table field. 



Sample Applications 

Chapter 2: Embedded SQL for C    2–115 

The program uses the masterfrm as the general-level master entry, in which 
you can only retrieve and browse data, and the studentfrm as the detailed 
screen, in which you can update specific student information. 

Enter a name in the pname field and then select the Students menu operation. 
The operation fills the studenttbl table field with detailed information of the 
students reporting to the named professor. The studentcsr database cursor in 
the Load_Students procedure does this. The program assumes that each 
professor is associated with exactly one department. You can then browse the 
table field (in read mode), which displays only the names and ages of the 
students. You can request more information about a specific student by 
selecting the Zoom menu operation. This operation displays the studentfrm 
form (in update mode). The fields of studentfrm are filled with values stored in 
the hidden columns of studenttbl. You can make changes to the sgpa, 
scomment, and sadvisor fields. If validated, these changes are written back to 
the database table (based on the unique student id), and to the table field’s 
data set. You can repeat this process for different professor names. 

Note: The application uses function prototypes and ifdef statements to enable 
you to build it using either the ESQL/C or ESQL/C++ precompiler. 

Sample Program 

# include <stdio.h> 

# include <string.h> 

EXEC SQL INCLUDE SQLCA; 
 EXEC SQL DECLARE student TABLE     /* Graduate student table */ 
  (sname          char(25),        /* Name */ 
   sage           integer1,        /* Age */ 
   sbdate         char(25),        /* Birth date */ 
   sgpa           float4,          /* Grade point average */ 
   sidno          integer,         /* Unique student number */ 
   scomment       varchar(200),    /* General comments */ 
   sadvisor       char(25));       /* Advisor's name */ 
EXEC SQL DECLARE professor TABLE   /* Professor table 
*/ 
  (pname          char(25),        /* Professor's name */ 
   pdept          char(10));       /* Department */ 
 
EXEC SQL BEGIN DECLARE SECTION; 
  /* Global grad student record maps to database table */ 
  struct { 
    char   sname[26]; 
    short  sage; 
    char   sbdate[26]; 
    float  sgpa; 
    int    sidno; 
    char   scomment[201]; 
    char   sadvisor[26]; 
  } grad; 



Sample Applications 

2–116     Embedded SQL Companion Guide 

  
EXEC SQL END DECLARE SECTION; 
/* 
** Function prototypes for C++ only so that this is compatible 
** with old-style C compilers 
*/ 
# ifdef __cplusplus 
void Master(void); 
 void Load_Students(char *adv); 
 int Student_Info_Changed(void); 
 # endif /* __cplusplus */ 
 
/* 
** Procedure: MAIN 
** Purpose:   Start up program and call Master driver. 
*/ 
main() 
{ 
  /* Start up INGRES and the FORMS system */ 
  EXEC FRS FORMS; 
  
  EXEC SQL WHENEVER SQLERROR STOP; 
  EXEC FRS MESSAGE 'Initializing Student Administrator . . .'; 
  
  EXEC SQL CONNECT personnel; 
  
  Master(); 
 
  EXEC FRS CLEAR SCREEN; 
  EXEC FRS ENDFORMS; 
  EXEC SQL DISCONNECT; 
 } 
 
 
/* 
** Procedure: Master 
** Purpose:   Drive the application, by running "masterfrm" and 
**            allowing the user to "zoom" into a selected student. 
** Parameters: 
**            None - Uses the global student "grad" record. 
*/ 
 
# ifdef __cplusplus 
void 
Master(void) 
# else 
Master() 
# endif /* __cplusplus */ 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    /* Professor info maps to database table */ 
    struct { 
      char  pname[26]; 
      char  pdept[11]; 
    } prof; 
  
    /* Useful forms system information */ 
    int  lastrow,  /* Lastrow in table field */ 
         istable;  /* Is a table field? */ 
 
    /* Local utility buffers */ 
    char  msgbuf[100];      /* Message buffer */ 
    char  respbuf[256];     /* Response buffer */ 
    char  old_advisor[26];  /* Old advisor before ZOOM */ 
 
    /* Externally compiled master form */ 



Sample Applications 

Chapter 2: Embedded SQL for C    2–117 

    extern int *masterfrm; 
  EXEC SQL END DECLARE SECTION; 
  
  EXEC FRS ADDFORM :masterfrm; 
  
  /* 
  ** Initialize "studenttbl" with a data set in READ mode. 
  ** Declare hidden columns for all the extra fields that 
  ** the program will display when more information is 
  ** requested about a student. Columns "sname" and "sage" 
  ** are displayed. All other columns are hidden, to be 
  ** used in the student information form. 
  */ 
  EXEC FRS INITTABLE masterfrm studenttbl READ 
    (sbdate = char(25), 
     sgpa = float4, 
     sidno = integer4, 
     scomment = char(200), 
     sadvisor = char(20)); 
  
  EXEC FRS DISPLAY masterfrm UPDATE; 
  
  EXEC FRS INITIALIZE; 
  EXEC FRS BEGIN; 
    EXEC FRS MESSAGE 'Enter an Advisor name . . .'; 
    EXEC FRS SLEEP 2; 
  EXEC FRS END; 
  
  EXEC FRS ACTIVATE MENUITEM 'Students', FIELD 'pname'; 
  
  EXEC FRS BEGIN; 
  
 
    /* Load the students of the specified professor */ 
    EXEC FRS GETFORM (:prof.pname = pname); 
  
    /* If no professor name is given, resume */ 
    if (prof.pname[0] == '\0') 
      EXEC FRS RESUME FIELD pname; 
  
    /* 
    ** Verify that the professor exists. Local error handling  
    ** just prints the message and continues. Assume that each  
    ** professor has exactly one department. 
    */ 
    EXEC SQL WHENEVER SQLERROR CALL SQLPRINT; 
    EXEC SQL WHENEVER NOT FOUND CONTINUE; 
    prof.pdept[0] = '\0'; 
    EXEC SQL SELECT pdept 
      INTO :prof.pdept 
      FROM professor 
      WHERE pname = :prof.pname; 
  
    if (prof.pdept[0] == '\0') 
    { 
      sprintf(msgbuf, 
        "No professor with name \"%s\" [RETURN]", 
        prof.pname); 
      EXEC FRS PROMPT NOECHO (:msgbuf, :respbuf); 
      EXEC FRS CLEAR FIELD ALL; 
      EXEC FRS RESUME FIELD pname; 
    } 
 
    /* Fill the department field and load students */ 
    EXEC FRS PUTFORM (pdept = :prof.pdept); 
    EXEC FRS REDISPLAY;       /* Refresh for query */ 



Sample Applications 

2–118     Embedded SQL Companion Guide 

 
    Load_Students(prof.pname); 
  
    EXEC FRS RESUME FIELD studenttbl; 
  
  EXEC FRS END;          /* "Students" */ 
 
  EXEC FRS ACTIVATE MENUITEM 'Zoom'; 
  EXEC FRS BEGIN; 
  
 
    /* 
    ** Confirm that user is in "studenttbl" and that 
    ** the table field is not empty. Collect data from 
    ** the row and zoom for browsing and updating. 
    */ 
    EXEC FRS INQUIRE_FRS field masterfrm 
      (:istable = table); 
  
    if (istable == 0) 
    { 
      EXEC FRS PROMPT NOECHO 
        ('Select from the student table [RETURN]', 
         :respbuf); 
      EXEC FRS RESUME FIELD studenttbl; 
    } 
 
    EXEC FRS INQUIRE_FRS table masterfrm 
      (:lastrow = lastrow); 
  
    if (lastrow == 0) 
    { 
      EXEC FRS PROMPT NOECHO 
        ('There are no students [RETURN]', 
         :respbuf); 
      EXEC FRS RESUME FIELD pname; 
    } 
 
    /* Collect all data on student into global record 
*/ 
    EXEC FRS GETROW masterfrm studenttbl 
        (:grad.sname = sname, 
         :grad.sage = sage, 
         :grad.sbdate = sbdate, 
         :grad.sgpa = sgpa, 
         :grad.sidno = sidno, 
         :grad.scomment = scomment, 
         :grad.sadvisor = sadvisor); 
  
    /* 
    ** Display "studentfrm," and if any changes were made, 
    ** make the updates to the local table field row. 
    ** Only make updates to the columns corresponding to 
    ** writable fields in "studentfrm". If the student 
    ** changed advisors, then delete the row from the display. 
    */ 
    strcpy(old_advisor, grad.sadvisor); 
    if (Student_Info_Changed()) 
    { 
      if (strcmp(old_advisor, grad.sadvisor) != 0) 
        EXEC FRS DELETEROW masterfrm studenttbl; 
      Else 
        EXEC FRS PUTROW masterfrm studenttbl 
          (sgpa = :grad.sgpa, 
           scomment = :grad.scomment, 
           sadvisor = :grad.sadvisor); 



Sample Applications 

Chapter 2: Embedded SQL for C    2–119 

     } 
 
 
  EXEC FRS END;          /* "Zoom" */ 
 
  EXEC FRS ACTIVATE MENUITEM 'Exit'; 
  EXEC FRS BEGIN; 
    EXEC FRS BREAKDISPLAY; 
  EXEC FRS END;          /* "Exit" */ 
  EXEC FRS FINALIZE; 
  
} /* Master */ 
 
/* 
** Procedure: Load_Students 
** Purpose:   Given an advisor name, load into the "studenttbl" 
**            table field all the students who report to the 
**            professor with that name. 
** Parameters: 
**            advisor - User-specified professor name. 
**            Uses the global student record. 
*/ 
 
# ifdef __cplusplus 
void 
Load_Students(char *adv) 
# else 
Load_Students(adv) 
char    *adv; 
# endif /* __cplusplus */ 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    char   *advisor = adv; 
  EXEC SQL END DECLARE SECTION; 
  
  EXEC SQL DECLARE studentcsr CURSOR FOR 
    SELECT sname, sage, sbdate, sgpa, sidno, scomment, sadvisor 
    FROM student 
    WHERE sadvisor = :advisor; 
  
  /* 
  ** Clear previous contents of table field. Load the table 
  ** field from the database table based on the advisor name. 
  ** Columns "sname" and "sage" will be displayed, and all 
  ** others will be hidden. 
  */ 
  EXEC FRS MESSAGE 'Retrieving Student Information . . .'; 
  
  EXEC FRS CLEAR FIELD studenttbl; 
  
  EXEC SQL WHENEVER SQLERROR GOTO Load_End; 
  EXEC SQL WHENEVER NOT FOUND GOTO Load_End; 
  
  EXEC SQL OPEN studentcsr; 
  
 
  /* 
  ** Before we start the loop, we know that the OPEN was 
  ** successful and that NOT FOUND was not set. 
  */ 
  while (sqlca.sqlcode == 0) 
  { 
    EXEC SQL FETCH studentcsr INTO :grad; 
  
    EXEC FRS LOADTABLE masterfrm studenttbl 
        (sname = :grad.sname, 



Sample Applications 

2–120     Embedded SQL Companion Guide 

         sage = :grad.sage, 
         sbdate = :grad.sbdate, 
         sgpa = :grad.sgpa, 
         sidno = :grad.sidno, 
         scomment = :grad.scomment, 
         sadvisor = :grad.sadvisor); 
  } 
 
Load_End:          /* Clean up on an error, and close 
cursors */ 
  EXEC SQL WHENEVER NOT FOUND CONTINUE; 
  EXEC SQL WHENEVER SQLERROR CONTINUE; 
  EXEC SQL CLOSE studentcsr; 
  
} /* Load_Students */ 
 
/* 
** Procedure: Student_Info_Changed 
** Purpose:   Allow the user to zoom in on the details of a selected 
**            student. Some of the data can be updated by the user. 
**            If any updates were made, then reflect these back into 
**            the database table. The procedure returns TRUE if any 
**            changes were made. 
** Parameters: 
**            None - Uses data in the global "grad" record. 
** Returns: 
**            TRUE/FALSE - Changes were made to the database. 
**            Sets the global "grad" record with the new data. */ 
 
# ifdef __cplusplus 
int 
Student_Info_Changed(void) 
 # else 
int 
Student_Info_Changed() 
# endif /* __cplusplus */ 
 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    int changed;                 /* Changes made to data in form */ 
    int valid_advisor;           /* Valid advisor name? */ 
    extern int *studentfrm;      /* Compiled form */ 
 
  EXEC SQL END DECLARE SECTION; 
  
  /* Control ADDFORM to only initialize once */ 
  static int loadform = 0; 
  
  if (!loadform) 
  { 
    EXEC FRS MESSAGE 'Loading Student form . . .'; 
    EXEC FRS ADDFORM :studentfrm; 
    loadform = 1;   } 
 
 
  /*  Local error handler just prints error and continues */ 
  EXEC SQL WHENEVER SQLERROR CALL SQLPRINT; 
  EXEC SQL WHENEVER NOT FOUND CONTINUE; 
  
  EXEC FRS DISPLAY studentfrm FILL; 
  EXEC FRS INITIALIZE 
    (sname = :grad.sname, 
     sage = :grad.sage, 
     sbdate = :grad.sbdate, 
     sgpa = :grad.sgpa, 
     sidno = :grad.sidno, 



Sample Applications 

Chapter 2: Embedded SQL for C    2–121 

     scomment = :grad.scomment, 
     sadvisor = :grad.sadvisor); 
  
  EXEC FRS ACTIVATE MENUITEM 'Write'; 
  EXEC FRS BEGIN; 
  
    /* 
    ** If changes were made, then update the database 
    ** table. Only bother with the fields that are not 
    ** read-only. 
    */ 
    EXEC FRS INQUIRE_FRS form (:changed = change); 
  
    if (changed == 1) 
    { 
      EXEC FRS VALIDATE; 
      EXEC FRS MESSAGE 'Writing changes to database. . .'; 
  
      EXEC FRS GETFORM 
        (:grad.sgpa = sgpa, 
         :grad.scomment = scomment, 
         :grad.sadvisor = sadvisor); 
  
      /* Enforce integrity of professor name */ 
      valid_advisor = 0; 
      EXEC SQL SELECT 1 INTO :valid_advisor 
        FROM professor 
        WHERE pname = :grad.sadvisor; 
  
      if (valid_advisor == 0) 
      { 
        EXEC FRS MESSAGE 'Not a valid advisor name'; 
        EXEC FRS SLEEP 2; 
        EXEC FRS RESUME FIELD sadvisor; 
      } 
 
      else 
      { 
        EXEC SQL UPDATE student SET 
          sgpa = :grad.sgpa, 
          scomment = :grad.scomment, 
          sadvisor = :grad.sadvisor 
          WHERE sidno = :grad.sidno; 
        EXEC FRS BREAKDISPLAY; 
      } 
    } 
  EXEC FRS END;                  /* "Write" */ 
 
 
  EXEC FRS ACTIVATE MENUITEM 'Quit'; 
  EXEC FRS BEGIN; 
    /* Quit without submitting changes */ 
    changed = 0; 
    EXEC FRS BREAKDISPLAY; 
  EXEC FRS END;                  /* "Quit" */ 
 
  EXEC FRS FINALIZE; 
  return (changed == 1); 
 }  /* Student_Info_Changed * 



Sample Applications 

2–122     Embedded SQL Companion Guide 

The SQL Terminal Monitor Application 

This application executes SQL statements that are read in from the terminal. 
The application reads statements from input and writes results to output. 
Dynamic SQL is used to process and execute the statements. 

When the application starts, it prompts the user for the database name. The 
program then prompts for an SQL statement. Each SQL statement can 
continue over multiple lines and must end with a semicolon. No SQL comments 
are accepted. The SQL statement is processed using Dynamic SQL, and results 
and SQL errors are written to output. At the end of the results, an indicator of 
the number of rows affected is displayed. The loop is then continued and the 
program prompts for another SQL statement. When the user types in end-of-
file, the application rolls back any pending updates and disconnects from the 
database. 

The user’s SQL statement is prepared using prepare and describe. If the SQL 
statement is not a select statement, then it is run using execute and the 
number of rows affected is printed. If the SQL statement is a select statement, 
a Dynamic SQL cursor is opened, and all the rows are fetched and printed. The 
routines that print the results do not try to tabulate the results. A row of 
column names is printed, followed by each row of the results. 

Keyboard interrupts are not handled. Fatal errors such as allocation errors and 
boundary condition violations are handled by means of rolling back pending 
updates and disconnecting from the database session. 

Note: The application uses function prototypes and ifdef statements to enable 
you to build it using either the ESQL/C or ESQL/C++ precompiler. 

Sample Program 

# include <stdio.h> 
# include <malloc.h> 
 
/* Declare the SQLCA structure and the SQLDA typedef */ 
EXEC SQL INCLUDE SQLCA; 
EXEC SQL INCLUDE SQLDA; 
EXEC SQL DECLARE stmt STATEMENT;       
/* Dynamic SQL statement */ 
EXEC SQL DECLARE csr CURSOR FOR stmt;    /* Cursor for dynamic SQL statement */ 
/* 
** Default number of result columns for a dynamic SELECT. If a SELECT 
** statement returns more than DEF_ELEMS,  a new SQLDA will be allocated 
*/ 
# define  DEF_ELEMS  5 
 



Sample Applications 

Chapter 2: Embedded SQL for C    2–123 

/* Size of a DATE string variable */ 
# define  DATE_SIZE  25 
 
/* The SQL code for the NOT FOUND condition */ 
# define  SQL_NOTFOUND  100 
/* Buffer lengths */ 
# define  DBNAME_MAX  50    /* Max database name */ 
# define  INPUT_SIZE  256    /* Max input line length */ 
# define  STMT_MAX  1000    /* Max SQL statement length */ 
 
/* Global SQL variables */ 
 
IISQLDA    *sqlda = (IISQLDA *)0;  /* Pointer to the 
SQL dynamic area */ 
/* Result storage buffer for dynamic SELECT statements */ 
struct { 
  int    res_length;  /* Size of mem_data */ 
  char    *res_data;  /* Pointer to allocated result buffer */ 
} res_buf = {0, NULL}; 
 
/* 
** Function prototypes for C++ only so that this is compatible 
** with old-style C compilers 
*/ 
# ifdef __cplusplus 
void  Run_Monitor(void);        /* Run SQL Monitor */ 
void  Init_Sqlda(int num_elems);/* Initialize SQLDA */ 
int  Execute_Select(void);      /* Execute dynamic SELECT */ 
void  Print_Header(void);       /* Print SELECT column headers */ 
void  Print_Row(void);          /* Print SELECT row values */ 
void  Print_Error(void);        /* Print a user error */ 
char   *Read_Stmt(int stmt_num, char *stmt_buf, int stmt_max); 
        /* Read statement from terminal */ 
char   *Alloc_Mem(int mem_size, char *error_string); 
        /* Allocate memory */ 
char   *calloc(unsigned nelem, unsigned elsize); 
        /* C allocation routine */ 
# else 
void  Run_Monitor();    /* Run SQL Monitor */ 
void  Init_Sqlda();     /* Initialize SQLDA */ 
int  Execute_Select();  /* Execute dynamic SELECT */ 
void  Print_Header();   /* Print SELECT column headers */ 
void  Print_Row();      /* Print SELECT row values */ 
void  Print_Error();    /* Print a user error */ 
char   *Read_Stmt();    /* Read statement from terminal */ 
char   *Alloc_Mem();    /* Allocate memory */ 
char   *calloc();    /* C allocation routine */ 
# endif /* __cplusplus */ 
 



Sample Applications 

2–124     Embedded SQL Companion Guide 

 
/* 
** Procedure:  main 
** Purpose:  Main body of SQL Monitor application. Prompt for database 
**    name and connect to the database. Run the monitor and 
**    disconnect from the database. Before disconnecting roll 
**    back any pending updates. 
** Parameters: 
**      None 
*/ 
 
main() 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    char  dbname[DBNAME_MAX +1];    /* Database name */ 
  EXEC SQL END DECLARE SECTION; 
  
  /* Prompt for database name - could be command line parameter */ 
  printf("SQL Database: "); 
  if (fgets(dbname, DBNAME_MAX, stdin) == NULL) 
    exit(1); 
  
  printf( "-- SQL Terminal Monitor --\n" ); 
  
  /* Treat connection errors as fatal */ 
  EXEC SQL WHENEVER SQLERROR STOP; 
  EXEC SQL CONNECT :dbname; 
  
  Run_Monitor(); 
 
  EXEC SQL WHENEVER SQLERROR CONTINUE; 
  
  printf("SQL: Exiting monitor program.\n"); 
  EXEC SQL ROLLBACK; 
  EXEC SQL DISCONNECT; 
 } /* main */ 
 
/* 
** Procedure:  Run_Monitor 
** Purpose:  Run the SQL monitor. Initialize the first SQLDA with the 
**    default size (DEF_ELEMS 'sqlvar' elements). Loop while 
**    prompting the user for input, and processing the statement. 
**    If it is not a SELECT statement then execute it, otherwise 
**    open a cursor a process a dynamic SELECT statement. 
** Parameters: 
**    None 
*/ 
 
# ifdef __cplusplus 
void 
Run_Monitor(void) 
# else 
void 
Run_Monitor() 
# endif /* __cplusplus */ 
{ 
      EXEC SQL BEGIN DECLARE SECTION; 
      char  stmt_buf[STMT_MAX +1];  /* SQL statement input buffer */ 
  EXEC SQL END DECLARE SECTION; 
  
  int    stmt_num;    /* SQL statement number */ 
  int    rows;        /* Rows affected */ 
 
 
  /* Allocate a new SQLDA */ 
  Init_Sqlda(DEF_ELEMS); 



Sample Applications 

Chapter 2: Embedded SQL for C    2–125 

  
  /* Now we are set for input */ 
  for (stmt_num = 1;; stmt_num++) 
  { 
      /* 
      ** Prompt and read the next statement. If Read_Stmt 
      ** returns NULL then end-of-file was detected. 
      */ 
      if (Read_Stmt(stmt_num, stmt_buf, STMT_MAX) == NULL) 
      break; 
  
      /* Errors are non-fatal from here on out */ 
      EXEC SQL WHENEVER SQLERROR GOTO Stmt_Err; 
  
      /* 
      ** Prepare and describe the statement. If we cannot fully describe 
      ** the statement (our SQLDA is too small) then allocate a new one 
      ** and redescribe the statement. 
      */ 
      EXEC SQL PREPARE stmt FROM :stmt_buf; 
      EXEC SQL DESCRIBE stmt INTO :sqlda; 
      if (sqlda->sqld > sqlda->sqln) 
      { 
        Init_Sqlda(sqlda->sqld); 
        EXEC SQL DESCRIBE stmt INTO :sqlda; 
      } 
 
      /* If 'sqld' = 0 then this is not a SELECT */ 
      if (sqlda->sqld == 0) 
      { 
      EXEC SQL EXECUTE stmt; 
      rows = sqlca.sqlerrd[2]; 
      } 
      else  /* SELECT */ 
      { 
      rows = Execute_Select(); 
      } 
      printf("[%d row(s)]\n", rows); 
      continue;        /* Skip error handler */ 
 
    Stmt_Err: 
      EXEC SQL WHENEVER SQLERROR CONTINUE; 
      /* Print error messages here and continue */ 
      Print_Error(); 
  } /* for each statement */ 
} /* Run_Monitor */ 
 
 
/* 
** Procedure:  Init_Sqlda 
** Purpose:  Initialize SQLDA. Free any old SQLDA's and allocate a new 
**    one. Set the number of 'sqlvar' elements. 
** Parameters: 
**    num_elems    - Number of elements. 
*/ 
 
# ifdef __cplusplus 
void 
Init_Sqlda(int num_elems) 
# else 
void 
Init_Sqlda(num_elems) 
 int  num_elems; 
# endif /* __cplusplus */ 
{ 
  /* Free the old SQLDA */ 



Sample Applications 

2–126     Embedded SQL Companion Guide 

  if (sqlda) 
      free((char *)sqlda); 
  
  /* Allocate a new SQLDA */ 
  sqlda = (IISQLDA *) 
    Alloc_Mem(IISQDA_HEAD_SIZE + (num_elems * IISQDA_VAR_SIZE), 
        "new SQLDA"); 
  sqlda->sqln = num_elems;    /* Set the size */ 
} /* Init_Sqlda */ 
 
/* 
** Procedure:  Execute_Select 
** Purpose:    Run a dynamic SELECT statement. The SQLDA has already been 
**             described, so print the column header (names), open a cursor, 
**             and retrieve and print the results. Accumulate the number or 
**             rows processed. 
** Parameters: None 
** Returns:    Number of rows processed. 
*/ 
 
# ifdef __cplusplus 
int 
Execute_Select(void) 
 # else 
int 
Execute_Select() 
# endif /* __cplusplus */ 
{ 
  int  rows;      /* Counter for rows fetched */ 
 
  /* 
  ** Print the result column names, allocate the result variables, 
  ** and set up the types. 
  */ 
  Print_Header(); 
  EXEC SQL WHENEVER SQLERROR GOTO Close_Csr; 
  
  /* Open the dynamic cursor */ 
  EXEC SQL OPEN csr; 
  
 
  /* Fetch and print each row */ 
  rows = 0; 
  while (sqlca.sqlcode == 0) 
  { 
      EXEC SQL FETCH csr USING DESCRIPTOR :sqlda; 
      if (sqlca.sqlcode == 0) 
      { 
    rows++;        /* Count the rows */ 
    Print_Row(); 
      } 
  } /* While there are more rows */ 
 
Close_Csr: 
  /* If we got here because of an error then print the error message */ 
  if (sqlca.sqlcode < 0) 
      Print_Error(); 
  EXEC SQL WHENEVER SQLERROR CONTINUE; 
  EXEC SQL CLOSE csr; 
  
  return rows; 
 } /* Execute_Select */ 
 
/* 
** Procedure:  Print_Header 
** Purpose:  A statement has just been described so set up the SQLDA for 



Sample Applications 

Chapter 2: Embedded SQL for C    2–127 

**    result processing. Print all the column names and allocate 
**    a result buffer for retrieving data. The result buffer is 
**    one buffer (whose size is determined by adding up the results 
**    column sizes). The 'sqldata' and 'sqlind' fields are pointed 
**    at offsets into this buffer. 
** Parameters: 
**      None 
*/ 
 
# ifdef __cplusplus 
void 
Print_Header(void) 
# else 
void 
Print_Header() 
# endif /* __cplusplus */ 
{ 
  int    i;      /* Index into 'sqlvar' */ 
  IISQLVAR  *sqv;      /* Pointer to 'sqlvar */ 
  int    base_type;    /* Base type w/o nullability */ 
  int    res_cur_size;    /* Result size required */ 
  int    round;      /* Alignment */ 
 
  /* 
  ** For each column print its title (and number), and accumulate 
  ** the size of the result data area. 
  */ 
  for (res_cur_size = 0, i = 0; i < sqlda->sqld; i++) 
  { 
      /* Print each column name and its number */ 
      sqv = &sqlda->sqlvar[i]; 
      printf("[%d] %.*s ", 
       i+1, sqv->sqlname.sqlnamel, sqv->sqlname.sqlnamec); 
  
      /* Find the base-type of the result (non-nullable) */ 
      if ((base_type = sqv->sqltype) < 0) 
      base_type = -base_type; 
  
 
      /* Collapse different types into INT, FLOAT or CHAR */ 
      switch (base_type) 
      { 
        case IISQ_INT_TYPE: 
      /* Always retrieve into a long integer */ 
      res_cur_size += sizeof(long); 
      sqv->sqllen = sizeof(long); 
      break; 
  
        case IISQ_MNY_TYPE: 
      /* Always retrieve into a double floating-point */ 
      if (sqv->sqltype < 0) 
          sqv->sqltype = -IISQ_FLT_TYPE; 
      else 
          sqv->sqltype = IISQ_FLT_TYPE; 
      res_cur_size += sizeof(double); 
      sqv->sqllen = sizeof(double); 
      break; 
  
        case IISQ_FLT_TYPE: 
      /* Always retrieve into a double floating-point */ 
      res_cur_size += sizeof(double); 
      sqv->sqllen = sizeof(double); 
  
      break; 
  
        case IISQ_DTE_TYPE: 



Sample Applications 

2–128     Embedded SQL Companion Guide 

      sqv->sqllen = DATE_SIZE; 
      /* Fall through to handle like CHAR */ 
 
        case IISQ_CHA_TYPE: 
        case IISQ_VCH_TYPE: 
      /* 
      ** Assume no binary data is returned from the CHAR type. 
      ** Also allocate one extra byte for the null terminator. 
      */ 
      res_cur_size += sqv->sqllen + 1; 
      /* Always round off to aligned data boundary */ 
      round = res_cur_size % 4; 
      if (round) 
          res_cur_size += 4 - round; 
      if (sqv->sqltype < 0) 
          sqv->sqltype = -IISQ_CHA_TYPE; 
      else 
          sqv->sqltype = IISQ_CHA_TYPE; 
      break; 
      } /* switch on base type */ 
 
      /* Save away space for the null indicator */ 
      if (sqv->sqltype < 0) 
      res_cur_size += sizeof(int); 
  } /* for each column */ 
 
  printf("\n\n"); 
 
 
  /* 
  ** At this point we've printed all column headers and converted all 
  ** types to one of INT, CHAR or FLOAT. Now we allocate a single 
  ** result buffer, and point all the result column data areas into it. 
  ** 
  ** If we have an old result data area that is not large enough then free 
  ** it and allocate a new one. Otherwise we can reuse the last one. 
  */ 
 
  if (res_buf.res_length > 0 > && res_buf.res_length < res_cur_size) 
  { 
      free(res_buf.res_data); 
      res_buf.res_length = 0; 
  } 
  if (res_buf.res_length == 0) 
  { 
      res_buf.res_data = Alloc_Mem(res_cur_size, 
           "result data storage area"); 
      res_buf.res_length = res_cur_size; 
  } 
 
  /* 
  ** Now for each column now assign the result address (sqldata) and 
  ** indicator address (sqlind) from the result data area. 
  */ 
  for (res_cur_size = 0, i = 0; i < sqlda->sqld; i++) 
  { 
      sqv = &sqlda->sqlvar[i]; 
  
      /* Find the base-type of the result (non-nullable) */ 
      if ((base_type = sqv->sqltype) < 0) 
      base_type = -base_type; 
  
      /* Current data points at current offset */ 
      sqv->sqldata = (char *)&res_buf.res_data[res_cur_size]; 
      res_cur_size += sqv->sqllen; 
  



Sample Applications 

Chapter 2: Embedded SQL for C    2–129 

      if (base_type == IISQ_CHA_TYPE) 
      { 
        res_cur_size++;      /* Add one for null */ 
    round = res_cur_size % 4;  /* Round to aligned boundary */ 
    if (round) 
    res_cur_size += 4 - round; 
      } 
 
      /* Point at result indicator variable */ 
      if (sqv->sqltype < 0) 
      { 
    sqv->sqlind = (short *)&res_buf.res_data[res_cur_size]; 
    res_cur_size += sizeof(int); 
      } 
      else 
      { 
    sqv->sqlind = (short *)0; 
      } /* if type is nullable */ 
  } /* for each column */ 
} /* Print_Header */ 
 
/* 
** Procedure:  Print_Row 
** Purpose:  For each element inside the SQLDA, print the value. Print 
**    its column number too in order to identify it with a column 
**    name printed earlier. If the value is NULL print "N/A". 
** Parameters: 
**    None 
*/ 
 
# ifdef __cplusplus 
void 
Print_Row(void) 
# else 
void 
Print_Row() 
# endif /* __cplusplus */ 
{ 
  int    i;      /* Index into 'sqlvar' */ 
  IISQLVAR  *sqv;      /* Pointer to 'sqlvar */ 
  int    base_type;    /* Base type w/o nullability */ 
 
  /* 
  ** For each column, print the column number and the data. 
  ** NULL columns print as "N/A". 
  */ 
  for (i = 0; i < sqlda->sqld; i++) 
  { 
      /* Print each column value with its number */ 
      sqv = &sqlda->sqlvar[i]; 
      printf("[%d] ", i+1); 
  
      if (sqv->sqlind && *sqv->sqlind < 0) 
      { 
    printf("N/A "); 
      } 
      else /* Either not nullable, or nullable but not null */ 
      { 
    /* Find the base-type of the result (non-nullable) */ 
    if ((base_type = sqv->sqltype) < 0) 
        base_type = -base_type; 
  
    switch (base_type) 
    { 
      case IISQ_INT_TYPE: 
        /* All integers were retrieved into long integers */ 



Sample Applications 

2–130     Embedded SQL Companion Guide 

        printf("%d ", *(long *)sqv->sqldata); 
        break; 
  
      case IISQ_FLT_TYPE: 
        /* All floats were retrieved into doubles */ 
        printf("%g ", *(double *)sqv->sqldata); 
        break; 
  
      case IISQ_CHA_TYPE: 
        /* All characters were null terminated */ 
        printf("%s ", (char *)sqv->sqldata ); 
        break; 
    } /* switch on base type */ 
      } /*if not null */ 
  } /* foreach column */ 
  printf("\n"); 
} /* Print_Row */ 
 
 
/* 
** Procedure:  Print_Error 
** Purpose:    SQLCA error detected. Retrieve the error message and print it. 
** Parameters: None 
*/ 
 
# ifdef __cplusplus 
void 
Print_Error(void) 
 # else 
void 
Print_Error() 
# endif /* __cplusplus */ 
{ 
  EXEC SQL BEGIN DECLARE SECTION; 
    char  error_buf[150];    /* For error text retrieval */ 
  EXEC SQL END DECLARE SECTION; 
  
  EXEC SQL INQUIRE_INGRES (:error_buf = ERRORTEXT); 
  printf("\nSQL Error:\n    %s\n", error_buf ); 
 } /* Print_Error */ 
 
/* 
** Procedure: Read_Stmt 
** Purpose:   Reads a statement from standard input. This routine prompts 
**            the user for input (using a statement number) and scans input 
**            tokens for the statement delimiter (semicolon). 
**            - Continues over new-lines. 
**            - Uses SQL string literal rules. 
** Parameters: 
**             stmt_num - Statement number for prompt. 
**             stmt_buf - Buffer to fill for input. 
**             stmt_max - Max size of statement. 
** Returns: 
**             A pointer to the input buffer. If NULL then end-of-file was 
**             typed in. 
 */ 
 
# ifdef __cplusplus 
char * 
Read_Stmt(int stmt_num, char *stmt_buf, int stmt_max) 
# else 
char * 
Read_Stmt(stmt_num, stmt_buf, stmt_max) 
 int    stmt_num; 
 char    *stmt_buf; 
 int    stmt_max; 



Sample Applications 

Chapter 2: Embedded SQL for C    2–131 

 # endif /* __cplusplus */ 
{ 
  char  input_buf[INPUT_SIZE +1];  /* Terminal input buffer */ 
  char  *icp;          /* Scans input buffer */ 
  char  *ocp;          /* To output (stmt_buf) */ 
  int  in_string;        /* For string handling */ 
 
 
  printf("%3d> ", stmt_num);    /* Prompt user */ 
  ocp = stmt_buf; 
  in_string = 0; 
  while (fgets(input_buf, INPUT_SIZE, stdin) != NULL) 
  { 
      for (icp = input_buf; *icp && (ocp - stmt_buf < stmt_max); 
 icp++) 
      { 
    /* Not in string - check for delimiters and new lines */ 
    if (!in_string) 
    { 
        if (*icp == ';')    /* We're done */ 
        { 
        *ocp = '\0'; 
        return stmt_buf; 
        } 
        else if (*icp == '\n') 
        { 
        /* New line outside of string is replaced with blank */ 
        *ocp++ = ' '; 
        break;      /* Read next line */ 
        } 
        else if (*icp == '\'')  /* Entering string */ 
        { 
        in_string++; 
        } 
        *ocp++ = *icp; 
    } 
    else           /* Inside a string */ 
    { 
        if (*icp == '\n') 
        { 
        break;      /* New-line in string is ignored */ 
        } 
        else if (*icp == '\'') 
        { 
      if (*(icp+1) == '\'')    /* Escaped quote ? */ 
          *ocp++ = *icp++; 
      else 
          in_string--; 
        } 
        *ocp++ = *icp; 
    } /* if in string */ 
      } /* for all characters in buffer */ 
 
      if (ocp - stmt_buf >= stmt_max) 
      { 
    /* Statement is too large; ignore it and try again */ 
    printf("SQL Error: Maximum statement length (%d) exceeded.\n", 
           stmt_max); 
    printf("%3d> ", stmt_num);      /* Re-prompt user */ 
    ocp = stmt_buf; 
    in_string = 0; 
      } 
      else  /* Break on new line - print continue sign */ 
      { 
    printf("---> "); 
      } 



Sample Applications 

2–132     Embedded SQL Companion Guide 

  } /* while reading from standard input */ 
  return NULL; 
 } /* Read_Stmt */ 
 
 
/* 
** Procedure:  Alloc_Mem 
** Purpose:    General purpose memory allocator. If it cannot allocate 
**             enough space, it prints a fatal error and aborts any 
**             pending updates. 
** Parameters: 
**      mem_size     - Size of space requested. 
**      error_string - Error message to print if failure. 
** Returns: 
**      Pointer to newly allocated space. 
*/ 
 
# ifdef __cplusplus 
char * 
Alloc_Mem(int mem_size, char *error_string) 
# else 
char * 
Alloc_Mem(mem_size, error_string) 
 int  mem_size; 
 char  *error_string; 
# endif /* __cplusplus */ 
{ 
  char  *mem; 
  
  mem = calloc(1, mem_size); 
  if (mem) 
      return mem; 
  
  /* Print an error and roll back any updates */ 
  printf("SQL Fatal Error: Cannot allocate %s (%d bytes).\n", 
         error_string, mem_size); 
  printf("Any pending updates are being rolled back.\n"); 
  EXEC SQL WHENEVER SQLERROR CONTINUE; 
  EXEC SQL ROLLBACK; 
  EXEC SQL DISCONNECT; 
  exit(-1); 
 } /* Alloc_Mem */ 



Sample Applications 

Chapter 2: Embedded SQL for C    2–133 

A Dynamic SQL/Forms Database Browser 

This program lets the user browse data from and insert data into any table in 
any database, using a dynamically defined form. The program uses Dynamic 
SQL and Dynamic FRS statements to process the interactive data. You should 
already have used VIFRED to create a Default Form based on the database 
table that you want to browse. VIFRED will build a form with fields that have 
the same names and data types as the columns of the specified database 
table. 

When run, the program prompts the user for the name of the database, the 
table and the form. The form is profiled using the describe form statement, 
and the field name, data type, and length information is processed. From this 
information, the program fills in the SQLDA data and null indicator areas, and 
builds two Dynamic SQL statement strings to select data from and insert data 
into the database. 

The Browse menu item retrieves the data from the database using an SQL 
cursor associated with the dynamic select statement, and displays that data 
using the dynamic putform statement. A submenu allows the user to continue 
with the next row or return to the main menu. The Insert menu item retrieves 
the data from the form using the dynamic getform statement, and adds the 
data to the database table using a prepared insert statement. The Save menu 
item commits the changes and, because prepared statements are discarded, 
again prepares the select and insert statements. When the user selects Quit, 
all pending changes are rolled back and the program is terminated. 

Note: The application uses function prototypes and ifdef statements to enable 
you to build it using either the ESQL/C or ESQL/C++ precompiler. 

Sample Program 



Sample Applications 

2–134     Embedded SQL Companion Guide 

 include <stdio.h> 
# include <string.h> 
# include <malloc.h> 
 
/* 
** Declare the SQLCA structure and the SQLDA typedef. 
*/ 
EXEC SQL INCLUDE SQLCA; 
EXEC SQL INCLUDE SQLDA; 
EXEC SQL DECLARE sel_stmt STATEMENT;        /* Dynamic 
SQL SELECT statement */ 
EXEC SQL DECLARE ins_stmt STATEMENT;        /* Dynamic SQL INSERT statement */ 
EXEC SQL DECLARE csr CURSOR FOR sel_stmt;   /* Cursor for SELECT statement 
/ 
/* 
** Buffer lengths. 
*/ 
# define        NAME_MAX         50      /* Max name lengths */ 
# define        STMT_MAX        1000    /* Max SQL statement length 
/ 
/* 
** Global SQL variables. 
*/ 
IISQLDA *sqlda = (IISQLDA *)0;          /* Pointer 
o the SQL dynamic area */ 
/* 
** Result storage buffer for dynamic SQL and FRS statements. 
** This result buffer is dynamically allocated and filled. 
** Each SQLDA SQLVAR sets its SQLDATA and SQLIND pointers to 
** offsets in this buffer. 
 / 
struct { 
    int         res_length;     /* Size of res_data */ 
    char        *res_data;      /* Pointer to allocated result buffer */ 
} res_buf = {0, (char *)0}; 
/* 
* Procedures in this file. 
** Function prototypes for C++ only so that this is compatible 
** with old-style C compilers 
*/ 
# ifdef __cplusplus 
int Describe_Form(char *formname, char *tabname, char *sel_buf, char *ins_buf); 
        /* DESCRIBE form and set up SQL statements */ 
oid Init_Sqlda(int num_elems);  /* Initialize SQLDA */ 
char *calloc(unsigned nelem, unsigned elsize); 
 # else 
int     Describe_Form();     /* DESCRIBE form and set up SQL statements */ 
void    Init_Sqlda();        /* Initialize SQLDA */ 
char    *calloc();           /* C allocation routine */ 
# endif /* __cplusplus */ 
 
/* 
** Procedure:   main 
** Purpose:     Main body of Dynamic SQL forms application. Prompt for 
**              database, form and table name. Call Describe_Form  
**              to obtain a profile of the form and set up the SQL 
**              statements. Then allow the user to interactively browse 
*              the database table and append new data. 
*/ 
main() 
{ 
    EXEC SQL BEGIN DECLARE SECTION; 
        char    dbname[NAME_MAX +1];            /* Database name */ 
        char    formname[NAME_MAX +1];           /* Form name */ 
        char    tabname[NAME_MAX +1];           /* Table name */ 
        char    sel_buf[STMT_MAX +1];           /* Prepared SELECT */ 



Sample Applications 

Chapter 2: Embedded SQL for C    2–135 

        char    ins_buf[STMT_MAX +1];           /* Prepared INSERT */ 
        int     err;                            /* Error status */ 
        char    ret[10];                        /* Prompt error buffer  
*/ 
   EXEC SQL END DECLARE SECTION; 
    EXEC FRS FORMS; 
    /* Prompt for database name - will abort on errors  
*/ 
    EXEC SQL WHENEVER SQLERROR STOP; 
    EXEC FRS PROMPT ('Database name: ', :dbname); 
    EXEC SQL CONNECT :dbname; 
    EXEC SQL WHENEVER SQLERROR CALL SQLPRINT; 
    /* 
    ** Prompt for table name - later a Dynamic SQL SELECT statement 
    ** will be built from it. 
    */ 
    EXEC FRS PROMPT ('Table name: ', :tabname); 
    /* 
    ** Prompt for form name. Check forms errors reported 
    ** through INQUIRE_FRS. 
    */ 
    EXEC FRS PROMPT ('Form name: ', :formname); 
    EXEC FRS MESSAGE 'Loading form ...'; 
    EXEC FRS FORMINIT :formname; 
    EXEC FRS INQUIRE_FRS FRS (:err = ERRORNO); 
    if (err > 0) 
    { 
       EXEC FRS MESSAGE 'Could not load form. Exiting.'; 
        EXEC FRS ENDFORMS; 
        EXEC SQL DISCONNECT; 
        exit(1); 
    } 
    /* Commit any work done so far - access of forms catalogs */ 
 
   EXEC SQL COMMIT; 
  
    /* Describe the form and build the SQL statement strings */ 
    if (!Describe_Form(formname, tabname, sel_buf, ins_buf)) 
    { 
        EXEC FRS MESSAGE 'Could not describe form. Exiting.'; 
        EXEC FRS ENDFORMS; 
       EXEC SQL DISCONNECT; 
        exit(1); 
    } 
    /* 
    ** PREPARE the SELECT and INSERT statements that correspond to the  
    ** menu items Browse and Insert. If the Save menu item is chosen 
    ** the statements are reprepared. 
    */ 
    EXEC SQL PREPARE sel_stmt FROM :sel_buf; 
    err = sqlca.sqlcode; 
    EXEC SQL PREPARE ins_stmt FROM :ins_buf; 
    if ((err < 0) || (sqlca.sqlcode < 0)) 
    { 
 
       EXEC FRS MESSAGE 'Could not prepare SQL statements. Exiting.'; 
        EXEC FRS ENDFORMS; 
        EXEC SQL DISCONNECT; 
        exit(1); 
    } 
 
   /* 
   ** Display the form and interact with user, allowing browsing 
   ** and the inserting of new data. 
   */ 
    EXEC FRS DISPLAY :formname FILL; 



Sample Applications 

2–136     Embedded SQL Companion Guide 

    EXEC FRS INITIALIZE; 
    EXEC FRS ACTIVATE MENUITEM 'Browse'; 
    EXEC FRS BEGIN; 
        /*  
        ** Retrieve data and display the first row on the form, allowing 
        ** the user to browse through successive rows. If data types 
        ** from the database table are not consistent with data 
        ** descriptions obtained from the form, a retrieval error 
        ** will occur. Inform the user of this or other errors. 
        **  
        ** Note that the data will return sorted by the first field that 
        ** was described, as the SELECT statement, sel_stmt, included an 
        ** ORDER BY clause. 
        */ 
        EXEC SQL OPEN csr; 
        /* Fetch and display each row */ 
       while (sqlca.sqlcode == 0) 
        { 
            EXEC SQL FETCH csr USING DESCRIPTOR :sqlda; 
            if (sqlca.sqlcode != 0) 
            { 
                EXEC SQL CLOSE csr; 
                EXEC FRS PROMPT NOECHO ('No more rows :', :ret); 
               EXEC FRS CLEAR FIELD ALL; 
                EXEC FRS RESUME; 
            } 
            EXEC FRS PUTFORM :formname USING DESCRIPTOR :sqlda; 
            EXEC FRS INQUIRE_FRS FRS (:err = ERRORNO); 
            if (err > 0) 
           { 
                EXEC SQL CLOSE csr; 
                EXEC FRS RESUME; 
            } 
 
            /* Display data before prompting user with submenu */ 
           EXEC FRS REDISPLAY; 
  
           EXEC FRS SUBMENU; 
            EXEC FRS ACTIVATE MENUITEM 'Next', FRSKEY4; 
            EXEC FRS BEGIN; 
                /* Continue with cursor loop */ 
                EXEC FRS MESSAGE 'Next row ...'; 
                EXEC FRS CLEAR FIELD ALL; 
            EXEC FRS END; 
  
           EXEC FRS ACTIVATE MENUITEM 'End', FRSKEY3; 
            EXEC FRS BEGIN; 
                EXEC SQL CLOSE csr; 
                EXEC FRS CLEAR FIELD ALL; 
                EXEC FRS RESUME; 
            EXEC FRS END; 
        } /* While there are more rows */ 
    EXEC FRS END; 
    EXEC FRS ACTIVATE MENUITEM 'Insert'; 
    EXEC FRS BEGIN; 
        EXEC FRS GETFORM :formname USING DESCRIPTOR :sqlda; 
        EXEC FRS INQUIRE_FRS FRS (:err = ERRORNO); 
       if (err > 0) 
        { 
            EXEC FRS CLEAR FIELD ALL; 
            EXEC FRS RESUME; 
        } 
        EXEC SQL EXECUTE ins_stmt USING DESCRIPTOR :sqlda; 
        if ((sqlca.sqlcode < 0) || (sqlca.sqlerrd[2] == 0)) 
  
       { 



Sample Applications 

Chapter 2: Embedded SQL for C    2–137 

            EXEC FRS PROMPT NOECHO ('No rows inserted :', :ret); 
        } 
        else 
        { 
            EXEC FRS PROMPT NOECHO ('One row inserted :', :ret); 
        } 
 
   EXEC FRS END; 
  
    EXEC FRS ACTIVATE MENUITEM 'Save'; 
    EXEC FRS BEGIN; 
        /* 
        ** COMMIT any changes and then re-PREPARE the SELECT and INSERT 
        ** statements as the COMMIT statements discards them. 
  
        */ 
        EXEC SQL COMMIT; 
        EXEC SQL PREPARE sel_stmt FROM :sel_buf; 
        err = sqlca.sqlcode; 
        EXEC SQL PREPARE ins_stmt FROM :ins_buf; 
        if ((err < 0) || (sqlca.sqlcode < 0)) 
        { 
         EXEC FRS PROMPT NOECHO ('Could not reprepare SQL statements :', 
                                  :ret); 
          EXEC FRS BREAKDISPLAY; 
        } 
    EXEC FRS END; 
    EXEC FRS ACTIVATE MENUITEM 'Clear'; 
    EXEC FRS BEGIN; 
        EXEC FRS CLEAR FIELD ALL; 
    EXEC FRS END; 
  
    EXEC FRS ACTIVATE MENUITEM 'Quit', FRSKEY2; 
    EXEC FRS BEGIN; 
       EXEC SQL ROLLBACK; 
        EXEC FRS BREAKDISPLAY; 
    EXEC FRS END; 
    EXEC FRS FINALIZE; 
    EXEC FRS ENDFORMS; 
    EXEC SQL DISCONNECT; 
 /* main */ 
 
/* 
** Procedure: Describe_Form 
** Purpose:   Profile the specified form for name and data type 
**            information. Using the DESCRIBE FORM statement, the 
**            SQLDA is loaded with field information from the form. 
**             This procedure processes this information to allocate 
**            result storage, point at storage for dynamic FRS data 
**            retrieval and assignment, and build SQL statements 
**            strings for subsequent dynamic SELECT and INSERT 
**            statements. For example, assume the form (and table) 
**            'emp' has the following fields: 
**               
**                     Field Name      Type            Nullable? 
**                      ----------      ----            --------- 
**                      name            char(10)        No 
**                      age             integer4        Yes 
**                      salary          money           Yes 
** 
**            Based on 'emp', this procedure will construct the SQLDA. 
  
**            A data storage buffer, whose size is determined by 
**            accumulating the field data type lengths, is allocated. 
**            The SQLDATA and SQLIND fields are pointed at offsets into 
**            the result storage buffer. The following SQLDA is built: 



Sample Applications 

2–138     Embedded SQL Companion Guide 

** 
**                      sqlvar[0] 
**                          sqltype     = IISQ_CHA_TYPE 
 
**                          sqllen       = 10 
**                          sqldata     = offset #1 into storage 
**                          sqlind      = null 
**                          sqlname     = 'name' 
**                      sqlvar[1] 
**                          sqltype     = -IISQ_INT_TYPE 
**                          sqllen      = 4 
**                          sqldata      = offset #2 into storage 
**                          sqlind      = offset #3 into storage 
**                          sqlname     = 'age' 
**                      sqlvar[2] 
**                          sqltype     = -IISQ_FLT_TYPE 
**                          sqllen      = 8 
**                          sqldata     = offset #4 into storage 
**                          sqlind       = offset #5 into storage 
**                          sqlname     = 'salary' 
** 
**         The procedure does not verify that the allocation routine 
**         that is called does not fail. 
**         This procedure also builds two dynamic SQL statements strings. 
**          Note that the procedure should be extended to verify that the 
**         statement strings do fit into the statement buffers (this was 
**         not done in this example). The above example would construct 
**         the following statement strings: 
** 
**                'SELECT name, age, salary FROM emp ORDER BY name' 
**                'INSERT INTO emp (name, age, salary) VALUES (?, ?, ?)' 
** 
** Parameters: 
**              formname        - Name of form to profile. 
**              tabname         - Name of database table. 
**              sel_buf         - Buffer to hold SELECT statement string. 
**              ins_buf         - Buffer to hold INSERT statement string. 
** Returns: 
  
**              TRUE/FALSE      - Success/failure - will fail on error 
**                                or upon finding a table field. 
*/ 
 
# ifdef __cplusplus 
int 
Describe_Form(char *formname, char *tabname, char *sel_buf, char *ins_buf) 
  
 else 
int 
Describe_Form(formname, tabname, sel_buf, ins_buf) 
 char    *formname; 
 char    *tabname; 
 char    *sel_buf; 
 char    *ins_buf; 
  
 endif /* __cplusplus */ 
{ 
    char        names[STMT_MAX +1];        /* Names for SQL statements */ 
    char        *nm; 
    char        marks[STMT_MAX +1];        /* Place holders for INSERT */ 
    char        *mk; 
    int         err;                       /* Error status */ 
 
   char        ret[10];                  /* Prompt error buffer */ 
    int         i;                        /* Index into SQLVAR */ 
    IISQLVAR    *sqv;                     /* Pointer to SQLVAR */ 



Sample Applications 

Chapter 2: Embedded SQL for C    2–139 

    int         base_type;                /* Base type w/o nullability*/ 
    int         nullable;                 /* Is nullable (SQLTYPE < 0) */ 
    int         res_cur_size;             /* Result size required */ 
 
   /* 
   ** Allocate a new SQLDA and DESCRIBE the form. Start out with a 
   ** default SQLDA for 10 fields. If we cannot fully describe the 
   ** form (our SQLDA is too small) then allocate a new one and 
   ** redescribe the form. 
   */ 
    Init_Sqlda(10); 
  
   EXEC FRS DESCRIBE FORM :formname ALL INTO :sqlda; 
    EXEC FRS INQUIRE_FRS FRS (:err = ERRORNO); 
    if (err > 0) 
        return 0;                      /* Error already displayed */ 
 
    if (sqlda->sqld > sqlda->sqln)     /* Redescribe  */ 
    { 
 
       Init_Sqlda(sqlda->sqld); 
        EXEC FRS DESCRIBE FORM :formname ALL INTO :sqlda; 
    } 
    else if (sqlda->sqld == 0)         /* No fields */ 
    { 
        EXEC FRS PROMPT NOECHO ('There are no fields in the form :', :ret); 
        return 0; 
  
   } 
 
    /* 
    ** For each field determine the size and type of the data 
    ** area, which will be allocated out of the result data area. 
    ** This will be allocated out of res_buf in the next loop. 
    ** If a table field type is returned then issue an error. 
  
    ** 
    ** Also, for each field add the field name to the 'names' buffer 
    ** and the SQL place holders '?' to the 'marks' buffer, which 
    ** will be used to build the final SELECT and INSERT statements. 
    */ 
    for (res_cur_size = 0, i = 0; i < sqlda->sqld; i++) 
    { 
       sqv = &sqlda->sqlvar[i];        /* Point at current column */ 
        /* Find the base-type of the result (non-nullable) */ 
        if ((base_type = sqv->sqltype) < 0) 
        { 
            nullable = 1; 
            base_type = -base_type; 
       } 
        else 
        { 
            nullable = 0; 
        } 
 
        /* Collapse different types into INT, FLOAT or CHAR */ 
       switch (base_type) 
        { 
          case IISQ_INT_TYPE: 
            /* Always retrieve into a long integer */ 
            sqv->sqltype  = IISQ_INT_TYPE; 
            sqv->sqllen   = sizeof(long); 
            res_cur_size += sizeof(long); 
  
           break; 
  



Sample Applications 

2–140     Embedded SQL Companion Guide 

          case IISQ_MNY_TYPE: 
          case IISQ_FLT_TYPE: 
            /* Always retrieve into a double floating-point */ 
            sqv->sqltype  = IISQ_FLT_TYPE; 
            sqv->sqllen   = sizeof(double); 
           res_cur_size += sizeof(double); 
            break; 
          case IISQ_DTE_TYPE: 
            sqv->sqllen = IISQ_DTE_LEN; 
            /* Fall through to handle like CHAR */ 
 
         case IISQ_CHA_TYPE: 
          case IISQ_VCH_TYPE: 
            /* 
            ** Assume no binary data is returned from the CHAR type. 
            ** Also allocate one extra byte for the null terminator. 
            */ 
            sqv->sqltype  = IISQ_CHA_TYPE; 
           res_cur_size += sqv->sqllen + 1; 
            /* Always round off to even data boundary */ 
            if (res_cur_size % 2) 
                res_cur_size++; 
            break; 
  
         case IISQ_TBL_TYPE:           /* Table field */ 
            EXEC FRS PROMPT NOECHO ('Table field found in form :', :ret); 
            return 0; 
  
          default: 
            EXEC FRS PROMPT NOECHO ('Invalid field type :', :ret); 
            return 0; 
  
       } /* switch on base type */ 
 
        /*  
        ** Save away space for the null indicator and set  
        ** negative  type id  
        */ 
        if (nullable) 
  
       { 
            res_cur_size += sizeof(short); 
            sqv->sqltype = -sqv->sqltype; 
        } 
 
        /* 
        ** Store field names and place holders (separated by commas) 
  
        ** for the SQL statements. 
        */ 
        if (i == 0) 
        { 
      names[0] = marks[0] = '\0'; 
            nm = names; 
            mk = marks; 
       } 
        else 
        { 
            strcat(nm++, ","); 
            strcat(mk++, ","); 
       } 
       sprintf(nm, "%.*s", sqv->sqlname.sqlnamel, sqv->sqlname.sqlnamec); 
       nm += sqv->sqlname.sqlnamel; 
        strcat(mk++, "?"); 
    } /* for each column */ 
    /*  



Sample Applications 

Chapter 2: Embedded SQL for C    2–141 

    ** At this point we've saved all field names and converted all 
    ** types to one of INT, CHAR or FLOAT. Now we allocate a single 
    ** result buffer, and point all the result column data areas into it. 
    ** 
    ** If we have an old result data area that is not large enough then 
    ** free it and allocate a new one. Otherwise we can reuse the last one. 
    */ 
 
    if (res_buf.res_length > 0 && res_buf.res_length < res_cur_size) 
    { 
        free(res_buf.res_data); 
        res_buf.res_length = 0; 
    } 
    if (res_buf.res_length == 0) 
    { 
 
       res_buf.res_data = calloc(1, res_cur_size); 
        res_buf.res_length = res_cur_size; 
    } 
 
 
    /* 
    ** Now for each column now assign the result address (SQLDATA) and 
    ** indicator address (SQLIND) from the result data area. 
    ** As already calculated in the previous loop, the addresses will 
    ** point at offsets into res_buf. 
    */ 
    for (res_cur_size = 0, i = 0; i < sqlda->sqld; i++) 
    { 
        sqv = &sqlda->sqlvar[i]; 
        /* Find the base-type of the result (non-nullable) */ 
        if ((base_type = sqv->sqltype) < 0) 
            base_type = -base_type; 
        /* Current data points at current offset */ 
        sqv->sqldata = (char *)&res_buf.res_data[res_cur_size]; 
        res_cur_size += sqv->sqllen; 
        if (base_type == IISQ_CHA_TYPE) 
        { 
            res_cur_size++;             /* Add one for null */ 
            if (res_cur_size % 2)       /* Round off to even boundary */ 
                res_cur_size++; 
        } 
 
       /* Point at result indicator variable */ 
        if (sqv->sqltype < 0) 
        { 
            sqv->sqlind = (short *)&res_buf.res_data[res_cur_size]; 
            res_cur_size += sizeof(short); 
        } 
        else 
       { 
            sqv->sqlind = (short *)0; 
        } /* if type is nullable */ 
    } /* for each column */ 
    /* 
    ** Create final SELECT and INSERT statements. For the SELECT  
 
    ** statement ORDER BY the first field. 
    */ 
    sqv = &sqlda->sqlvar[0]; 
    sprintf(sel_buf, "SELECT %s FROM %s ORDER BY %.*s", names, tabname, 
            sqv->sqlname.sqlnamel, sqv->sqlname.sqlnamec); 
    sprintf(ins_buf, "INSERT INTO %s (%s) VALUES (%s)", tabname, names, 
            marks); 
   return 1; 
  



Multi-Threaded Applications 

2–142     Embedded SQL Companion Guide 

} /* Describe_Form */ 
 
/* 
** Procedure:   Init_Sqlda 
** Purpose:     Initialize SQLDA. Free any old SQLDA's and allocate a new 
**              one. Set the number of SQLVAR elements. 
** 
** Parameters: 
**              num_elems    - Number of elements. 
*/ 
 
 ifdef __cplusplus 
void 
Init_Sqlda(int num_elems) 
 # else 
void 
Init_Sqlda(num_elems) 
 int     num_elems; 
 endif /* __cplusplus */ 
{ 
    /* Free the old SQLDA */ 
    if (sqlda) 
        free((char *)sqlda); 
    /* Allocate a new SQLDA */ 
 
   sqlda = (IISQLDA *)calloc(1, 
                       IISQDA_HEAD_SIZE + (num_elems * IISQDA_VAR_SIZE)); 
    sqlda->sqln = num_elems;            /* Set the size */ 
} /* Init_Sqlda */ 

Multi-Threaded Applications 
In standard, single-threaded embedded SQL (ESQL) applications, ESQL 
statements are executed in the context of the current database session. In 
multi-threaded applications, each thread executes ESQL statements in the 
context of its own current session. 

ESQL needs to initialize itself for multi-threaded operation, which should be 
done either in single-thread mode or while multi-thread protected. ESQL does 
not provide a single entry point for this initialization but will perform the 
needed initialization on the first ESQL request. Applications need to make an 
ESQL call, such as INQUIRE_SQL or IIsqlca(), prior to entering the multi-
threaded state. 

Current Session 

Each thread must designate a current session by executing the connect 
statement or a session switching statement. The session remains current until 
disconnected or another session switching statement is executed. If a thread is 
terminated with a current session, the session will be inaccessible until a new 
thread with the same thread ID as the original thread is created. 



Multi-Threaded Applications 

Chapter 2: Embedded SQL for C    2–143 

A session may be current on only one thread at any given moment. 
Attempting to switch to a session that is current on some other thread 
produces an error and no change in session is made. A session is not limited to 
the thread that created it; a thread may switch to any non-current session. 

A thread may switch away from a session without selecting another session to 
be made current. Using the identifier NONE in place of the connection name or 
session ID in a session switching statement makes the current session 
accessible to other threads while leaving the current thread with no current 
session. The thread will need to switch to a session prior to executing any 
subsequent ESQL statements. 

A thread may disconnect its own current session, or any session not current on 
another thread. Attempting to disconnect a session current on another thread 
results in an error being issued. The disconnect all statement may not be 
issued when sessions are current on any other thread. 

SQLCA Diagnostic Area 

In multi-threaded applications, each thread is provided its own SQLCA 
diagnostic area. The global SQLCA data object should not be used due to 
contention between threads for the global resource. Two extensions are 
available in the ESQLC preprocessor for gaining access to a threads SQLCA 
diagnostic area. 

The command line flag -multi may be used to prepare an ESQLC source file for 
multi-threaded execution without requiring any additional changes to the 
source file. The -multi flag changes the code generated by ESQLC for the 
include sqlca statement. 

Normally, the following code is generated by ESQLC when the include sqlca 
statement is processed: 

#include "eqsqlca.h" 
extern IISQLCA sqlca; 

When -multi is included on the command line, ESQLC generates the following 
when the INCLUDE SQLCA statement is processed: 

#include "eqsqlca.h" 
IISQLCA *IIsqlca(); 
#define sqlca (*(IIsqlca())) 

Using the -multi flag defines a macro which translates all references to the 
global sqlca variable into a call to the ESQL function IIsqlca() which returns 
the address to the SQLCA diagnostic area for the current thread. No code 
changes are required to take advantage of multi-threaded features of the 
ESQLC pre-processor. 



Multi-Threaded Applications 

2–144     Embedded SQL Companion Guide 

Minor changes may be made to ESQLC applications to reduce the number of 
calls to IIsqlca() generated as described above. The ESQLC preprocessor 
accepts declaration of hosts’ variables whose type is IISQLCA. In addition, if 
the host variable is a pointer type, all subsequent SQLCA references generated 
by ESQLC will be using the host variable. 

For example, the following variable declaration will declare a SQLCA pointer 
host variable and initialize it to the current threads SQLCA diagnostic area: 

EXEC SQL BEGIN DECLARE SECTION; 
 IISQLCA*sqlca_ptr = IIsqlca(); 
EXEC SQL END DECLARE SECTION; 

Subsequent references to the SQLCA diagnostic area may then be replaced 
with references to the host variable. Access to the previous error code would 
be coded as sqlca_ptr->sqlcode rather than sqlca.sqlcode. All subsequent 
SQLCA references generated by the ESQLC preprocessor use the application-
declared host variable. 

SQLCA variable declarations should not be global. Declarations are required in 
all functions containing ESQL statements. 

ESQLC source files preprocessed with the –multi flag may be safely linked with 
files preprocessed without the -multi flag for single-threaded ESQL 
applications. The global SQLCA is assigned to the first (or only) thread to issue 
an ESQL statement. 

It is recommended that applications issue an ESQL statement, such as 
inquire_sql or call IIsqlca() prior to starting multi-threaded execution so as to 
permit the ESQL runtime code to initialize safely. 

Note: In multi-threaded applications, the SQLSTATE variable (or deprecated 
SQLCODE variable) should not be declared as a global variable. If used, 
SQLSTATE should be declared at the start of each function containing ESQL 
statements.



  

 

Chapter 3: Embedded SQL for COBOL    3–1 

Chapter 3: Embedded SQL for COBOL 
 

This chapter describes the use of Embedded SQL with the COBOL 
programming language. 

Embedded SQL Statement Syntax for COBOL 
This section describes the language-specific issues inherent in embedding SQL 
database and forms statements in a COBOL program. An Embedded SQL 
database statement has the following general syntax: 

[margin] exec sql SQL_statement terminator 

The syntax of an embedded SQL/FORMS statement is almost identical: 

[margin] exec frs SQL/FORMS_statement terminator 

For information on SQL statements, see the SQL Reference Guide. For 
information on SQL/FORMS statements, see the Forms-based Application 
Development Tools User Guide. 

The following sections describe the various syntactical elements of these 
statements as implemented in COBOL. 

Margin 
 

Windows
 

The exec keyword, which begins all embedded SQL statements, can begin 
anywhere on the source line. However, you must code comment indicators, 
represented by the asterisk ( * ), in column 1 or in the COBOL indicator area 
(column 7). All coded string continuation indicators also belong in the COBOL 
indicator area.  

VMS
 

In general, embedded SQL statements in COBOL require no special margins. 
The exec keyword can begin anywhere on the source line. Host declarations 
can also begin on any column. In the case, however, of comment lines and 
continued string literals contained in embedded SQL statements, the 
indicator symbol (* or -) must be coded in the COBOL indicator area. For 
programs coded using VAX COBOL terminal format conventions (the 
default), the indicator area is column 1. For programs coded in ANSI format 
(which requires specifying the -a flag on the preprocessor command line), 
the indicator area is column 7. Also, the -a flag allows a sequence number in 
specific columns on the source line. For more information on the two styles 
of format and the -a flag, see Preprocessor Operation in this chapter.  



Embedded SQL Statement Syntax for COBOL 

3–2     Embedded SQL Companion Guide 

Comment and string literals are discussed in detail later in this section. 

For portability to other implementations of SQL, you should not code beyond 
column 72. 

COBOL Sequence Numbers 

A COBOL sequence number can be placed at the beginning of any embedded 
SQL statement. For example: 

000100 EXEC SQL DROP TABLE emp END-EXEC. 

In most instances, the preprocessor outputs any COBOL sequence number 
that precedes an embedded SQL statement. However, in a few cases the 
preprocessor ignores a COBOL sequence number and does not include it in the 
code it generates. For example, sequence numbers occurring on embedded 
SQL statements that produce no COBOL code are ignored by the preprocessor. 
A sequence number on a continuation line for an embedded SQL statement or 
a declaration will be ignored. 

The preprocessor never generates sequence numbers of its own. Thus, if you 
prefix an embedded SQL statement with a sequence number and that 
statement is translated by the preprocessor into several COBOL statements, 
the sequence number will appear before the first COBOL statement only. 
Subsequent COBOL statements will contain blanks in the sequence area. 

A sequence number may contain any valid character in the character set. Also, 
it must be placed in the sequence area of a line. The sequence area ranges 
from Columns 1 to 6. 

Embedded SQL statements in include files may also contain COBOL sequence 
numbers. Include files will generate sequence numbers in the same manner as 
outlined above. 

 

VMS
 

COBOL sequence numbers can only be used in programs coded in ANSI 
format, which requires the -a flag on the preprocessor command line.  

Terminator 

The terminator for COBOL embedded SQL statements is the keyword end-
exec. This terminator delimits an embedded SQL statement from the 
statement that follows it in the file. The following is an example of a select 
statement embedded in a COBOL program: 

EXEC SQL SELECT ename 
     INTO :NAMEVAR 
     FROM employee 
    WHERE eno = :NUMVAR 
     END-EXEC 



Embedded SQL Statement Syntax for COBOL 

Chapter 3: Embedded SQL for COBOL    3–3 

You have the option of following the end-exec terminator with the COBOL 
separator period, as, for example: 

EXEC SQL SELECT ename 
    INTO :NAMEVAR 
    FROM employee 
    WHERE eno = :NUMVAR 
    END-EXEC. 

In general, be sure to include the separator period wherever COBOL requires it 
for a normal COBOL statement (for example, at the end of a COBOL IF 
statement). 

Do not use spaces between end-exec and the separator period. Certain 
considerations can arise concerning the way in which the preprocessor 
interprets the period. For details, see Preprocessor Operation in this chapter. 

Labels 

Embedded SQL statements can have a label prefix. The embedded SQL label is 
equivalent to a COBOL paragraph name. The label must begin with an 
alphanumeric character, which can be followed by alphanumeric characters, 
hyphens, and underscores. 

 

Windows  UNIX  
The label must be the first word on the line. It must start in column 8 or 
beyond, or be preceded by a tab, and it must be terminated with a period.  

VMS  
The label must be the first word on the line (optionally preceded by white 
space) and must be terminated with a period.  

For example: 

CLOSE-CURSOR1.  EXEC SQL CLOSE cursor1 END-EXEC. 

The label can appear anywhere a COBOL paragraph name can appear. Even 
though the preprocessor accepts it in front of any exec sql or exec frs prefix, it 
may not be appropriate to code it on some lines. For example, although the 
preprocessor accepts the following code, the code will cause a compiler error 
later if it is in the Data Division: 

INCL-SQLCA.  EXEC SQL INCLUDE SQLCA END-EXEC. 

As a general rule, use labels only with executable statements in the Procedure 
Division. 



Embedded SQL Statement Syntax for COBOL 

3–4     Embedded SQL Companion Guide 

Line Continuation 

You can continue embedded SQL statements over multiple lines. There is no 
continuation symbol for continuing embedded SQL statements, except in the 
case of continued string literals (see String Literals in this chapter.). 
Statements extend from the exec sql or exec frs keyword to the end-exec 
terminator. You can continue an embedded SQL statement onto a new line 
only at a word boundary, with the exception of string literals, which you can 
continue in a word. However, you cannot split the keyword pairs, exec sql and 
exec frs, between lines. Similarly, the end-exec terminator must be on a single 
line. You can use blank lines between continued lines. 

Comments 
Windows  UNIX  

An asterisk (*) in column 1 or in the indicator area indicates a COBOL 
comment line.  

VMS  COBOL comment lines are indicated by an asterisk (*) in the indicator area. 
As mentioned earlier, the indicator area is either column 1 or column 7, 
according to whether you choose VAX COBOL terminal format or ANSI 
format.  

You can place these comments in embedded SQL statements anywhere that 
blank lines are allowed, with the following exceptions: 

 Between an embedded SQL/FORMS block-type statement, such as activate 
and unloadtable, and its associated block of code; begin and end delimit 
these blocks of code. Comment lines cannot appear between the 
statement and its section. The preprocessor interprets such comments as 
COBOL host code, which causes preprocessor syntax errors. For example, 
the following statement causes a syntax error on the COBOL comment: 

 EXEC FRS UNLOADTABLE empform employee 
    (:NAMEVAR = ename) END-EXEC 
 * Illegal comment before statement body 
  EXEC FRS BEGIN END-EXEC 
 * Comment legal here 
   EXEC FRS MESSAGE :NAMEVAR END-EXEC 
  EXEC FRS END END-EXEC. 

 In statements that are made up of more than one compound statement. 
An example of such a statement is the display statement, which typically 
consists of the display clause, an initialize section, activate sections and a 
finalize section. It cannot have COBOL comments between any of the 
components. The preprocessor translates these comments as host code, 
which causes syntax errors on subsequent statement components. 

Note that the preprocessor ignores comment lines between string literal 
continuation lines. 



Embedded SQL Statement Syntax for COBOL 

Chapter 3: Embedded SQL for COBOL    3–5 

The preprocessor also treats as comments any line whose indicator area 
contains a slash (/) to indicate a new listing page or a D to indicate a 
conditional compilation line. 

You can also use the SQL comment delimiter (--). The preprocessor considers 
everything between this delimiter and the end of the line as a comment. For 
example: 

EXEC SQL DELETE -- Delete all employees 
FROM employee 
END-EXEC 

String Literals 

Single quotes (') delimit embedded SQL string literals. To embed a single 
quote in a string literal, use two single quotes, as follows: 

EXEC SQL INSERT 
   INTO employee (ename) 
   VALUES ('Edward ''Ted'' Smith') 
   END-EXEC. 

You can continue string literals over multiple lines. Following COBOL rules, if 
the continued line ends without a closing quotation mark, the continuation line 
must contain a hyphen (-) in the indicator area. The first non-blank character 
after the hyphen must be a single quotation mark, followed by the continued 
string as follows: 

EXEC SQL UPDATE employee 
   SET comments = 'Completed all projects on time. 
-  ' Recommended for promotion.' 
   WHERE name = 'Jones' 
   END-EXEC. 

VMS
 

As discussed earlier, the indicator area is either column 1 or column 7, 
depending on whether the format you are using is VAX terminal or ANSI.  

In the context of a declare section, use double quotes to delimit strings in 
compliance with the syntax rules of the COBOL compiler.  

01 dbname PIC X(20) VALUE "personnel". 

String Literals and Statement Strings 

The Dynamic SQL statements prepare and execute immediate both use 
statement strings, which specify an SQL statement. To specify the statement 
string, use a string literal or character string variable, as follows: 

EXEC SQL EXECUTE IMMEDIATE 'drop employee' END-EXEC 
 
MOVE "drop employee" TO str. 
EXEC SQL EXECUTE IMMEDIATE :str END-EXEC 



Embedded SQL Statement Syntax for COBOL 

3–6     Embedded SQL Companion Guide 

As with regular embedded SQL string literals, the statement string delimiter is 
the single quote. However, quotes embedded in statement strings must 
conform to the runtime rules of SQL when the statement is executed. 

For example, the following two dynamic insert statements are equivalent: 

EXEC SQL PREPARE s1 FROM 
   INSERT INTO t1 VALUES (''single''''double" '')' 
END-EXEC 

and: 

MOVE "INSERT INTO t1 VALUES ('single''double"" ')" 
   TO str. 
EXEC SQL PREPARE s1 FROM :str END-EXEC 

In fact, the string literal the embedded SQL/COBOL preprocessor generates for 
the first example is identical to the string literal assigned to the variable str in 
the second example. 

The runtime evaluation of the above statement string is: 

INSERT INTO t1 VALUES ('single''double" ') 

As a general rule, it is best to avoid using a string literal for a statement string 
whenever it may contain the single or double quote character. Instead, try to 
build the statement string using the COBOL language’s rules for string literals 
together with the SQL rules for the runtime evaluation of the string. 

The Create Procedure Statement 

The create procedure statement, according to the SQL Reference Guide, has 
language-specific syntax rules for line continuation, string literal continuation, 
comments, and the final terminator. These syntax rules follow the rules this 
section discusses — for example, the final terminator is end-exec. Regardless 
of the number of statements inside the procedure body, the preprocessor 
treats the create procedure statement as a single statement, and, when you 
use it as an embedded SQL/COBOL statement, you must use end-exec to 
terminate it. In addition, terminate all statements within the body of the 
procedure with a semicolon. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–7 

The following example shows a create procedure statement that follows the 
embedded SQL/COBOL syntax rules: 

EXEC SQL 
  CREATE PROCEDURE proc (parm INTEGER) AS 
 DECLARE 
    var INTEGER; 
  BEGIN 
* COBOL comment line 
    IF parm > 10 THEN 
    MESSAGE 'COBOL strings can continue (use hyphen) 
-        ' over lines'; 
    INSERT INTO tab VALUES (:parm); 
   ENDIF; 
 END 
END-EXEC. 

COBOL Data Items and Data Types 
This section describes how to declare and use COBOL program variables in 
Embedded SQL. 

Variable and Type Declarations 

Embedded SQL statements use COBOL data items, also called variables, to 
transfer data from the database or a form into the program and conversely. 
You must declare COBOL data items to SQL before using them in any 
embedded SQL statements. 

Embedded SQL Variable Declaration Sections 

Declare COBOL data items to SQL in a declaration section. This section has the 
following syntax: 

 exec sql begin declare section end-exec 

COBOL variable declarations 

 exec sql end declare section end-exec 

Place the declaration section in either the File or Working-Storage Section of 
the Data Division. 

Embedded SQL variable declarations are global to the program file from the 
point of declaration onwards. You can incorporate multiple declaration sections 
into a single file when, for example, multiple COBOL programs appear in the 
same file. Each program can have its own declaration section. For more 
information, see Scope of Variables in this chapter. 



COBOL Data Items and Data Types 

3–8     Embedded SQL Companion Guide 

Data Item Declaration Syntax 

This section describes rules and restrictions for declaring COBOL data items in 
embedded SQL declaration sections. All data items in a declaration section 
must be declared with the correct syntax. Embedded SQL recognizes only a 
subset of legal COBOL declarations. 

The following template is the complete data item declaration format that 
embedded SQL accepts: 

level-number 

              [data-name | FILLER] 
              [ REDEFINES data-item] 
              [ [IS] GLOBAL] 
              [ [IS] EXTERNAL] 
              [ PICTURE [IS] pic-string ] 
              [ [USAGE [IS]] use-type ] 
              [ SIGN clause ] 
              [ SYNCHRONIZED clause ] 
              [ JUSTIFIED clause ] 
              [ BLANK clause ] 
              [ VALUE clause ] 
              [ OCCURS clause ]  

Syntax Notes: 

 Data declaration clauses can be in any order, with the following two 
exceptions: 

– The data-name or FILLER clause, if given, must immediately follow the 
level number. 

– The REDEFINES clause, if given, must immediately follow the 
data-item or FILLER clause. 

 The level-number can range from 01 to 49. Level number 77 (for 
noncontiguous data items) is also valid and the preprocessor regards it as 
identical to level 01. The embedded SQL preprocessor does not support 
Level 66 (which identifies RENAMES items) and Level 88 (which associates 
condition names with values). 

 Follow the COBOL rules for specifying the organization of data when you 
assign level numbers to your embedded SQL data items. Like the COBOL 
compiler, the preprocessor recognizes that a data item belongs to a record 
or group if its level number is greater than the record or group level 
number. 

 The data-name must begin with an alphabetic character, which can be 
followed by alphanumeric characters, hyphens, and underscores. The word 
FILLER can appear in place of data-name; however, you cannot explicitly 
reference a FILLER item in an embedded SQL statement. If the data-name 
or FILLER clause is omitted, FILLER is the default.  



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–9 

 The preprocessor accepts but does not use the REDEFINES, 

GLOBAL, EXTERNAL, SIGN, SYNCHRONIZED, JUSTIFIED, BLANK, and 
VALUE clauses. Consequently, illegal use of these clauses goes undetected 
at preprocessing time but generates COBOL errors later at compile time. 
For example, the preprocessor does not check that a GLOBAL clause 
appears only on an 01 level item, nor that a SIGN clause appears only on 
a numeric item. 

 The preprocessor expects a PICTURE clause on the COMP, COMP-3, 
COMP-5 (UNIX), and DISPLAY use-types. 

 Do not use a PICTURE clause on COMP-1 (VMS), COMP-2 (VMS), and 
INDEX use-types. 

Although the preprocessor recognizes all the valid COBOL PICTURE 
symbols, it only makes use of the type and size information needed for 
runtime support. It does not, for instance, complain about certain illegal 
combinations of editing symbols in picture strings. Embedded SQL accepts 
PIC as an abbreviation for PICTURE. You must specify the picture string on 
the same line as the keyword PICTURE. 

 For information on the valid use-types for the USAGE clause and their 
interaction with picture strings, see Data Types in this chapter. 

 The preprocessor accepts the OCCURS clause for all data items in the level 
range 02 through 49. The preprocessor does not use the information in the 
OCCURS clause, except to note that the item described is an array. If you 
use an OCCURS clause on level 01, the preprocessor issues an error but 
generates correct code so that you can compile and link the program. 

Reserved Words in Declarations 

The ESQL/COBOL words in the following table are reserved when used in the 
DECLARE section. Additionally, the words with an asterisk are also reserved 
wherever they are used because they have the same name as embedded SQL 
keywords. 



COBOL Data Items and Data Types 

3–10     Embedded SQL Companion Guide 

You cannot declare data items with the same name as the words that do not 
have an asterisk and you can only use them in quoted string constants. 
However, the asterisked words that match ESQL keywords can have data 
items with the same name. 

 

ASCENDING 

BLANK 

BY * 

CHARACTER 

COMP-1  

COMP-2  

COMP-3  

COMP-4  

COMP-5 

COMP-6  

COMP 

COMPUTATIONAL-1C 

COMPUTATIONAL-2 

COMPUTATIONAL-3 

COMPUTATIONAL-4 

COMPUTATIONAL-5 

COMPUTATIONAL-6C 

COMPUTATIONAL  

DEPENDING  

DESCENDING 

DISPLAY * 

END-EXEC 

EXTERNAL 

FILLER 

GLOBAL * 

IN * 

INDEX *  

INDEXED 

IS * 

JUST 

JUSTIFIED 

KEY * 

LEADING 

OCCURS 

OF * 

ON * 

PACKED_DECIMAL 

PIC 

PICTURE 

POINTER 

REDEFINES 

REFERENCE 

SEPARATE  

SIGN 

SYNC 

SYNCHRONIZED 

TIMES 

TO * 

TRAILING 

USAGE 

VALUE 

WHEN * 

ZERO 

Data Types 

Embedded SQL supports a subset of the COBOL data types. The following table 
maps the COBOL data types to their corresponding Ingres types. Note that the 
COBOL data type is determined by its category, picture, and usage. 

 

 Category COBOL Type 
Picture 

Usage Ingres Type 

 ALPHABETIC any DISPLAY character 

 ALPHANUMERIC any DISPLAY character 

 ALPHANUMERICEDI
TED 

any DISPLAY Character 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–11 

 Category COBOL Type 
Picture 

Usage Ingres Type 

 NUMERIC 9(p) where p 
<=10 

COMP DISPLAY integer 

 NUMERIC 9(p)V9(s) where 
p+s <=9 

COMP DISPLAY float 

 NUMERIC 9(p) where p 
<=10 

COMP-3 Integer 

 NUMERIC 9(p) where p 
>10 

COMP-3 decimal 

 NUMERIC 9(p)V9(s) COMP-3 decimal 

 NUMERIC  INDEX integer 

 NUMERIC EDITED any DISPLAY integer float 

 NUMERIC  COMP-3 Decimal 

VMS
 

NUMERIC PACKED-
DECIMAL 

COMP-1 decimal  

VMS
 

NUMERIC   float  

VMS
 

NUMERIC  COMP-2 float  

Because COBOL supports the packed decimal data type, the Ingres decimal 
type is mapped to it. In COBOL, the decimal data type is COMP-3. For 
example, the COBOL packed decimal declarations (where Pr = precision and 
Sc = scale): 

01 PACK1 PIC S9(Pr-Sc)V9(Sc) USAGE COMP-3. 
01 PACK2 PIC S9(Pr)   USAGE COMP-3. 

correspond to the Ingres decimal types: 

DECIMAL (Pr,Sc) 
DECIMAL (Pr,0) 

Note that Ingres precision includes scale, since it includes the total number of 
digits, and Ingres scale is the number of digits to the right of the decimal 
point. 

The sign (S) is optional on a COBOL declaration and is ignored by the 
preprocessor. However, decimal values are always stored as signed by Ingres. 

Note: You should always retrieve Ingres decimal data into a signed decimal 
variable. 



COBOL Data Items and Data Types 

3–12     Embedded SQL Companion Guide 

COMP is an abbreviation for COMPUTATIONAL. You can use either form. Note 
that POINTER data items are not supported. The following sections describe 
the various data categories and the manner in which embedded SQL interacts 
with them. 

Character strings containing embedded single quotes are legal in SQL, for 
example: 

mary's 

User variables may contain embedded single quotes and need no special 
handling unless the variable represents the entire search condition of a where 
clause: 

where :variable 

In this case you must escape the single quote by reconstructing the :variable 
string so that any embedded single quotes are modified to double single 
quotes, as in: 

mary''s 

Otherwise, a runtime error will occur. For more information on escaping single 
quotes, see String Literals in this chapter. 

Alphabetic, Alphanumeric, and Alphanumeric Edited Categories 

Embedded SQL accepts data declarations in the alphabetic, alphanumeric, and 
alphanumeric edited categories. The syntax for declaring data items in those 
categories is: 

level-number data-name PIC [IS] pic-string  

[[USAGE [IS]] DISPLAY]. 

Syntax Note: The pic-string can be any legal COBOL picture string for the 
alphabetic, alphanumeric, and alphanumeric edited classes. Embedded SQL 
notes only the length of the data item and that the data item is in the 
alphanumeric class. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–13 

You can use alphabetic, alphanumeric, and alphanumeric edited data items 
with any Ingres object of character (char or varchar) type. You can also use 
them to replace names of certain objects if the particular embedded SQL 
statement allows dynamic specification of object names. Note, however, that, 
when a value is transferred into a data item from an Ingres object, it is copied 
directly into the variable storage area without regard to the COBOL special 
insertion rules. When data in the database is in a different format from the 
alphanumeric edited picture, you must provide an extra variable to receive the 
data. You can then MOVE the data into the alphanumeric edited variable. 
However, if data in the database is in the same format as the alphanumeric 
edited picture (which would be the case, for example, if you had inserted data 
using the same variable you are retrieving into), you can assign the data 
directly into the edited data item, without any need for the extra variable. For 
more information on type conversion, see Data Type Conversion in this 
chapter. 

The following example illustrates the syntax for these categories: 

01 ENAME      PIC X(20). 
01 EMP-CODE   PIC xx/99/00. 

Indicator Data Items 

An indicator data item is a 2-byte integer numeric data item. There are three 
ways to use these in an application: 

 In a statement that retrieves data from Ingres, you can use an indicator 
variable to determine if its associated host variable was assigned a null 
value. 

 In a statement that sets data to Ingres, you can use an indicator variable 
to assign a null to the database column, form field, or table field column. 

 In a statement that retrieves character data from Ingres, you can use the 
indicator variable as a check that the associated host variable was large 
enough to hold the full length of the returned character string. You can use 
also use SQLSTATE to do this. Although you can also use SQLCODE as 
well, it is preferable to use SQLSTATE because SQLCODE is a deprecated 
feature. 

An indicator variable declaration must have the following syntax: 

level-number indicator-name PIC [IS] S9(p) [USAGE [IS]] COMP 

where p is less than or equal to 4. 

The following is an example of an indicator declaration: 

01 IND-VAR      PIC9(2) USAGE COMP. 
01 IND-TABLE. 
    02 IND-ARRAY  PIC S9(2) USAGE COMP OCCURS 10 TIMES. 



COBOL Data Items and Data Types 

3–14     Embedded SQL Companion Guide 

When associating an indicator array (COBOL table) with a COBOL record, you 
must declare the indicator array as an array of 2-byte integers. In the example 
above, the data item IND-ARRAY can be used as an indicator array with a 
record assignment. 

Numeric Edited Data Category 

The syntax for a declaration of numeric edited data is: 

level-number data-name PIC [IS] pic-string [[USAGE [IS]]DISPLAY] 

Syntax Notes: 

 The pic-string can be any legal COBOL picture string for numeric edited 
data. Embedded SQL notes only the type, scale, and size of the data item. 

 To interact with Ingres integer-valued objects, the picture string must 
describe a maximum of 10 digit positions with no scaling. 

While you can use numeric edited data items to assign data to, and receive 
data from, Ingres database tables and forms, be prepared for some loss of 
precision for numeric edited data items with scaling. The runtime interface 
communicates by integer (COMP) or uses packed (COMP-3) for UNIX or uses 
float (COMP-2) for VMS variables. In moving from these variables into your 
program’s edited data items, truncation can occur due to MOVE statement 
rules and the COBOL standard alignment rules. For more information on type 
conversion, see Data Type Conversion in this chapter. 

The following example illustrates the numeric edited data category: 

01 DAILY-SALES   PIC $$$,$$9DB USAGE DISPLAY. 
01 GROWTH-PERCENT  PIC ZZZ.9(3) USAGE DISPLAY. 

The Numeric Data Category—Windows and UNIX 

Embedded SQL/COBOL accepts the following declarations of numeric 
variables:  

level-number data-name PIC [IS] pic-string [USAGE [IS]COMP|COMP-3 
              |COMP-5|DISPLAY. 

level-number data-name [USAGE [IS]] INDEX. 

Syntax Notes: 

 Use the symbol S on numeric picture strings to indicate the presence of an 
operational sign. 

 The picture string (pic-string) of a COMP, COMP-3, or COMP-5 data item 
can contain only the symbols 9, S, and V in addition to the parenthesized 
length. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–15 

 To interact with Ingres integer-valued objects, the picture string of a 
COMP, COMP-3, COMP-5, or DISPLAY item must describe a maximum of 
10 digit positions with no scaling. 

 Do not use a picture string for INDEX data items. While the preprocessor 
ignores such a picture string, the compiler does not allow it. 

You can use any data items in the numeric category to assign and receive 
Ingres numeric data in database tables and forms. However, only use 
non-scaled COMP, COMP-3, COMP-5, and DISPLAY items of 10 digit positions 
or less to specify simple numeric objects, such as table field row numbers. 
Generally, try to use COMP data items with no scaling to interact with Ingres 
integer-valued objects, since the internal format of COMP data is compatible 
with Ingres integer data. Ingres effects the necessary conversions between all 
numeric data types, so the use of DISPLAY and COMP-3 scaled data items is 
allowed. For more information on type conversion, see Data Type Conversion 
in this chapter. 

The following example contains numeric data categories: 

01 QUAD-INTVAR  PIC  S9(10) USAGE COMP. 
01 LONG-INTVAR  PIC  S9(9)  USAGE COMP. 
01 SHORT-INTVAR PIC  S9(4)  USAGE COMP. 
01 DISPLAY-VAR  PIC  S9(10) USAGE DISPLAY. 
01 PACKED-VAR   PIC  S9(12)V9(4) USAGE COMP-3. 

Numeric Data Items 
with Usage COMP-5—
UNIX 

Ingres supports data items declared with USAGE COMP-5. When you specify 
this clause, the data item is stored in the same machine storage format as 
the native host processor rather than in the byte-wise Micro Focus storage 
format. Of course, sometimes the two storage formats are identical. Since 
the Ingres runtime system that is linked into your COBOL runtime support 
module (RTS) is written in C, it is important that Ingres interact with native 
data types rather than Micro Focus data types. Consequently, many of your 
normal USAGE COMP data items are transferred (using COBOL MOVE 
statements) into internally declared Ingres USAGE COMP-5 data items. Data 
items declared with this USAGE cause a compiler information message (209 
-I) to occur. 

Dynamic SQL requires that your program point directly at result data items. In 
that case, you may be required to use USAGE COMP-5 data items, rather than 
having the option to use COMP or COMP-5. For details on dynamic SQL, see 
Dynamic Programming for COBOL in this chapter. 



COBOL Data Items and Data Types 

3–16     Embedded SQL Companion Guide 

The Numeric Data Category—VMS  

Embedded SQL accepts the following declarations of numeric variables: 

level-number data-name PIC [IS] pic-string [USAGE [IS]] 

COMP|COMP-3|DISPLAY|PACKED-DECIMAL. 

level-number data-name [USAGE [IS]] COMP-1|COMP-2|INDEX. 

Syntax Notes: 

 The symbol S may be used on numeric picture strings to indicate the 
presence of an operational sign. 

 The picture string (pic-string) of a COMP or COMP-3 data item can contain 
only the symbols 9, S, and V in addition to the parenthesized length. 

 To interact with Ingres integer-valued objects, the picture string of a 
COMP, COMP-3 or DISPLAY item should describe a maximum of 10 digit 
positions with no scaling. 

 A picture string must not be used for COMP-1, COMP-2, and INDEX data 
items. While such a picture string is ignored by the preprocessor, the 
compiler will not allow it. 

Any data items in the numeric category may be used to assign and receive 
Ingres numeric data in database tables and forms. However, only non-scaled 
COMP, COMP-3, and DISPLAY items of 10 digit positions or less can be used to 
specify simple numeric objects, such as table field row numbers. Generally, 
you should use COMP data items with no scaling to interact with Ingres 
integer-valued objects, since the internal format of COMP data is compatible 
with Ingres integer data. Similarly, COMP-1 and COMP-2 data items are 
compatible with Ingres floating-point data. Although Ingres will effect the 
necessary conversions between all numeric data types, the use of DISPLAY 
and COMP-3 scaled data items could result in the loss of some precision. 
However, this does not occur if you are using COMP-3 to store decimals. For 
more information on type conversion, see Data Type Conversion in this 
chapter. 

01 QUAD-INTVAR  PIC S9(10) USAGE COMP. 
01 LONG-INTVAR  PIC S9(9)  USAGE COMP. 
01 SHORT-INTVAR PIC S9(4)  USAGE COMP. 
01 DISPLAY-VAR  PIC S9(10) USAGE DISPLAY. 
01 SING-FLOATVAR USAGE COMP-1. 
01 DOUB-FLOATVAR USAGE COMP-2. 
01 PACKED-VAR PIC S9(12)V9(4) USAGE COMP-3. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–17 

Declaring Records 

Embedded SQL accepts COBOL record and group declarations. To declare a 
record, use the following syntax: 

01 data-name. 
              record-item. 
             {record-item.} 

where record-item is a group item: 

level-number data-name. 
              record-item. 
             {record-item.} 

or an elementary item: 

level-number data-name elementary-item-description. 

Syntax Notes: 

 The record must have a level number of 01. Thereafter, the level numbers 
of record-items can be 02 through 49. Embedded SQL applies the same 
rules as the COBOL compiler in using the level numbers to order the 
groups and elementary items in a record definition into a hierarchical 
structure. 

 If you do not specify elementary-item-description for a record item, the 
preprocessor and the COBOL compiler assume that the record item is a 
group item. 

 The elementary-item-description can consist of any attributes described 
for data declarations in the Data Item Declaration Syntax section. The 
preprocessor does not confirm that the different clauses are acceptable for 
record items. 

 The OCCURS clause, denoting a COBOL table, may appear on any record 
item. 

The following example illustrates how to declare a record: 

01 EMPTABLE. 
  02 EMPREC OCCURS 25 TIMES. 
      03 ENAME    PIC X(20). 
      03 EADDRESS. 
         04 ESTREET   PIC X(15). 
         04 ECITY     PIC X(12). 
         04 ESTATE    PIC X(2). 
         04 EZIP      PIC X(5). 
      03 ESALARY PIC S9(6) USAGE COMP. 

DCLGEN Utility 

DCLGEN (Declaration Generator) is a structure-generating utility that maps the 
columns of a database table into a structure (a COBOL record) that can be 
included in an embedded SQL declaration section.  



COBOL Data Items and Data Types 

3–18     Embedded SQL Companion Guide 

The following command invokes DCLGEN from the operating system level: 

dclgen language dbname tablename filename structurename  

where 

 language is the embedded SQL host language, in this case, cobol. 

 dbname is the name of the database containing the table. 

 tablename is the name of the database table. 

 filename is the output file into which the structure declaration is placed. 

 structurename is the name of the host language structure (COBOL record) 
that the command generates. 

This command creates the declaration file filename, containing a record 
corresponding to the database table. The file also includes a declare table 
statement that serves as a comment and identifies the database table and 
columns from which the record was generated. 

After the file has been generated, you can use an embedded SQL include 
statement to incorporate it into the embedded SQL variable declaration 
section. The following example demonstrates how to use DCLGEN in a COBOL 
program. 

Assume the Employee table was created in the Personnel database as: 

EXEC SQL CREATE TABLE employee  
  (eno       integer NOT NULL, 
   ename     char(20) NOT NULL, 
   age       integer1, 
   job       smallint, 
   sal       decimal (14,2) NOT NULL, 
   dept      smallint, 
   vacation  float, 
   resume    long varchar) 
   END-EXEC. 

and the DCLGEN system-level command is: 

DCLGEN cobol personnel employee employee.dcl emprec 

The employee.dcl file created by this command contains a comment and two 
statements. The first statement is the declare table description of employee, 
which serves as a comment. The second statement is a declaration of the 
COBOL emprec record.  

The contents of the employee.dcl file are: 

Windows UNIX
 
* Description of table "employee" from database * "personnel" 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–19 

EXEC SQL DECLARE employee TABLE 
(eno       integer NOT NULL, 
 ename     char(20) NOT NULL, 
 age       integer1, 
 job       smallint, 
 sal       decimal(14,2) NOT NULL, 
 dept      smallint 
 vacation  float, 
 resume    long varchar) 
END-EXEC. 

01 EMPREC. 
 02 ENO         PIC S9(9) USAGE COMP. 
 02 ENAME       PIC X(20). 
 02 AGE         PIC S9(5) USAGE COMP. 
 02 JOB         PIC S9(5) USAGE COMP. 
 02 SAL         PIC S9(12)V9(2) USAGE COMP-3. 
 02 DEPT        PIC S9(5) USAGE COMP. 
 02 VACATION    PIC S9(10)V9(8) USAGE COMP-3. 
 02 RESUME      PIC X(0).  

VMS
  

* Description of table "employee" from database * "personnel" 

EXEC SQL DECLARE employee TABLE 
(eno        integer NOT NULL, 
 ename      char(20) NOT NULL, 
 age        integer1, 
 job        smallint, 
 sal        decimal (14,2) NOT NULL, 
 dept       smallint 
 vacation   float, 
 resume     long varchar) 
END-EXEC. 

01 EMPREC. 
 02 ENO       PIC S9(9) USAGE COMP. 
 02 ENAME     PIC X(20). 
 02 AGE       PIC S9(5) USAGE COMP. 
 02 JOB       PIC S9(4) USAGE COMP. 
 02 SAL       PIC S9(12)V9(2) USAGE COMP-3. 
 02 DEPT      PIC S9(4) USAGE COMP. 
 02 VACATION  USAGE COMP-2. 
 02 RESUME    PIC X(0).   

Use the embedded SQL include statement, in an embedded SQL declaration 
section, to include this file as follows: 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
    EXEC SQL INCLUDE 'employee.dcl' END-EXEC. 
EXEC SQL END DECLARE SECTION END-EXEC. 

You can then use the emprec record in a select, fetch, or insert statement. 

 

UNIX
 

The default generated picture string for Ingres floating-point data is 
S9(10)V9(8). 



COBOL Data Items and Data Types 

3–20     Embedded SQL Companion Guide 

DCLGEN converts underscores in column names to dashes when it generates 
names of the elements of the COBOL record. For example, a column name of 
column_1 translates to a record element name of column-1. Column names 
that begin or end with an underscore thus generate record element names 
unacceptable to the COBOL compiler.  

Since COBOL supports packed decimal data, the structure member’s type will 
be packed decimal with a precision and scale that matches the scale and 
precision of the database column. 

Both VMS and Micro Focus COBOL only allow a maximum precision of 18, 
otherwise a compiler error is generated. Ingres allows 31 precision. If the 
decimal column is greater than 18, DCLGEN displays a warning message and 
generates a COBOL variable of S9(10)V9(8). You must verify that this is an 
acceptable size for the decimal columns because if it’s not, you must manually 
modify the DCLGEN output file. 

The field names of the structure that DCLGEN generates are identical to the 
column names in the specified table. Therefore, if the column names in the 
table contain any characters that are illegal for host language variable names, 
you must modify the name of the field before attempting to use the variable in 
an application. 

DCLGEN and Large 
Objects 

When a table contains a large object column, DCLGEN will issue a warning 
message and map the column to a zero length character string variable. You 
must modify the length of the generated variable before attempting to use 
the variable in an application. 

For example assume that the job_description table was created in the 
personnel database as: 

create table job_description 
          (job          smallint, 
           description long varchar)); 

and the DCLGEN system-level command is: 

dclgen cobol personnel job_description jobs.dcl jobs_rec 

The contents of the jobs.dcl file would be: 

* Description of the table “employee” from database “personnel” 
    EXEC SQL DECLARE long_obj_table TABLE 
                  (job          smallint, 
                   description long varchar)); 
 01 JOBS_REC. 
    02 JOB               PICTURE S9(4) USAGE COMP. 
    02 DESCRIPTION       PICTURE X(0). 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–21 

Compiling and Declaring External Compiled Forms 

You can precompile your forms in the Visual Forms Editor (VIFRED). This saves 
the time otherwise required at runtime to extract the form’s definition from 
the database forms catalogs. When you compile a form in VIFRED, VIFRED 
creates a file in your directory describing the form in C. VIFRED prompts you 
for the name of the file with the C description. After the C file is created, you 
can use the following command to compile it into a linkable object module: 

Windows
 

cl -c filename.c  

UNIX
 

cc -c filename.c  

This command produces an object file containing a global symbol with the 
same name as your form. Before the embedded SQL/FORMS statement 
addform can  refer to this global object, you must use the following syntax to 
declare it in an embedded SQL declaration section: 

01 formname [IS] EXTERNAL PIC S9(9) [USAGE [IS]] COMP-5. 

Some platforms do not accept the above syntax. If EXTERNAL data items 
cannot be referenced in your COBOL program, see Including External Compiled 
Forms in the RTS in this chapter for an alternate procedure. 

Syntax Notes: 

 The formname is the actual name of the form. VIFRED gives this name to 
the global object. The formname is used to refer to the form in embedded 
SQL statements after the form has been made known to the FRS using the 
addform statement. 

 The EXTERNAL clause causes the linker to associate the formname data 
item with the external formname symbol. 

The following example shows a typical form declaration and illustrates the 
difference between using the form’s global object definition and the form’s 
name. However, currently, this example does not work on all Micro Focus 
platforms. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
01 empform IS EXTERNAL PIC S9(9) USAGE COMP-5. 
* Other embedded SQL data declarations. 
EXEC SQL END DECLARE SECTION END-EXEC. 
PROCEDURE DIVISION. 
* Program initialization. 
* Making the form known to the FRS via the global 
* form object. 
EXEC FRS ADDFORM :empform END-EXEC. 
* Displaying the form via the name of the form. 
EXEC FRS DISPLAY empform END-EXEC. 
* The program continues. 



COBOL Data Items and Data Types 

3–22     Embedded SQL Companion Guide 

For information on linking your embedded SQL program with external compiled 
forms, see Including External Compiled Forms in the RTS in this chapter. 

Assembling and Declaring External Compiled Forms—VMS 

You can precompile your forms in VIFRED. This saves the time otherwise 
required at runtime to extract the form’s definition from the database forms 
catalogs. When you compile a form in VIFRED, VIFRED creates a file in your 
directory describing the form in the VAX-11 MACRO language. VIFRED prompts 
you for the name of the file with the MACRO description. When the MACRO file 
is created, you can use the following VMS command to assemble it into a 
linkable object module: 

macro filename 

This command produces an object file containing a global symbol with the 
same name as your form. Before the embedded SQL/FORMS statement 
addform can refer to this global object, it must be declared in an embedded 
SQL declaration section, with the following syntax: 

01 formid PIC S9(9) [USAGE [IS]] COMP VALUE [IS] EXTERNAL 
formname. 

Syntax Notes: 

 The formid is a COBOL data item. It is used with the addform statement to 
declare the form to the Forms Runtime System (FRS). 

 The formname is the actual name of the form. VIFRED gives this name to 
the global object. The formname is used to refer to the form in embedded 
SQL statements after the form has been made known to the FRS via the 
addform statement. 

 The EXTERNAL clause causes the VAX linker to associate the formid data 
item with the external formname symbol. 

The example below shows a typical form declaration and illustrates the 
difference between using the form’s object definition (the formid) and the 
form’s name (the formname). 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
01 EMPFORM-ID PIC S9(9) USAGE COMP VALUE IS EXTERNAL 
   empform. 
* Other embedded SQL data declarations. 
EXEC SQL END DECLARE SECTION END-EXEC. 
PROCEDURE DIVISION. 
* Program initialization. 
* Making the form known to the FRS via the global form object. 
EXEC FRS ADDFORM :EMPFORM-ID END-EXEC. 
* Displaying the form via the name of the form. 
EXEC FRS DISPLAY empform END-EXEC. 
* The program continues. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–23 

For information on linking your embedded SQL program with external compiled 
forms, see Assembling and Declaring External Compiled Forms—VMS in this 
chapter. 

Concluding Example 

The following UNIX, Windows, and VMS examples demonstrate some simple 
embedded SQL/COBOL declarations: 

 

Windows
  

EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC.  

UNIX
  

EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC.  

* Data item to hold database name. 
 01 DBNAME PIC X(9) VALUE IS "Personnel". 
 
* Scaled data 
 01 SALARY PIC S9(8)V9(2) USAGE COMP. 
 01 MONEY  PIC S999V99 USAGE COMP-3. 
 
* Array of numerics 
 01 NUMS. 
   02 NUM-ARR PIC S99 OCCURS 10 TIMES. 
 
* Record of a full name and a redefinition of its parts. 
 01 NAME-REC. 
   02 FULL-NAME         PIC X(20). 
   02 NAME-PARTS REDEFINES FULL-NAME. 
      03 FIRST-NAME     PIC X(8). 
      03 MIDDLE-INIT    PIC X(2). 
      03 LAST-NAME      PIC X(10). 
 
* Record for fetching and displaying. 
 01 OUT-REC. 
   02 FILLER    PIC X(15) VALUE "Value fetched: ". 
   02 FROM-DB   PIC S9(4) USAGE DISPLAY. 
 
* Miscellaneous attributes (ignored by preprocessor). 
 01 SALES-TOT PIC S9(6)V99 SIGN IS TRAILING. 
 01 SYNC-REC. 
 02 NUM1     PIC S99 USAGE COMP SYNCHRONIZED. 
 02 FILLER   PIC XX VALUE SPACES. 
 02 NUM2     PIC S99 USAGE COMP SYNCHRONIZED. 
01 RIGHT-ALIGN PIC X(30) JUSTIFIED RIGHT. 
01 NUM-OUT PIC S99V99 USAGE DISPLAY BLANK WHEN ZERO. 
EXEC SQL END DECLARE SECTION END-EXEC. 

VMS
  

EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 



COBOL Data Items and Data Types 

3–24     Embedded SQL Companion Guide 

* Data item to hold database name. 
 01 DBNAME PIC X(9) VALUE IS "Personnel". 
 
* Scaled data 
 01 SALARY USAGE COMP-1. 
 01 MONEY  PIC S999V99 USAGE COMP-3. 
 
* Array of numerics 
 01 NUMS. 
   02 NUM-ARR  PIC S99 OCCURS 10 TIMES. 
 
* Record of a full name and a redefinition of its parts. 
 01 NAME-REC. 
   02 FULL-NAME PIC X(20). 
   02 NAME-PARTS REDEFINES FULL-NAME. 
      03 FIRST-NAME   PIC X(8). 
      03 MIDDLE-INIT  PIC X(2). 
      03 LAST-NAME    PIC X(10). 
 
* Record for fetching and displaying. 
 01 OUT-REC. 
   02 FILLER        PIC X(15) VALUE "Value fetched: ". 
   02 FROM-DB       PIC S9(4) USAGE DISPLAY. 
 
* Miscellaneous attributes (ignored by preprocessor). 
 01 SALES-TOT       PIC S9(6)V99 SIGN IS TRAILING. 
 01 SYNC-REC. 
   02 NUM1          PIC S99 USAGE COMP SYNCHRONIZED. 
   02 FILLER        PIC XX VALUE SPACES. 
   02 NUM2          USAGE COMP-2 SYNCHRONIZED. 
 01 RIGHT-ALIGN     PIC X(30) JUSTIFIED RIGHT. 
 01 NUM-OUT         PIC S99V99 USAGE DISPLAY BLANK 
            WHEN ZERO. 
EXEC SQL END DECLARE SECTION END-EXEC.  

Scope of Variables 

All variables declared in an embedded SQL declaration section can be 
referenced in ESQL statements and the preprocessor accepts them, from the 
point of declaration to the end of the file. This is not true for the COBOL 
compiler, which generally allows references to only those variables declared in 
the current program. Because the preprocessor does not terminate the scope 
of a variable in the same way the COBOL compiler does, do not redeclare 
variables of the same name to the preprocessor in a single file even where the 
variables are declared in separately compiled program units. If two programs 
in a single file each use variables of the same name and type in embedded 
SQL statements, only declare the first in an embedded SQL declaration 
section. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–25 

Variable Usage 

COBOL variables (that is, data items) declared in an embedded SQL 
declaration section can substitute for most elements of embedded SQL 
statements that are not keywords. Of course, the variable and its data type 
must make sense in the context of the element. When you use a COBOL 
variable in an embedded SQL statement, you must precede it with a colon. As 
an example, the following select statement uses the data items NAMEVAR and 
NUMVAR to receive data and the data item IDNO as an expression in the 
where clause: 

EXEC SQL SELECT ename, eno 
    INTO :NAMEVAR, :NUMVAR 
    FROM employee 
    WHERE eno = :IDNO END-EXEC. 

Various rules and restrictions apply to the use of COBOL variables in 
embedded SQL statements. The following sections describe the usage syntax 
of different categories of variables and provide examples of such use. 

To distinguish the minus sign used as a subtraction operator in an embedded 
SQL statement from the hyphen used as a character in a data item name, you 
must delimit the minus sign by blanks. For example, the statement: 

EXEC SQL INSERT INTO employee (ename, eno) 
    VALUES ('Jones', :ENO-2) 
    END EXEC. 

indicates that the data item ENO-2 is to be inserted into the database column. 
To insert a value two less than the value in the data item ENO, you must 
instead use the following statement: 

EXEC SQL INSERT INTO employee (ename, eno) 
    VALUES ('Jones', :ENO - 2) 
    END EXEC. 

Note the spaces surrounding the minus sign. 

Elementary Data Items 

To refer to a simple scalar-valued data item (numeric, alphanumeric, or 
alphabetic), use the following syntax: 

:simplename 

The following program fragment demonstrates a typical error handling 
paragraph. The data items BUFFER and SECONDS are scalar-valued variables. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
01 SECONDS PIC S9(4) USAGE COMP. 
01 BUFFER  PIC X(100). 



COBOL Data Items and Data Types 

3–26     Embedded SQL Companion Guide 

 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
* Program code 
 
ERROR-HANDLE. 
 
EXEC FRS MESSAGE :BUFFER END-EXEC. 
EXEC FRS SLEEP :SECONDS END-EXEC. 
 
*More error code. 

COBOL Tables 

To refer to a COBOL table, use the following syntax:  

:tablename(subscript{,subscript}) 

Syntax Notes: 

 You must subscript the tablename because only elementary data items are 
legal SQL values. 

 When you declare a COBOL table, the preprocessor notes from the 
OCCURS clause that it is a table and not some other data item. When the 
table is later referenced in an ESQL statement, the preprocessor confirms 
that a subscript is present but does not check the legality of the subscript 
inside the parentheses. Consequently, you must ensure that the subscript 
is legal and that the correct number of subscripts is used. 

 If you use COBOL tables as null indicator arrays with COBOL record 
assignments, do not include subscripts. 

The following example uses the variable SUB1 as a subscript that does not 
need to be declared in the embedded SQL declaration section because the 
preprocessor ignores it. 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
01 FORMNAMES. 
  02 FORM-TABLE PIC X(8) OCCURS 3 TIMES. 
 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
01 SUB1 PIC S9(4) USAGE COMP VALUE ZEROES. 
 
PROCEDURE DIVISION. 
BEGIN. 
 
* Program code 
 
PERFORM VARYING SUB1 FROM 1 BY 1 
   UNTIL SUB1 > 3 
 
EXEC FRS FORMINIT :FORM-TABLE(SUB1) END-EXEC 
 
END-PERFORM. 
 
* More program code. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–27 

Record Data Items 

You can use a record data item (also known as a structure variable) in two 
different ways. First, you can use the record or a group item in the record as a 
simple variable, implying that all its elementary items (also known as structure 
members) are used. This is appropriate in the embedded SQL select, fetch, 
and insert statements. Second, you can refer to an elementary data item in 
the record alone. 

Using a Record as a 
Collection of 
Variables 

Use the following syntax to refer to a record or group item: 

:{groupname IN | OF }recordname 

Alternatively, you can use the following “dot” notation, in which the record or 
group item is specified from the outer level inwards: 

:recordname{.groupname} 

Syntax Notes: 

 The recordname can refer to either a record or a group item. It can be an 
element of a table of group items. Any reference that yields a record or 
group item is acceptable. For example: 

   * A record or unambiguous group item reference 
         :EMPREC 
 
   * A group item in a table of group items 
         :EMPREC-TABLE(SUB1) 
 
   * A group item subordinate to two group items 
         :GROUP3 IN GROUP2 IN REC 
         :REC.GROUP2.GROUP3 

 To be used as a collection of variables, the record (or group item) 
referenced must have no subordinate groups or tables. The preprocessor 
enumerates all the elements of the record, which must be elementary 
items. The preprocessor generates code as though the program had listed 
each elementary item of the record in the order in which it was declared. 

 The qualification of a record item can be elliptical; that is, you do not need 
to specify all the names in the hierarchy in order to reference the item. 
You must not, however, use an ambiguous reference that does not clearly 
qualify an item. For example, assume the following declaration: 

    01 PERSON. 
      02 NAME. 
          03 LAST  PIC X(18). 
          03 FIRST PIC X(12). 
      02 AGE     PIC S9(4) USAGE COMP. 
      02 ADDR    PIC X(50). 

 If the variable NAME was referenced, the preprocessor would assume the 
reference was to the group item NAME IN PERSON. However, if there also 
existed the declaration: 

    01 CHILD. 



COBOL Data Items and Data Types 

3–28     Embedded SQL Companion Guide 

      02 NAME. 
          03 LAST  PIC X(18). 
          03 FIRST PIC X(12). 
      02 PARENT   PIC X(30). 

the reference to NAME would be ambiguous, because it could refer to 
either NAME IN PERSON or NAME IN CHILD. 

The following example uses the employee.dcl file, generated by DCLGEN, to 
retrieve values into a record. 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
* See above for description. 
EXEC SQL INCLUDE 'employee.dcl' END-EXEC. 
 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
EXEC SQL SELECT * 
INTO :EMPREC 
FROM employee 
WHERE eno = 123 
END-EXEC. 

The example above generates code as though the following statement had 
been issued instead: 

EXEC SQL SELECT * 
 INTO :ENO IN EMPREC, :ENAME IN EMPREC, :AGE IN EMPREC, 
     :JOB IN EMPREC, :SAL IN EMPREC, :DEPT IN EMPREC 
 FROM employee 
 WHERE eno = 123 
 END-EXEC. 

The following example fetches the values associated with all the columns of a 
cursor into a record: 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
* See above for description. 
EXEC SQL INCLUDE 'employee.dcl' END-EXEC. 
 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
EXEC SQL DECLARE empcsr CURSOR FOR 
SELECT * 
FROM employee 
ORDER BY ename 
END-EXEC. 
... 
EXEC SQL FETCH empcsr INTO :EMPREC END-EXEC. 

The following example inserts values by looping through a locally declared 
table of records whose items have been initialized: 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
EXEC SQL INCLUDE SQLCA END-EXEC. 
 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
EXEC SQL DECLARE person TABLE 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–29 

(pname  char(30), 
 page   integer1, 
 paddr  varchar(50)) END-EXEC. 
 
01 PERSON-REC. 
 02 PERSON OCCURS 10 TIMES. 
      03 NAME    PIC X(30). 
      03 AGE     PIC S9(4) USAGE COMP. 
      03 ADDR    PIC X(50). 
 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
01 SUB1          PIC S9(4) USAGE COMP. 
 
PROCEDURE DIVISION. 
BEGIN. 
 
* Initialization code. 
 
PERFORM VARYING SUB1 FROM 1 TO 10 
    UNTIL SUB1 > 10 
 
EXEC SQL INSERT INTO person 
    VALUES (:PERSON(SUB1)) 
    END-EXEC 
END-PERFORM. 

The insert statement in the example just shown generates code as though the 
following statement had been issued instead: 

EXEC SQL INSERT INTO person 
VALUES (:NAME IN PERSON(SUB1), :AGE IN PERSON(SUB1),  :ADDR IN PERSON(SUB1)) 
 END-EXEC 

Using an Elementary 
Item from a Record 

The syntax embedded SQL uses to refer to an elementary record item is the 
same as in COBOL: 

:elementary-item-name IN | OF{ groupname IN | OF} recordname 

Alternatively, you can use the following “dot” notation, in which the 
elementary item is specified from the outer level inwards: 

:recordname{.groupname}.elementary-item-name 

Syntax Notes: 

 The referenced item must be a scalar value (numeric, alphanumeric, or 
alphabetic). There can be any combination of tables and records, but the 
last referenced item must be a scalar value. Thus, the following references 
are all legal: 

  * Element of a record 
    :SAL IN EMPLOYEE 
    :SAL OF EMPLOYEE 
    :EMPLOYEE.SAL 
  * Element of a record as an item of a table 
    :NAME IN PERSON(3) 
    :PERSON(3).NAME 
  * Deeply nested element 
    :ELEMENTARY-ITEM OF GROUP3 OF GROUP2 OF REC 
    :REC.GROUP2.GROUP3.ELEMENTARY-ITEM 



COBOL Data Items and Data Types 

3–30     Embedded SQL Companion Guide 

 The qualification of an elementary item in a record can be elliptical; that 
is, you do not need to specify all the names in the hierarchy in order to 
reference the item. You must not, however, use an ambiguous reference 
that does not clearly qualify an item. For example, assume the following 
declaration: 

    01 PERSON. 
       02 NAME     PIC X(30). 
       02 AGE      PIC S9(4) USAGE COMP. 
       02 ADDR     PIC X(50). 

If the variable NAME was referenced in your program, the preprocessor 
would assume the reference was to the elementary item NAME IN 
PERSON. However, if there also existed the declaration: 

    01 CHILD. 
        02 NAME      PIC X(30). 
        02 PARENT    PIC X(30). 

the reference to NAME would be ambiguous because it could refer to either 
NAME IN PERSON or NAME IN CHILD. 

 Subscripts, if present, must qualify the data item declared with the 
OCCURS clause. 

The following example uses the record EMPREC in the employee.dcl file 
generated by DCLGEN to put values into the empform form: 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
* See above for description. 
    EXEC SQL INCLUDE 'employee.dcl' END-EXEC. 
 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
EXEC FRS PUTFORM empform 
(eno = :ENO IN EMPREC, ename = :ENAME IN EMPREC, 
 age = :AGE IN EMPREC, job   = :JOB IN EMPREC, 
 sal = :SAL IN EMPREC, dept  = :DEPT IN EMPREC) 
END-EXEC. 

You could also write the putform statement without the EMPREC qualifications, 
assuming there are no ambiguous references to the item names: 

EXEC FRS PUTFORM empform 
     (eno = :ENO, ename = :ENAME, age = :AGE, 
     job = :JOB, sal = :SAL, dept = :DEPT) 
     END-EXEC. 

Using Indicator Data 
Items 

The syntax for referring to an indicator data item is the same as for an 
elementary data item, except that an indicator variable is always associated 
with another COBOL data item: 

:data_item:indicator_item 

or 

:data_item indicator :indicator_item 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–31 

Syntax Notes: 

 The indicator data item can be an elementary data item or an element of a 
table that yields a 2-byte integer numeric data item. For example: 

 01 IND-1    PIC S9(4) USAGE COMP. 
 01 IND-TABLE. 
      02 IND-2  PIC S9(4) USAGE COMP OCCURS 5 TIMES. 
 
      :ITEM-1:IND-1 
      :ITEM-2:IND-2(4) 

 If the data item associated with the indicator data item is a record, the 
indicator data item must be a table of indicators. In this case, do not 
subscript the table (see the following example). 

 When an indicator table is used, the first element of the table is associated 
with the first member of the record, the second element with the second 
member, and so on. Table elements begin at subscript 1. 

The following example uses the employee.dcl file that DCLGEN generates, to 
retrieve values into a record and null values into the EMPIND table: 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
* See above for description. 
 
EXEC SQL INCLUDE 'employee.dcl' END-EXEC. 
01 INDS. 
 02 EMPIND PIC S9(4) USAGE COMP OCCURS 10 TIMES. 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
EXEC SQL SELECT * 
 INTO :EMPREC:EMPIND 
 FROM employee 
 END-EXEC 

The example just shown generates code as though the following statement 
had been issued: 

EXEC SQL SELECT * 
INTO :ENO IN EMPREC:EMPIND(1), 
     :ENAME IN EMPREC:EMPIND(2), 
     :AGE IN EMPREC:EMPIND(3), 
     :JOB IN EMPREC:EMPIND(4), 
     :SAL IN EMPREC:EMPIND(5),  
     :DEPT IN EMPREC:EMPIND(6), 
  FROM employee 
  END-EXEC  

Data Type Conversion 

A COBOL data item must be compatible with the Ingres value it represents. 
Numeric Ingres values can be set by and retrieved into COBOL numeric and 
numeric edited items, and Ingres character values can be set by and retrieved 
into COBOL character data items, that is, alphabetic, alphanumeric, and 
alphanumeric edited items. 



COBOL Data Items and Data Types 

3–32     Embedded SQL Companion Guide 

Data type conversion occurs automatically for different numeric types such as 
from floating-point Ingres database column values into integer (COMP) COBOL 
data items, and for different length character strings, such as from 
varying-length Ingres character fields into COBOL alphabetic and alphanumeric 
data items. 

Ingres does not automatically convert between numeric and character types, 
such as from Ingres integer fields into COBOL alphanumeric data items. You 
must use the Ingres type conversion functions, the Ingres ascii function, or the 
COBOL STRING statement to effect such conversions. 

The following table shows the default type compatibility for each Ingres data 
type in UNIX and VMS. Note that some COBOL types are omitted from the 
table because they do not exactly match an Ingres type. Use of those types 
necessitates some runtime conversion, which may possibly result in some loss 
of precision. 

 

Windows UNIX  
There is no exact match for float, so use COMP-3.  

Ingres types and corresponding COBOL data types are listed in the following 
table: 

 

Ingres Type UNIX and Windows COBOL 
Types 

VMS COBOL Type 

char(N) PIC X(N). PIC X(N). 

varchar(N) PIC X(N). PIC X(N). 

integer1 PIC S9(2) USAGE COMP. PIC S9(2) USAGE COMP. 

smallint PIC S9(4) USAGE COMP. PIC S9(4) USAGE COMP. 

integer PIC S9(9) USAGE COMP. PIC S9(9) USAGE COMP. 

bigint PIC S9(18) USAGE COMP* PIC S9(18) USAGE COMP* 

long varchar  PIC X(N). PIC X(N).  

float4 PIC S9(10)V9(8) USAGE COMP-3. USAGE COMP-1.  

float PIC S9(10)V9(8) USAGE COMP-3. USAGE COMP-2.  

date PIC X(25). PIC X(25). 

money PIC S9(10)V9(8) USAGE COMP-3. USAGE COMP-2. 

table_key PIC X(8). PIC X(8). 

object_key PIC X(16). PIC X(16). 

decimal PICS9(P-S)V(S) USAGE COMP-3. PICS9(P-S)V(S) USAGE 
COMP-3. 

*This type may not map to 8-byte integers with some COBOL compilers. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–33 

Note that Ingres stores decimal as signed. Thus, use a signed decimal variable 
if it interacts with an Ingres decimal type. Also, Ingres allows a maximum 
precision of 31 while COBOL allows only 18. 

Decimal Type Conversion 

An Ingres decimal value that will not fit into a COBOL variable will either be 
truncated if there is loss of scale or cause a runtime error if loss of significant 
digits. 

Runtime Numeric Type Conversion 

The Ingres runtime system provides automatic data type conversion between 
numeric-type values in the database and the forms system and numeric 
COBOL data items. It follows the standard COBOL type conversion rules. For 
example, if you assign the value in a scaled COMP-3 data item (UNIX and 
Windows) or COMP-1 data item (VMS) to an integer-valued field in a form, the 
digits after the decimal point of the data item’s value are truncated. Runtime 
errors are generated for overflow on conversion.    

The preprocessor generates COBOL MOVE statements or calls Ingres convert 
routines that convert various COBOL data types. These can again be converted 
at runtime by Ingres based on the final value being set or retrieved. The 
standard COBOL data conversion rules hold for all these generated MOVE 
statements, with a potential loss of precision.   

Floats are coerced to decimal types by Ingres at runtime. 

The preprocessor uses temporary data items when moving values between 
numeric DISPLAY data items and Ingres objects. Depending on the PICTURE 
clause of the DISPLAY item shown below, these temporary data items are 
either: 

 COMP-3 or 4-byte COMP-5 (UNIX) 

 or 

 COMP-2 or 4-byte COMP (VMS) 



COBOL Data Items and Data Types 

3–34     Embedded SQL Companion Guide 

The following table lists numeric DISPLAY items and temporary data items: 

 

Numeric DISPLAY 
Item’s Picture 

Temporary Item’s Data 
Type—UNIX and 
Windows 

Temporary Item’s Data 
Type—VMS 

With scaling PIC S9(9)V9(9) USAGE 
COMP-3 

COMP-2 

With > 10 numeric digits PIC S9(9)V9(9) USAGE 
COMP-3 

Not applicable 

No scaling and 10 numeric 
digits 

4-byte COMP-5  4-byte COMP 

COMP-3 items used to set or receive Ingres values also require some runtime 
conversion. This is not true if you are setting or receiving decimal data. This is 
true for Micro Focus COBOL when float values are received into COMP-3. 

The preprocessor also generates code to use a temporary data item when 
Ingres data is to interact with a COBOL unscaled COMP data item whose 
picture string is exactly 10. Because a COBOL non-scaled numeric item whose 
picture contains 10 or fewer digits is regarded as compatible with the Ingres 
integer type, ESQL/COBOL assigns such data to a temporary COBOL 4-byte 
COMP-5 data item to allow it to interact with Ingres integer data. Note that the 
range of the Ingres i4 type does not include all 10-digit numbers. If you have 
10-digit numeric data outside the Ingres range you, should use a COMP-3 
(UNIX) or for VMS use COMP-1 or COMP-2 data item and choose the Ingres 
float type. Or with decimal you can use COMP-3 and choose a decimal Ingres 
type. 

You can use only COMP data items or items that get assigned to temporary 
4-byte COMP-5 (UNIX) or COMP (VMS) data items to set the values of Ingres 
integer objects, such as table field row numbers. You can, however, use any 
numeric data items to set and retrieve numeric values in Ingres database 
tables or forms. 

Windows UNIX  
The Ingres money type is represented as a COMP-3 data item.  

VMS  
The Ingres money type is represented as an 8-byte floating-point value, 
COMP-2. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–35 

Recall that a COBOL non-scaled numeric item with a picture that contains 10 
or fewer digits is regarded as compatible with the Ingres integer type. (For 
details, see Variable and Type Declarations in this chapter.) However, the VAX 
standard data type for an unscaled 10-digit COMP item is a quadword (8 
bytes). Therefore, ESQL/ COBOL assigns such data to a temporary COBOL 
4-byte COMP data item to allow it to interact with Ingres integer data. Note 
that the range of the Ingres integer4 type does not include all 10-digit 
numbers.  

Runtime Character and Varchar Type Conversion 

Automatic conversion occurs between Ingres character string values and 
COBOL character variables (alphabetic, alphanumeric, and alphanumeric 
edited data items). The string-valued Ingres objects that can interact with 
character string variables are: 

 Ingres names, such as form and column names 

 Database columns of type character 

 Database columns of type varchar 

 Form fields of type character 

 Database columns of type long varchar 

Several considerations apply when dealing with character string conversions, 
both to and from Ingres. 

The conversion of COBOL character variables used to represent Ingres names 
is simple: trailing blanks are truncated from the variables because the blanks 
make no sense in that context. For example, the string constants empform 
and empform refer to the same form. 

The conversion of other Ingres objects is a bit more complicated. First, the 
storage of character data in Ingres differs according to whether the medium of 
storage is a database column of type character, a database column of type 
varchar, or a character form field. Ingres pads columns of type character with 
blanks to their declared length. Conversely, it does not add blanks to the data 
in columns of type varchar or long varchar, or in form fields. 

Second, the COBOL convention is to blank-pad fixed-length character strings. 
For example, the character string abc may be stored in a COBOL PIC X(5) data 
item as the string abc followed by two blanks. 



COBOL Data Items and Data Types 

3–36     Embedded SQL Companion Guide 

When character data is retrieved from a database column or form field into a 
COBOL character variable and the variable is longer than the value being 
retrieved, the variable is padded with blanks. If the variable is shorter than the 
value being retrieved, the value is truncated. You must always ensure that the 
variable is at least as long as the column or field, in order to avoid truncation 
of data. You should note that, when a value is transferred into a data item 
from an Ingres object, it is copied directly into the variable storage area 
without regard to the COBOL special insertion rules. 

When inserting character data into an Ingres database column or form field 
from a COBOL variable, note the following conventions: 

 When data is inserted from a COBOL variable into a database column of 
type character and the column is longer than the variable, the column is 
padded with blanks. If the column is shorter than the variable, the data is 
truncated to the length of the column. 

 When data is inserted from a COBOL variable into a database column of 
type varchar or long varchar and the column is longer than the variable, 
no padding of the column takes place. Furthermore, by default, all trailing 
blanks in the data are truncated before the data is inserted into the 
varchar column. For example, when a string abc stored in a COBOL PIC 
X(5) data item as abc (see above) is inserted into the varchar column, the 
two trailing blanks are removed and only the string abc is stored in the 
database column. To retain such trailing blanks, you can use the Ingres 
notrim function. It has the following syntax: 

 notrim(:charvar) 

where charvar is a character variable. The following example demonstrates 
this feature. If the varchar column is shorter than the variable, the data is 
truncated to the length of the column. 

 When data is inserted from a COBOL variable into a character form field 
and the field is longer than the variable, no padding of the field takes 
place. In addition, all trailing blanks in the data are truncated before the 
data is inserted into the field. If the field is shorter than the data (even 
after all trailing blanks have been truncated), the data is truncated to the 
length of the field. 

When comparing character data in an Ingres database column with 
character data in a COBOL variable, note the following convention: 

 When comparing data in character or varchar database columns with data 
in a character variable, all trailing blanks are ignored. Initial and 
embedded blanks are significant. 

Caution! As described above, the conversion of character string data between 
Ingres objects and COBOL variables often involves the trimming or padding of 
trailing blanks, with resultant change to the data. If trailing blanks have 
significance in your application, give careful consideration to the effect of any 
data conversion. For a more complete description of the significance of blanks 
in string comparisons, see the SQL Reference Guide. 



COBOL Data Items and Data Types 

Chapter 3: Embedded SQL for COBOL    3–37 

The Ingres date data type is represented as a 25-byte character string: PIC 
X(25). 

The program fragment in the following example demonstrates the notrim 
function and the truncation rules explained above. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
EXEC SQL INCLUDE SQLCA END-EXEC. 
 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
EXEC SQL DECLARE varychar TABLE 
    (row integer, 
     data varchar(10)) 
    END-EXEC. 
01 ROW   PIC S9(4) USAGE COMP. 
01 DATA  PIC X(7). 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
PROCEDURE DIVISION. 
BEGIN. 
 
* DATA will hold "abc  " followed by 4 blanks. 
    MOVE "abc  " TO DATA. 
 
* The following INSERT adds the string "abc" 
* (blanks truncated). 
    EXEC SQL INSERT INTO varychar (row, data) 
        VALUES (1, :DATA) 
        END-EXEC. 
 
* This statement adds the string "abc ", with 4 trailing 
* blanks left intact by using the NOTRIM function 
 
    EXEC SQL INSERT INTO varychar (row, data) 
        VALUES (2, NOTRIM(:DATA)) 
        END-EXEC. 
 
* This SELECT will retrieve the second row, 
* because the NOTRIM  
* function of the previous INSERT statement 
* left trailing blanks in the "data" variable. 
 
    EXEC SQL SELECT row 
        INTO :ROW 
        FROM varychar 
        WHERE length(data) = 7 
        END-EXEC. 
    DISPLAY "Row found = " ROW. 



The SQL Communications Area 

3–38     Embedded SQL Companion Guide 

The SQL Communications Area 
This section describes the SQL communications area as implemented in 
COBOL. 

The Include SQLCA Statement 

You should issue the include sqlca statement in the Working-Storage Section 
of the Data Division of your COBOL program. For example: 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 * declarations 
 
EXEC SQL END DECLARE SECTION END-EXEC. 

If you have multiple programs in a run unit, you must issue the include sqlca 
statement in each program. 

The include sqlca statement instructs the preprocessor to generate code to call 
Ingres runtime libraries. It generates a COBOL COPY directive to make all the 
generated calls acceptable to the compiler. 

Whether or not you intend to use the SQLCA for error handling, you must 
issue an include sqlca statement. If you do not issue it, the COBOL compiler 
will generate errors about undeclared data items in CALL statements. 

Contents of the SQLCA 

One of the results of issuing the include sqlca statement is the declaration of 
the SQLCA (SQL Communications Area) structure, which you can use for error 
handling in the context of database statements. You must only issue the 
statement once, because it generates a record declaration. The record 
declaration for the SQLCA is: 

Windows
  

01 SQLCA. 

    05 SQLCAID       PIC X(8). 

    05 SQLCABC       PIC S9(9) USAGE COMP-5. 

    05 SQLCODE       PIC S9(9) USAGE COMP-5. 

    05 SQLERRM. 

       10 SQLERRML   PIC S9(4) USAGE COMP-5. 

       10 SQLERRMC   PIC X(70). 



The SQL Communications Area 

Chapter 3: Embedded SQL for COBOL    3–39 

    05 SQLERRP       PIC X(8). 

    05 SQLERRD       PIC S9(9) USAGE COMP-5  

                     OCCURS 6 TIMES.. 

    05 SQLWARN. 
      10 SQLWARN0  PIC X(1). 
      10 SQLWARN1  PIC X(1). 
      10 SQLWARN2  PIC X(1). 
      10 SQLWARN3  PIC X(1). 
      10 SQLWARN4  PIC X(1). 
      10 SQLWARN5  PIC X(1). 
      10 SQLWARN6  PIC X(1). 
      10 SQLWARN7  PIC X(1). 
    05 SQLEXT      PIC X(8).  

UNIX
  

01 SQLCA. 

    05 SQLCAID       PIC X(8). 

    05 SQLCABC       PIC S9(9) USAGE COMP-5. 

    05 SQLCODE       PIC S9(9) USAGE COMP-5. 

    05 SQLERRM. 

       10 SQLERRML   PIC S9(4) USAGE COMP-5. 

       10 SQLERRMC   PIC X(70). 

    05 SQLERRP       PIC X(8). 

    05 SQLERRD       PIC S9(9) USAGE COMP-5  

                     OCCURS 6 TIMES.. 

    05 SQLWARN. 
      10 SQLWARN0  PIC X(1). 
      10 SQLWARN1  PIC X(1). 
      10 SQLWARN2  PIC X(1). 
      10 SQLWARN3  PIC X(1). 
      10 SQLWARN4  PIC X(1). 
      10 SQLWARN5  PIC X(1). 
      10 SQLWARN6  PIC X(1). 
      10 SQLWARN7  PIC X(1). 
    05 SQLEXT      PIC X(8).  

VMS
  

01 SQLCA. 

    05 SQLCAID       PIC X(8). 

    05 SQLCABC       PIC S9(9) USAGE COMP. 

    05 SQLCODE       PIC S9(9) USAGE COMP. 

    05 SQLERRM. 

        49 SQLERRML   PIC S9(4) USAGE COMP. 

        49 SQLERRMC   PIC X(70). 

    05 SQLERRP       PIC X(8). 

    05 SQLERRD       PIC S9(9) USAGE COMP 

                    OCCURS 6 TIMES. 



The SQL Communications Area 

3–40     Embedded SQL Companion Guide 

    05 SQLWARN. 
      10 SQLWARN0 PIC X(1). 
      10 SQLWARN1 PIC X(1). 
      10 SQLWARN2 PIC X(1). 
      10 SQLWARN3 PIC X(1). 
      10 SQLWARN4 PIC X(1). 
      10 SQLWARN5 PIC X(1). 
      10 SQLWARN6 PIC X(1). 
      10 SQLWARN7 PIC X(1). 
    05 SQLEXT     PIC X(8).  

For a full description of the SQLCA data items, see the SQL Reference Guide. 

The SQLCA is initialized at load-time. The fields SQLCAID and SQLCABC are 
initialized to the string SQLCA and the constant 136, respectively. 

Note that the preprocessor is not aware of the record declaration. Therefore, 
you cannot use the record items in an embedded SQL statement. For example, 
the following statement, which attempts to insert the string SQLCA into a 
table, generates an error: 

* This statement is illegal 
    EXEC SQL INSERT INTO employee (ename) 
         VALUES (:SQLCAID); 

 

Windows UNIX  
The SQLCA is local to the program that issued the include sqlca statement.  

VMS  
All modules from different languages that are linked together share the 
same SQLCA.  

Using the SQLCA for Error Handling 

User-Defined Error, Message, and DBevent Handlers offer the most flexibility 
for handling errors, database procedure messages, and database events. For 
more information, see Advanced Processing in this chapter. 

However you can do error handling with the SQLCA by using whenever 
statements or explicitly by checking the contents of the SQLCA fields 
SQLCODE, SQLERRD, and SQLWARN0. 

Error Handling with the Whenever Statement 

The syntax of the whenever statement is:  

exec sql whenever condition action end-exec 

Condition is sqlwarning, sqlerror, sqlmessage, dbevent, or not found. 



The SQL Communications Area 

Chapter 3: Embedded SQL for COBOL    3–41 

Action is continue, stop, goto a COBOL paragraph name, or call a COBOL 
paragraph name. The call action causes the preprocessor to generate a COBOL 
PERFORM statement for the specified paragraph name. For a detailed 
description of the whenever statement, see the SQL Reference Guide. 

If the paragraph name in a goto or call action is an embedded SQL reserved 
word, specify it in quotes. The paragraph name targeted by the goto or call 
action must be in the scope of all subsequent embedded SQL statements until 
another whenever statement is encountered for the same action. This is 
necessary because when the preprocessor interprets a whenever goto 
statement, it generates the COBOL statement: 

IF (condition) THEN 
         GO TO paragraph_name 
END-IF 

after an embedded SQL statement. Similarly, in interpreting a whenever call 
statement, the preprocessor generates the COBOL statement: 

IF (condition) THEN 
        PERFORM paragraph_name 
END-IF 

after subsequent embedded SQL statements. If the paragraph name is invalid, 
the COBOL compiler generates an error. 

You can also use user-defined handlers for error handling. For more 
information, see the SQL Reference Guide. Note that the reserved procedure 
sqlprint, which can substitute for a paragraph name in a whenever call 
statement, is always in the scope of the program. 

When the condition specified for a call action occurs, control passes to the first 
statement in the named paragraph. After the last statement contained in the 
paragraph has been executed, control returns to the statement following the 
statement that caused the call to occur. Consequently, after handling the 
whenever condition in the called paragraph, you may want to take some 
action, instead of merely allowing execution to continue with the statement 
following the embedded SQL statement that generated the error. 

The following example demonstrates use of the whenever statements in the 
context of printing some values from the employee table. The comments do 
not relate to the program but to the use of error handling. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
     01 E-REC. 
         02 ENO      PIC S9(8) USAGE DISPLAY. 
         02 FILLER   PIC X(2) VALUE SPACES. 
         02 ENAME    PIC X(20). 
         02 AGE      PIC S9(4) USAGE DISPLAY. 
      01 ERRMSG      PIC X(200). 



The SQL Communications Area 

3–42     Embedded SQL Companion Guide 

EXEC SQL END DECLARE SECTION END-EXEC. 
PROCEDURE DIVISION. 
BEGIN. 
        EXEC SQL DECLARE empcsr CURSOR FOR 
            SELECT eno, ename, age 
            FROM employee 
            END-EXEC. 
* An error when opening the "personnel" database will 
* cause the error to be printed and the program to 
* abort. 
        EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
        EXEC SQL CONNECT personnel END-EXEC. 
* Errors from here on will cause the program to clean up 
         EXEC SQL WHENEVER SQLERROR 
             GOTO CLEAN-UP END-EXEC. 
         EXEC SQL OPEN empcsr END-EXEC. 
         DISPLAY "Some values from 
                      the ""employee"" table". 
* When no more rows are fetched, close the cursor 
        EXEC SQL WHENEVER NOT FOUND GOTO CLOSE-CSR 
            END-EXEC. 
* The last statement was an OPEN, so we know that the 
* value of SQLCODE cannot be SQLERROR or NOT FOUND. 
* Loop is broken by NOT FOUND 
        PERFORM UNTIL SQLCODE NOT = 0 
            EXEC SQL FETCH empcsr 
                INTO :ENO, :ENAME, :AGE END-EXEC 
* The DISPLAY does not execute after the previous FETCH * returns the NOT FOUND 
condition. 
            DISPLAY E-REC 
        END-PERFORM. 
* From this point in the file onwards, ignore all 
* errors.  Also, turn off the NOT FOUND condition, 
* for consistency. 
        EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
        EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
    CLOSE-CSR. 
        EXEC SQL CLOSE empcsr END-EXEC. 
        EXEC SQL DISCONNECT END-EXEC. 
        STOP RUN. 
    CLEAN-UP. 
        EXEC SQL INQUIRE_SQL(:ERRMSG = ERRORTEXT) 
            END-EXEC. 
        DISPLAY "Aborting because of error". 
        DISPLAY ERRMSG. 
        EXEC SQL DISCONNECT END-EXEC. 
        STOP RUN. 

The Whenever Goto 
Action In Embedded 
SQL Blocks 

The words begin and end delimit an embedded SQL block-structured 
statement is a statement. For example, the select loop and the unloadtable 
loops are both block-structured statements. You can only terminate these 
statements using the methods specified for the particular statement in the 
SQL Reference Guide. For example, the select loop is terminated either when 
all the rows in the database result table have been processed or by an 
endselect statement. The unloadtable loop is terminated either when all the 
rows in the forms table field have been processed or by an endloop 
statement. 



The SQL Communications Area 

Chapter 3: Embedded SQL for COBOL    3–43 

Therefore, if you use a whenever statement with the goto action in an SQL 
block, you must avoid going to a paragraph outside the block. Such a goto 
causes the block to be terminated without issuing the runtime calls necessary 
to clean up the information that controls the loop. (For the same reason, you 
must not issue a COBOL GO TO statement that causes control to leave or 
enter the middle of an SQL block.)  The target of the whenever goto statement 
must be a paragraph in the block. If, however, it is a paragraph containing a 
block of code that cleanly exits the program, you do not need to take the 
above precaution. 

The above information does not apply to error handling for database 
statements issued outside an SQL block, or to explicit hard-coded error 
handling. For an example of hard-coded error handling, see the The Table 
Editor Table Field Application in this chapter. 

Explicit Error Handling 

The program can also handle errors by inspecting values in the SQLCA 
structure at various points. For additional information, see the SQL Reference 
Guide. 

The following example is functionally the same as the previous example, 
except that the error handling is hard-coded in COBOL statements. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
  01 E-REC. 
     02 ENO        PIC S9(8) USAGE DISPLAY. 
     02 ENAME      PIC X(20). 
     02 AGE        PIC S9(4) USAGE DISPLAY. 
  01 NOT-FOUND     PIC S9(4) USAGE COMP VALUE 100. 
  01 REASON        PIC X(14). 
  01 ERRMSG        PIC X(100). 
EXEC SQL END DECLARE SECTION END-EXEC. 
PROCEDURE DIVISION. 
BEGIN. 
    EXEC SQL DECLARE empcsr CURSOR FOR 
        SELECT eno, ename, age 
        FROM employee 
        END-EXEC. 
* Exit if database cannot be opened 
    EXEC SQL CONNECT personnel END-EXEC. 
    IF SQLCODE < 0 THEN 
        DISPLAY "Cannot access database" 
        STOP RUN. 
* Error if cannot open cursor 
    EXEC SQL OPEN empcsr END-EXEC. 
    IF SQLCODE < 0 THEN 
        MOVE "OPEN ""empcsr""" TO REASON 
        PERFORM CLEAN-UP.   
    DISPLAY "Some values from the ""employee"" table". 
* The last statement was an OPEN, so we know that the 
* value of SQLCODE cannot be SQLERROR or NOTFOUND. 
    PERFORM UNTIL SQLCODE NOT = 0 
        EXEC SQL FETCH empcsr 
               INTO :ENO, :ENAME, :AGE 



The SQL Communications Area 

3–44     Embedded SQL Companion Guide 

               END-EXEC. 
 
        IF SQLCODE < 0 THEN 
            MOVE "FETCH ""empcsr""" TO REASON 
            PERFORM CLEAN-UP 
* Do not print the last values twice 
        ELSE  
            IF SQLCODE NOT = NOT-FOUND THEN 
                DISPLAY E-REC 
            END-IF 
        END-IF 
    END-PERFORM. 
    EXEC SQL CLOSE empcsr END-EXEC. 
    EXEC SQL DISCONNECT END-EXEC. 
    STOP RUN. 
  CLEAN-UP. 
* Error handling paragraph 
    DISPLAY "Aborting because of error in " REASON. 
    EXEC SQL INQUIRE_SQL(:ERRMSG = ERRORTEXT) END-EXEC. 
    DISPLAY ERRMSG. 
    EXEC SQL DISCONNECT END-EXEC. 
    STOP RUN. 

Determining the Number of Affected Rows 

The SQLCA variable SQLERRD(3) indicates how many rows were affected by 
the last insert, update, or delete statement. The following program fragment, 
which deletes all employees whose employee numbers are greater than a 
given number, demonstrates how SQLERRD is used: 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
EXEC SQL BEGIN DECLARE SECTION. 
  01 LOWER-BOUND-NUM PIC S9(8) USAGE COMP. 
EXEC SQL END DECLARE SECTION. 
01 SQLERRD-DISP PIC Z9(4) USAGE DISPLAY. 
PROCEDURE DIVISION. 
BEGIN. 
    ... 
    EXEC SQL DELETE FROM employee 
        WHERE eno > :LOWER-BOUND-NUM 
        END-EXEC. 
* Print the number of employees deleted 
    MOVE SQLERRD(3) TO SQLERRD-DISP. 
    DISPLAY SQLERRD-DISP " rows were deleted." 
    ... 



Dynamic Programming for COBOL 

Chapter 3: Embedded SQL for COBOL    3–45 

Using the SQLSTATE Variable 

You can use the SQLSTATE variable in an ESQL/COBOL program to return 
status information about the last SQL statement that was executed. SQLSTATE 
must be declared in a DECLARE SECTION and its declaration must be valid for 
the entire file being preprocessed. 

To declare this variable, use: 

01 SQLSTATE     PICTURE X(5). 

or : 

77 SQLSTATE     PICTURE X(5). 

Dynamic Programming for COBOL 
Ingres provides Dynamic SQL and Dynamic FRS to allow you to write generic 
programs. Dynamic SQL allows a program to build and execute SQL 
statements at runtime.  For example, an application can include an expert 
mode in which the runtime user can type in select queries and browse the 
results at the terminal. Dynamic FRS allows a program to interact with any 
form at runtime. For example, an application can load in any form, allowing 
the runtime user to retrieve new data from the form and insert it into the 
database. 

The Dynamic SQL and Dynamic FRS statements are described in the SQL 
Reference Guide and the Forms-based Application Development Tools User 
Guide. This section discusses the COBOL-dependent issues of dynamic 
programming. For a complete example of using Dynamic SQL to write an SQL 
Terminal Monitor application, see The SQL Terminal Monitor Application in this 
chapter. For an example of using both Dynamic SQL and Dynamic FRS to 
browse and update a database using any form, see A Dynamic SQL/Forms 
Database Browser in this chapter. 

 

Windows
 

The Windows examples in this section are written exclusively for Micro Focus 
COBOL Windows and make use of the MF extensions to the COBOL language, 
in particular the POINTER usage clause.  

UNIX
 

The UNIX examples in this section are written exclusively for Micro Focus 
COBOL II and make use of the MF extensions to the COBOL language, in 
particular the POINTER usage clause.  

VMS
 

The VMS examples in this section make use of the VMS extensions to the 
COBOL language, in particular the POINTER usage clause.  



Dynamic Programming for COBOL 

3–46     Embedded SQL Companion Guide 

The SQLDA Record 

You can use the SQLDA SQL Descriptor Area (SQLDA) to pass type and size 
information about an SQL statement, an Ingres form, or an Ingres table field, 
between Ingres and your program. 

In order to use the SQLDA, issue the include sqlda statement in the COBOL 
program units that reference the SQLDA. The include sqlda statement 
generates a COBOL COPY directive of a file that defines an external reference 
to an SQLDA-like COBOL record. The file declares a COBOL record called 
SQLDA. Additionally in VMS, it marks it as EXTERNAL. 

You can also code this record directly, instead of using the include sqlda 
statement. You can choose any name for the structure and you can declare 
more than one in a single program. 

The definition of the SQLDA (as specified in the COPY file) is shown below in 
Windows, UNIX and VMS: 

Windows
  

* 

* SQL Descriptor Area 

* 

 78 IISQ-MAX-COLS    VALUE 1024. 

01 SQLDA. 
   05 SQLDAID         PIC X(8). 
   05 SQLDABC         PIC S9(9) USAGE COMP-5. 
   05 SQLN            PIC S9(4) USAGE COMP-5 
                      VALUE IISQ-MAX-COLS. 
   05 SQLD            PIC S9(4) USAGE COMP-5. 
   05 SQLVAR          OCCURS IISQ-MAX-COLS TIMES. 
      07 SQLTYPE      PIC S9(4) USAGE COMP-5. 
      07 SQLLEN       PIC S9(4) USAGE COMP-5. 
      07 SQLDATA      USAGE POINTER. 
      07 SQLIND       USAGE POINTER. 
      07 SQLNAME. 
          49 SQLNAMEL PIC S9(4) USAGE COMP-5. 
          49 SQLNAMEC PIC X(34). 
* 
* SQLDA Type Codes 
* Type Name  Value  Length 
* ---------  -----  ------ 
* DATE          3     25 
* MONEY         5      8 
* DECIMAL      10   SQLLEN = 256*P+S 
* CHAR         20   SQLLEN 
* VARCHAR      21   SQLLEN 
* BYTE         23   SQLLEN 
* BYTE VARYING 24   SQLLEN 
* LONG BYTE    25   SQLLEN 
* INTEGER      30   SQLLEN 
* FLOAT        31   SQLLEN 
* 4GL OBJECT   45   SQLLEN 
* TABLE-FIELD  52   0 
* 



Dynamic Programming for COBOL 

Chapter 3: Embedded SQL for COBOL    3–47 

 78 IISQ-DTE-TYPE   VALUE 3. 
 78 IISQ-DTE-LEN    VALUE 25. 
 78 IISQ-MNY-TYPE   VALUE 5. 
 78 IISQ-DEC-TYPE   VALUE 10. 
 78 IISQ-CHA-TYPE   VALUE 20. 
 78 IISQ-VCH-TYPE   VALUE 21. 
 78 IISQ-BYTE-TYPE  VALUE 23. 
 78 IISQ-VBYTE-TYPE VALUE 24. 
 78 IISQ-LBYTE-TYPE VALUE 25. 
 78 IISQ-INT-TYPE   VALUE 30. 
 78 IISQ-FLT-TYPE   VALUE 31. 
 78 IISQ-OBJ-TYPE   VALUE 45. 
 78 IISQ-TBL-TYPE   VALUE 52. 
 78 IISQ-LVCH-TYPE  VALUE 22.  
 

UNIX
  

* 

* SQL Descriptor Area 

* 

 78 IISQ-MAX-COLS    VALUE 1024. 

01 SQLDA. 
   05 SQLDAID         PIC X(8). 
   05 SQLDABC         PIC S9(9) USAGE COMP-5. 
   05 SQLN            PIC S9(4) USAGE COMP-5 
                      VALUE IISQ-MAX-COLS. 
   05 SQLD            PIC S9(4) USAGE COMP-5. 
   05 SQLVAR          OCCURS IISQ-MAX-COLS TIMES. 
      07 SQLTYPE      PIC S9(4) USAGE COMP-5. 
      07 SQLLEN       PIC S9(4) USAGE COMP-5. 
      07 SQLDATA      USAGE POINTER. 
      07 SQLIND       USAGE POINTER. 
      07 SQLNAME. 
          49 SQLNAMEL PIC S9(4) USAGE COMP-5. 
          49 SQLNAMEC PIC X(34). 
* 
* SQLDA Type Codes 
* Type Name  Value  Length 
* ---------  -----  ------ 
* DATE          3     25 
* MONEY         5      8 
* DECIMAL      10   SQLLEN = 256*P+S 
* CHAR         20   SQLLEN 
* VARCHAR      21   SQLLEN 
* BYTE         23   SQLLEN 
* BYTE VARYING 24   SQLLEN 
* LONG BYTE    25   SQLLEN 
* INTEGER      30   SQLLEN 
* FLOAT        31   SQLLEN 
* 4GL OBJECT   45   SQLLEN 
* TABLE-FIELD  52   0 
* 
 78 IISQ-DTE-TYPE   VALUE 3. 
 78 IISQ-DTE-LEN    VALUE 25. 
 78 IISQ-MNY-TYPE   VALUE 5. 
 78 IISQ-DEC-TYPE   VALUE 10. 
 78 IISQ-CHA-TYPE   VALUE 20. 
 78 IISQ-VCH-TYPE   VALUE 21. 
 78 IISQ-BYTE-TYPE  VALUE 23. 
 78 IISQ-VBYTE-TYPE VALUE 24. 
 78 IISQ-LBYTE-TYPE VALUE 25. 
 78 IISQ-INT-TYPE   VALUE 30. 



Dynamic Programming for COBOL 

3–48     Embedded SQL Companion Guide 

 78 IISQ-FLT-TYPE   VALUE 31. 
 78 IISQ-OBJ-TYPE   VALUE 45. 
 78 IISQ-TBL-TYPE   VALUE 52. 
 78 IISQ-LVCH-TYPE  VALUE 22.  

VMS
  

* 

* SQL Descriptor Area 

* 

  01 SQLDA EXTERNAL. 
     05 SQLDAID          PIC X(8). 
     05 SQLDABC          PIC S9(9) USAGE COMP. 
     05 SQLN             PIC S9(4) USAGE COMP. 
     05 SQLDA            PIC S9(4) USAGE COMP. 
     05 SQLVAR           OCCURS 1024 TIMES. 
          07 SQLTYPE     PIC S9(4) USAGE COMP. 
          07 SQLLEN      PIC S9(4) USAGE COMP. 
          07 SQLDATE     USAGE POINTER. 
          07 SQLIND      USAGE POINTER. 
          07 SQLNAME. 
              49 SQLNAMEL PIC S9(4) USAGE COMP. 
              49 SQLNAMEC PIC X(34). 
  01 IISQLHDR 
     05 SQLARG        USAGE POINTER. 
     05 SQLHDLR       PIC S9(9) USAGE COMP. 
* 
* SQLDA Type Codes 
* 
* Type Name   Value   Length 
* ---------   -----   ------ 
* DATE           3     25 
* MONEY          5      8 
* DECIMAL       10    SQLLEN = 256*P+S 
* CHAR          20    QLLEN 
* VARCHAR       21    SQLLEN 
* BYTE          23    SQLLEN 
* BYTE VARYING  24    SQLLEN 
* LONG BYTE     25    SQLLEN 
* INTEGER       30    SQLLEN 
* FLOAT         31    SQLLEN 
* TABLE         52      0  
* LONG VARCHAR  22      0 
* 4GL OBJECT    45    SQLLEN 
* DATAHANDLER   46  

Structure Definition and Usage Notes: 

 The sqlvar array (COBOL table) has 1024 elements. If you code your own 
SQLDA, you can supply a different number of elements. 

 The sqlvar array begins at subscript 1. 

 The sqldata and sqlind fields are declared with USAGE POINTER. These 
must be set to point at the addresses of other data items using the COBOL 
SET statement with the ADDRESS OF clause (UNIX) or the REFERENCE 
clause (VMS). 

 If your program declares its own SQLDA record, you must confirm that the 
record layout is identical to that of the Ingres-defined SQLDA record, 
although you can declare a different number of sqlvar elements. 



Dynamic Programming for COBOL 

Chapter 3: Embedded SQL for COBOL    3–49 

 The nested group sqlname is a varying length character string consisting 
of a length and data area. The sqlnamec field contains the name of a 
result field or column after the describe (or prepare into) statement. The 
length of the name is specified by sqlnamel. The characters in the 
sqlnamec field are blank padded. The sqlname group may also be set by a 
program using Dynamic FRS. The program is not required to pad sqlnamec 
with blanks. (See Setting SQLNAME for Dynamic FRS in this chapter.) 

 The comment listing the type codes represents the types that are returned 
by the describe statement and the types used by the program when using 
an SQLDA to retrieve or set data. The type code 52 indicates a table field 
and is set by the FRS when describing a form that contains a table field. 

Windows UNIX   If you code your own SQLDA, you can declare it EXTERNAL and share it 
with other programs. 

 Because the SQLDA is passed directly to Ingres without preprocessor 
intervention (and generated MOVE statements), all numeric fields of the 
SQLDA are declared as COMP-5. If, on your machine, the internal storage 
format of a USAGE COMP data item is identical to the storage format of 
USAGE COMP-5 then you may use either USAGE COMP or USAGE COMP-5 
for the corresponding SQLDA fields when you code your own. If you use 
USAGE COMP and the internal storage format is not the same then Ingres 
issues runtime errors about unknown data type codes and invalid data 
type lengths.  

 

VMS
 

 The SQLDA record definition is an EXTERNAL definition. This allows multiple 
COBOL program modules and source files to reference and process the 
same SQLDA. If you code your own SQLDA, you are not required to share it 
with other program modules by declaring it EXTERNAL.  

Declaring the SQLDA Record 

To declare the SQLDA record, issue include sqlda or hard code the record as 
previously defined. This declaration must be in the Working-Storage Section of 
the COBOL Data Division but not in an SQL declare section because the 
preprocessor does not understand the special meaning of the fields of the 
SQLDA. When the SQLDA record is used, the preprocessor accepts any object 
name and assumes that the data item refers to a legally declared SQLDA 
record. 

If a program requires an SQLDA with the same number of sqlvar elements as 
in the Ingres definition, it can accomplish this by including the following line in 
the Working-Storage Section: 

EXEC SQL INCLUDE SQLDA END-EXEC. 

and by including the following lines in the Procedure Division: 

* Set the size of the SQLDA 
MOVE 1024 to SQLN. 



Dynamic Programming for COBOL 

3–50     Embedded SQL Companion Guide 

... 
EXEC SQL DESCRIBE s1 INTO :SQLDA END-EXEC. 

Note that the sqln is given an initial value of 1024. 

If a program requires another SQLDA record or an SQLDA with a different 
number of sqlvar elements (not 1024), it can declare its own COBOL record. 
For example: 

Windows
  

* In Working-Storage Section. 

01 MY-SQLDA EXTERNAL. 
  02 MY-SQID              PIC X(8). 
  02 MY-SQSIZE            PIC S9(9) USAGE COMP-5. 
  02 MY-VARS              PIC S9(4) USAGE COMP-5. 
  02 RESULT-VARS          PIC S9(4) USAGE COMP-5. 
  02 COLUMN-VARS          OCCURS 20 TIMES. 
      03 COL-TYPE         PIC S9(4) USAGE COMP-5. 
      03 COL-LEN          PIC S9(4) USAGE COMP-5. 
      03 COL-ADDR         USAGE POINTER. 
      03 COL-NULL         USAGE POINTER. 
      03 COL-NAME. 
          04 NAME-LEN     PIC S9(4) USAGE COMP-5. 
          04 NAME-DAT     PIC X(34). 
 
* In Procedure Division set the size of the SQLDA 
 
MOVE 20 to MY-VARS.  
 

UNIX
  

* In Working-Storage Section. 

01 MY-SQLDA EXTERNAL. 
  02 MY-SQID              PIC X(8). 
  02 MY-SQSIZE            PIC S9(9) USAGE COMP-5. 
  02 MY-VARS              PIC S9(4) USAGE COMP-5. 
  02 RESULT-VARS          PIC S9(4) USAGE COMP-5. 
  02 COLUMN-VARS          OCCURS 20 TIMES. 
      03 COL-TYPE         PIC S9(4) USAGE COMP-5. 
      03 COL-LEN          PIC S9(4) USAGE COMP-5. 
      03 COL-ADDR         USAGE POINTER. 
      03 COL-NULL         USAGE POINTER. 
      03 COL-NAME. 
          04 NAME-LEN     PIC S9(4) USAGE COMP-5. 
          04 NAME-DAT     PIC X(34). 
 
* In Procedure Division set the size of the SQLDA 
 
MOVE 20 to MY-VARS.  

VMS
  

* In Working-Storage Section. 

01 MY-SQLDA EXTERNAL. 
   02 MY-SQID           PIC X(8). 
   02 MY-SQSIZE         PIC S9(9) USAGE COMP. 
   02 MY-VARS           PIC S9(4) USAGE COMP. 
   02 RESULT-VARS       PIC S9(4) USAGE COMP. 



Dynamic Programming for COBOL 

Chapter 3: Embedded SQL for COBOL    3–51 

   02 COLUMN-VARS OCCURS 20 TIMES. 
       03 COL-TYPE      PIC S9(4) USAGE COMP. 
       03 COL-LEN       PIC S9(4) USAGE COMP. 
       03 COL-ADDR      USAGE POINTER. 
       03 COL-NULL      USAGE POINTER. 
       03 COL-NAME. 
            04 NAME-LEN PIC S9(4) USAGE COMP. 
            04 NAME-DAT PIC X(34). 
 
* In Procedure Division set the size of the SQLDA 
 
MOVE 20 to MY-VARS.  

In the above declaration the names of the record components are not the 
same as those of the SQLDA record, but their layout is identical. 

Using the SQLVAR Table 

The SQL Reference Guide discusses the legal values of the sqlvar table (array). 
The describe and prepare into statements set the type, length, and name 
information of the SQLDA. This information refers to the result columns of a 
prepared select statement, the fields of a form, or the columns of a table field. 
When the program uses the SQLDA to retrieve or set Ingres data, it must 
assign the type and length information that now refers to the data items being 
pointed at by the SQLDA. 

COBOL Data Item Type Codes 

The type codes listed in the COBOL comment appearing in the the SQLDA 
Record section are the types that describe Ingres result fields or columns. For 
example, the SQL types date and money do not describe program variables 
but rather data types that are compatible with COBOL character and numeric 
types. 

Character data and the SQLDA have the same rules as character data in 
regular embedded SQL statements. They are also described in the COBOL Data 
Items and Data Types section. 

The following  Windows, UNIX, and VMS sections describe the Ingres type 
codes to use with COBOL data items that will be pointed at by the sqldata 
pointers. 



Dynamic Programming for COBOL 

3–52     Embedded SQL Companion Guide 

COBOL Type Codes 
and Ingres Type 
Codes—Windows 
and UNIX 

The left column of the following table shows the COBOL pictures and usages 
of the COBOL data items pointed at by sqldata, while the middle and the 
right columns show the equivalent SQL type codes and lengths: 

 

COBOL Data Type SQL Type Code 
(sqltype) 

Length (sqllen)

PIC S9(4) USAGE COMP-5 SYNC 30 (INTEGER) 2 

PIC S9(9) USAGE COMP-5 SYNC 30 (INTEGER)  4 

PIC S9(10)V9(8) COMP-3 SYNC 31 (FLOAT) 256*18+8 

PIC S9(P-S)V9(S) USAGE COMP-3 10 (DECIMAL) 256*P+S 

PIC X(LEN) 20 (CHARACTER) LEN 

First, note that since the preprocessor does not generate any conversions for 
the data items pointed at by sqldata you must confirm that the storage format 
of the values being pointed at are completely compatible with the storage 
formats known by Ingres (C storage formats). Consequently, 4-byte integers 
are USAGE COMP-5 SYNC rather than just USAGE COMP. If, on your machine, 
you verify that the internal storage format of unscaled COMP and COMP-5 data 
items are identical then you can use USAGE COMP. 

The preprocessor does not need to generate any conversions for the decimal 
data type. So, sqldata can be pointed directly at a COMP-3. Ingres expects 
precision and scale to be encoded in the sqllen field. The precision is stored in 
the first byte of a 2-byte integer while scale is stored in the last byte of a 
2-byte integer. For example, decimal(18,8) length is stored as (256*18)+8. 

All other Ingres types are compatible with the above types. For more 
information, see COBOL Data Items and Data Types in this chapter, which 
describes runtime data conversion. For example, the SQL date data type can 
be retrieved into a 25-byte character string, while the SQL money or float data 
type can be retrieved using a COMP-3 data item. Ingres will coerce float or 
money to packed decimal at runtime. 

Nullable data types (those data items associated with a null indicator) are 
specified by assigning the negative of the type code to the sqltype field. If the 
type is negative when you use the SQLDA to retrieve or set Ingres data, then 
a null indicator must be pointed at by the corresponding sqlind field. In this 
case, the COBOL data type of the null indicator must be PIC S9(4) USAGE 
COMP-5 SYNC. Once again, USAGE COMP-5 may be replaced by USAGE COMP 
if you verify that COMP is identical to COMP-5 on your machine. 



Dynamic Programming for COBOL 

Chapter 3: Embedded SQL for COBOL    3–53 

COBOL Type Codes 
and Ingres Type 
Codes—VMS 

The left column of the following table shows the COBOL pictures and usages 
of the COBOL data items pointed at by sqldata, while the middle and the 
right columns show the equivalent SQL type codes and lengths: 

 

COBOL Type Codes SQL Type Codes 
(sqltype) 

Length (sqllen)

PIC S9(4) USAGE COMP 30 (INTEGER) 2 

PIC S9(9) USAGE COMP 30 (INTEGER) 4 

USAGE COMP-1 31 (FLOAT) 4 

IISQLHDLR 46 (Datahandler) 0 

USAGE COMP-2 31 (FLOAT) 8 

PIC S9(P-S)V9(S) USAGE COMP-3 10 (DECIMAL) 256*P+S 

PIC X(LEN) 20 (CHARACTER) LEN 

All other types are compatible with these types, as described in the COBOL 
Data Items and Data Types in this chapter, which describes runtime data 
conversion. For example, the SQL date data type can be retrieved into a 
COBOL 25-byte character string, while the SQL money type can be retrieved 
into a COMP-2 data item. 

Nullable data types (those data items that are associated with a null indicator) 
are specified by assigning the negative of the type code to the sqltype field. If 
the type is negative, a null indicator (a 2-byte integer data item) must be 
pointed at by the sqlind field. 

Character data and the SQLDA have the exact same rules as character data in 
regular embedded SQL statements. For more information, see COBOL Data 
Items and Data Types in this chapter. 



Dynamic Programming for COBOL 

3–54     Embedded SQL Companion Guide 

Pointing at COBOL Data Items 

In order to fill an element of the sqlvar array, you must set the type 
information and assign a valid address to sqldata. The address must be that of 
a legally declared data item. If the element is nullable, the sqlind field must 
point at a legally declared null indicator. 

As a concluding example, the following fragment sets the type information of, 
and points at, a 4-byte integer data item, an 8-byte nullable floating-point 
data item, and an sqllen-specified character sub-string. The following 
examples demonstrate how a program can maintain a pool of available data 
items, such as large arrays of the few different typed variables and a large 
string space. The next available spot is chosen from the pool: 

Windows UNIX
 
* Assume SQLDA has been declared, as well as the  

* following COBOL tables: 

*   INT-4-TABLE, FLOAT-TABLE and INDICATOR-TABLE 

* Also assume that a large character string buffer has  

* been declared: 

* CHAR-STRING 

  MOVE 30        TO SQLTYPE(1). 
  MOVE 4         TO SQLLEN(1). 
  SET SQLIND(1)  TO NULL. 
  SET SQLDATA(1) TO ADDRESS OF INT-4-TABLE(CUR-INT). 
  ADD 1          TO CUR-INT. 
 
  MOVE -31       TO SQLTYPE(2). 
  MOVE 8         TO SQLLEN(2). 
  SET SQLIND(2)  TO ADDRESS OF INDICATOR-TABLE(CUR-IND). 
  SET SQLDATA(2) TO ADDRESS OF FLOAT-8-TABLE(CUR-FLT). 
  ADD 1          TO CUR-IND. 
  ADD 1          TO CUR-FLT. 
 
* SQLLEN has been assigned by DESCRIBE to be the length  
* of a specific result column. This length is used to  
* pick off a sub-string out of a large character string 
* space. 
 
  MOVE SQLLEN(3)   TO NEED-LEN. 
  MOVE 20          TO SQLTYPE(3). 
  SET SQLIND(3)    TO NULL. 
  SET SQLDATA(3)   TO ADDRESS OF 
         CHAR-STRING(CUR-CHAR:NEED-LEN). 
 ADD NEED-LEN     TO CUR-CHAR. 

It is advisable to set sqlind to point to a null address if the data represented by 
the sqlvar element is not nullable, that is, the sqlvar.sqltype is positive. 
However, because some COBOL compilers do not accept the SET pointer-item 
TO NULL syntax, Ingres will ignore the sqlind pointer if the sqltype is positive, 
which allows you to leave out that particular step if necessary.  



Dynamic Programming for COBOL 

Chapter 3: Embedded SQL for COBOL    3–55 

VMS
  

* Assume SQLDA has been declared, as well as the 

* following COBOL tables: 

*     INT-4-TABLE, FLOAT-8-TABLE and INDICATOR-TABLE 

* Also assume that a large character string buffer has 

* been declared: 

*     CHAR-STRING 

    MOVE 30         TO SQLTYPE(1). 
    MOVE 4          TO SQLLEN(1). 
    MOVE 0          TO SQLIND(1). 
    SET SQLDATA(1)  TO REFERENCE  
                     OF INT-4-TABLE(CUR-INT). 
    ADD 1           TO CUR-INT. 
 
    MOVE -31        TO SQLTYPE(2). 
    MOVE 8          TO SQLLEN(2). 
    SET SQLIND(2)   TO REFERENCE 
                     OF INDICATOR-TABLE(CUR-IND). 
    SET SQLDATA(2)  TO REFERENCE 
                     OF FLOAT-8-TABLE(CUR-FLT). 
    ADD 1           TO CUR-IND. 
    ADD 1           TO CUR-FLT. 
 
* SQLLEN has been assigned by DESCRIBE to be the length 
* of a specific result column. This length is used to 
* pick off a sub-string out of a large character 
* string space. 
 
    MOVE SQLLEN(3)  TO NEED-LEN. 
    MOVE 20         TO SQLTYPE(3). 
    MOVE 0          TO SQLIND(3). 
    SET SQLDATA(3)  TO REFERENCE OF 
    CHAR-STRING(CUR-CHAR:NEED-LEN). 
    ADD NEED-LEN    TO CUR-CHAR.  

Setting SQLNAME for Dynamic FRS 

When using the SQLVAR with Dynamic FRS statements, a few extra steps are 
required. These extra steps relate to the differences between Dynamic FRS 
and Dynamic SQL and are described in the SQL Reference Guide. 

When using the SQLDA in a forms input or output using clause, the value of 
sqlname must be set to a valid field or column name. If the name was set by a 
previous describe statement, it must be retained or reset by the program. If 
the name refers to a hidden table field column, the program must set sqlname 
directly. If your program sets sqlname directly, it must also set sqlnamel and 
sqlnamec. The name portion does not need to be padded with blanks. 

For example, a dynamically named table field has been described, and the 
application always initializes any table field with a hidden 6-byte character 
column called rowid. The code used to retrieve a row from the table field 
including the hidden column and _state variable would have to construct the 
two named columns: 



Dynamic Programming for COBOL 

3–56     Embedded SQL Companion Guide 

Windows
  

  ... 

 

  01 ROWID    PIC X(6). 

  01 ROWSTATE PIC S9(8) USAGE COMP-5. 

 
  ... 
  EXEC FRS DESCRIBE TABLE :FORMNAME :TABLENAME 
    INTO :SQLDA END-EXEC. 
 
  ... 
 
  ADD 1 TO SQLD. 
 
* Set up to retrieve rowid. 
  MOVE 20            TO SQLTYPE(SQLD). 
  MOVE 6             TO SQLLEN(SQLD). 
  SET SQLIND(SQLD)   TO NULL. 
  MOVE 5             TO SQLNAMEL(SQLD). 
  MOVE "rowid"       TO SQLNAMEC(SQLD)(1:5). 
  SET SQLDATA(SQLD)  TO ADDRESS OF ROWID. 
 
  ADD 1              TO SQLD. 
 
* Set up to retrieve _STATE. 
  MOVE 30            TO SQLTYPE(SQLD). 
  MOVE 4             TO SQLLEN(SQLD). 
  SET SQLIND(SQLD)   TO NULL. 
  MOVE 6             TO SQLNAMEL(SQLD). 
  MOVE "_state"      TO SQLNAMEC(SQLD)(1:6). 
  SET SQLDATA(SQLD)  TO ADDRESS OF ROWSTATE. 
 
.... 
 
  EXEC FRS GETROW :FORMNAME :TABLENAME 
    USING DESCRIPTOR :SQLDA END_EXEC.  

UNIX
  

  ... 

 

  01 ROWID    PIC X(6). 

  01 ROWSTATE PIC S9(8) USAGE COMP-5. 

 
  ... 
  EXEC FRS DESCRIBE TABLE :FORMNAME :TABLENAME 
    INTO :SQLDA END-EXEC. 
 
  ... 
 
  ADD 1 TO SQLD. 
 
* Set up to retrieve rowid. 
  MOVE 20            TO SQLTYPE(SQLD). 
  MOVE 6             TO SQLLEN(SQLD). 
  SET SQLIND(SQLD)   TO NULL. 
  MOVE 5             TO SQLNAMEL(SQLD). 
  MOVE "rowid"       TO SQLNAMEC(SQLD)(1:5). 
  SET SQLDATA(SQLD)  TO ADDRESS OF ROWID. 



Dynamic Programming for COBOL 

Chapter 3: Embedded SQL for COBOL    3–57 

 
  ADD 1              TO SQLD. 
 
* Set up to retrieve _STATE. 
  MOVE 30            TO SQLTYPE(SQLD). 
  MOVE 4             TO SQLLEN(SQLD). 
  SET SQLIND(SQLD)   TO NULL. 
  MOVE 6             TO SQLNAMEL(SQLD). 
  MOVE "_state"      TO SQLNAMEC(SQLD)(1:6). 
  SET SQLDATA(SQLD)  TO ADDRESS OF ROWSTATE. 
 
.... 
 
  EXEC FRS GETROW :FORMNAME :TABLENAME 
    USING DESCRIPTOR :SQLDA END_EXEC.  

VMS
  

  ... 

 

  01 ROWID      PIC X(6). 

  01 ROWSTATE   PIC S9(8) USAGE COMP. 

 
  ... 
 
  EXEC FRS DESCRIBE TABLE :FORMNAME :TABLENAME 
    INTO :SQLDA END-EXEC. 
.... 
 
  ADD 1 TO SQLD. 
 
* Set up to retrieve rowid. 
  MOVE 20        TO SQLTYPE(SQLD). 
  MOVE 6         TO SQLLEN(SQLD). 
  MOVE 0         TO SQLIND(SQLD). 
  MOVE 5         TO SQLNAMEL(SQLD). 
  MOVE "rowid"   TO SQLNAMEC(SQLD)(1:5). 
  SET SQLDATA(SQLD) TO REFERENCE OF ROWID. 
 
  ADD 1 TO SQLD. 
 
* Set up to retrieve _STATE. 
  MOVE 30        TO SQLTYPE(SQLD). 
  MOVE 4         TO SQLLEN(SQLD). 
  MOVE 0         TO SQLIND(SQLD). 
  MOVE 6         TO SQLNAMEL(SQLD). 
  MOVE "_state"  TO SQLNAMEC(SQLD)(1:6). 
  SET SQLDATA(SQLD) TO REFERENCE OF ROWSTATE. 
 
.... 
 
  EXEC FRS GETROW :FORMNAME :TABLENAME 
    USING DESCRIPTOR :SQLDA END_EXEC.        

You may also set the SQLVAR to point to a datahandler for large object 
columns. For more information on data handlers, see Advanced Processing in 
this chapter. 



Advanced Processing 

3–58     Embedded SQL Companion Guide 

Advanced Processing 
This section describes user-defined handlers. It includes information about 
user-defined error, dbevent, and message handlers as well as data handlers 
for large objects. 

User-Defined Error, DBevent, and Message Handlers 

You can use user-defined handlers to capture errors, messages, or events 
during the processing of a database statement. Use these handlers instead of 
the sql whenever statements with the SQLCA when you want to do the 
following: 

 Capture more than one error message on a single database statement. 

 Capture more than one message from database procedures fired by rules. 

 Trap errors, events, and messages as the DBMS raises them. If an event is 
raised when an error occurs during query execution, the WHENEVER 
mechanism detects only the error and defers acting on the event until the 
next database statement is executed. 

User-defined handlers offer you flexibility. If, for example, you want to trap an 
error, you can code a user-defined handler to issue an inquire_sql to get the 
error number and error text of the current error. You can then switch sessions 
and log the error to a table in another session; however, you must switch back 
to the session from which the handler was called before returning from the 
handler. When the user handler returns, the original statement continues 
executing. User code in the handler cannot issue database statements for the 
session from which the handler was called. 

The handler must be declared to return an integer. However, the Ingres 
runtime system ignores the return value. 

Syntax Notes: 

Windows

UNIX
 

Because Micro Focus COBOL does not support a function pointer data type, 
you must write a short embedded SQL/C procedure to register your handler 
with the Ingres runtime system. For more information, see Including User-
Defined Handlers in the Micro Focus RTS—UNIX in this chapter. 

The following syntax describes the three types of handlers. 

Use the following embedded SQL/C procedure to set the handlers: 

exec sql set_sql (errorhandler   = error_routine); 
exec sql set_sql (messagehandler = message_routine); 
exec sql set_sql (dbeventhandler = event_routine);  

 



Advanced Processing 

Chapter 3: Embedded SQL for COBOL    3–59 

VMS
 

exec sql set_sql (errorhandler   = error_routine) end-exec. 
exec sql set_sql (messagehandler = message_routine) end-exec. 
exec sql set_sql (dbeventhandler = event_routine) end-exec.  

They may be unset directly from your embedded SQL/COBOL program: 

exec sql set_sql (errorhandler   = 0) end-exec. 
exec sql set_sql (messagehandler = 0) end-exec. 
exec sql set_sql (dbeventhandler = 0) end-exec. 

1. Errorhandler, dbeventhandler, and messagehandler denote a user-defined 
handler to capture errors, events, and database messages respectively, as 
follows: 

– error_routine is the name of the function the Ingres runtime system 
calls when an error occurs. 

– event_routine is the name of the function the Ingres runtime system 
calls when a database event is raised. 

– message_routine is the name of the function the Ingres runtime 
system calls whenever a database procedure generates a message. 

 Errors that occur in the error handler itself do not cause the error handler 
to be reinvoked. You must use inquire_sql to handle or trap any errors 
that may occur in the handler. 

2. Unlike regular variables, the handler in the embedded SQL SET_SQL 
statement is not prefaced by a colon. The handler must not be declared in 
an embedded SQL declare section although you must declare the handler 
to the compiler. 

3. If you specify a zero (0) instead of a name, the zero will unset the user-
defined handlers are also described in the SQL Reference Guide. 

Declaring and Defining User-Defined Handlers 

The following examples show how to declare a user-defined handler in 
ESQL/COBOL: 

UNIX
  

IDENTIFICATION DIVISION. 

PROGRAM-ID.  TEST-PROG. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

 
WORKING_STORAGE SECTION. 
     EXEC SQL INCLUDE SQLCA END-EXEC. 
... 
PROCEDURE DIVISION. 
BEGIN. 
 
     EXEC SQL CONNECT dbname END-EXEC. 
 



Advanced Processing 

3–60     Embedded SQL Companion Guide 

*    Call "C" routine to set error handler on. 
*    ErrProg will be called whenever an error occurs. 
     CALL "ErrTrap". 
     ... 
     ... 
*    Suppress display of error number (don't call ErrProg) for next statement by 
*    turning error handler off. 
     EXEC SQL SET_SQL(ERRORHANDLER = 0) END-EXEC. 
     EXEC SQL ..... 
*    Turn error handler back on. ErrProg will now be 
*    called again whenever an error occurs. 
     CALL "ErrTrap". 
  ... 
END PROGRAM TEST-PROG. 

The following is an example of a user-defined error handler: 

 IDENTIFICATION DIVISION. 
 PROGRAM-ID.  ErrProg. 
 ENVIRONMENT DIVISION. 
 DATA DIVISION. 
 WORKING-STORAGE SECTION. 
 EXEC SQL INCLUDE SQLCA END-EXEC. 
 
 EXEC SQL BEGIN DECLARE SECTION END_EXEC. 
 01 errnum    PIC S9(9) USAGE DISPLAY. 
 EXEC SQL END DECLARE SECTON END-EXEC. 
 PROCEDURE DIVISION. 
 BEGIN. 
 
  EXEC SQL INQUIRE_SQL(:errnum = ERRORNO) END-EXEC. 
  DISPLAY "Errnum is " errnum. 
 END PROGRAM ErrProg. 

The following example is an embedded SQL/C routine that declares ErrProg to 
the Ingres runtime system: 

ErrTrap() 
{ 
      extern int ErrProg(); 
      EXEC SQL SET_SQL (ERRORHANDLER = ErrProg); 
}  

VMS
  

IDENTIFICATION DIVISION. 

PROGRAM-ID.  Test-prog. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

 
WORKING-STORAGE SECTION. 
         EXEC SQL INCLUDE SQLCA END-EXEC. 
         01 error_func PIC S9(9) USAGE COMP VALUE EXTERNAL 
         ErrProg. 
... 
 
PROCEDURE DIVISION 
BEGIN. 
 EXEC SQL CONNECT dbname END-EXEC. 
 EXEC SQL SET_SQL (ERRORHANDLER = error_func) 
       END-EXEC. 
 .  .  . 



Advanced Processing 

Chapter 3: Embedded SQL for COBOL    3–61 

END PROGRAM Test-prog. 
IDENTIFICATION DIVISION. 
PROGRAM-ID.  ErrProg. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
  EXEC SQL INCLUDE SQLCA END-EXEC. 
  EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
      01 errnum PIC S9(9) USAGE DISPLAY. 
      EXEC SQL END DECLARE SECTION END-EXEC. 
PROCEDURE DIVISION. 
BEGIN. 
 
      EXEC SQL INQUIRE_SQL (:errnum = ERRORNO) END-EXEC. 
      DISPLAY "Errnum is " errnum. 
END PROGRAM ErrProg.  

Including User-Defined Handlers in the Micro Focus RTS—UNIX  

You must follow the procedures below to include user-defined handlers in the 
new Micro Focus Runtime System (RTS) that you create. For a complete 
description of how to incorporate Ingres into the Micro Focus RTS, see 
Incorporating Ingres into the Micro Focus RTS—UNIX in this chapter. 

1. For each user-defined handler, build the object code as follows: 

 % esqlcbl     errhandler.scb 
 % cob -x -c   errhandler.cbl 
 
 % esqlcbl     msghandler.scb 
 % cob -x -c   msghandler.cbl 
 
 % esqlcbl     evthandler.scb 
 % cob -x -c   evthandler.cbl 

2. Because Micro Focus COBOL does not support a Function Pointer data 
type, you must write a short embedded SQL/C procedure to register your 
user-defined handler with the Ingres Runtime System. This embedded 
SQL/C procedure only needs to declare the handler, and execute the 
appropriate set_sql statement. For example: 

 ErrTrap() 
 { 
  extern int ErrProg(); 
  exec sql set_sql(errorhandler = ErrProg); 
 } 
 MsgTrap() 
 { 
  extern int MsgProg(); 
  exec sql set_sql(messagehandler = MsgProg); 
 } 
 EvtTrap() 
 { 
  extern int EvtProg(); 
  exec sql set_sql(dbeventhandler = EvtProg); 
 } 

 ErrProg, MsgProg and EvtProg are embedded SQL/COBOL programs that 
handle Ingres errors, database procedure messages and database events 
respectively. 



Advanced Processing 

3–62     Embedded SQL Companion Guide 

3. Build the object code of the embedded SQL/C registration procedure, as 
follows: 

 % esqlc cproc.sc 
 % cc -c cproc.c 

 Where cproc.sc is the name of the file containing the procedure(s) that 
you wrote for Step 2. 

4. Link the compiled handlers and the C registration procedure(s) into your 
RTS by modifying the COB command line to include the object files. 
Specify the object files before the list of system libraries, as follows: 

 cob -x -e "" -o ingrts 
  iimfdata.o iimflibq.o\ 
  cproc.o              \ 
  errhandler.o msghandler.o evthandler.o\ 
  $II_SYSTEM/ingres/lib/libingres.a\ 
  -lc -lm 

 cproc.o is the name of the object file that Step 3 produces. It contains the 
C registration procedure(s) for the user-defined handlers. 

5. Add COBOL CALL statements to your source program wherever you wish 
to set the handler. For example: 

* To set the errorhandler on: 
  CALL "ErrTrap". 
 * To set the messagehandler on: 
  CALL "MsgTrap". 
 * To set the dbeventhandler on: 
  CALL "EvtTrap". 

You may unset the user-defined handler directly from your embedded 
SQL/COBOL program with the SET_SQL statement: 

exec sql set_sql (errorhandler   = 0) end-exec. 
exec sql set_sql (messagehandler = 0) end-exec. 
exec sql set_sql (dbeventhandler = 0) end-exec. 

User-Defined Data Handlers for Large Objects 

Note: User-defined data handlers for large objects are not supported in 
MFCOBOL on UNIX. 

You can use user-defined data handlers to transmit large object column values 
to or from the database a segment at a time. For more details on Large 
Objects, the datahandler clause, the get data statement and the put data 
statement, see the SQL Reference Guide and the Forms-based Application 
Development Tools User Guide. 

ESQL/COBOL Usage Notes 

 The datahandler, and the datahandler argument, should not be declared in 
an ESQL declare section. Therefore do not use a colon before the 
datahandler or its argument. 



Advanced Processing 

Chapter 3: Embedded SQL for COBOL    3–63 

 You must ensure that the datahandler argument is a valid COBOL record. 
ESQL will not do any syntax or datatype checking of the argument. 

 The datahandler must be declared to return an integer. However, the 
actual return value will be ignored. 

Data Handlers and the SQLDA 

You may specify a user-defined data handler as an SQLVAR element of the 
SQLDA, to transmit large objects to/from the database. The eqsqlda.h file 
included using the include sqlda statement declares one IISQLHDLR record 
which may be used to specify one data handler and its argument. It is defined: 

* Declare IISQLHDLR 
 
        01 IISQLHDLR EXTERNAL. 
           05 SQLARG   USAGE POINTER. 
           05 SQLHDLR  PIC S9(9) USAGE COMP. 

You can also code this record directly, instead of using the include sqlda 
statement. You can choose any name for the structure and you can declare 
more than one in a single program. The program must set the values: 

* Declare the argument to be passed to datahandler 
     01 HDLR-ARG. 
       05  ARG-CHAR   PIC X(100). 
       05  ARG-INT    PIC S9(9) USAGE COMP. 
 
* Declare the datahandler  
     01 GET-HANDLER PIC S9(9) USAGE COMP VALUE  
             EXTERNAL GET-HANDLER. 
 
* Set the IISQLHDLR values for SQLHDLR and SQLARG 
     MOVE GET-HANDLER TO SQLHDLR. 
     SET SQLARG TO REFERENCE HDLR-ARG. 

The sqltype and sqllen fields of the SQLVAR element of the SQLDA should then 
be set as follows: 

MOVE 46 TO SQLTYPE(COL). 
MOVE  0 TO SQLLEN(COL). 

Sample Programs 

The programs in this section are examples of how to declare and use user-
defined data handlers in an ESQL/COBOL program. There are examples of a 
handler program, a put handler program, a get handler program and a 
dynamic SQL handler program. 

Handler Program This example assumes that the book table was created with the statement: 

EXEC SQL CREATE TABLE BOOK  
      (CHAPTER_NUM  INTEGER, 
       CHAPTER_NAME CHAR(50), 
       CHAPTER_TEXT LONG VARCHAR) END-EXEC. 



Advanced Processing 

3–64     Embedded SQL Companion Guide 

This program inserts a row into the table book using the data handler 
PUT_HANDLER to transmit the value of column chapter_text from a text file to 
the database. Then it selects the column chapter_text from the table book 
using the data handler GET-HANDLER to retrieve the chapter_text column a 
segment at a time. 

IDENTIFICATION DIVISION. 
PROGRAM-ID.  HANDLER-PROG. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
  EXEC SQL INCLUDE SQLCA END-EXEC. 
* Do not declare the data handlers nor the 
* datahandler argument to the ESQL preprocessor. 
 
  01 PUT-HANDLER PIC S9(9) USAGE COMP VALUE 
     EXTERNAL PUT-HANDLER. 
  01 GET-HANDLER PIC S9(9) USAGE COMP VALUE 
     EXTERNAL GET-HANDLER. 
 
  01 HDLR-ARG. 
    05 ARG-CHAR     PIC X(100). 
    05 ARG-INT      PIC S9(9) USAGE COMP. 
 
* Argument passed through to the DATAHANDLER must be * of type POINTER. 
 
  01 ARG-ADDR         USAGE POINTER. 
 
* Null indicator for data handler must be declared to * ESQL. 
 
 EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
  01 CHAPTER_NUM    S9(9) USAGE COMP. 
  01 IND-VAR       S9(4) USAGE COMP. 
 EXEC SQL END DECLARE SECTION END-EXEC. 
 
PROCEDURE DIVISION. 
BEGIN. 
 
* INSERT a long varchar value chapter_text into the 
* table book using the datahandler PUT_HANDLER. 
* The argument passed to the datahandler is a pointer to the record HDLR-ARG. 
 ... 
 SET ARG-ADDR TO REFERENCE HDLR-ARG. 
 
 EXEC SQL INSERT INTO book (chapter_num, 
  chapter_name, chapter_text) 
   VALUES (5, 'One dark and stormy night', 
   DATAHANDLER (PUT-HANDLER (ARG-ADDR))) 
 END-EXEC. 
 ... 
 
* Select the column chapter_num and the long varchar * column chapter_text from 
the table book. 
* The Datahandler (GET-HANDLER) will be invoked for each non-null value 
* of column chapter_text retrieved. For null values the indicator variable 
* will be set to "-1" and the datahandler will not be called. Again, the argument 
* passed to the handler is a pointer to the record HDLR-ARG. 
 



Advanced Processing 

Chapter 3: Embedded SQL for COBOL    3–65 

 ... 
 
 EXEC SQL SELECT chapter_num, chapter_text INTO 
         :CHAPTER_NUM, 
   DATAHANDLER (GET-HANDLER(ARG-ADDR)):IND-VAR 
   FROM book END-EXEC 
 EXEC SQL BEGIN END-EXEC 
   process row ... 
 EXEC SQL END END-EXEC. 
 
 ... 
 
END PROGRAM HANDLER-PROG. 
 

Put Handler This example shows how to read the long varchar chapter_text from a text 
file and insert it into the database a segment at a time. 

IDENTIFICATION DIVISION. 
PROGRAM-ID.  PUT-HANDLER. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
  EXEC SQL INCLUDE SQLCA END-EXEC. 
 
  EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
  01      SEG-BUF       PIC X(1000). 
  01      SEG-LEN       PIC s9(9) USAGE COMP. 
  01      DATA-END      PIC s9(9) USAGE COMP. 
  EXEC SQL END DECLARE SECTION END-EXEC. 
 
LINKAGE SECTION. 
  01  HDLR-ARG. 
   02 ARG-CHAR PIC X(100). 
   02 ARG-INT  PIC S9(9) USAGE COMP. 
 
PROCEDURE DIVISION USING ARG-ADDR. 
BEGIN. 
 
 ... 
 process information passed in via the HDLR-ARG... 
 open file... 
 
 ... 
    
 MOVE 0 TO DATA-END. 
 
 PERFORM UNTIL DATA-END = 1 
  read segment of less than 1000 chars from file into segbuf... 
  IF end-of-file 
   MOVE 1 TO DATA-END 
  END-IF. 
 
   EXEC SQL PUT DATA (SEGMENT = :SEG-BUF, 
    SEGMENTLENGTH = :SEG-LEN, DATAEND = :DATA-END) 
   END-EXEC 
  END-PERFORM. 
 ... 
  close file ... 
  set HDLR-ARG to return appropriate values... 
 ... 
 END PROGRAM PUT-HANDLER. 
 



Advanced Processing 

3–66     Embedded SQL Companion Guide 

Get Handler This example shows how to get the long varchar chapter_text from the 
database and write it to a text file. 

IDENTIFICATION DIVISION. 
PROGRAM-ID.  GET-HANDLER. 
 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
  EXEC SQL INCLUDE SQLCA END-EXEC. 
 
  EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
  01      SEG-BUF       PIC X(2000). 
  01      SEG-LEN       PIC Z9(6) USAGE COMP. 
  01      DATA-END      PIC Z9(9) USAGE COMP. 
  01      MAX-LEN       PIC S9(9) USAGE COMP. 
  EXEC SQL end DECLARE SECTION END-EXEC. 
 
LINKAGE SECTION. 
  01  HDLR-ARG. 
   02 ARG-CHAR PIC X(100). 
   02 ARG-INT  PIC S9(9) USAGE COMP. 
 
PROCEDURE DIVISION USING HDLR-ARG. 
BEGIN. 
 
 ... 
 process information passed in via the HDLR-ARG... 
 open file... 
 
* Get a maximum segment length of 2000 bytes. 
 

MOVE 0 TO DATA-END. 
MOVE 2000 TO MAX-LEN. 
 

* seg-len:  will contain the length of the segment retrieved. 
* seg-buf:  will contain a segment of the column chapter_text. 
* data-end: will be set to '1' when the entire value in chapter_text has been 
*    retrieved. 
 
 PERFORM UNTIL DATA-END = 1 
   EXEC SQL GET DATA (:SEG-BUF = SEGMENT, 
    :SEG-LEN = SEGMENTLENGTH, 
    :DATA-END = DATAEND) 
    WITH MAXLENGTH = :MAX-LEN 
   END-EXEC. 
 
    write segment to file... 
 
 END-PERFORM. 
 ... 
 set HDLR-ARG to return appropriate values... 
 
 END PROGRAM GET-HANDLER. 
 



Advanced Processing 

Chapter 3: Embedded SQL for COBOL    3–67 

Dynamic SQL Handler 
Program 

The following is an example of a dynamic SQL handler program. This 
program fragment shows the declaration and usage of a datahandler in a 
dynamic SQL program, using the SQLDA. It uses the datahandler GET-
HANDLER and the HDLR-ARG structure. 

IDENTIFICATION DIVISION. 
PROGRAM-ID.  DYNHDLR-PROG. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
 
 EXEC SQL INCLUDE SQLCA END-EXEC. 
 EXEC SQL INCLUDE SQLDA END-EXEC. 
 
* Do not declare the data handlers nor the 
* data handler argument to the ESQL preprocessor. 
 
 01 PUT-HANDLER PIC S9(9) USAGE COMP VALUE  
      EXTERNAL PUT-HANDLER. 
 01 GET-HANDLER PIC S9(9) USAGE COMP VALUE  
      EXTERNAL GET-HANDLER. 
 
* Declare argument to be passed to datahandler. 
 
 01 HDLR-ARG. 
   05 ARG-CHAR   PIC X(100). 
   05 ARG-INT    PIC S9(9) USAGE COMP. 
 
C Declare IISQLHDLR 
 
  01 IISQLHDLR EXTERNAL. 
    05 SQLARG      USAGE POINTER. 
    05 SQLHDLR     PIC S9(9) USAGE COMP. 
 
 EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
   01 INDVAR       PIC s9(4) USAGE COMP. 
 EXEC SQL END DECLARE SECTION END-EXEC. 
 
PROCEDURE DIVISION. 
BEGIN. 
 
  .  .  . 
 
* Set the IISQLHDLR structure with the appropriate datahandler and 
* datahandler argument. 
 
  MOVE GET-HANDLER TO SQLHDLR. 
  SET SQLARG TO REFERENCE HDLR-ARG. 
 
* Describe the statement into the SQLDA. 
 
  STMT-BUF = "select * from book". 
  EXEC SQL PREPARE stmt FROM :STMT-BUF END-EXEC. 
  EXEC SQL DESCRIBE stmt INTO :SQLDA END-EXEC. 
 
* Set the SQLDATA variables correctly. 
 
  PERFORM SETUP-COLUMN VARYING COL FROM 1 BY 1 
    UNTIL (COL > SQLD). 
 
* The Datahandler (GET-HANDLER) will be invoked for 
* each non-null value of column "chapter_text" 
* retrieved. For null values the SQLIND will be set * to "-1" and the datahandler 
* will not be called. 

 



Preprocessor Operation 

3–68     Embedded SQL Companion Guide 

  EXEC SQL EXECUTE IMMEDIATE :STMT-BUF USING 
 :SQLDA END-EXEC 
  EXEC SQL BEGIN END-EXEC 
    process row ... 
  EXEC SQL END END-EXEC 
  .  .  . 
 
SETUP-COLUMN. 
  .  .  . 
 
* The Describe statement will return 22 for long 
* varchar and -22 for Nullable Long Varchar 
 
  IF (SQLTYPE(COL) = 22) 
   MOVE 46 TO SQLTYPE(COL) 
   SET SQLDATA(COL) TO REFERENCE IISQLHDLR 
   SET SQLIND(COL) TO REFERENCE INDVAR 
  ELSE 
   .  .  . 
 
  END-IF. 
 
   .  .  . 
 
END PROGRAM DYNHLDR-PROG. 

Preprocessor Operation 
This section describes the embedded SQL preprocessor for COBOL and the 
steps required to create, compile, and link an Embedded SQL program. 

Include File Processing 

The following sections describe include file processing for Windows, UNIX, and 
VMS. 

Including Files—Windows and UNIX 

The embedded SQL include statement provides a means to include external 
files in your program’s source code. Its syntax is: 

exec sql include filename end-exec 

Filename is a single-quoted string constant specifying a file name or an 
environment variable that points to the file name. If no extension is given to 
the filename (or to the file name pointed at by the environment variable), the 
default COBOL input file extension .scb is assumed. 

This statement is normally used to include variable declarations although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–69 

The included file is preprocessed and an output file with the same name but 
with the default output extension .cbl is generated. You can override this 
default output extension with the -o.ext flag on the command line. In the 
original source file that specified the include statement, a new reference is 
made to the output file with the COBOL COPY statement. If the -o flag is used 
(with no extension), an output file is not generated for the include statement. 

For example, assume that no overriding output extension was explicitly given 
on the command line. The embedded SQL statement: 

EXEC SQL INCLUDE 'employee.scb' END-EXEC. 

is preprocessed to the COBOL statement: 

COPY "employee.cbl". 

and the file employee.scb is translated into the COBOL file employee.cbl. 

As another example, assume that a source file called inputfile contains the 
following include statement: 

EXEC SQL INCLUDE 'mydecls' END-EXEC. 

 

Windows
 

The name mydecls can be defined as a system environment variable 
pointing to the file c:\src\headers\myvars.scb by means of the following 
command at the system level: 

setenv mydecls c:\src\headers\myvars.scb  

 

UNIX
 

The name mydecls can be defined as a system environment variable 
pointing to the file /src/headers/myvars.scb by means of the following 
command at the system level: 

setenv mydecls /src/headers/myvars.scb  

Because the extension .scb is the default input extension for embedded SQL 
include files, it need not be specified when defining an environment variable 
for the file. 

Assume now that inputfile is preprocessed with the command: 

esqlcbl -o.hdr inputfile 

The command line specifies .hdr as the output file extension for include files. 
As the file is preprocessed, the include statement shown earlier is translated 
into the COBOL statement: 

 

Windows
 

COPY "c:\src\headers\myvars.hdr". 

And the COBOL file c:\src\headers\myvars.hdr is generated as output for the 
original include file, c:\src\headers\myvars.scb. 



Preprocessor Operation 

3–70     Embedded SQL Companion Guide 

You can also specify include files with a relative path. For example, if you 
preprocess the file c:\src\headers\myvars.scb, the embedded SQL statement: 

EXEC SQL INCLUDE '../headers/myvars.scb' END-EXEC. 

is preprocessed to the COBOL statement: 

include "../headers/myvars.cbl". 

And the COBOL file c:\src\headers\myvars.cbl is generated as output for the 
original include file, c:\src\headers\myvars.cbl.  

 

UNIX
 

COPY "/src/headers/myvars.hdr". 

And the COBOL file /src/headers/myvars.hdr is generated as output for the 
original include file, /src/headers/myvars.scb. 

You can also specify include files with a relative path. For example, if you 
preprocess the file /src/source/myprog.scb, the embedded SQL statement: 

EXEC SQL INCLUDE '../headers/myvars.scb' END-EXEC. 

is preprocessed to the COBOL statement: 

include "../headers/myvars.cbl". 

And the COBOL file /src/headers/myvars.cbl is generated as output for the 
original include file, /src/headers/myvars.scb.  

Including Files—VMS 

The embedded SQL include statement provides a means to include external 
files in your program’s source code. Its syntax is: 

exec sql include filename end-exec 

Filename is a single-quoted string constant specifying a file name or an 
environment variable that points to the file name. If no extension is given to 
the filename (or to the file name pointed at by the environment variable), the 
default COBOL input file extension .scb is assumed. 

This statement is normally used to include variable declarations although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–71 

The included file is preprocessed and an output file with the same name but 
with the default output extension .lib is generated. You can override this 
default output extension with the -o.ext flag on the command line. In the 
original source file that specified the include statement, a new reference is 
made to the output file with the COBOL COPY statement. If the -o flag is used 
with no extension, an output file is not generated for the include statement. 
This is useful for program libraries using MMS dependencies. 

If you use both the -o.ext and the -o flags, then the preprocessor will generate 
the specified extension for the translated include statements in the program 
but will not generate new output files for the statements. 

For example, assume that no overriding output extension was explicitly given 
on the command line. The embedded SQL statement: 

EXEC SQL INCLUDE 'employee.scb' END-EXEC. 

is preprocessed to the COBOL statement: 

COPY "employee.lib". 

And the file employee.scb is translated into the COBOL file employee.lib. 

As another example, assume that a source file called inputfile contains the 
following include statement: 

EXEC SQL INCLUDE 'mydecls' END-EXEC. 

The name mydecls can be defined as a system logical name pointing to the file 
dra1:[headers]myvars.scb by means of the following command at the system 
level: 

define mydecls dra1:[headers]myvars 

Because the extension .scb is the default input extension for embedded SQL 
include files, it need not be specified when defining a logical name for the file. 

Assume now that inputfile is preprocessed with the command: 

esqlcbl -o.hdr inputfile 

The command line specifies .hdr as the output file extension for include files. 
As the file is preprocessed, the include statement shown earlier is translated 
into the COBOL statement: 

COPY "dra1:[headers]myvars.hdr" 

And the COBOL file dra1:[headers]myvars.hdr is generated as output for the 
original include file, dra1:[headers]myvars.scb. 



Preprocessor Operation 

3–72     Embedded SQL Companion Guide 

You can also specify include files with a relative path. For example, if you 
preprocess the file dra1:[mysource]myfile.scb, the embedded SQL statement: 

EXEC SQL INCLUDE '[-.headers]myvars.scb' END-EXEC. 

is preprocessed to the COBOL statement: 

COPY "[-.headers]myvars.lib" 

And the COBOL file dra1:[headers]myvars.lib is generated as output for the 
original include file, dra1:[headers]myvars.scb. 

Including Source Code with Labels 

Some embedded SQL statements generate labels. If you include a file 
containing such statements, you must be careful to include the file only once 
in a given COBOL program unit. Otherwise, you may find that the compiler 
later complains that the generated labels are multiple defined. 

The embedded SQL select loop generates labels and all the embedded 
SQL/FORMS block-type statements, such as display and unloadtable. 

Coding Requirements for Writing Embedded SQL Programs 

This section describes the code generated by the preprocessor and how that 
code can affect your program. 

Comments Embedded in COBOL Output 

Each embedded SQL statement generates one comment and a few lines of 
COBOL code. You may find that the preprocessor translates 50 lines of 
embedded SQL into 200 lines of COBOL. This may result in confusion about 
the line numbers when you try to debug the original source code. To facilitate 
debugging, each group of COBOL statements associated with a particular 
statement is delimited by a comment corresponding to the original embedded 
SQL source. Each comment is one line long and describes the file name, line 
number and type of statement in the original source file. 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–73 

Embedded SQL Statements In IF and PERFORM Blocks 

The preprocessor may produce several COBOL statements for a single 
embedded SQL statement. In most circumstances, the statements can be 
simply nested in the scope of a COBOL IF or PERFORM statement. 

There are some embedded SQL statements for which the preprocessor 
generates COBOL paragraphs and paragraph names. These statements are: 

select-loop 
display 
formdata 
unloadtable 
submenu 

These statements cannot be nested in the scope of a COBOL IF or PERFORM 
statement because of the paragraph names the preprocessor generates for 
them. 

These statements must not contain labels. 

Another consequence of these generated paragraphs is that they may 
terminate the scope of a local COBOL paragraph, thus modifying the intended 
flow of control. For example, a paragraph generated by the preprocessor in a 
source paragraph may cause the program to return prematurely to the 
statement following the PERFORM statement that called the source paragraph. 
To ensure that control does not return prematurely, you must use the 
THROUGH clause in the PERFORM statement. 

The following example demonstrates the use of PERFORM-THROUGH and an 
EXIT paragraph to force correct control flow: 

      DATA DIVISION. 
      WORKING-STORAGE SECTION. 
      EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
       01 ENAME PIC X(20). 
      EXEC SQL END DECLARE SECTION END-EXEC. 
* Include SQLCA, declare program variables, etc. 
      PROCEDURE DIVISION. 
      BEGIN. 
* Initialization of program 
* Note the THROUGH clause to ensure correct 
* control flow. 
      PERFORM UNLOAD-TAB THROUGH END-UNLOAD. 
* User code 
      UNLOAD-TAB. 
* This paragraph includes a paragraph generated 
* by the preprocessor 
      EXEC FRS UNLOADTABLE Empform Employee 
         (:ENAME = Lastname) END-EXEC. 
      EXEC FRS BEGIN END-EXEC. 
            EXEC SQL INSERT into person (name) 
                 VALUES (:ENAME) 
                 END-EXEC. 
      EXEC FRS END END-EXEC. 
* This paragraph-name and EXIT statement cause 



Preprocessor Operation 

3–74     Embedded SQL Companion Guide 

* control to pass back to the caller's scope 
      END-UNLOAD. 
            EXIT. 
      USER-PARAGRAPH. 
* Program continues 

COBOL Periods and Embedded SQL Statements 

You can place a period following the END-EXEC statement terminator (for 
more information, see Embedded SQL Statement Syntax for COBOL in this 
chapter), although the preprocessor does not require this. If you do include a 
period at the end of an embedded SQL statement, the preprocessor places a 
period at the end of the last COBOL statement generated by that embedded 
SQL statement. Therefore, when you include periods in embedded SQL 
statements, be careful to follow the same guidelines that you use for placing 
periods in COBOL statements. For example, do not add a period at the end of 
an embedded SQL statement occurring in the middle of the scope of a COBOL 
IF or PERFORM statement. If you include the separator period in such a case, 
you will prematurely end the scope of the COBOL statement. Similarly, when 
an embedded SQL statement is the last statement in the scope of a COBOL IF, 
you must follow it with a period (or, alternatively, an END-IF) to terminate the 
scope of the IF. For example: 

    IF ERR-NO > 0 THEN 
* Do not use a separating period in the middle 
* of an IF statement. 
        EXEC FRS MESSAGE 'You cannot update the database' 
END-EXEC 
* Be sure to use a separating period at the 
* end of an IF statement. 
        EXEC FRS SLEEP 2 END-EXEC. 

In the example above, the absence of the period after the first end-exec 
causes the preprocessor to generate code without the separator period, thus 
preserving the scope of the IF statement. The period following the second 
end-exec causes the preprocessor to generate code with a final separator 
period, terminating the scope of the IF. 

The embedded SQL preprocessor always generates necessary separator 
periods when translating embedded SQL block structured statements, such as 
a select or unloadtable loop, into COBOL paragraphs. The end-exec statement 
terminator associated with these statements and with their begin clauses 
cannot be followed by a period. A period will cause a preprocessor syntax error 
on the subsequent components of the block structured statement. 

In a display loop, periods are allowed in the statement blocks of initialize and 
activate statements and following the finalize statement. 

The following example shows the use of the period in block-structured 
statements and display loops. 

EXEC FRS FORMS END-EXEC.                 -- Period allowed 
 
EXEC FRS DISPLAY empform END-EXEC        -- No period 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–75 

EXEC FRS INITIALIZE END-EXEC             -- No period 
EXEC FRS BEGIN END-EXEC                  -- No period 
    ESQL, COBOL statements               -- Periods allowed 
 
    EXEC SQL SELECT * INTO :emp_rec 
           FROM employee END-EXEC        -- No period 
    EXEC SQL BEGIN END-EXEC              -- No period 
 
    ESQL, COBOL statements.              -- Periods allowed 
 
    EXEC SQL END END-EXEC.               -- Period allowed 
 
EXEC FRS END END-EXEC                    -- No period 
 
EXEC FRS ACTIVATE FIELD emp_name END-EXE -- No period 
EXEC FRS BEGIN END-EXEC                  -- No period 
 
    EXEC FRS SUBMENU END-EXEC            -- No period 
 
    EXEC FRS ACTIVATE frskey3 END-EXEC   -- No period 
    EXEC FRS BEGIN END-EXEC              -- No period 
 
        ESQL, COBOL statements.          -- Periods allowed 
 
        IF condition THEN 
            ESQL, COBOL statements       -- No periods 
        ELSE 
            ESQL, COBOL statements       -- No periods 
        END-IF.                          -- Period optional 
                                            (COBOL rules) 
 
        PERFORM UNTIL condition 
            ESQL, COBOL statements       -- No periods 
        END-PERFORM.                     -- Period optional 
                                            (COBOL rules) 
 
     EXEC FRS END END-EXEC               -- No period 
 
EXEC FRS END END-EXEC                    -- No period 
 
EXEC FRS ACTIVATE MENUITEM 'Save' END-EXE-- No period 
EXEC FRS BEGIN END-EXEC                  -- No period 
 
  EXEC FRS UNLOADTABLE empform employee END-EXEC -- No period 
  EXEC FRS BEGIN END-EXEC                -- No period 
 
        ESQL, COBOL statements.          -- Periods allowed 
 
    EXEC FRS END END-EXEC.               -- Period allowed 
 
EXEC FRS END END-EXEC                    -- No period 
 
EXEC FRS FINALIZE END-EXEC.              -- Period allowed 



Preprocessor Operation 

3–76     Embedded SQL Companion Guide 

A period after the END-EXEC terminator of any of the following statements will 
cause a preprocessor error: 

display 
initialize 
activate 
submenu 
formdata 
unloadtable 
end, except when used as the final statement of display, unloadtable, 
formdata,   and select loops 
select, when opening a select loop 

For more information on COBOL paragraphs and embedded SQL structured 
statements, see the preceding section. 

Embedded SQL Statements That Do Not Generate Code 

The following embedded SQL declarative statements do not generate any 
COBOL code: 

declare cursor 
declare statement 
declare table 
whenever 

Do not code these statements as the only statements in COBOL constructs 
that do not allow null statements. Also, these statements must not contain 
labels. For example, coding a declare cursor statement as the only statement 
in a COBOL IF statement causes compiler errors: 

IF USING-DATABASE=1 THEN 
    EXEC SQL DECLARE empcsr CURSOR FOR 
         SELECT ename FROM employee END-EXEC 
ELSE 
    DISPLAY "You have not accessed the database". 
The code generated by the preprocessor is: 
 
IF USING-DATABASE=1 THEN 
ELSE 
    DISPLAY "You have not accessed the database". 

This is an illegal use of the COBOL ELSE clause. 

Also, do not precede these statements (declare cursor, declare statement, 
declare table, and whenever) with a COBOL paragraph label (on the same line) 
if that label is referenced elsewhere in your program. 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–77 

Efficient Code Generation 

This section describes the COBOL code generated by the embedded SQL 
preprocessor. 

COBOL Strings and 
Embedded SQL 
Strings 

COBOL stores string and character data in a machine-dependent data item 
(UNIX and Windows) or descriptor (VMS). The embedded SQL runtime 
routines are written in another language (C) that verifies lengths of strings 
by the location of a null (LOW-VALUE) byte. Consequently, COBOL strings 
must be converted to embedded SQL runtime strings before the call to the 
runtime routine is made. 

In some languages, embedded SQL generates a nested function call that 
accepts as its argument the character data item (UNIX and Windows) or VAX 
string descriptor (VMS) and returns the address of the embedded SQL 
null-terminated string. COBOL does not have nested function calls, and 
simulating this would require two expensive COBOL statements. Embedded 
SQL/COBOL knows the context of the statement, and in most cases will MOVE 
the COBOL string constant or data item in a known area that has already been 
null-terminated. This extra statement is cheaper than the nested function call 
of other languages, as it generates a single machine instruction. Even though 
your COBOL-generated code may look wordier and longer than other 
embedded SQL-generated code, it is actually as efficient. 

COBOL IF-THEN-ELSE 
Blocks 

There are some statements that normally generate an IF-THEN-ELSE 
construct in other languages that instead generate IF-GOTO constructs in 
COBOL. The reason for this is that there is no way to ensure that no 
embedded SQL-generated (or programmer-generated) period will appear in 
an IF block. Consequently, in order to allow any statement in this scope, 
embedded SQL generates an IF-GOTO construct. 

The code generated by embedded SQL for this construct is actually very 
similar to the code generated by any compiler for an IF-THEN-ELSE construct 
and is no less efficient. 

COBOL Function Calls COBOL supports function calls with the USING clause (UNIX) or the GIVING 
clause (VMS). This allows a function to return a value into a declared data 
item. Embedded SQL generates many of these statements by assigning the 
return values into internally declared data items, and then checking the 
result of the function by checking the value of the data item. This is obviously 
less efficient than other languages that check the return value of a function 
by means of its implicit value (stored in a register). 

COBOL has the overhead of assigning the value to a variable. An embedded 
SQL/COBOL generated function call that tests the result may look like: 

Windows UNIX  
CALL "IIFUNC" USING IIRESULT 

IF (IIRESULT = 0) THEN ...  

VMS  
CALL "IIFUNC" GIVING IIRESULT 

IF (IIRESULT = 0) THEN ...  



Preprocessor Operation 

3–78     Embedded SQL Companion Guide 

Command Line Operations 

This section describes the operations you must perform from the operating 
system command line in order to create an executable image of an embedded 
SQL program. These operations include preprocessing the embedded program 
and compiling the generated code. 

The Embedded SQL Preprocessor Command 

The following command line invokes the COBOL preprocessor: 

esqlcbl {flags} {filename} 

where flags are: 

 

VMS
 

-a Accepts input and generates output in ANSI format. Use this flag 
if your source code is in ANSI format and you want to compile 
the program with the cobol command line qualifier ansi_format. 
The code the preprocessor generates will also be in ANSI format. 
If this flag is omitted, the preprocessor accepts input and 
generates output in VAX COBOL terminal format. For more 
information, see Source Code Format in this chapter.  

 -d Adds debugging information to the runtime database error 
messages embedded SQL generates. The source file name, line 
number and statement in error are printed with the error 
message. 

 -f[filename] Writes preprocessor output to the named file. If no filename is 
specified, the output is sent to standard output, one screen at a 
time. 

 -l Writes preprocessor error messages to the preprocessor’s listing 
file, as well as to the terminal. The listing file includes 
preprocessor error messages and your source text in a file 
named filename.lis, where filename is the name of the input file.

 -lo Like -l, but the generated COBOL code also appears in the listing 
file. 

 -o.ext Specifies the extension the preprocessor gives to both the 
translated include statements in the main program and the 
generated output files. If this flag is not provided the default is 
.cbl (UNIX) or .lib (VMS). 

If you use this flag with the -o flag, then the preprocessor 
generates the specified extension for the translated include 
statements but does not generate new output files for the 
include statements. 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–79 

VMS
 

-a Accepts input and generates output in ANSI format. Use this flag 
if your source code is in ANSI format and you want to compile 
the program with the cobol command line qualifier ansi_format. 
The code the preprocessor generates will also be in ANSI format. 
If this flag is omitted, the preprocessor accepts input and 
generates output in VAX COBOL terminal format. For more 
information, see Source Code Format in this chapter.  

 -o Directs the preprocessor not to generate output files for include 
files. 

This flag does not affect the translated include statements in the 
main program. The preprocessor will generate a default 
extension for the translated include file statements unless you 
use the -o.ext flag. 

 -s Reads input from standard input and generates COBOL code to 
standard output. This is useful for testing statements you are not 
familiar with. If the -l option is specified with this flag, the listing 
file is called “stdin.lis.”  To terminate the interactive session, 
type CtrlD (UNIX) or Ctrl Z (VMS). 

 -sqlcode  

 

Indicates the file declares an integer variable named SQLCODE 
to receive status information from SQL statements. That 
declaration need not be in an exec sql begin/end declare section. 
This feature is provided for ISO Entry SQL92 conformity. 
However the ISO Entry SQL92 specification describes SQLCODE 
as a “deprecated feature” and recommends using the SQLSTATE 
variable. 

 -nosqlcode Tells the preprocessor not to assume the existence of a status 
variable named SQLCODE. The -nosqlcode flag is the default. 

 -w Prints warning messages. 

 -wopen This flag is identical to -wsql= open. However,-wopen is 
supported only for backwards capability. See -wsql = open for 
more information. 

 -wsql= 
entry_SQL92 

Causes the preprocessor to flag any usage of syntax or features 
that do not conform to the ISO Entry SQL92 entry level 
standard. (This is also known as the FIPS flagger option.) 

 -wsql=open Use open only with OpenSQL syntax. -wsql = open generates a 
warning if the preprocessor encounters an embedded SQL 
statement that does not conform to OpenSQL syntax. (For 
OpenSQL syntax, see the OpenSQL Reference Guide.) This flag is 
useful if you intend to port an application across different 
Enterprise Access products. The warnings do not affect the 
generated code and the output file may be compiled. This flag 
does not validate the statement syntax for any Enterprise Access 
product whose syntax is more restrictive than that of OpenSQL. 



Preprocessor Operation 

3–80     Embedded SQL Companion Guide 

VMS
 

-a Accepts input and generates output in ANSI format. Use this flag 
if your source code is in ANSI format and you want to compile 
the program with the cobol command line qualifier ansi_format. 
The code the preprocessor generates will also be in ANSI format. 
If this flag is omitted, the preprocessor accepts input and 
generates output in VAX COBOL terminal format. For more 
information, see Source Code Format in this chapter.  

Windows
 

-? Shows the command line options for esqlcbl.  

UNIX
 

-- Shows the command line options for esqlcbl.  

VMS
 

-? Shows the command line options for esqlcbl.  

The embedded SQL/COBOL preprocessor assumes that input files are named 
with the extension .scb. 

To override this default, specify the file extension of the input file(s) on the 
command line. The output of the preprocessor is a file of generated COBOL 
statements with the same name and the extension .cbl (UNIX and Windows) 
or .cob (VMS). 

If you enter only the command, without specifying any flags or a filename, a 
list of flags available for the command is displayed. 

The following table presents examples of the range of the options available 
with esqlcbl: 

 

Command Comment 

esqlcbl file1 Preprocesses “file1.scb” to: 

file1.cbl (Windows and UNIX) 

file1.cob (VMS) 

esqlcbl file2.xcb Preprocesses “file2.xcb” to 

file2.cbl (Windows and UNIX) 

file2.cob (VMS) 

esqlcbl -l file3 Preprocesses file3.scb to 

file3.cbl (Windows and UNIX) 

file3.cob (VMS) 

and creates listing file3.lis 

esqlcbl -s Accepts input from standard input 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–81 

Command Comment 

esqlcbl -ffile4.out file4 Preprocesses file4.scb to file4.out 

esqlcbl Displays a list of available flags 

Source Code Format 

The following sections discuss source code formatting considerations for 
Windows, UNIX, and VMS. 

Format Considerations—Windows and UNIX  

The preprocessor produces Micro Focus COBOL source code in ANSI format. 

You must place all string continuation indicators ( - ) in column 7. Comment 
indicators (* ) may be in column 1 or column 7. For details on comments and 
continued string literals, see Embedded SQL Statement Syntax for COBOL in 
this chapter. 

The preprocessor generates code using certain conventions. Indicators for 
comments and continued string literals are placed in column 7. The 01 level 
number for data declarations known to the preprocessor and any optional 
labels before embedded SQL statements are output in Area A, starting at 
column 8. All other embedded SQL statements are placed in Area B, starting at 
column 12. No statements generated extend beyond column 72. COBOL 
statements and declarations unknown to the preprocessor appear in the 
preprocessor output file unchanged from the input file. 

The preprocessor does not generate any code in columns 1-6 (the Sequence 
Area). Do not, however, precede embedded SQL statements with sequence 
numbers—only the white space of a label can precede the exec keyword. Also, 
although the preprocessor never generates code beyond column 72 no matter 
which format is used, it does accept code in columns 73 - 80. Therefore, 
anything placed in that area on an embedded SQL line must be valid 
embedded SQL code. 

Format Considerations—VMS  

The preprocessor can produce source code written in either VAX COBOL 
terminal format or ANSI format. The default is terminal format; if you require 
ANSI format, use the -a flag on the preprocessor command line. The COBOL 
code that the preprocessor generates for embedded SQL statements will follow 
the format convention you have chosen. 



Preprocessor Operation 

3–82     Embedded SQL Companion Guide 

In order to specify the -a flag, you must place all comment and string 
continuation indicators (* and -) in column 7. If you do not intend to use the -
a flag, those indicators must instead be located in column 1. For details on 
comments and continued string literals, see Embedded SQL Statement Syntax 
for COBOL in this chapter. 

When the -a flag is specified, the preprocessor generates code using certain 
conventions. Indicators for comments and continued string literals are placed 
in column 7. The 01 level number for data declarations known to the 
preprocessor and any optional labels before embedded SQL statements are 
output in Area A, starting at column 8. All other embedded SQL statements 
are placed in Area B, starting at column 12. No statements generated extend 
beyond column 72. COBOL statements and declarations unknown to the 
preprocessor appear in the preprocessor output file unchanged from the input 
file. 

The preprocessor may generate sequence numbers in columns 1 - 6 (the 
Sequence Area). For information on sequence numbers, see COBOL Sequence 
Numbers in this chapter. Also, although the preprocessor never generates 
code beyond column 72 no matter which format is used, it does accept code in 
columns 73 - 80. Therefore, anything placed in that area on an embedded SQL 
line must be valid embedded SQL code. 

The COBOL Compiler—Windows and UNIX 

To compile this code use the cob command. The following example 
preprocesses and compiles the file test1. 

esqlcbl test1.scb 
cob test1.cob 

When you use the cob command to compile the generated COBOL code, the 
compiler issues the following informational message: 

    01 SQLABC PIC S9(9) USAGE COMP-5 SYNC VALUE 0 
**209-I*********************************** 
**  COMP-5 is machine specific format. 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–83 

As mentioned in the COBOL Data Items and Data Types section in this 
chapter, COMP-5 is an Ingres-compatible numeric data type and a data item of 
the type is included in the Ingres system COPY file. You can ignore this 
warning or suppress it by using the cob compiler directive or command line 
flag: 

cob -C warning=1 

Also, because the program will be run through the COBOL interpreter that is 
linked to the Ingres runtime system, do not modify the default values of the 
COBOL compiler align and ibmcomp directives. To run your embedded 
SQL/COBOL test program, use the ingrts command (an alias to your 
Ingres-linked RTS): 

ingrts test1 

For more information on building and linking the Interpreter (or RTS), see 
Incorporating Ingres into the Micro Focus RTS—UNIX in this chapter. 

Note: For any operating system specific information on compiling and linking 
ESQL/COBOL programs, see the Readme file. 

The COBOL Compiler—Windows Micro Focus Net Express 

On Windows, to compile the COBOL code generated by the preprocessor, use 
the cobol command. Then use the cblnames command to extract all public 
symbols into a cbllds.obj file for the linker, and the link utility to bind the 
objects into a executable.  

The following example preprocesses and compiles the file test1: 

esqlcbl test1.scb 
cobol   test1.cbl  /case  /litlink 
cblnames –t  –mtest1  test1.obj 
link      /OUT: test1.exe \ 
          /SUBSYSTEM:CONSOLE \ 
          /MACHINE:i386 \ 
          /NOD \ 
          test1.obj \ 
          cbllds.obj \ 
          ingres.lib \ 
          msvcrt.lib \ 
          oldnames.lib \ 
          mfrts32s.lib \ 
          kernel32.lib \ 
          user32.lib \ 
          gdi32.lib \ 
          advapi32.lib 



Preprocessor Operation 

3–84     Embedded SQL Companion Guide 

The COBOL Compiler—VMS  

The preprocessor generates COBOL code. To compile this code use the VMS 
COBOL command. The following example preprocesses and compiles the file 
test1. Both the embedded SQL preprocessor and the COBOL compiler assume 
the default extensions. 

esqlcbl test1 
cobol/list test1 

As of Ingres II 2.0/0011 (axm.vms/00) Ingres uses member alignment and 
IEEE floating-point formats. Embedded programs must be compiled with 
member alignment turned on. In addition, embedded programs accessing 
floating-point data (including the MONEY data type) must be compiled to 
recognize IEEE floating-point formats.  

Linking an Embedded SQL Program 

Embedded SQL programs require procedures from several VMS shared 
libraries in order to run properly. Once you have preprocessed and compiled 
an embedded SQL program, you can link it. Assuming the object file for your 
program is called dbentry, use the following link command: 

link dbentry.obj,- 
ii_system:[ingres.files]esql.opt/opt 

Assembling and 
Linking Precompiled 
Forms 

The technique of declaring a precompiled form to the FRS is discussed in the 
SQL Reference Guide and in the COBOL Data Items and Data Types section in 
this chapter. To use such a form in your program, you must also follow the 
steps described here. 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in the VAX-11 
MACRO language. VIFRED lets you select the name for the file. Once you have 
created the MACRO file this way, you can assemble it into linkable object code 
with the VMS command. 

macro filename 

The output of this command is a file with the extension .obj. You then link this 
object file with your program by listing it in the link command, as in the 
following example, which links the form defined in the file empform: 

link formentry,- 
 empform.obj,- 
 ii_system:[ingres.files]esql.opt/opt 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–85 

Linking an Embedded 
SQL Program Without 
Shared Libraries 

While the use of shared libraries in linking embedded SQL programs is 
recommended for optimal performance and ease of maintenance, non-shared 
versions of the libraries have been included in case you require them. 
Non-shared libraries required by embedded SQL are listed in the esql.noshare 
options file. The options file must be included in your link command after all 
user modules. The libraries must be specified in the order given in the 
options file. 

The following example demonstrates the link command for an embedded SQL 
program called dbentry, which has been preprocessed and compiled: 

link dbentry,- 
ii_system:[ingres.files]esql.noshare/opt 

Placing User-Written 
Embedded SQL 
Routines in Shareable 
Images 

When you plan to place your code in a shareable image, note the following 
about the psect attributes of your global or external variables: 

 As a default, some compilers mark global variables as shared (SHR: every 
user who runs a program linked to the shareable image sees the same 
variable) and others mark them as not shared (NOSHR: every user who 
runs a program linked to the shareable image gets their own private copy 
of the variable). 

 Some compilers support modifiers you can place in your source code 
variable declaration statements to explicitly state which attributes to 
assign a variable. 

 The attributes that a compiler assigns to a variable can be overridden at 
link time with the psect_attr link option, which overrides attributes of all 
variables in the psect. 

Consult your compiler reference manual for further details 

Note: For any operating system specific information on compiling and linking 
ESQL/COBOL programs, see the Readme file. 

Incorporating Ingres into the Micro Focus RTS—UNIX  

Before you can run any embedded SQL/COBOL program, you must create a 
new Micro Focus Runtime System (or RTS), linked with the Ingres libraries. 
This will enable your embedded SQL/COBOL programs to access the necessary 
Ingres routines at runtime. 

If you are unsure whether your COBOL RTS is linked to the Ingres libraries, 
you can perform a simple test. Preprocess, compile, and run a simple 
ESQL/COBOL program that connects and disconnects from Ingres. For 
example, the simple test file test.scb could include the lines: 

EXEC SQL CONNECT dbname END-EXEC. 



Preprocessor Operation 

3–86     Embedded SQL Companion Guide 

EXEC SQL DISCONNECT END-EXEC. 

If your COBOL RTS is not linked to the Ingres libraries, you will receive the 
COBOL runtime error number 173 when you run the program: 

esqlcbl test.scb 
cob test.cbl 
cobrun test 
    Load error: file 'IIsqConnect' 
    error code: 173, pc=1A, call=1, seg=0 
    173 Called program file not found in 
         drive/directory 

Building an Ingres RTS Without the Ingres FRS 

If you are using the COBOL screen utilities and do not need to incorporate the 
Ingres forms runtime system (FRS) into your COBOL runtime support module, 
then you can link the RTS exclusively for database activity. 

This section describes how to provide the COBOL RTS with all Ingres runtime 
routines. 

Create a directory in which you want to store the Ingres-linked RTS. For 
example, if the COBOL root directory is /usr/lib/cobol, you may want to add a 
new directory /usr/lib/cobol/ingres to store the Ingres/COBOL RTS. From that 
new directory, issue the commands that extract the Ingres Micro Focus 
support modules, link the Ingres COBOL RTS, and supply an alias to run the 
new program. 

The shell script shown below performs all of these steps. Note that 
$II_SYSTEM refers to the path-name of the Ingres root directory on your 
system: 

# 
# These 2 steps position you to where you want to 
# build the RTS 
# 
mkdir /usr/lib/cobol/ingres 
cd /usr/lib/cobol/ingres 
# 
# Extract 2 Ingres Micro Focus COBOL support modules 
# 
ar xv $II_SYSTEM/ingres/lib/libingres.a iimfdata.o 
ar xv $II_SYSTEM/ingres/lib/libingres.a iimflibq.o 
# 
# Now link the new Ingres COBOL RTS (this example 
# calls it "ingrts") 
# 
cob -x -e "" -o ingrts \ 
  iimfdata.o iimflibq.o \ 
  $II_SYSTEM/ingres/lib/libingres.a \ 
  -lc -lm 
# 
# Provide an alias to run the new program 
* (distribute to RTS users) 
# 
alias ingrts /usr/lib/cobol/ingrts 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–87 

Ingres shared libraries are available on some UNIX platforms. To link with 
these shared libraries replace libingres.a in the cob command with: 

-L $II_SYSTEM/ingres/lib -linterp.1 -lframe.1 -lq.1 \ 
     -lcompat.1 

To verify if your release supports shared libraries check for the existence of 
any of these four shared libraries in the $II_SYSTEM/ingres/lib directory. For 
example: 

ls -l $II_SYSTEM/ingres/lib/libq.1.* 

Any user-defined handlers must also be incorporated into the Ingres/COBOL 
RTS, and should be added to the cob command line. For a detailed description, 
see Including User-Defined Handlers in the Micro Focus RTS—UNIX in this 
chapter.  

Since the resulting RTS is quite large, the temporary holding directory required 
by COBOL may need to be reset. By default, this directory is set to /usr/tmp. 
If you are issued “out of disk space” errors during the linking of the 
Ingres/COBOL RTS, you should consult your COBOL Programmer’s Reference 
Manual to see how to modify the TMPDIR environment variable. 

You may need to specify other system libraries in addition to the -lm library on 
the cob command. The libraries required are the same as those need to link an 
embedded SQL/C program. The library names may be added to the last line of 
the cob command shown above. For example, if the inet and the inetd system 
libraries are required, the last line of the cob command would be: 

-lc -lm -linet -linetd 

At this point you are ready to run your embedded SQL/COBOL program. 

Building an RTS with the Ingres FRS 

If you are using the Ingres forms system in your embedded SQL/COBOL 
programs then you must include the Ingres FRS in the RTS. The link script 
shown below builds an RTS that includes the Ingres FRS: 

# 
# Optional: Assume you are in an appropriate directory 
# as described in the previous section. 
# 
cd /usr/lib/cobol/ingres 
# 
# Extract 3 Ingres Micro Focus support modules 
# 
ar xv $II_SYSTEM/ingres/lib/libingres.a iimfdata.o 
ar xv $II_SYSTEM/ingres/lib/libingres.a iimflibq.o 
ar xv $II_SYSTEM/ingres/lib/libingres.a iimffrs.o 
# 
# Now link the new Ingres COBOL RTS (this example 
# calls it "ingfrs") 
# 
cob -x -e "" -o ingfrs \ 
  iimfdata.o iimflibq.o iimffrs.o \ 



Preprocessor Operation 

3–88     Embedded SQL Companion Guide 

  $II_SYSTEM/ingres/lib/libingres.a \ 
  -lc -lm 
# 
# Provide an alias to run the new program 
# (distribute to RTS users) 
# 
alias ingfrs /usr/lib/cobol/ingfrs 

You may be required to specify other system libraries on the cob command 
line. For information about how to specify other system libraries on the cob 
command line, see Building an Ingres RTS Without the Ingres FRS in this 
chapter. 

Including External Compiled Forms in the RTS 

The description of how to build an Ingres RTS that can access the Ingres forms 
system does not include a method with which to include compiled forms into 
the RTS. Recall that compiled forms are precompiled form objects that do not 
need to be retrieved from the database. Since the compiled forms are 
externals objects (in object code) you must link them into your RTS. 

Because some UNIX platforms allow you to use the Micro Focus EXTERNAL 
clause to reference objects linked into your RTS and some do not, two 
procedures are given here. The first procedure describes how to include 
external compiled forms in the RTS on a platform that does permit the use of 
the EXTERNAL clause. The second procedure describes how to perform this 
task on a platform that does not allow EXTERNAL data items to reference 
objects linked to the RTS. 

Procedure 1 Use this procedure if your platform accepts the EXTERNAL clause to reference 
objects linked into your RTS. 

1. Build and compile the form in VIFRED. 

 When you compile a form in VIFRED, you are prompted for the name of 
the file, and VIFRED then creates the specified file in your directory, 
describing the form in C. 

2. Compile the C file into object code: 

 % cc -c formfile.c 

3. Link the compiled form(s) into your RTS by modifying the cob command 
line to include the object files for the forms. List the files before listing the 
system libraries that will be linked. 

 For example: 

 cob -x -e "" -o ingfrs \ 
  iimfdata.o iimflibq.o iimffrs.o \ 
  form1.o form2.o \ 
  ... 



Preprocessor Operation 

Chapter 3: Embedded SQL for COBOL    3–89 

Procedure 2 Use this procedure if your platform does not allow you to use the Micro Focus 
EXTERNAL clause to reference objects linked into your RTS. The extra steps 
force the external object to be loaded into your RTS and allow access to it 
through your ESQL/COBOL program. 

1. Build and compile the form in VIFRED. 

 When you compile a form in VIFRED, you are prompted for the name of 
the file, and VIFRED then creates the specified file in your directory, 
describing the form in C. 

2. Compile the C file into object code: 

 % cc -c formfile.c 

3. Write a small embedded SQL/C procedure that just references the form 
and initializes it to the Ingres FRS using the addform statement. 

 Make sure that the name of the procedure follows conventions allowed for 
externally called names. For example, external names may be restricted to 
14 characters on some versions of COBOL. 

 For example: 

EXEC SQL BEGIN DECLARE SECTION; 
       extern int *form1; 
       extern int *form2; 
 EXEC SQL END DECLARE SECTION; 

add_form1() 
{ 
    EXEC FRS ADDFORM :form1; 
} 
add_form2() 
{ 
    EXEC FRS ADDFORM :form2; 
} 

4. Build the object code for the initialization of the compiled forms: 

 % esqlc filename.sc 
 % cc -c filename.c 

 where filename.sc is the name of the file containing the procedure written 
in Step 3. 

5. Link the compiled form(s) and the initialization references to the form(s) 
into your RTS by modifying the cob command line to include the object 
files for the forms and the procedure. Specify the object files before the 
list of system libraries. 

 For example: 

   cob -x -e "" -o ingfrs \ 
      iimfdata.o iimflibq.o iimffrs.o \ 
      filename.o form1.o form2.o \ 
      ... 

 where filename.o is the name of the object file resulting from Step 4, 
containing the initialization references to the forms form1 and form2. 



Preprocessor Operation 

3–90     Embedded SQL Companion Guide 

6. Replace the addform statement in your source program with a COBOL 
CALL statement to the appropriate C initialization procedure. For example, 
what would have been: 

    EXEC FRS ADDFORM :form1 END-EXEC. 

 becomes: 

    CALL "add_form1". 

7. To illustrate this procedure, assume you have compiled two forms in 
VIFRED, empform and deptform, and need to access them from your 
embedded SQL/COBOL program without incurring the overhead (or 
database locks) of the forminit statement. After compiling them into C 
from VIFRED, turn them into object code: 

 % cc -c empform.c deptform.c 

8. Now create an embedded SQL/C file, for example, addforms.sc, that 
includes a procedure (or two) that initializes each one using the addform 
statement: 

EXEC SQL BEGIN DECLARE SECTION; 
      extern int *empform; 
      extern int *deptform; 
 

EXEC SQL END DECLARE SECTION; 
 
add_empform() 
{ 
   EXEC FRS ADDFORM :empform; 

   
add_deptform() 
{ 
   EXEC FRS ADDFORM :deptform; 
   } 

9. Now build the object code for the initialization of these 2 compiled forms: 

 esqlc addforms.sc 
 cc -c addforms.c 

10. Then link the compiled forms and the initialization references to those 
forms into your RTS: 

 cob -x -e "" -o ingfrs \ 
 iimfdata.o iimflibq.o iimffrs.o \ 
 addforms.o empform.o deptform.o \ 
 ... 

11. Finally, be sure to replace the appropriate addform statements in your 
source code with COBOL CALL statements. 

You can store all your compiled forms in an archive library so that the constant 
modification of a link script will not be required. The sample programs near the 
end of this section were built using such a method that included a single file, 
addforms.sc, and an archive library, compforms.a, that included all the 
compiled forms referenced in the sample programs. 



Preprocessor Error Messages 

Chapter 3: Embedded SQL for COBOL    3–91 

If, at a later time you are able to directly reference EXTERNAL data items from 
your COBOL source code then the intermediate step of creating an embedded 
SQL/C ADDFORM procedure can be skipped, and your compiled forms declared 
as EXTERNAL PIC S9(9) COMP-5 data-items in your embedded SQL/COBOL 
source code: 

01 empform IS EXTERNAL PIC S9(9) USAGE COMP-5. 
... 
EXEC FRS ADDFORM :empform END-EXEC. 

The external object code for each form must still be linked into the RTS but 
there is no need to write an embedded SQL/C intermediate file, or call an 
external C procedure to initialize the compiled form for you. 

Embedded SQL/COBOL Preprocessor Errors 

To list most errors, you can run the embedded SQL preprocessor with the 
listing (-l) option on. The listing will be sufficient for locating the source and 
reason for the error. 

For preprocessor error messages specific to COBOL, see Preprocessor Error 
Messages in this chapter. 

Preprocessor Error Messages 
The following is a list of error messages specific to the COBOL language: 

E_DC000A  “Table ‘%0c’ contains column(s) of unlimited length.” 

Explanation: Character strings(s) of zero length have been generated. This 
causes a compile-time error. You must modify the output file to specify an 
appropriate length. 

E_E40001 “Ambiguous qualification of COBOL data item ’%0c’.” 

Explanation: This data item is not sufficiently qualified to distinguish it from 
another data item. It is likely that the data item is an elementary member of a 
COBOL record or group. To avoid reference ambiguity, qualify the data item 
further by using IN or OF. When using COBOL table subscripts (by means of 
parenthesis), the subscripted item must be unambiguous when the left 
parenthesis is processed. 

The preprocessor will generate code using the most recently declared instance 
of the ambiguous data item. 



Preprocessor Error Messages 

3–92     Embedded SQL Companion Guide 

E_E40002 “Unsupported COBOL numeric PICTURE string ’%0c’.” 

Explanation: An invalid picture character was encountered while processing a 
numeric picture string. A numeric picture string can include the following 
characters:  

S 
9 
( 
) 
V 

The preprocessor will treat the data item as though it was declared: 

PICTURE S9(8) USAGE COMP.  

E_E40003 “COMP picture ’%0c’ requires too many storage bytes. Try USAGE COMP-3.” 

Explanation: The COMPUTATIONAL data type must fit into a maximum of 4 
bytes. Numeric integers of more than 9 digits require VAX quad-word integer 
storage (8 bytes), which is incompatible with the Ingres internal runtime data 
types. Try reducing the picture string or declaring the data item as COMP-3 or 
COMP-2, which is compatible with Ingres floating-point data. 

An exception is made to allow non-scaled 10-digit numeric picture strings 
(PICTURE S(10) USAGE COMP), which is representable by a 4-byte integer. 

E_E40005 “’%0c’ is not an elementary data item. Records cannot be used.” 

Explanation: In this usage, COBOL records or tables cannot be used. In order 
to use this data item you must refer to an elementary data item that is a 
member of the record, or an element of the COBOL table. 

E_E40006 “COBOL declaration level %0c is out of bounds.” 

Explanation: Only levels 01 through 49 and 77 are accepted for COBOL data 
item declarations. Level numbers outside of this range will be treated as 
though they were level 01. Syntax errors caused in leading clauses of a COBOL 
declaration may cascade and generate this error message for the OCCURS and 
VALUE clauses of the erroneous declaration. 

E_E40007 “Data item requires a PICTURE string in this USAGE.” 

Explanation: The specified USAGE clause requires a COBOL PICTURE string in 
order to determine preprocessor data item type information. Not all USAGE 
clauses require a PICTURE string. Data items with USAGE COMP, COMP-3 and 
DISPLAY do require a PICTURE string. If no PICTURE string is specified the 
preprocessor will treat the data item as though it was declared: 

PICTURE X(10) USAGE DISPLAY. 



Preprocessor Error Messages 

Chapter 3: Embedded SQL for COBOL    3–93 

E_E40008 “Data item on level %0c has no parent of lesser level.” 

Explanation: A data item declared on a level that is greater than the level of 
the most recently declared data item is considered to be a subordinate 
member of that group. The previous level, therefore, must be the level 
number of a COBOL record or group declaration. This is typical of a COBOL 
record containing a few elementary data items. A data item declared on a level 
that is less than the level of the most recently declared data item is considered 
to be on the same level as the “parent” of that data item. Level numbers 
violating this rule will be treated as though they were level 01. 

E_E40009 “Keyword PICTURE and the describing string must be on the same line.” 

Explanation: When the preprocessor scans the COBOL PICTURE string, it 
must find the PICTURE keyword and the corresponding string description on 
the same line in the source file. The PICTURE word and the string may be 
separated by the IS keyword. The preprocessor will treat the declaration as 
though there was no PICTURE clause. 

E_E4000A “’%0c’ is not a legally declared data item.” 

Explanation: The specified data item must has not been declared but has 
been used in place of a COBOL variable in an embedded statement. 

E_E4000B “Unsupported PICTURE ’%0c’ is numeric-display. USAGE COMP assumed.” 

Explanation: Some versions of the COBOL preprocessor do not support 
numeric display data items. For example: 

PICTURE S9(8) USAGE DISPLAY. 

If this is the case, you should use COMPUTATIONAL data items and assign to 
and from DISPLAY items before using the data item in embedded statements. 

E_E4000C “COBOL OCCURS clause is not allowed on level 01.” 

Explanation: The OCCURS clause must be used with a data item that is 
declared on a level greater than 01. This error is only a warning, and treats 
the data item correctly (as though declared as a COBOL table). A warning may 
also be generated by the COBOL compiler. 

E_E4000E “PICTURE ’%0c’ is too long. The maximum length is %1c.” 

Explanation: COBOL PICTURE strings must not exceed the maximum length 
specified in the error message. Try to collapse consecutive occurrences of the 
same PICTURE symbol into a repeat count. 

For example: PICTURE S99999999 becomes PICTURE S9(8) 



Preprocessor Error Messages 

3–94     Embedded SQL Companion Guide 

E_E4000F “PICTURE ’%0c’ contains non-integer repeat count, %1c.” 

Explanation: A COBOL repeat count in a PICTURE string was either too long 
or was not an integer. The preprocessor treats the data item as though 
declared with a PICTURE with a repeat count of 1. For example: S9(1) or X(1) 

E_E40011 “USAGE type ’%0c’ is not supported.” 

Explanation: his usage type is currently not supported. 

E_E40012 “PICTURE ’%0c’ has two sign symbols (S).” 

Explanation: The specified numeric PICTURE string has two sign symbols. 
The preprocessor will treat the data item as though it was declared: 

PICTURE S9(8) USAGE COMP. 

E_E40013 “PICTURE ’%0c’ has two decimal point symbols (V).” 

Explanation: The specified numeric PICTURE string has two decimal point 
symbols. The preprocessor will treat the data item as though it was declared: 

 PICTURE S9(8) USAGE COMP.  

E_E40014 “Missing quotation mark on continued string literal.” 

Explanation: The first non-blank character of a continued string literal must 
be a quotation mark in the indicator area. A missing quotation mark in the 
continued string literal or the wrong quotation mark will generate this error. 

E_E40015 “COBOL data item ’%0c’ is a table and must be subscripted.” 

Explanation: The data item is a COBOL table and must be subscripted in 
order to yield an elementary data item to retrieve or set Ingres data. 

E_E40016 “COBOL data item ’%0c’ is not a table and must not be subscripted.” 

Explanation: You have included subscripts when referring to a data item that 
was not declared as a COBOL table.  

E_E40017 “Duplicate COBOL data declaration ’%0c’ clause found.” 

Explanation: You have included either a duplicate USAGE, PICTURE or 
OCCURS data declaration clause when declaring a data item. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–95 

Sample Applications 
This section contains sample applications. Samples are shown for the UNIX, 
Windows, and VMS environments.  

The Department-Employee Master/Detail Application 

This application uses two database tables joined on a specific column. This typical 
example of a department and its employees demonstrates how to process two 
tables as a master and a detail. 

The program scans through all the departments in a database table, in order 
to reduce expenses. Based on certain criteria, the program updates 
department and employee records. The conditions for updating the data are 
the following: 

Departments: 

 If a department has made less than $50,000 in sales, the department is 
dissolved. 

Employees: 

 If an employee was hired since the start of 1985, the employee is 
terminated. 

 If the employee's yearly salary is more than the minimum company wage 
of $14,000 and the employee is not nearing retirement (over 58 years of 
age), the employee takes a 5% pay cut. 

 If the employee's department is dissolved and the employee is not 
terminated, the employee is moved into a state of limbo to be resolved by 
a supervisor. 

This program uses two cursors in a master/detail fashion. The first cursor is for 
the Department table, and the second cursor is for the Employee table. Both 
tables are described in declare table statements at the start of the program. 
The cursors retrieve all the information in the tables, some of which is 
updated. The cursor for the Employee table also retrieves an integer date 
interval whose value is positive if the employee was hired after January 1, 
1985. The tables contain no null values. 

Each row that is scanned, from both the Department table and the Employee 
table, is recorded into the system output file. This file serves both as a log of 
the session and as a simplified report of the updates that were made. 

Each section of code is commented for the purpose of the application and also 
to clarify some of the uses of the Embedded SQL statements. The program 
illustrates table creation, multi-statement transactions, all cursor statements, 
direct updates and error handling. 



Sample Applications 

3–96     Embedded SQL Companion Guide 

Windows UNIX
 
IDENTIFICATION DIVISION. 
PROGRAM-ID.  EXPENSE-PROCESS. 
 
ENVIRONMENT DIVISION. 
 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

        EXEC SQL INCLUDE SQLCA END-EXEC. 
        EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
*       The department table 
        EXEC SQL DECLARE dept TABLE 
            (name         char(12)       NOT NULL, 
             totsales     decimal(9,2)   NOT NULL, 
             employees    smallint       NOT NULL) 
        END-EXEC. 
 
*       The employee table 
        EXEC SQL DECLARE employee TABLE 
            (name            char(20)     NOT NULL, 
             age             integer1     NOT NULL, 
             idno            integer      NOT NULL, 
             hired           date         NOT NULL, 
             dept            char(12)     NOT NULL, 
             salary          decimal(8,2) NOT NULL) 
        END-EXEC. 
 
*       "State-of-Limbo" for employees who lose their department 
        EXEC SQL DECLARE toberesolved TABLE 
           (name             char(20)     NOT NULL, 
            age              integer1     NOT NULL, 
            idno             integer      NOT NULL, 
            hired            date         NOT NULL, 
            dept             char(12)     NOT NULL, 
            salary           decimal(8,2) NOT NULL) 
        END-EXEC. 
 
*      Minimum sales of department 
       01    MIN-DEPT-SALES    PIC S9(5)V9(2) USAGE COMP 
                                VALUE IS 50000.00. 
*      Minimum employee salary 
       01    MIN-EMP-SALARY    PIC S9(5)V9(2) USAGE COMP 
                                VALUE IS 14000.00. 
*       Age above which no salary-reduction will be made 
       01    NEARLY-RETIRED    PIC S9(2) USAGE COMP 
                                        VALUE IS 58. 
*      Salary-reduction percentage 
       01   SALARY-REDUC    PIC S9(1)V9(2) USAGE COMP 
                                       VALUE IS 0.95. 
*      Record corresponding to the "dept" table. 
       01      DEPT. 
               02 DNAME         PIC X(12). 
               02 TOTSALES      PIC S9(7)V9(2) USAGE COMP. 
               02 EMPLOYEES     PIC S9(4) USAGE COMP. 
*      Record corresponding to the "employee" table 
       01      EMP. 
                02 ENAME          PIC X(20). 
                02 AGE            PIC S9(2) USAGE COMP. 
                02 IDNO           PIC S9(8) USAGE COMP. 
                02 HIRED          PIC X(26). 
                02 SALARY         PIC S9(6)V9(2) USAGE COMP. 
                02 HIRED-SINCE-85 PIC S9(4) USAGE COMP. 
*      Count of employees terminated. 
       01      EMPS-TERM          PIC S99 USAGE COMP. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–97 

*      Indicates whether the employee's dept was deleted 
       01      DELETED-DEPT       PIC S9 USAGE COMP. 
*      Error message buffer used by CHECK-ERRORS. 
       01     ERRBUF              PIC X(200). 
*      Formatting values for output 
       01      DEPT-OUT. 
                02 FILLER        PIC X(12) VALUE "Department: ". 
                02 DNAME-OUT     PIC X(12). 
                02 FILLER        PIC X(13) VALUE "Total Sales: ". 
                02 TOTSALES-OUT  PIC $,$$$,$$9.9(2) USAGE DISPLAY. 
                02 DEPT-FORMAT   PIC X(19). 
       01      EMP-OUT. 
                02 FILLER          PIC XX VALUE SPACES. 
                02 TITLE           PIC X(11). 
                02 IDNO-OUT        PIC Z9(6) USAGE DISPLAY. 
                02 FILLER          PIC X VALUE SPACE. 
                02 ENAME-OUT       PIC X(20). 
                02 AGE-OUT         PIC Z9(2) USAGE DISPLAY. 
                02 FILLER          PIC XX VALUE SPACES. 
                02 SALARY-OUT      PIC $$$,$$9.9(2) USAGE DISPLAY. 
                02 FILLER          PIC XX VALUE SPACES. 
                02 DESCRIPTION      PIC X(24). 
       EXEC SQL END DECLARE SECTION END-EXEC. 
 
** 
* Procedure Division 
* 
*     Initialize the database, process each department and 
*     terminate the session. 
** 
      PROCEDURE DIVISION. 
      EXAMPLE SECTION. 
      XBEGIN. 
      DISPLAY "Entering application to process expenses". 
      PERFORM INIT-DB THRU END-INITDB. 
      PERFORM PROCESS-DEPTS THRU END-PROCDEPTS. 
      PERFORM END-DB THRU END-ENDDB. 
      DISPLAY "Successful completion of application". 
      STOP RUN. 
** 
* Paragraph: INIT-DB 
* 
*     Start up the database, and abort if there is an error 
*     Before processing employees, create the table for employees 
*     who lose their department, "toberesolved". 
** 
      INIT-DB. 
      EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
      EXEC SQL CONNECT personnel END-EXEC. 
      DISPLAY "Creating ""To_Be_Resolved"" table". 
      EXEC SQL CREATE TABLE toberesolved 
                (name     char(20), 
                 age      integer1, 
                 idno     integer, 
                 hired    date, 
                 dept     char(12), 
                 salary   decimal(8,2) 
      END-EXEC. 
      END-INITDB. 
      EXIT. 



Sample Applications 

3–98     Embedded SQL Companion Guide 

** 
* Paragraph: END-DB 
* 
*     Commit the multi-statement transaction and close access to 
*     the database after successful completion of the application. 
** 
      END-DB. 
      EXEC SQL COMMIT END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      END-ENDDB. 
      EXIT. 
** 
* Paragraph: PROCESS-DEPTS 
* 
*    Scan through all the departments, processing each one. 
*    If the department has made less than $50,000 in sales, then 
*    the department is dissolved. For each department process 
*    all the employees (they may even be moved to another table). 
*    If an employee was terminated, then update the department's 
*    employee counter. 
** 
      PROCESS-DEPTS. 
      EXEC SQL DECLARE deptcsr CURSOR FOR 
              SELECT name, totsales, employees 
              FROM dept 
              FOR DIRECT UPDATE OF name, employees 
              END-EXEC. 
*     All errors from this point on close down the application. 
      EXEC SQL WHENEVER SQLERROR GOTO CLOSE-DOWN END-EXEC. 
      EXEC SQL WHENEVER NOT FOUND GOTO CLOSE-DEPT-CSR END-EXEC. 
      EXEC SQL OPEN deptcsr END-EXEC. 
      PERFORM UNTIL SQLCODE NOT = 0 
           EXEC SQL FETCH deptcsr INTO :DEPT END-EXEC 
*          Did the department reach minimum sales? 
           IF TOTSALES < MIN-DEPT-SALES THEN 
                  EXEC SQL DELETE FROM dept 
                       WHERE CURRENT OF deptcsr END-EXEC 
                  MOVE 1 TO DELETED-DEPT 
                  MOVE " -- DISSOLVED --" TO DEPT-FORMAT 
           ELSE 
                  MOVE 0 TO DELETED-DEPT 
                  MOVE SPACES TO DEPT-FORMAT 
           END-IF 
*          Log what we have just done 
           MOVE DNAME    TO DNAME-OUT 
           MOVE TOTSALES TO TOTSALES-OUT 
           DISPLAY DEPT-OUT 
*          Now process each employee in the department 
           PERFORM PROCESS-EMPLOYEES THRU END-PROCEMPLOYEES 
*          If some employees were terminated, record this fact 
           IF EMPS-TERM > 0 AND DELETED-DEPT = 0 THEN 
                EXEC SQL UPDATE dept 
                      SET employees = :EMPLOYEES - :EMPS-TERM 
                      WHERE CURRENT OF deptcsr END-EXEC 
           END-IF 
        END-PERFORM. 
         
        CLOSE-DEPT-CSR. 
            EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
            EXEC SQL CLOSE deptcsr END-EXEC. 
            END-PROCDEPTS. 
            EXIT. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–99 

** 
* Paragraph: PROCESS-EMPLOYEES 
* 
*    Scan through all the employees for a particular department. 
*    Based on given conditions the employee may be terminated, or 
*    given a salary reduction: 
*      1.  If an employee was hired since 1985 then the employe 
*          is terminated. 
*      2.  If the employee's yearly salary is more than the 
*          minimum company wage of $14,000 and the employee is 
*          not close to retirement (over 58 years of age), then  
*          the employee takes a 5% salary reduction. 
*      3.  If the employee's department is dissolved and the 
*          employee is not terminated, then the employee is moved 
*          into the "toberesolved" table. 
** 
       PROCESS-EMPLOYEES. 
*      Note the use of the Ingres functions to find out 
*      who was hired since 1985. 
       EXEC SQL DECLARE empcsr CURSOR FOR 
                  SELECT name, age, idno, hired, salary, 
                    int4(interval('days', hired -  
date('01-jan-1985'))) 
                  FROM employee 
                  WHERE dept = :DNAME 
                  FOR DIRECT UPDATE OF name, salary 
                  END-EXEC. 
*      All errors from this point on close down the application. 
       EXEC SQL WHENEVER SQLERROR GOTO CLOSE-DOWN END-EXEC. 
       EXEC SQL WHENEVER NOT FOUND GOTO CLOSE-EMP-CSR END-EXEC. 
       EXEC SQL OPEN empcsr END-EXEC. 
*      Record how many employees are terminated 
       MOVE 0 TO EMPS-TERM. 
       PERFORM UNTIL SQLCODE NOT = 0 
            EXEC SQL FETCH empcsr INTO :EMP END-EXEC 
            IF HIRED-SINCE-85 > 0 THEN 
                  EXEC SQL DELETE FROM employee 
                      WHERE CURRENT OF empcsr END-EXEC 
                  MOVE "Terminated:" TO TITLE 
                  MOVE "Reason: Hired since 1985." TO DESCRIPTION 
                  ADD 1 TO EMPS-TERM 
            ELSE 
*                 Reduce salary if not nearly retired 
                  IF SALARY > MIN-EMP-SALARY THEN 
                      IF AGE < NEARLY-RETIRED THEN 
                          EXEC SQL UPDATE employee 
                              SET salary = salary * :SALARY-REDUC 
                              WHERE CURRENT OF empcsr END-EXEC 
                          MOVE "Reduction: " TO TITLE 
                          MOVE "Reason: Salary." TO DESCRIPTION 
                      ELSE 
*                         Do not reduce salary 
                          MOVE "No Changes:" TO TITLE 
                          MOVE "Reason: Retiring." TO DESCRIPTION 
                      END-IF 



Sample Applications 

3–100     Embedded SQL Companion Guide 

*                 Leave employee alone 
                  ELSE 
                      MOVE "No Changes:" TO TITLE 
                      MOVE "Reason: Salary." TO DESCRIPTION 
                  END-IF 
*                 Was employee's department dissolved? 
                  IF DELETED-DEPT = 1 THEN 
                      EXEC SQL INSERT INTO toberesolved 
                          SELECT * FROM employee 
                          WHERE idno = :IDNO END-EXEC 
                      EXEC SQL DELETE FROM employee 
                          WHERE CURRENT OF empcsr END-EXEC 
                  END-IF 
            END-IF 
*           Log the employee's information 
            MOVE IDNO    TO IDNO-OUT 
            MOVE ENAME   TO ENAME-OUT 
            MOVE AGE     TO AGE-OUT 
            MOVE SALARY  TO SALARY-OUT 
            DISPLAY EMP-OUT 
        END-PERFORM. 
 
CLOSE-EMP-CSR. 
      EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC 
      EXEC SQL CLOSE empcsr END-EXEC. 
END-PROCEMPLOYEES. 
      EXIT. 
** 
* Paragraph: CLOSE-DOWN 
* 
*    This paragraph serves as an error handler called any time 
*    after INIT-DB has successfully completed. In all cases, it 
*    prints the cause of the error, and aborts the transaction, 
*    backing ou changes. Note that disconnecting from the 
*    database will implicitly close any open cursors too. 
** 
CLOSE-DOWN. 
*     Turn off error handling 
      EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
      EXEC SQL INQUIRE_SQL(:ERRBUF = ERRORTEXT) END-EXEC. 
      DISPLAY "Closing Down because of database error:". 
      DISPLAY ERRBUF. 
      EXEC SQL ROLLBACK END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      STOP RUN.  

VMS
  

IDENTIFICATION DIVISION. 
PROGRAM-ID. EXPENSE-PROCESS. 
 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
    SELECT OUT-FILE ASSIGN TO "EXPENSES.LOG". 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–101 

DATA DIVISION. 
FILE SECTION. 
 FD  OUT-FILE 
      LABEL RECORD IS OMITTED. 
 01  PRINT-OUT     PIC X(80). 
WORKING-STORAGE SECTION. 
EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
* The department table 
EXEC SQL DECLARE dept TABLE 
        (name         char(12) NOT NULL, 
         totsales      decimal(14,2) NOT NULL, 
         employees     smallint NOT NULL) 
        END-EXEC. 
* The employee table 
EXEC SQL DECLARE employee TABLE 
        (name         char(20) NOT NULL, 
         age          integer1 NOT NULL, 
         idno         integer NOT NULL, 
         hired        date NOT NULL, 
         dept         char(12) NOT NULL, 
         salary       decimal(14,2) NOT NULL) 
      END-EXEC. 
* "State-of-Limbo" for employees who lose their department 
EXEC SQL DECLARE toberesolved TABLE 
      (name       char(20) NOT NULL, 
       age        integer1 NOT NULL, 
       idno       integer NOT NULL, 
       hired      date NOT NULL, 
       dept       char(12) NOT NULL, 
       salary     decimal(14,2) NOT NULL) 
       END-EXEC. 
* Minimum sales of department 
    01   MIN-DEPT-SALES        USAGE COMP-2 VALUE IS 50000.00. 
* Minimum employee salary 
    01   MIN-EMP-SALARY        USAGE COMP-2 VALUE IS 14000.00. 
* Age above which no salary-reduction will be made 
    01   NEARLY-RETIRED        PIC S9(2) USAGE COMP VALUE IS 58. 
* Salary-reduction percentage 
    01   SALARY-REDUC      USAGE COMP-1 VALUE IS 0.95. 
* Record corresponding to the "dept" table. 
    01   DEPT. 
        02 NAME           PIC X(12). 
        02 TOTSALES       USAGE COMP-2. 
        02 EMPLOYEES      PIC S9(4) USAGE COMP. 
* Record corresponding to the "employee" table 
    01   EMP. 
        02 NAME           PIC X(20). 
        02 AGE            PIC S9(2) USAGE COMP. 
        02 IDNO           PIC S9(6) USAGE COMP. 
        02 HIRED          PIC X(26). 
        02 SALARY         USAGE COMP-2. 
        02 HIRED-SINCE-85 PIC S9(4) USAGE COMP. 
* Count of employees terminated. 
    01   EMPS-TERM         PIC S99 USAGE COMP. 
* Indicates whether the employee's dept was deleted 
    01   DELETED-DEPT      PIC S9 USAGE COMP. 
* Indicates whether "toberesolved" table exists in INIT-DB paragraph. 
    01   FOUND-TABLE       PIC S9 USAGE COMP. 
* Error message buffer used by CLOSE-DOWN 
    01   ERRBUF            PIC X(200). 
EXEC SQL END DECLARE SECTION END-EXEC. 



Sample Applications 

3–102     Embedded SQL Companion Guide 

* Formatting values for output 
 01   DEPT-OUT. 
      02 FILLER        PIC X(12) VALUE "Department: ". 
      02 DNAME         PIC X(12). 
      02 FILLER        PIC X(13) VALUE "Total Sales: ". 
      02 TOTSALES-OUT  PIC $,$$$,$$9.9(2) USAGE DISPLAY. 
      02 DEPT-FORMAT   PIC X(19). 
  01   EMP-OUT. 
      02 TITLE          PIC X(11). 
      02 IDNO-OUT       PIC Z9(6) USAGE DISPLAY. 
      02 FILLER         PIC X VALUE SPACE. 
      02 ENAME          PIC X(20). 
      02 AGE-OUT        PIC Z9(2) USAGE DISPLAY. 
      02 FILLER         PIC XX VALUE SPACES. 
      02 SALARY-OUT     PIC $$$,$$9.9(2) USAGE DISPLAY. 
      02 FILLER         PIC XX VALUE SPACES. 
      02 DESCRIPTION    PIC X(24). 
PROCEDURE DIVISION. 
SBEGIN. 
* Initialize the database, process each department and  
* terminate the session. 
    DISPLAY "Entering application to process expenses". 
    PERFORM INIT-DB THRU END-INITDB. 
    PERFORM PROCESS-DEPTS THRU END-PROCDEPTS. 
    PERFORM END-DB THRU END-ENDDB. 
    DISPLAY "Successful completion of application". 
    STOP RUN. 
INIT-DB. 
* This paragraph connects to the database and aborts if an error. 
* Before processing employees, create the table for employees who 
* lose their department, "toberesolved". 
    OPEN OUTPUT OUT-FILE. 
    MOVE SPACES TO PRINT-OUT. 
    EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
    EXEC SQL CONNECT personnel END-EXEC. 
    MOVE ZERO TO FOUND-TABLE. 
* Does the table exist? 
    EXEC SQL SELECT 1 
          INTO :FOUND-TABLE 
          FROM iitables 
          WHERE table_name = 'toberesolved' 
          END-EXEC. 
* If not, then create it. 
    IF FOUND-TABLE = 0 THEN 
        DISPLAY "Creating ""To_Be_Resolved"" table." 
        EXEC SQL CREATE TABLE toberesolved 
            (name       char(20)      NOT NULL, 
             age        integer1      NOT NULL, 
             idno       integer       NOT NULL, 
             hired      date          NOT NULL, 
             dept       char(12)      NOT NULL, 
             salary     decimal(14,2) NOT NULL) 
        END-EXEC. 
END-INITDB. 
END-DB. 
* Commit the multi-statement transaction and access to the 
* database. 
      EXEC SQL COMMIT END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      CLOSE OUT-FILE. 
END-ENDDB. 
PROCESS-DEPTS. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–103 

* This paragraph scans through all the departments, processing 
* each one. If the department has made less than $50,000 in 
* sales, then the department is dissolved. All employees in each 
* department are processed (they may even be moved to another 
* table). If an employee is terminated, the department's employee 
* counter is updated. 
      EXEC SQL DECLARE deptcsr CURSOR FOR 
            SELECT name, totsales, employees 
            FROM dept 
            FOR DIRECT UPDATE OF name, employees 
            END-EXEC. 
* All errors from this point on close down the application. 
      EXEC SQL WHENEVER SQLERROR GOTO CLOSE-DOWN END-EXEC. 
      EXEC SQL WHENEVER NOT FOUND GOTO CLOSE-DEPT-CSR END-EXEC. 
      EXEC SQL OPEN deptcsr END-EXEC. 
      PERFORM UNTIL SQLCODE NOT = 0 
          EXEC SQL FETCH deptcsr INTO :DEPT END-EXEC 
* Did the department reach minimum sales? 
      IF TOTSALES < MIN-DEPT-SALES THEN 
          EXEC SQL DELETE FROM dept 
                WHERE CURRENT OF deptcsr 
                END-EXEC 
          MOVE 1 TO DELETED-DEPT 
          MOVE " -- DISSOLVED --" TO DEPT-FORMAT 
      ELSE 
          MOVE 0 TO DELETED-DEPT 
          MOVE " " TO DEPT-FORMAT 
      END-IF 
* Log what we have just done. 
      MOVE NAME IN DEPT TO DNAME 
      MOVE TOTSALES TO TOTSALES-OUT 
      WRITE PRINT-OUT FROM DEPT-OUT 
* Now process each employee in the department. 
      PERFORM PROCESS-EMPLOYEES THRU END-PROCEMPLOYEES 
* If some employees were terminated, record this fact. 
          IF EMPS-TERM > 0 AND DELETED-DEPT = 0 THEN 
               EXEC SQL UPDATE dept 
                      SET employees = :EMPLOYEES - :EMPS-TERM 
                      WHERE CURRENT OF deptcsr 
                      END-EXEC 
          END-IF 
      END-PERFORM. 
CLOSE-DEPT-CSR. 
      EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
      EXEC SQL CLOSE deptcsr END-EXEC. 
END-PROCDEPTS. 
PROCESS-EMPLOYEES. 
* This paragraph scans through all the employees for a 
* particular department. 
* Based on given conditions, the employee may be terminated 
* or given a salary 
* reduction: 
* 1. If an employee was hired since 1985, then the employee 
*    is terminated. 
* 
* 2. If the employee's yearly salary is more than the 
*    minimum company wage of $14,000 and the employee is not 
*    close to retirement (over 58 years of age), then the 
*    employee takes a 5% salary reduction. 
* 
* 3. If the employee's department is dissolved and the 
*    employee is not terminated, then the employee is moved into 
*    the "toberesolved" table. 
* 
* Note the use of the Ingres functions to find out who has 
* been hired since 1985. 



Sample Applications 

3–104     Embedded SQL Companion Guide 

      EXEC SQL DECLARE empcsr CURSOR FOR 
            SELECT name, age, idno, hired, salary, 
                int4(interval('days', hired - 
                date('01-jan-1985'))) 
            FROM employee 
            WHERE dept = :DEPT.NAME 
            FOR DIRECT UPDATE OF name, salary 
            END-EXEC. 
* All errors from this point on close down the application. 
      EXEC SQL WHENEVER SQLERROR GOTO CLOSE-DOWN END-EXEC. 
      EXEC SQL WHENEVER NOT FOUND GOTO CLOSE-EMP-CSR END-EXEC. 
      EXEC SQL OPEN empcsr END-EXEC. 
* Record how many employees are terminated. 
      MOVE 0 TO EMPS-TERM. 
      PERFORM UNTIL SQLCODE NOT = 0 
          EXEC SQL FETCH empcsr INTO :EMP END-EXEC 
          IF HIRED-SINCE-85 > 0 THEN 
                EXEC SQL DELETE FROM employee 
                     WHERE CURRENT OF empcsr; 
                MOVE "Terminated:" TO TITLE 
                MOVE "Reason: Hired since 1985."TO DESCRIPTION 
                ADD 1 TO EMPS-TERM 
          ELSE 
* Reduce salary if not nearly retired. 
                IF SALARY > MIN-EMP-SALARY THEN 
                     IF AGE < NEARLY-RETIRED THEN 
                           EXEC SQL UPDATE employee 
                                SET salary = salary * 
                                                :SALARY-REDUC 
                                WHERE CURRENT OF empcsr 
                                END-EXEC 
                           MOVE "Reduction: " TO TITLE 
                           MOVE "Reason: Salary."TO DESCRIPTION 
                      ELSE 
* Do not reduce salary. 
                           MOVE "No Changes:" TO TITLE 
                           MOVE "Reason: Retiring."TO DESCRIPTION 
                      END-IF 
* Leave employee alone. 
               ELSE 
                    MOVE "No Changes:" TO TITLE 
                    MOVE "Reason: Salary."TO DESCRIPTION 
               END-IF 
* Was employee's department dissolved? 
               IF DELETED-DEPT = 1 THEN 
                    EXEC SQL INSERT INTO toberesolved 
                        SELECT * 
                        FROM employee 
                        WHERE idno = :IDNO 
                        END-EXEC 
                    EXEC SQL DELETE FROM employee 
                         WHERE CURRENT OF empcsr END-EXEC 
               END-IF 
            END-IF 
* Log the employee's information. 
            MOVE IDNO        TO IDNO-OUT 
            MOVE NAME IN EMP TO ENAME 
            MOVE AGE         TO AGE-OUT 
            MOVE SALARY      TO SALARY-OUT 
            WRITE PRINT-OUT FROM EMP-OUT 
      END-PERFORM. 
CLOSE-EMP-CSR. 
      EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC 
      EXEC SQL CLOSE empcsr END-EXEC. 
END-PROCEMPLOYEES. 
CLOSE-DOWN. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–105 

* This paragraph serves as an error handler called any time after 
* INIT-DB has successfully completed. In all cases, it prints 
* the cause of the error and aborts the transaction, backing 
* out changes. 
* Note that disconnecting from the database will implicitly close 
* any open cursors. 
 
* Turn off error handling 
        EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC 
        EXEC SQL INQUIRE_SQL(:ERRBUF = ERRORTEXT) END-EXEC. 
        DISPLAY "Closing Down because of database error:". 
        DISPLAY ERRBUF. 
        EXEC SQL ROLLBACK END-EXEC. 
        EXEC SQL DISCONNECT END-EXEC. 
        STOP RUN.  

The Table Editor Table Field Application 

This application edits the Person table in the Personnel database. It is a forms 
application that allows the user to update a person’s values, remove the 
person, or add new persons. Various table field utilities are provided with the 
application to demonstrate how they work. 

The objects used in this application are shown in the following table: 

 

Object Description 

personnel The program’s database environment. 

person A table in the database, with three columns: 

name (char(20)) 

age (smallint) 

number (integer) 

Number is unique. 

personfrm The VIFRED form with a single table field. 

persontbl A table field in the form, with two columns: 

name (char(20)) 

age (integer) 

When initialized, the table field includes the hidden number 
(integer) column. 

personrec A local structure, whose members correspond in name and 
type to columns in the Person table and the Persontbl table 
field. 



Sample Applications 

3–106     Embedded SQL Companion Guide 

At the start of the application, a database cursor is opened to load the table 
field with data from the Person table. Once the table field has been loaded, the 
user can browse and edit the displayed values. Entries can be added, updated 
or deleted. When finished, the values are unloaded from the table field, and 
the user’s updates are transferred back into the Person table. 

Windows UNIX
 
** 
* Program: TABLE-EDIT 
* 
* Table Editor program. The main program initializes 
* the database and displays a form that contains a 
 
* single table field of personnel. It allows the user 
 
* to add, change or delete the rows in the field. 
* The program then makes the changes to the  
* underlying database table in a multi-statement 
* transaction. 
** 

       IDENTIFICATION DIVISION. 
       PROGRAM-ID. TABLE-EDIT. 
       ENVIRONMENT DIVISION. 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 
       EXEC SQL INCLUDE SQLCA END-EXEC. 
       EXEC SQL DECLARE person TABLE 
                (name    char(20), 
                age     smallint, 
                number  integer) 
        END-EXEC. 
       EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
*      Person information 
         
         01 PERSONREC. 
            02 PNAME     PIC X(20) 
            02 P-AGE     PIC S99 USAGE COMP. 
            02 PNUMBER   PIC S9(6) USAGE COMP. 
         01 MAXID      PIC S9(6) USAGE COMP. 
*      Table field entry information 
         01 RECNUM     PIC S9(4) USAGE COMP. 
         01 LASTROW     PIC S9 USAGE COMP. 
*      Utility buffers 
         01 MSGBUF        PIC X(200). 
         01 RESPBUF       PIC X(20). 
         01 STATE         PIC S9 USAGE COMP. 
       EXEC SQL END DECLARE SECTION END-EXEC. 
*      Table field row states: 
*      Empty or undefined row 
       01 ST-UNDEF       PIC S9 USAGE COMP VALUE 0. 
*      Appended by user 
       01 ST-NEW         PIC S9 USAGE COMP VALUE 1. 
*      Loaded by program - not updated 
       01 ST-UNCHANGED   PIC S9 USAGE COMP VALUE 2. 
*      Loaded by program - since changed 
       01 ST-CHANGE      PIC S9 USAGE COMP VALUE 3. 
*      Deleted by program 
       01 ST-DELETE      PIC S9 USAGE COMP VALUE 4. 
*      SQLCA value for no rows 
       01 NOT-FOUND      PIC S9(3) USAGE COMP VALUE 100. 
*      Update error from database 
       01 UPDATE-ERROR        PIC S9(2) USAGE COMP. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–107 

*      Transaction aborted 
       01 XACT-ABORTED        PIC S9 USAGE COMP. 
       PROCEDURE DIVISION. 
       EXAMPLE SECTION. 
       XBEGIN. 
*      Set up error handling for main program 
       EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC. 
       EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
       EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
*       Start Ingres and the Ingres/FORMS system 
       EXEC SQL CONNECT personnel END-EXEC. 
       EXEC FRS FORMS END-EXEC. 
*      Verify that the user can edit the "person" table 
       EXEC FRS PROMPT NOECHO 
               ('Password for table editor: ', :RESPBUF) 
       END-EXEC. 
       IF RESPBUF NOT = "MASTER_OF_ALL" THEN 
                EXEC FRS MESSAGE 'No permission for task. 
                     Exiting . . .' END-EXEC 
                EXEC FRS ENDFORMS END-EXEC 
                EXEC SQL DISCONNECT END-EXEC 
                STOP RUN. 
*      We assume no SQL errors can happen during screen updating 
         EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
       EXEC FRS MESSAGE 'Initializing Person Form . . .' END-EXEC. 
       EXEC FRS FORMINIT personfrm END-EXEC. 
*       Initialize "persontbl" table field with a data set in FILL 
*       mode, so that the runtime user can append rows. To keep  
*       track of events occurring to original rows loaded into the 
*       table field, hide the unique person number. 
       EXEC FRS INITTABLE personfrm persontbl FILL 
                                (number = integer) 
         END-EXEC. 
       PERFORM LOAD-TABLE THROUGH ENDLOAD-TABLE. 
       EXEC FRS DISPLAY personfrm UPDATE END-EXEC 
       EXEC FRS INITIALIZE END-EXEC 
       EXEC FRS ACTIVATE MENUITEM 'Top' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
*      Provide menu items, as well as the system FRS key, 
*      to scroll to both extremes of the table field. 
           EXEC FRS SCROLL personfrm persontbl TO 1 END-EXEC. 
       EXEC FRS END END-EXEC 
       EXEC FRS ACTIVATE MENUITEM 'Bottom' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
           EXEC FRS SCROLL personfrm persontbl TO END END-EXEC. 
       EXEC FRS END END-EXEC 
       EXEC FRS ACTIVATE MENUITEM 'Remove' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
*           Remove the person in the row the user's cursor is on. 
*           If there are no persons, exit operation with message. 
*           Note that this check cannot really happen, as there 
*           is always an UNDEFINED row in FILL mode. 
            EXEC FRS INQUIRE_FRS table personfrm 
                     (:LASTROW = LASTROW(persontbl)) END-EXEC. 
            IF LASTROW = 0 THEN 
                  EXEC FRS MESSAGE 'Nobody to Remove' END-EXEC 
                  EXEC FRS SLEEP 2 END-EXEC 
                  EXEC FRS RESUME FIELD persontbl END-EXEC. 
                  EXEC FRS DELETEROW personfrm persontbl END-EXEC. 
       EXEC FRS END END-EXEC 
       EXEC FRS ACTIVATE MENUITEM 'Find' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
*       Scroll user to the requested table field entry. Prompt 
*       the user for a name, and if one is typed in, loop through 
*       the data set searching for it. 
           MOVE SPACES TO RESPBUF. 



Sample Applications 

3–108     Embedded SQL Companion Guide 

           EXEC FRS PROMPT ('Person''s name : ', :RESPBUF) 
                                   END-EXEC. 
           IF RESPBUF = SPACES THEN 
                EXEC FRS RESUME FIELD persontbl END-EXEC. 
                EXEC FRS UNLOADTABLE personfrm persontbl 
                   (:PNAME = name, 
                    :RECNUM = _record, 
                    :STATE = _state) 
                   END-EXEC 
           EXEC FRS BEGIN END-EXEC 
*              Compare name typed in with names in table, but do 
*              not compare with deleted rows. 
                 IF PNAME = RESPBUF AND 
                     STATE NOT = ST-DELETE THEN 
                      EXEC FRS SCROLL personfrm persontbl 
                         TO :RECNUM END-EXEC 
                      EXEC FRS RESUME FIELD persontbl END-EXEC. 
           EXEC FRS END END-EXEC. 
*          Fell out of loop without finding name. Inform user. 
           STRING "Person """, RESPBUF, 
                 """ not found in table [HIT RETURN] " 
                 DELIMITED BY SIZE INTO MSGBUF. 
           EXEC FRS PROMPT NOECHO (:MSGBUF, :RESPBUF) END-EXEC. 
       EXEC FRS END END-EXEC 
       EXEC FRS ACTIVATE MENUITEM 'Exit' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
           EXEC FRS VALIDATE FIELD persontbl END-EXEC. 
           EXEC FRS BREAKDISPLAY END-EXEC. 
       EXEC FRS END END-EXEC 
       EXEC FRS FINALIZE END-EXEC. 
*      Exit person table editor and unload the table field. 
*      If any updates, deletions or additions were made, 
*      duplicate these changes in the source table. If the 
*      user added new people, assign a unique person id to 
*      each person before adding the person to the table. To 
*      do this, increment the previously-saved maximum id 
*      number with each insert. 
*      Do all the updates in a transaction 
       EXEC SQL COMMIT WORK END-EXEC. 
*      Hard code the error handling in the UNLOADTABLE 
*      loop, as we want to cleanly exit the loop. 
       EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
       MOVE 0 TO UPDATE-ERROR. 
       MOVE 0 TO XACT-ABORTED. 
       EXEC FRS MESSAGE 
               'Exiting Person Application .  .  .' END-EXEC. 
       EXEC FRS UNLOADTABLE personfrm persontbl 
               (:PNAME = name, :P-AGE = age, 
                :PNUMBER = number, :STATE = _state) 
             END-EXEC 
       EXEC FRS BEGIN END-EXEC 
*           Row appended by user.  Insert into "person" table 
*           with new unique id. 
            IF STATE = ST-NEW THEN 
                    ADD 1 TO MAXID 
                    EXEC SQL REPEATED INSERT INTO person 
                        VALUES (:PNAME, :P-AGE, :MAXID) END-EXEC 
*           Row updated by user.  Reflect in table. 
            ELSE IF STATE = ST-CHANGE THEN 
                   EXEC SQL REPEATED UPDATE person SET 
                       name = :PNAME, age = :P-AGE 
                       WHERE number = :PNUMBER 
                       END-EXEC 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–109 

*           Row deleted by user, so delete from table. Note that 
*           rows appended by the user at runtime and the 
*           deleted are not saved and are therefore not unloaded. 
            ELSE IF STATE = ST-DELETE THEN 
                   EXEC SQL REPEATED DELETE FROM person 
                           WHERE number = :PNUMBER END-EXEC 
            END-IF. 
*           Else rows are UNDEFINED or UNCHANGED. No updates. 
*           Handle error conditions: if an error occurred, abort 
*           the transaction. If no rows were updated, inform user 
*           and prompt for continuation. 
            IF SQLCODE < 0 THEN 
                    EXEC SQL 
                        INQUIRE_SQL(:MSGBUF = ERRORTEXT) END-EXEC 
                    EXEC SQL ROLLBACK WORK END-EXEC 
                    MOVE 1 TO UPDATE-ERROR 
                    MOVE 1 TO XACT-ABORTED 
                    EXEC FRS ENDLOOP END-EXEC 
            ELSE IF SQLCODE = NOT-FOUND THEN 
                   STRING "Person """, PNAME, 
                       """ not updated. Abort all updates? " 
                       DELIMITED BY SIZE INTO MSGBUF 
                   EXEC FRS PROMPT (:MSGBUF, :RESPBUF) END-EXEC 
                   IF RESPBUF = "Y" OR RESPBUF = "y" THEN 
                             EXEC SQL ROLLBACK WORK END-EXEC 
                             MOVE 1 TO XACT-ABORTED 
                             EXEC FRS ENDLOOP END-EXEC 
                   END-IF 
            END-IF. 
       EXEC FRS END END-EXEC. 
       IF XACT-ABORTED = 0 THEN 
                EXEC SQL COMMIT END-EXEC. 
       EXEC FRS ENDFORMS END-EXEC. 
       EXEC SQL DISCONNECT END-EXEC. 
       IF UPDATE-ERROR = 1 THEN 
               DISPLAY 
                  "Your updates were aborted because of error:" 
               DISPLAY msgbuf. 
       STOP RUN. 
** 
* Paragraph: LOAD-TABLE 
* 
* This paragraph opens a database cursor to load the table 
* field with data from the "person" table. The columns 
* "name" and "age" will be displayed, and "number" will be 
* hidden. It sets the maximum employee number. 
** 
     LOAD-TABLE. 
     EXEC SQL DECLARE loadtab CURSOR FOR 
              SELECT name, age, number 
              FROM person 
              END-EXEC. 
*    Set up error handling for loading procedure 
     EXEC SQL WHENEVER SQLERROR GOTO LOAD-END END-EXEC. 
     EXEC SQL WHENEVER NOT FOUND GOTO LOAD-END END-EXEC. 
     EXEC FRS MESSAGE  
            'Loading Person Information .  .  .' END-EXEC. 
*    Fetch the maximum person id number for later use 
     EXEC SQL SELECT MAX(number) INTO :MAXID 
            FROM person END-EXEC. 
     EXEC SQL OPEN loadtab END-EXEC. 
     PERFORM UNTIL SQLCODE NOT = 0 



Sample Applications 

3–110     Embedded SQL Companion Guide 

*            Fetch data into record and load table field 
             EXEC SQL FETCH loadtab INTO :PERSONREC END-EXEC 
             EXEC FRS LOADTABLE personfrm persontbl 
              (name = :PNAME, age = :P-AGE, number = :PNUMBER) 
                  END-EXEC 
END-PERFORM. 
LOAD-END. 
     EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
     EXEC SQL CLOSE loadtab END-EXEC. 
ENDLOAD-TABLE. 
     EXIT  

VMS
  

IDENTIFICATION DIVISION. 
PROGRAM-ID. TABLE-EDIT. 
* Table Editor program. The main program initializes the database 
* and displays a form that contains a single table field of 
* personnel. It allows the user to add, change or delete the rows 
* in the field. The program then makes the changes to the 
* underlying database table in a multi-statement transaction. 

ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
EXEC SQL INCLUDE SQLCA END-EXEC. 
EXEC SQL DECLARE person TABLE 
     (name       char(20), 
      age        smallint, 
      number     integer)  
      END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
* Person information 
    01 PERSONREC. 
       02 PNAME        PIC X(20). 
       02 P-AGE        PIC S99 USAGE COMP. 
       02 PNUMBER      PIC S9(6) USAGE COMP. 
    01 MAXID           PIC S9(6) USAGE COMP. 
* Table field entry information 
    01 STATE           PIC S9 USAGE COMP. 
    01 RECNUM          PIC S9(4) USAGE COMP. 
    01 LASTROW         PIC S9 USAGE COMP. 
* Utility buffers 
    01 MSGBUF          PIC X(200). 
    01 RESPBUF         PIC X(20). 
EXEC SQL END DECLARE SECTION END-EXEC. 
* Table field row states: 
* Empty or undefined row 
 01 ST-UNDEF      PIC S9 USAGE COMP VALUE 0. 
* Appended by user 
 01 ST-NEW        PIC S9 USAGE COMP VALUE 1. 
* Loaded by program - not updated 
 01 ST-UNCHANGED  PIC S9 USAGE COMP VALUE 2. 
* Loaded by program - since changed 
 01 ST-CHANGE     PIC S9 USAGE COMP VALUE 3. 
* Deleted by program 
 01 ST-DELETE    PIC S9 USAGE COMP VALUE 4. 
* SQLCA value for no rows 
 01 NOT-FOUND    PIC S9(3) USAGE COMP VALUE 100. 
* Update error from database 
 01 UPDATE-ERROR  PIC S9(2) USAGE COMP. 
* Transaction aborted 
 01 XACT-ABORTED PIC S9 USAGE COMP. 
PROCEDURE DIVISION. 
BEGIN. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–111 

* Set up error handling for main program 
      EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC. 
      EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
      EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
* Start Ingres and the Ingres/FORMS system 
      EXEC SQL CONNECT personnel END-EXEC. 
      EXEC FRS FORMS END-EXEC. 
* Verify that the user can edit the "person" table 
      EXEC FRS PROMPT NOECHO 
           ('Password for table editor: ', :RESPBUF) 
           END-EXEC. 
      IF RESPBUF NOT = "MASTER_OF_ALL" THEN 
          EXEC FRS 
                MESSAGE 'No permission for task. Exiting . . .' 
                END-EXEC 
          EXEC FRS ENDFORMS END-EXEC 
          EXEC SQL DISCONNECT END-EXEC 
          STOP RUN. 
* We assume no SQL errors can happen during screen updating 
      EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
      EXEC FRS MESSAGE 'Initializing Person Form . . .' END-EXEC. 
      EXEC FRS FORMINIT personfrm END-EXEC. 
* Initialize "persontbl" table field with a data set in FILL 
* mode, so that the runtime user can append rows. To keep track 
* of events occuring to original rows loaded into the table 
* field, hide the unique person number. 
      EXEC FRS INITTABLE personfrm persontbl FILL 
                  (number = integer) 
           END-EXEC. 
      CALL "LOAD-TABLE" GIVING MAXID. 
      EXEC FRS DISPLAY personfrm UPDATE END-EXEC 
      EXEC FRS INITIALIZE END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Top' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
* Provide menu items, as well as the system FRS key, to scroll 
* to both extremes of the table field. 
            EXEC FRS SCROLL personfrm persontbl TO 1 END-EXEC. 
      EXEC FRS END END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Bottom' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
            EXEC FRS SCROLL personfrm persontbl TO END END-EXEC. 
      EXEC FRS END END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Remove' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
 
* Remove the person in the row the user's cursor is on. If there 
* are no persons, exit operation with message. Note that this 
* check cannot really happen, as there is always an UNDEFINED row 
* in FILL mode. 
            EXEC FRS INQUIRE_FRS table personfrm 
                 (:LASTROW = LASTROW(persontbl)) END-EXEC. 
            IF LASTROW = 0 THEN 
                  EXEC FRS MESSAGE 'Nobody to Remove' END-EXEC 
                  EXEC FRS SLEEP 2 END-EXEC 
                  EXEC FRS RESUME FIELD persontbl END-EXEC. 
            EXEC FRS DELETEROW personfrm persontbl END-EXEC. 
      EXEC FRS END END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Find' END-EXEC 
      EXEC FRS BEGIN END-EXEC 



Sample Applications 

3–112     Embedded SQL Companion Guide 

* Scroll user to the requested table field entry. Prompt the user 
* for a name, and if one is typed in, loop through the data set 
* searching for it. 
            MOVE SPACES TO RESPBUF. 
            EXEC FRS PROMPT ('Person''s name : ', :RESPBUF) 
                        END-EXEC. 
            IF RESPBUF = " " THEN 
                  EXEC FRS RESUME FIELD persontbl END-EXEC. 
            EXEC FRS UNLOADTABLE personfrm persontbl 
                 (:PNAME = name, 
                  :RECNUM = _record, 
                  :STATE = _state) 
                  END-EXEC 
            EXEC FRS BEGIN END-EXEC 
* Compare name typed in with names in table, but do not compare 
* with deleted rows. 
                 IF PNAME = RESPBUF AND STATE NOT = ST-DELETE 
                 THEN 
                      EXEC FRS SCROLL personfrm persontbl 
                            TO :RECNUM END-EXEC 
                      EXEC FRS RESUME FIELD persontbl END-EXEC. 
          EXEC FRS END END-EXEC. 
* Fell out of loop without finding name. Inform user. 
          STRING "Person """ RESPBUF 
              """ not found in table [HIT RETURN] " 
              DELIMITED BY SIZE INTO MSGBUF. 
          EXEC FRS PROMPT NOECHO (:MSGBUF, :RESPBUF) END-EXEC. 
    EXEC FRS END END-EXEC 
    EXEC FRS ACTIVATE MENUITEM 'Exit' END-EXEC 
    EXEC FRS BEGIN END-EXEC 
          EXEC FRS VALIDATE FIELD persontbl END-EXEC. 
          EXEC FRS BREAKDISPLAY END-EXEC. 
    EXEC FRS END END-EXEC 
    EXEC FRS FINALIZE END-EXEC. 
 
* Exit person table editor and unload the table field. If any 
* update, deletions or additions were made, duplicate these 
* changes in the source table. If the user added new people, 
* assign a unique person id to each person before adding the 
* person to the table. To do this, increment the previously-saved 
* maximum id number with each insert. 
* Do all the updates in a transaction 
      EXEC SQL COMMIT WORK END-EXEC. 
* Hard code the error handling in the UNLOADTABLE loop, as we 
* want to cleanly exit the loop. 
      EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
      MOVE 0 TO UPDATE-ERROR. 
      MOVE 0 TO XACT-ABORTED. 
      EXEC FRS MESSAGE 'Exiting Person Application . . .' 
                  END-EXEC. 
      EXEC FRS UNLOADTABLE personfrm persontbl 
          (:PNAME = name, :P-AGE = age, 
           :PNUMBER = number, :STATE = _state) 
           END-EXEC 
      EXEC FRS BEGIN END-EXEC 
* Row appended by user. Insert into "person" table with new 
* unique id. 
           IF STATE = ST-NEW THEN 
              ADD 1 TO MAXID 
               EXEC SQL INSERT INTO person (name, age, number) 
                   VALUES (:PNAME, :P-AGE, :MAXID) 
               END-EXEC 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–113 

* Row updated by user. Reflect in table. 
           ELSE IF STATE = ST-CHANGE THEN 
               EXEC SQL UPDATE person SET 
                    name = :PNAME, age = :P-AGE 
                    WHERE number = :PNUMBER 
                    END-EXEC 
* Row deleted by user, so delete from table. Note that rows x 
* unique by the user at runtime and then deleted are not saved 
* and are therefore not unloaded. 
           ELSE IF state = ST-DELETE THEN 
                EXEC SQL DELETE FROM person 
                     WHERE number = :PNUMBER END-EXEC 
           END-IF. 
* Else rows are UNDEFINED or UNCHANGED. No updates. 
 
* Handle error conditions: if an error occurred, abort the 
* transaction. If no rows were updated, inform user and prompt 
* for continuation. 
          IF SQLCODE < 0 THEN 
                EXEC SQL INQUIRE_SQL(:MSGBUF = ERRORTEXT) END-EXEC 
                EXEC SQL ROLLBACK WORK END-EXEC 
                MOVE 1 TO UPDATE-ERROR 
                MOVE 1 TO XACT-ABORTED 
                EXEC FRS ENDLOOP END-EXEC 
          ELSE IF SQLCODE = NOT-FOUND THEN 
                STRING "Person """ PNAME 
                    """ not updated. Abort all updates? " 
                    DELIMITED BY SIZE INTO MSGBUF 
                EXEC FRS PROMPT (:MSGBUF, :RESPBUF) END-EXEC 
                IF RESPBUF = "Y" OR RESPBUF = "y" THEN 
                      EXEC SQL ROLLBACK WORK END-EXEC 
                      MOVE 1 TO XACT-ABORTED  
                      EXEC FRS ENDLOOP END-EXEC 
                END-IF 
          END-IF. 
      EXEC FRS END END-EXEC. 
      IF XACT-ABORTED = 0 THEN 
          EXEC SQL COMMIT END-EXEC. 
      EXEC FRS ENDFORMS END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      IF UPDATE-ERROR = 1 THEN 
            DISPLAY "Your updates were aborted because of error:" 
            DISPLAY msgbuf. 
      STOP RUN. 
END PROGRAM TABLE-EDIT. 
IDENTIFICATION DIVISION. 
PROGRAM-ID. LOAD-TABLE. 



Sample Applications 

3–114     Embedded SQL Companion Guide 

* This procedure opens a database cursor to load the table field 
* with data from the "person" table. The columns "name" and "age" 
* will be displayed, and "number" will be hidden. It returns the 
* maximum employee number. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
EXEC SQL INCLUDE SQLCA END-EXEC. 
* Person information -- declared to preprocessor in main program 
01 PERSONREC. 
    02 PNAME          PIC X(20). 
    02 P-AGE          PIC S99 USAGE COMP. 
    02 PNUMBER        PIC S9(6) USAGE COMP. 
01  MAXID             PIC S9(6) USAGE COMP. 
PROCEDURE DIVISION GIVING MAXID. 
BEGIN. 
      EXEC SQL DECLARE loadtab CURSOR FOR 
         SELECT name, age, number 
         FROM person 
         END-EXEC. 
 
* Set up error handling for loading procedure 
    EXEC SQL WHENEVER SQLERROR GOTO LOAD-END END-EXEC. 
    EXEC SQL WHENEVER NOT FOUND GOTO LOAD-END END-EXEC. 
    EXEC FRS MESSAGE 'Loading Person Information . . .' END-EXEC. 
* Fetch the maximum person id number for later use 
    EXEC SQL SELECT MAX(number) INTO :MAXID FROM person END-EXEC. 
    EXEC SQL OPEN loadtab END-EXEC. 
    PERFORM UNTIL SQLCODE NOT = 0 
* Fetch data into record and load table field 
          EXEC SQL FETCH loadtab INTO :PERSONREC END-EXEC 
          EXEC FRS LOADTABLE personfrm persontbl 
             (name = :PNAME, age = :P-AGE, number = :PNUMBER) 
              END-EXEC 
      END-PERFORM. 
LOAD-END. 
      EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
      EXEC SQL CLOSE loadtab END-EXEC. 
      EXIT PROGRAM. 
      END PROGRAM LOAD-TABLE.  



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–115 

The Professor–Student Mixed Form Application 

This application lets the user browse and update information about graduate 
students who report to a specific professor. The program is structured in a 
master/detail fashion, with the professor being the master entry, and the 
students the detail entries. The application uses two forms—one to contain 
general professor information and another for detailed student information. 

The objects used in this application are shown in the following table: 

 

Object Description 

personnel The program’s database environment. 

professor A database table with two columns: 

pname (char(25)) 

pdept (char(10)). 

See its declare table statement in the program for a full 
description. 

student A database table with seven columns: 

sname (char(25)) 

sage (integer1) 

sbdate (char(25)) 

sgpa (float4) 

dofmp (integer) 

scomment (varchar(200)) 

sadvisor (char(25)). 

See its declare table statement for a full description. The 
sadvisor column is the join field with the pname column in 
the Professor table. 

masterfrm The main form has the pname and pdept fields, which 
correspond to the information in the Professor table, and the 
studenttbl table field. The pdept field is display-only. 

studenttbl A table field in “masterfrm” with two columns, sname and 
sage. When initialized, it also has five hidden columns 
corresponding to information in the Student table. 

studentfrm The detail form, with seven fields, which correspond to 
information in the Student table. Only the sgpa, scomment, 
and sadvisor fields are updatable. All other fields are 
display-only. 



Sample Applications 

3–116     Embedded SQL Companion Guide 

Object Description 

grad A structure whose members correspond in name and type to 
the columns of the Student database table, the studentfrm 
form and the studenttbl table field. 

The program uses the masterfrm as the general-level master entry, in which 
data can only be retrieved and browsed, and the studentfrm as the detailed 
screen, in which specific student information can be updated. 

The runtime user enters a name in the pname field and then selects the 
Students menu operation. The operation fills the studenttbl table field with 
detailed information of the students reporting to the named professor. This is 
done by the database cursor “studentcsr” in the LOAD-STUDENTS paragraph. 
The program assumes that each professor is associated with exactly one 
department. The user may then browse the table field (in read mode), which 
displays only the names and ages of the students. More information about a 
specific student may be requested by selecting the Zoom menu operation. This 
operation displays the form studentfrm (in update mode). The fields of 
studentfrm are filled with values stored in the hidden columns of studenttbl. 
The user may make changes to three fields (sgpa, scomment, and sadvisor). If 
validated, these changes will be written back to the database table (based on 
the unique student id), and to the table field’s data set. This process can be 
repeated for different professor names. 

Windows UNIX
 
 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID.  STUDENT-ADMINISTRATOR. 
 
       ENVIRONMENT DIVISION. 
 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 
 
       EXEC SQL INCLUDE SQLCA END-EXEC. 

*      Graduate student table 
       EXEC SQL DECLARE student TABLE 
            (sname      char(25), 
             sage       integer1, 
             sbdate     char(25), 
             sgpa       float4, 
             sidno      integer, 
             scomment   varchar(200), 
             sadvisor   char(25)) 
             END-EXEC. 
 
*      Professor table 
       EXEC SQL DECLARE professor TABLE 
           (pname      char(25), 
            pdept      char(10)) 
           END-EXEC. 
 
       EXEC SQL BEGIN DECLARE SECTION END-EXEC. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–117 

*      Global grad student record maps to database table 
       01 GRAD. 
           02 SNAME        PIC X(25). 
           02 SAGE         PIC S9(4) USAGE COMP. 
           02 SBDATE       PIC X(25). 
           02 SGPA         PIC S9(10)V9(8) USAGE COMP. 
           02 SIDNO        PIC S9(9) USAGE COMP. 
           02 SCOMMENT     PIC X(200). 
           02 SADVISOR     PIC X(25). 
 
*      Professor info maps to database table 
       01 PROF. 
           02 PNAME      PIC X(25). 
           02 PDEPT      PIC X(10). 
 
*      Row number of last row in student table field 
       01 LASTROW        PIC S9(9) USAGE COMP. 
 
*      Is user on a table field? 
       01 ISTABLE          PIC S9 USAGE COMP. 
 
*      Were changes made to data in "studentfrm"? 
       01 CHANGED-DATA     PIC S9 USAGE COMP. 
 
       Did user enter a valid advisor name? 
       01 VALID-ADVISOR    PIC S9 USAGE COMP. 
 
*      "Studentfrm" loaded? 
       01 LOADFORM         PIC S9 USAGE COMP VALUE IS 0. 
 
*      Local utility buffers 
       01 MSGBUF           PIC X(200). 
       01 RESPBUF          PIC X. 
       01 OLD-ADVISOR      PIC X(25). 
 
*      Note: Compiled forms are not yet accepted as 
*      EXTERNAL due to restrictions noted in the chapter 
*      that describes how to link the RTS with compiled 
*      forms.  Consequently, declarations of external 
*      form objects and the corresponding ADDFORM 
*      statement have been commented out and replaced by 
*      a CALL "add_formname" statement. 
*      01    masterfrm  PIC S9(9) USAGE COMP-5 IS EXTERNAL. 
*      01    studentfrm PIC S9(9) USAGE COMP-5 IS EXTERNAL. 
 
       EXEC SQL END DECLARE SECTION END-EXEC. 
** 
*      Procedure Division: STUDENT-ADMINISTRATOR 
* 
*      Start up program, Ingres and the FORMS system and 
*      call Master driver. 
** 
       PROCEDURE DIVISION. 
       EXAMPLE SECTION. 
       XBEGIN. 
 
       EXEC FRS FORMS END-EXEC. 
       EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
       EXEC FRS MESSAGE 'Initializing Student 
                          Administrator .  .' END-EXEC. 
 
       EXEC SQL CONNECT personnel END-EXEC. 
 
       PERFORM MASTER THRU END-MASTER. 
 
       EXEC FRS CLEAR SCREEN END-EXEC. 



Sample Applications 

3–118     Embedded SQL Companion Guide 

       EXEC FRS ENDFORMS END-EXEC. 
       EXEC SQL DISCONNECT END-EXEC. 
       STOP RUN. 
** 
*      Paragraph: MASTER 
* 
*      Drive the application, by running "masterfrm", and 
*      allowing the user to "zoom" into a selected student. 
** 
       MASTER. 
*      EXEC FRS ADDFORM :masterfrm END-EXEC. 
       CALL "add_masterfrm". 
 
*      Initialize "studenttbl" with a data set in READ mode. 
*      Declare hidden columns for all the extra fields that the 
*      program will display when more information is requested 
*      about a student.  Columns "sname" and "sage" are displayed, 
*      all other columns are hidden, the student information  
*      form. 
 
       EXEC FRS INITTABLE masterfrm studenttbl READ 
               (sbdate   = char(25), 
                sgpa     = float4, 
                sidno    = integer, 
                scomment = char(200), 
                sadvisor = char(20)) 
                END-EXEC. 
       EXEC FRS DISPLAY masterfrm UPDATE END-EXEC 
       EXEC FRS INITIALIZE END-EXEC 
 
       EXEC FRS BEGIN END-EXEC 
              EXEC FRS MESSAGE  
                         'Enter an Advisor name . . .' END-EXEC. 
              EXEC FRS SLEEP 2 END-EXEC. 
       EXEC FRS END END-EXEC 
 
       EXEC FRS ACTIVATE MENUITEM  
              'Students', FIELD 'pname' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
 
*            Load the students of the specified professor 
             EXEC FRS GETFORM (:PNAME = pname) END-EXEC 
 
*            If no professor name is given, resume 
             IF PNAME = SPACES THEN 
                        EXEC FRS RESUME FIELD pname END-EXEC. 
 
*            Verify the professor exists.  Local error handling 
*            just prints the message, and continues.  We assume 
*            that each professor has exactly one department. 
 
             EXEC SQL WHENEVER SQLERROR CALL SQLPRINT END-EXEC. 
             EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
             MOVE SPACES TO PDEPT. 
             EXEC SQL SELECT pdept 
                      INTO :PDEPT 
                      FROM professor 
                      WHERE pname = :PNAME 
                      END-EXEC. 
 
       IF PDEPT = SPACES THEN 
                      STRING "No professor with name """, PNAME, 
                            """ [RETURN]" DELIMITED BY SIZE 
                            INTO MSGBUF 
                       EXEC FRS PROMPT NOECHO (:MSGBUF, :RESPBUF) 
                             END-EXEC 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–119 

                       EXEC FRS CLEAR FIELD ALL END-EXEC 
                       EXEC FRS RESUME FIELD pname END-EXEC. 
 
*              Fill the department field and load students 
               EXEC FRS PUTFORM (pdept = :PDEPT) END-EXEC. 
 
*              Refresh for query 
               EXEC FRS REDISPLAY END-EXEC. 
 
               PERFORM LOAD-STUDENTS THRU END-LOAD. 
               EXEC FRS RESUME FIELD studenttbl END-EXEC. 
 
       EXEC FRS END END-EXEC 
 
       EXEC FRS ACTIVATE MENUITEM 'Zoom' END-EXEC 
 
       EXEC FRS BEGIN END-EXEC 
 
*           Confirm that user is on "studenttbl", and that the 
*           table field is not empty.  Collect data from the row 
*           and zoom for browsing and updating. 
            EXEC FRS INQUIRE_FRS field 
                            masterfrm (:ISTABLE = table) 
                  END-EXEC. 
 
            IF ISTABLE = 0 THEN 
                  EXEC FRS PROMPT NOECHO 
                         ('Select from the student  
                                        table [RETURN]', 
                          :RESPBUF) END-EXEC 
 
            EXEC FRS RESUME FIELD studenttbl END-EXEC. 
            EXEC FRS INQUIRE_FRS table masterfrm 
                     (:LASTROW = lastrow) END-EXEC. 
 
            IF LASTROW = 0 THEN 
                    EXEC FRS PROMPT NOECHO 
                             ('There are no students [RETURN]', 
                               :RESPBUF) END-EXEC 
 
                    EXEC FRS RESUME FIELD pname END-EXEC. 
 
*           Collect all data on student into global record 
            EXEC FRS GETROW masterfrm studenttbl 
                          (:SNAME   = sname, 
                           :SAGE    = sage, 
                           :SBDATE  = sbdate, 
                           :SGPA    = sgpa, 
                           :SIDNO   = sidno, 
                           :SCOMMENT = scomment, 
                           :SADVISOR = sadvisor) 
                           END-EXEC. 
 
*          Display "studentfrm", and if any changes were made 
*          make the updates to the local table field row.  Only 
*          updates to the columns corresponding to writable fields 
*          in "studentfrm".  If the student changed advisors, then 
*          delete this row from the display. 
 
           MOVE SADVISOR TO OLD-ADVISOR. 
           PERFORM STUDENT-INFO-CHANGED THRU END-STUDENT. 
 
           IF CHANGED-DATA = 1 THEN 
                IF OLD-ADVISOR NOT = SADVISOR THEN 
                           EXEC FRS DELETEROW masterfrm studenttbl 
                                END-EXEC 



Sample Applications 

3–120     Embedded SQL Companion Guide 

                ELSE 
                           EXEC FRS PUTROW masterfrm studenttbl 
                                 (sgpa = :SGPA, 
                                  scomment = :SCOMMENT, 
                                  sadvisor = :SADVISOR) 
                                 END-EXEC 
                END-IF 
       END-IF. 
 
       EXEC FRS END END-EXEC 
 
       EXEC FRS ACTIVATE MENUITEM 'Exit' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
              EXEC FRS BREAKDISPLAY END-EXEC. 
       EXEC FRS END END-EXEC 
 
       EXEC FRS FINALIZE END-EXEC 
 
       END-MASTER. 
             EXIT. 
 
** 
*      Paragraph: LOAD-STUDENTS 
* 
*      For the current professor name, this paragraph loads into 
*      the "studenttbl" table field all the students whose 
*      advisor is the professor with that name. 
** 
       LOAD-STUDENTS. 
 
       EXEC SQL DECLARE studentcsr CURSOR FOR 
                SELECT sname, sage, sbdate, sgpa, 
                       sidno, scomment, sadvisor 
                FROM student 
                WHERE sadvisor = :PNAME 
                END-EXEC. 
 
*      Clear previous contents of table field.  Load the table 
*      field from the database table based on the advisor name. 
*      Columns "sname" and "sage" will be displayed, and all 
*      others will be hidden. 
 
       EXEC FRS MESSAGE 'Retrieving Student Information . . .' 
                 END-EXEC. 
       EXEC FRS CLEAR FIELD studenttbl END-EXEC. 
 
       EXEC SQL WHENEVER SQLERROR GOTO END-LOAD END-EXEC. 
       EXEC SQL WHENEVER NOT FOUND GOTO END-LOAD END-EXEC. 
 
       EXEC SQL OPEN studentcsr END-EXEC. 
 
*      Before we start the loop, we know that the OPEN was 
*      successful and that NOT FOUND was not set. 
 
       PERFORM UNTIL SQLCODE NOT = 0 
              EXEC SQL FETCH studentcsr INTO :GRAD END-EXEC 
              EXEC FRS LOADTABLE masterfrm studenttbl 
                           (sname    = :SNAME, 
                            sage     = :SAGE, 
                            sbdate   = :SBDATE, 
                            sgpa     = :SGPA, 
                            sidno    = :SIDNO, 
                            scomment = :SCOMMENT, 
                            sadvisor = :SADVISOR) 
                            END-EXEC 
       END-PERFORM. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–121 

       END-LOAD. 
*      Clean up on an error, and close cursors 
       EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
       EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
       EXEC SQL CLOSE studentcsr END-EXEC. 
** 
*     Paragraph: STUDENT-INFO-CHANGED 
* 
*     Allow the user to zoom into the details of a selected 
*     student.  Some of the data can be updated by the user. 
*     If any updates were made, then reflect these back into 
*     the database table.  The paragraph records whether or not 
*     changes were made via the CHANGED-DATA variable. 
** 
       STUDENT-INFO-CHANGED. 
 
*      Control ADDFORM to only initialize once 
       IF LOADFORM = 0 THEN 
           EXEC FRS MESSAGE 'Loading Student form . . .' END-EXEC 
           EXEC FRS ADDFORM :studentfrm END-EXEC 
           CALL "add_studentfrm" 
           MOVE 1 TO LOADFORM. 
 
*      Local error handle just prints error and continues 
       EXEC SQL WHENEVER SQLERROR CALL SQLPRINT END-EXEC. 
       EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
       EXEC FRS DISPLAY studentfrm FILL END-EXEC 
       EXEC FRS INITIALIZE 
               (sname    = :SNAME, 
                sage     = :SAGE, 
                sbdate   = :SBDATE, 
                sgpa     = :SGPA, 
                sidno    = :SIDNO, 
                scomment = :SCOMMENT, 
                sadvisor = :SADVISOR) 
                END-EXEC 
 
        EXEC FRS ACTIVATE MENUITEM 'Write' END-EXEC 
        EXEC FRS BEGIN END-EXEC 
 
*            If changes were made, update the database table. 
*            Only bother with the fields that are not read-only. 
 
             EXEC FRS INQUIRE_FRS form (:CHANGED-DATA = change) 
                    END-EXEC. 
 
             IF CHANGED-DATA = 0 THEN 
                    EXEC FRS BREAKDISPLAY END-EXEC. 
 
             EXEC FRS VALIDATE END-EXEC. 
             EXEC FRS MESSAGE 
                  ‘Writing changes to database. . .' END-EXEC. 
             EXEC FRS GETFORM 
                     (:SGPA = sgpa, 
                      :SCOMMENT = scomment, 
                      :SADVISOR = sadvisor) 
                     END-EXEC. 
 
*            Enforce integrity of professor name. 
             MOVE 0 TO VALID-ADVISOR. 
             EXEC SQL SELECT 1 INTO :VALID-ADVISOR 
                      FROM professor 
                      WHERE pname = :SADVISOR 
                      END-EXEC. 
             IF VALID-ADVISOR = 0 THEN 
                    EXEC FRS MESSAGE 



Sample Applications 

3–122     Embedded SQL Companion Guide 

                        'Not a valid advisor name' 
                        END-EXEC 
                    EXEC FRS SLEEP 2 END-EXEC 
                    EXEC FRS RESUME FIELD sadvisor END-EXEC 
             ELSE 
                    EXEC SQL UPDATE student SET 
                          sgpa     = :SGPA, 
                          scomment = :SCOMMENT, 
                          sadvisor = :SADVISOR 
                          WHERE sidno = :SIDNO 
                          END-EXEC 
                    EXEC FRS BREAKDISPLAY END-EXEC 
             END-IF. 
 
        EXEC FRS END END-EXEC 
        EXEC FRS ACTIVATE MENUITEM 'Quit' END-EXEC 
 
        EXEC FRS BEGIN END-EXEC 
*          Quit without submitting changes 
           MOVE 0 TO CHANGED-DATA. 
           EXEC FRS BREAKDISPLAY END-EXEC. 
 
       EXEC FRS END END-EXEC 
 
       EXEC FRS FINALIZE END-EXEC 
 
       END-STUDENT. 
             EXIT.  

VMS
  

IDENTIFICATION DIVISION. 
PROGRAM-ID. STUDENT-ADMINISTRATOR. 
 
ENVIRONMENT DIVISION. 
 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

EXEC SQL INCLUDE SQLCA END-EXEC. 
 
Graduate student table 
EXEC SQL DECLARE student TABLE 
    (sname     char(25), 
     sage      integer1, 
     sbdate    char(25), 
     sgpa      float4, 
     sidno     integer, 
     scomment  �archars(200), 
     sadvisor  char(25)) 
     END-EXEC. 
 
Professor table 
EXEC SQL DECLARE professor TABLE 
    (pname    char(25), 
     pdept    char(10)) 
     END-EXEC. 
 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
Global grad student record maps to database table 
GRAD. 
     02 SNAME      PIC X(25). 
     02 SAGE       PIC S9(4) USAGE COMP. 
     02 SBDATE     PIC X(25). 
     02 SGPA       USAGE COMP-1. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–123 

     02 SIDNO      PIC S9(9) USAGE COMP. 
     02 SCOMMENT   PIC X(200). 
     02 SADVISOR   PIC X(25). 
 
Professor info maps to database table 
PROF. 
     02 PNAME   PIC X(25). 
     02 PDEPT   PIC X(10). 
 
Row number of last row in student table field 
 01  LASTROW     PIC S9(9) USAGE COMP. 
 
Is user on a table field? 
 01  ISTABLE   PIC S9 USAGE COMP. 
 
Were changes made to data in “studentfrm”? 
 01  CHANGED    PIC S9 USAGE COMP. 
 
Did user enter a valid advisor name? 
01 VALID-ADVISOR PIC S9 USAGE COMP. 
02  
“Studentfrm” loaded? 
 01  LOADFORM    PIC S9 USAGE COMP VALUE IS 0. 
 
Local utility buffers 
 01 MSGBUF        PIC X(200). 
 01 RESPBUF       PIC X. 
 01 OLD-ADVISOR   PIC X(25). 
 
Externally compiled forms 
 01 MASTERF   PIC S9(9) USAGE COMP VALUE EXTERNAL Masterfrm. 
 01 STUDENTF  PIC S9(9) USAGE COMP VALUE EXTERNAL Studentfrm. 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
PROCEDURE DIVISION. 
BEGIN. 
 
Start program and call Master driver. First, start Ingres and 
the FORMS system. 
 
      EXEC FRS FORMS END-EXEC. 
 
      EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
      EXEC FRS MESSAGE ‘Initializing Student Administrator . . .’ 
                               END-EXEC. 
 
      EXEC SQL CONNECT personnel END-EXEC. 
 
      PERFORM MASTER THRU END-MASTER. 
 
      EXEC FRS CLEAR SCREEN END-EXEC. 
      EXEC FRS ENDFORMS END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      STOP RUN. 
 
MASTER. 
 
This paragraph drives the application. It runs “masterfrm” and 
allows the user to “zoom” in on a selected student. 
 
      EXEC FRS ADDFORM :MASTERF END-EXEC. 
Initialize “studenttbl” with a data set in READ mode. Declare 
hidden columns for all the extra fields that the program will 
display when more information is requested about a student. 
Columns “sname” ad “sage” are displayed. All other columns are 
hidden, to be used in the student information form. 



Sample Applications 

3–124     Embedded SQL Companion Guide 

 
      EXEC FRS INITTABLE masterfrm studenttbl READ 
          (sbdate   = char(25), 
           sgpa     = float4, 
           sidno    = integer, 
           scomment = char(200), 
           sadvisor = char(20)) 
           END-EXEC. 
 
      EXEC FRS DISPLAY masterfrm UPDATE END-EXEC 
      EXEC FRS INITIALIZE END-EXEC 
      EXEC FRS BEGIN END-EXEC 
 
            EXEC FRS MESSAGE ‘Enter an Advisor name . . .’ 
                        END-EXEC. 
            EXEC FRS SLEEP 2 END-EXEC. 
 
      EXEC FRS END END-EXEC 
 
      EXEC FRS ACTIVATE MENUITEM ‘Students’, FIELD ‘pname’ 
                        END-EXEC 
      EXEC FRS BEGIN END-EXEC 
 
*    Load the students of the specified professor 
            EXEC FRS GETFORM (:PNAME = pname) END-EXEC. 
 
*    If no professor name is given, resume 
            IF PNAME = “ “ THEN 
                EXEC FRS RESUME FIELD pname END-EXEC. 
 
*   Verify that the professor exists. Local error handling just 
*   prints the message and continues. Assume that each professor 
*   has exactly one department. 
 
            EXEC SQL WHENEVER SQLERROR CALL SQLPRINT END-EXEC. 
            EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
            MOVE SPACES TO PDEPT. 
            EXEC SQL SELECT pdept 
                INTO :PDEPT 
                FROM professor 
                WHERE pname = :PNAME 
                END-EXEC. 
 
            IF PDEPT = “ “ THEN 
                STRING “No professor with name “”” PNAME 
                      “”” [RETURN]” DELIMITED BY SIZE INTO MSGBUF 
                EXEC FRS PROMPT NOECHO (:MSGBUF, :RESPBUF) 
                        END-EXEC 
                EXEC FRS CLEAR FIELD ALL END-EXEC 
                EXEC FRS RESUME FIELD pname END-EXEC. 
 
*   Fill the department field and load students 
*  
            EXEC FRS PUTFORM (pdept = :PDEPT) END-EXEC. 
 
* Refresh for query 
            EXEC FRS REDISPLAY END-EXEC. 
            PERFORM LOAD-STUDENTS THRU END-LOAD. 
 
            EXEC FRS RESUME FIELD studenttbl END-EXEC. 
 
      EXEC FRS END END-EXEC 
 
      EXEC FRS ACTIVATE MENUITEM 'Zoom' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–125 

* Confirm that user is in "studenttbl" and that the table field 
* is not empty. Collect data from the row and zoom for browsing 
* and updating. 
 
            EXEC FRS INQUIRE_FRS field masterfrm 
                        (:ISTABLE = table) 
                 END-EXEC. 
 
            IF ISTABLE = 0 THEN 
                  EXEC FRS PROMPT NOECHO 
                        ('Select from the student table [RETURN]', 
                         :RESPBUF) END-EXEC 
                  EXEC FRS RESUME FIELD studenttbl END-EXEC. 
 
            EXEC FRS INQUIRE_FRS table masterfrm 
                 (:LASTROW = lastrow) END-EXEC. 
            IF LASTROW = 0 THEN 
                  EXEC FRS PROMPT NOECHO 
                       ('There are no students [RETURN]', 
                       :RESPBUF) END-EXEC 
                  EXEC FRS RESUME FIELD pname END-EXEC. 
 
* Collect all data on student into global record 
 
            EXEC FRS GETROW masterfrm studenttbl 
                (:SNAME    = sname, 
                 :SAGE     = sage, 
                 :SBDATE   = sbdate, 
                 :SGPA     = sgpa, 
                 :SIDNO    = sidno, 
                 :SCOMMENT = scomment, 
                 :SADVISOR = sadvisor) 
                 END-EXEC. 
 
* Display "studentfrm," and if any changes were made, make the 
* update to the local table field row. Only make updates to the 
* columns corresponding to writable fields in "studentfrm." If 
* the student changed advisors delete this row from the display. 
 
            MOVE SADVISOR TO OLD-ADVISOR. 
            PERFORM STUDENT-INFO-CHANGED THRU END-STUDENT. 
 
            IF CHANGED = 1 THEN 
                  IF OLD-ADVISOR NOT = SADVISOR THEN 
                        EXEC FRS DELETEROW masterfrm studenttbl 
                             END-EXEC 
                  ELSE 
                        EXEC FRS PUTROW masterfrm studenttbl 
                            (sgpa     = :SGPA, 
                             scomment = :SCOMMENT, 
                             sadvisor = :SADVISOR) 
                            END-EXEC 
                  END-IF 
            END-IF. 
 
      EXEC FRS END END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Exit' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
            EXEC FRS BREAKDISPLAY END-EXEC. 
      EXEC FRS END END-EXEC 
 
      EXEC FRS FINALIZE END-EXEC 
 
 
END-MASTER. 
 



Sample Applications 

3–126     Embedded SQL Companion Guide 

LOAD-STUDENTS. 
 
* For the current professor name, this paragraph loads into the 
* “studenttbl” table field all the students whose advisor is the 
* professor with that name. 
 
      EXEC SQL DECLARE studentcsr CURSOR FOR 
          SELECT sname, sage, sbdate, sgpa, 
                 sidno, scomment, sadvisor 
          FROM student 
          WHERE sadvisor = :PNAME 
          END-EXEC. 
 
* Clear previous contents of table field. Load the table field 
* from the database table based on the advisor name. Columns 
* "sname" and “sage” will be displayed, and all others will be 
* hidden. 
 
      EXEC FRS MESSAGE 'Retrieving Student Information . . ' 
                  END-EXEC. 
 
      EXEC FRS CLEAR FIELD studenttbl END-EXEC. 
 
      EXEC SQL WHENEVER SQLERROR GOTO END-LOAD END-EXEC. 
      EXEC SQL WHENEVER NOT FOUND GOTO END-LOAD END-EXEC. 
 
      EXEC SQL OPEN studentcsr END-EXEC. 
 
* Before we start the loop, we know that the OPEN was 
* successful and that NOT FOUND was not set. 
 
      PERFORM UNTIL SQLCODE NOT = 0 
            EXEC SQL FETCH studentcsr INTO :GRAD END-EXEC 
 
            EXEC FRS LOADTABLE masterfrm studenttbl 
                 (sname    = :SNAME, 
                  sage     = :SAGE, 
                  sbdate   = :SBDATE, 
                  sgpa     = :SGPA, 
                  sidno    = :SIDNO, 
                  scomment = :SCOMMENT, 
                  sadvisor = :SADVISOR) 
                  END-EXEC 
      END-PERFORM. 
 
END-LOAD. 
 
* Clean up on an error, and close cursors 
      EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
      EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
      EXEC SQL CLOSE studentcsr END-EXEC. 
 
STUDENT-INFO-CHANGED. 
 
* This paragraph allows the user to zoom in on the details of a 
* selected student. Some of the data can be updated by the 
* user. If any updates were made, they are reflected back into 
* the database table. The paragraph records whether or not 
* changes were made via the CHANGED variable. 
 
* Control ADDFORM to only initialize once 
 
      IF LOADFORM = 0 THEN 
           EXEC FRS MESSAGE 'Loading Student form . . .' END-EXEC 
           EXEC FRS ADDFORM :STUDENTF END-EXEC 
           MOVE 1 TO LOADFORM. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–127 

 
* Local error handle just prints error and continues 
      EXEC SQL WHENEVER SQLERROR CALL SQLPRINT END-EXEC. 
      EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 
 
      EXEC FRS DISPLAY studentfrm FILL END-EXEC 
      EXEC FRS INITIALIZE 
           (sname    = :SNAME, 
            sage     = :SAGE, 
            sbdate   = :SBDATE, 
            sgpa     = :SGPA, 
            sidno    = :SIDNO, 
            scomment = :SCOMMENT, 
            sadvisor = :SADVISOR) 
            END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Write' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
 
* If changes were made, update the database table. Only bother 
* with the fields that are not read-only. 
 
            EXEC FRS INQUIRE_FRS form (:CHANGED = change) END-EXEC. 
 
            IF CHANGED = 0 THEN 
                   EXEC FRS BREAKDISPLAY END-EXEC. 
 
            EXEC FRS VALIDATE END-EXEC. 
 
            EXEC FRS MESSAGE 
                   'Writing changes to database. . .' 
                   END-EXEC. 
 
            EXEC FRS GETFORM 
                  (:SGPA    = sgpa, 
                   :SCOMMENT = scomment, 
                   :SADVISOR = sadvisor) 
                   END-EXEC. 
 
* Enforce integrity of professor name. 
 
            MOVE 0 TO VALID-ADVISOR. 
            EXEC SQL SELECT 1 INTO :VALID-ADVISOR 
                  FROM professor 
                  WHERE pname = :SADVISOR 
                  END-EXEC. 
            IF VALID-ADVISOR = 0 THEN 
                  EXEC FRS MESSAGE 'Not a valid advisor name' 
                        END-EXEC 
                  EXEC FRS SLEEP 2 END-EXEC 
                  EXEC FRS RESUME FIELD sadvisor END-EXEC 
            ELSE 
                  EXEC SQL UPDATE student SET 
                       sgpa        = :SGPA, 
                       scomment    = :SCOMMENT, 
                       sadvisor    = :SADVISOR 
                       WHERE sidno = :SIDNO 
                       END-EXEC 
                  EXEC FRS BREAKDISPLAY END-EXEC 
            END-IF. 
 
      EXEC FRS END END-EXEC 
 
      EXEC FRS ACTIVATE MENUITEM 'Quit' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
 
* Quit without submitting changes 



Sample Applications 

3–128     Embedded SQL Companion Guide 

            MOVE 0 TO CHANGED. 
            EXEC FRS BREAKDISPLAY END-EXEC. 
 
      EXEC FRS END END-EXEC 
 
      EXEC FRS FINALIZE END-EXEC 
 
END-STUDENT. 
      EXIT.  

The SQL Terminal Monitor Application 

This application executes SQL statements that are read in from the terminal. 
The application reads statements from input and writes results to output. 
Dynamic SQL is used to process and execute the statements. 

When the application starts, the user is prompted for the database name. The 
user is then prompted for an SQL statement. SQL comments and statement 
delimiters are not accepted. The SQL statement is processed using Dynamic 
SQL and results and SQL errors are written to output. At the end of the 
results, an indicator of the number of rows affected is displayed. The loop is 
then continued and the user is prompted for another SQL statement. When 
end-of-file is typed in the application rolls back any pending updates and 
disconnects from the database. 

The user’s SQL statement is prepared using prepare and describe. If the SQL 
statement is not a select statement, then it is run using execute and the 
number of rows affected is printed. If the SQL statement is a select statement, 
a Dynamic SQL cursor is opened, and all the rows are fetched and printed. The 
sections of code that print the results do not try to tabulate the results. A row 
of column names is printed, followed by each row of the results. 

Keyboard interrupts are not handled. Fatal errors, such as allocation errors, 
and boundary condition violations are handled by rolling back pending updates 
and disconnecting from the database session. 

Windows UNIX
 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID.  SQL-MONITOR. 
       ENVIRONMENT DIVISION. 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 

*      Include SQL Communications and Descriptor Areas 
       EXEC SQL INCLUDE SQLCA END-EXEC. 
       EXEC SQL INCLUDE SQLDA END-EXEC. 
*      Dynamic SQL statement name (documentary only) 
       EXEC SQL DECLARE stmt STATEMENT END-EXEC. 
*      Cursor declaration for dynamic statement 
       EXEC SQL DECLARE csr CURSOR FOR stmt END-EXEC. 
       EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
*      Database name 
       01 DB-NAME         PIC X(30). 
*      Dynamic SQL statement buffer 
       01 STMT-BUF        PIC X(1000). 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–129 

*      SQL error message buffer 
       01 ERROR-BUF       PIC X(1024). 
       EXEC SQL END DECLARE SECTION END-EXEC. 
*      SQL statement number 
       01 STMT-NUM        PIC 999. 
*      Reading state 
       01 READING-STMT    PIC S9(4) USAGE COMP. 
          88 DONE-READING    VALUE 0. 
          88 STILL-READING  VALUE 1. 
*      Number of rows affected by last SQL statement 
       01 STMT-ROWS           PIC ZZZZZ9. 
*      Number of rows retrieved by last SELECT statement 
       01 SELECT-ROWS         PIC S9(8) USAGE COMP. 
*      Dynamic SELECT statement set up state 
       01 SELECT-SETUP        PIC S9(4) USAGE COMP. 
           88 SETUP-FAIL      VALUE 0. 
           88 SETUP-OK        VALUE 1. 
*      Index into SQLVAR table 
       01 COLN                PIC 999. 
*      Base data type of SQLVAR item without nullability 
       01 BASE-TYPE            PIC S9(4) USAGE COMP. 
*      Is a result column type nullable 
       01 IS-NULLABLE          PIC S9(4) USAGE COMP. 
           88 NOT-NULLABLE    VALUE 0. 
           88 NULLABLE        VALUE 1. 
 
 
*      Global result data storage.  This pool of data 
*      includes the maximum number of result data 
*      items needed to execute a Dynamic SELECT 
*      statement.  There is a table of 1024 integers, 
*      decimal and null indicator data items, and a 
*      large character string buffer. 
*      The display data picture formats may be 
*      modified if more numeric precision is 
*      required.  Note: floating-point and 
*      money types are stored in decimal variables. 
       01 RESULT-DATA. 
            02 NUMERIC-DATA OCCURS IISQ-MAX-COLS TIMES. 
                03 INT-DATA         PIC S9(9) USAGE COMP-5 SYNC. 
                03 IND-DATA         PIC S9(4) USAGE COMP-5 SYNC. 
            02 DECIMAL-DATA         OCCURS IISQ-MAX-COLS TIMES. 
                03 DEC-DATA         PIC S9(10)V9(8) USAGE COMP-3. 
            02 STRING-DATA. 
                03 CHAR-LEN         PIC S9(4) USAGE COMP. 
                03 CHAR-DATA        PIC X(2500). 
            02 DISPLAY-DATA. 
                03 DISP-INT         PIC +Z(6)99. 
                03 DISP-DEC         PIC +Z(8)99.99(8). 
*      Current lengths of local character data. 
       01 CUR-LEN                   PIC S9(4) USAGE COMP. 
** 
* Procedure Division: SQL-MONITOR 
* 
*      Main entry of SQL Monitor application.  Prompt for 
*      database name and connect to the database.  Run 
*      the monitor and disconnect from the database. 
*      Before disconnecting, roll back any pending updates. 
** 
       PROCEDURE DIVISION. 
       EXAMPLE SECTION. 
       XBEGIN. 



Sample Applications 

3–130     Embedded SQL Companion Guide 

*      Execute a dummy ACCEPT statement from the CONSOLE prior 
*      to using the ACCEPT statement to read in input.  This 
*      introductory ACCEPT statement (which is documented to 
*      read from COMMAND-LINE)may not be necessary on all systems. 
       ACCEPT DB-NAME FROM CONSOLE. 
*     Prompt for database name. 
      MOVE SPACES TO DB-NAME. 
      DISPLAY "SQL Database: " WITH NO ADVANCING. 
      ACCEPT DB-NAME FROM CONSOLE. 
      IF (DB-NAME = SPACES) THEN 
           DISPLAY "**************************" 
           STOP RUN. 
      DISPLAY " -- SQL Terminal Monitor -- ". 
*     Treat connection errors as fatal. 
      EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
      EXEC SQL CONNECT :DB-NAME END-EXEC. 
*     Run the Terminal Monitor 
      PERFORM RUN-MONITOR. 
      EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
      DISPLAY "SQL: Exiting monitor program.". 
      EXEC SQL ROLLBACK END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      STOP RUN. 
** 
* Paragraph: RUN-MONITOR 
* 
*     Run the SQL monitor. Initialize the global 
*     SQLDA with the number of SQLVAR elements. Loop 
*     while prompting the user for input; if 
*     end-of-file is detected then return to the 
*     calling paragraph (the main program). If the 
*     user inputs a statement, execute it (using 
*     paragraph EXECUTE-STATEMENT). 
** 
       RUN-MONITOR. 
*      Initialize the SQLN (the number of SQLVAR 
*      elements is set by default to IISQ-MAX-COLS) 
*      Now we are setup for input. Initialize 
*      statement number and reading state. 
       MOVE 0 TO STMT-NUM. 
       SET STILL-READING TO TRUE. 
*      Loop while prompting, reading and processing 
*      the SQL statement. 
       PERFORM UNTIL DONE-READING 
            ADD 1 TO STMT-NUM 
            PERFORM READ-STATEMENT 
            IF (STILL-READING) THEN 
                  PERFORM EXECUTE-STATEMENT THRU END-EXECUTE 
            END-IF 
      END-PERFORM. 
** 
* Paragraph: EXECUTE-STATEMENT 
* 
*     Using the PREPARE and DESCRIBE facilities determine if 
*     the input statement is a SELECT statement or not. If 
*     the statement is not a SELECT statement then EXECUTE it, 
*     otherwise open a cursor and 
*     process a dynamic SELECT statement (using paragraph 
*     EXECUTE-SELECT). After processing the statement, print 
*     the number of rows affected by the statement and any SQL 
*     errors. 
** 
       EXECUTE-STATEMENT. 
       EXEC SQL WHENEVER SQLERROR GO TO END-EXECUTE END-EXEC. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–131 

*      PREPARE and DESCRIBE the statement. Inspect the 
*      contents of the SQLDA and determine if it is a SELECT 
*      statement or not. 
       EXEC SQL PREPARE stmt FROM :STMT-BUF END-EXEC. 
       EXEC SQL DESCRIBE stmt INTO :SQLDA END-EXEC. 
*      IF SQLD = 0 then this is not a SELECT. 
       IF (SQLD = 0) THEN 
               EXEC SQL EXECUTE stmt END-EXEC 
               MOVE SQLERRD(3) TO STMT-ROWS 
 
*      Otherwise this is a SELECT. Verify that there are enough 
*      SQLVAR result variables. If there are too few print an 
*      error and continue, otherwise call EXECUTE-SELECT. 
       ELSE IF (SQLD > SQLN) THEN 
                 DISPLAY "SQL Error: SQLDA requires more than " 
                     "1024 result variables." 
                 MOVE 0 TO STMT-ROWS 
       ELSE 
                 PERFORM EXECUTE-SELECT THRU END-SELECT 
                 MOVE SELECT-ROWS TO STMT-ROWS 
       END-IF. 
*      Print the number of rows processed. 
       DISPLAY "[" STMT-ROWS " row(s)]". 
*      Only print the error message if we arrived at this label 
*      because of an SQL error. 
       END-EXECUTE. 
            EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
            IF (SQLCODE < 0) THEN 
                  PERFORM PRINT-ERROR. 
** 
* Paragraph: EXECUTE-SELECT 
*      Execute a Dynamic SELECT statement. The SQLDA has already 
*      been described, so print the table header column names, 
*      open a dynamic cursor, and retrieve and print the results. 
*      Accumulate the number of rows processed in SELECT-ROWS. 
** 
       EXECUTE-SELECT. 
*      So far no rows. 
       MOVE 0 TO SELECT-ROWS. 
*      Set up the result types and data items, and print result 
*      column names. SETUP-ROW will set SETUP-FAIL/OK if it 
*      fails/succeeds. 
       PERFORM SETUP-ROW. 
       IF (SETUP-FAIL) THEN 
             GO TO END-SELECT. 
       EXEC SQL WHENEVER SQLERROR GO TO SELECT-ERR END-EXEC. 
*      Open the dynamic cursor. 
       EXEC SQL OPEN csr FOR READONLY END-EXEC. 
*      Fetch and print each row. Accumulate the number of 
*      rows fetched. 
       PERFORM UNTIL SQLCODE NOT = 0 
               EXEC SQL FETCH csr USING DESCRIPTOR :SQLDA END-EXEC 
                 IF (SQLCODE = 0) THEN 
                         ADD 1 TO SELECT-ROWS 
                         PERFORM PRINT-ROW 
                 END-IF 
       END-PERFORM. 
       SELECT-ERR. 
            EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 



Sample Applications 

3–132     Embedded SQL Companion Guide 

 
*       Only print the error message if we arrived at this 
*       label because of an SQL error. 
        IF (SQLCODE < 0) THEN 
             PERFORM PRINT-ERROR. 
        EXEC SQL CLOSE csr END-EXEC. 
 END-SELECT. 
        EXIT. 
** 
* Paragraph: SETUP-ROW 
* 
*     A statement has just been described, so set up the 
*     SQLDA for result processing. Print all the column 
*     names and allocate result data items for retrieving 
*     data using paragraph SETUP-COLUMN. 
*     This paragraph sets SETUP-OK if it succeeds, and 
*     SETUP-FAIL if there was some sort of initialization 
*     error(in SETUP-COLUMN). 
** 
 
       SETUP-ROW. 
 
*      Initialize column setup. No character data used yet. 
 
       SET SETUP-OK TO TRUE. 
       MOVE 1 TO CHAR-LEN. 
 
*      Process each column. 
 
       PERFORM SETUP-COLUMN 
                VARYING COLN FROM 1 BY 1 
                UNTIL (COLN > SQLD) OR (SETUP-FAIL). 
 
*      At this point we've processed all columns for 
*      data type information. 
*      End the line of column names. 
 
       DISPLAY SPACE. 
       DISPLAY "----------------------------". 
** 
* Paragraph: SETUP-COLUMN 
* 
*     When setting up for a SELECT statement column names are 
*     printed, and result data items (for retrieving data) 
*     are chosen out of a pool of variables (integers, 
*     decimals, a large character string space and null 
*     indicators). The SQLDATA and SQLIND fields are pointed 
*     at the addresses of the result data items and 
*     indicators. Paragraph sets SETUP-FAIL if it fails. 
** 
 
       SETUP-COLUMN. 
 
 
*      For each column print the number and name of the column, 
*      e.g.: [001] sal [002] name [003] age 
       DISPLAY "[" COLN "] " WITH NO ADVANCING. 
       DISPLAY SQLNAMEC(COLN)(1:SQLNAMEL(COLN)) WITH NO ADVANCING. 
       IF (COLN < SQLD) THEN 
             DISPLAY SPACE WITH NO ADVANCING. 
 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–133 

*     Determine the data type of the column and to where SQLDATA 
*     and SQLIND must point in order to retrieve data-compatible 
*     results. Use the global numeric table and the large 
*     character string buffer from which pieces can be allocated. 
 
*     First find the base type of the current column. 
 
*     Note: Normally you should clear the SQLIND pointer if it 
*     is not being used using the SET TO NULL statement. At the 
*     time of this writing, however, SET pointer-item TO NULL 
*     was not accepted. The pointer will be ignored by 
*     Ingres if the SQLTYPE is positive. 
 
      IF (SQLTYPE(COLN) > 0) THEN 
           MOVE SQLTYPE(COLN) TO BASE-TYPE 
           SET NOT-NULLABLE TO TRUE 
*          SET SQLIND(COLN) TO NULL 
      ELSE 
           COMPUTE BASE-TYPE = 0 - SQLTYPE(COLN) 
           SET NULLABLE TO TRUE 
           SET SQLIND(COLN) TO ADDRESS OF IND-DATA(COLN) 
      END-IF. 
 
*     Collapse all different types into one of 
*     integer, decimal or character. 
 
*     Integer data uses 4-byte COMP. 
 
      IF (BASE-TYPE = IISQ-INT-TYPE) THEN 
 
               MOVE IISQ-INT-TYPE TO SQLTYPE(COLN) 
               MOVE 4 TO SQLLEN(COLN) 
               SET SQLDATA(COLN) TO ADDRESS OF INT-DATA(COLN) 
 
*      Money and floating-point data or decimal data use COMP-3 
* 
*      Note: You must encode precision and length when settin 
*      SQLLEN for a decimal data type. Use the formula: SQLLEN = 
*      (256 * p+s) where p is the Ingres precision and s l 
*      is scale of the decimal host variable. DEC-DATA is 
*      defined as PIC S9(10)V9(8), so p = 10 + 8 (Ingres 
*      precision is the total number of digits.) and s = 8. 
*      Therefore, SQLLEN = (256 * 18 + 8) = 4616. 
 
       ELSE IF (BASE-TYPE = IISQ-MNY-TYPE) OR 
                (BASE-TYPE = IISQ-DEC-TYPE) OR 
                (BASE-TYPE = IISQ-FLT-TYPE) THEN 
 
                MOVE IISQ-DEC-TYPE TO SQLTYPE(COLN) 
                MOVE 4616          TO SQLLEN(COLN) 
                SET SQLDATA(COLN) TO ADDRESS OF DEC-DATA(COLN) 
 
*      Dates, fixed and varying-length character 
*      strings use character data. 
 
       ELSE IF (BASE-TYPE = IISQ-DTE-TYPE) 
             OR (BASE-TYPE = IISQ-CHA-TYPE) 
             OR (BASE-TYPE = IISQ-VCH-TYPE) 
             OR (BASE-TYPE = IISQ-LVCH-TYPE) THEN 
 



Sample Applications 

3–134     Embedded SQL Companion Guide 

*       Fix up the lengths of dates and determine the length 
*       of the sub-string required from the large character 
*       string buffer. 
 
             IF (BASE-TYPE = IISQ-DTE-TYPE) THEN 
                  MOVE IISQ-DTE-LEN TO SQLLEN(COLN) 
             END-IF 
             IF (BASE-TYPE = IISQ-LVCH-TYPE) THEN 
*      Maximize the length of a large object to 100 
*      for this example. 
 
                    MOVE 100 TO SQLLEN(COLN) 
             END-IF 
 
             MOVE IISQ-CHA-TYPE TO SQLTYPE(COLN) 
             MOVE SQLLEN(COLN) TO CUR-LEN 
 
*      If we do not have enough character space left 
*      print an error. 
 
             IF ((CHAR-LEN + CUR-LEN) > 2500) THEN 
                    DISPLAY "SQL Error: Character result " 
                            "data overflow." 
                    SET SETUP-FAIL TO TRUE 
             ELSE 
 
*      There is enough space so point at the start of the 
*      corresponding sub-string. Allocate space out of 
*      character buffer and accumulate the currently used 
*      character space. 
 
                   SET SQLDATA(COLN) TO ADDRESS OF 
                          CHAR-DATA(CHAR-LEN:) 
                   ADD CUR-LEN TO CHAR-LEN 
              END-IF 
       END-IF. 
 
*      If nullable negate the data type 
       IF (NULLABLE) THEN 
            COMPUTE SQLTYPE(COLN) = 0 - SQLTYPE(COLN) 
       END-IF. 
 
** 
*      Paragraph: PRINT-ROW 
* 
*      For each result column inside the SQLDA, print the    
*      value. Print its column number too in order to  
*      identify it with a column name printed earlier in  
*      SETUP-ROW. If the value is NULL print "N/A".The  
*      details of the printing are done in PRINT-COLUMN. 
** 
       PRINT-ROW. 
 
 
*      Reset the character counter to the first byte. 
       MOVE 1 TO CHAR-LEN. 
*      Process each column. 
 
       PERFORM PRINT-COLUMN 
              VARYING COLN FROM 1 BY 1 
              UNTIL (COLN > SQLD). 
 
*      End each line of column data. 
 
       DISPLAY SPACE. 
 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–135 

** 
* Paragraph: PRINT-COLUMN 
* 
*      Detailed printing of PRINT-ROW. This paragraph does 
*      not attempt to tabulate the results in a tabular 
*      format. The display formats used can be modified if 
*      more precision is required. 
** 
 
       PRINT-COLUMN. 
 
*      For each column print the number and value of the column. 
*      NULL columns are printed as "N/A". 
 
       DISPLAY "[" COLN "] " WITH NO ADVANCING. 
 
*      Find the base type of the current column. 
 
       IF (SQLTYPE(COLN) > 0) THEN 
             MOVE SQLTYPE(COLN) TO BASE-TYPE 
             SET NOT-NULLABLE TO TRUE 
       ELSE 
             COMPUTE BASE-TYPE = 0 - SQLTYPE(COLN) 
             SET NULLABLE TO TRUE 
       END-IF. 
 
*      Different types have been collapsed into one of 
*      integer, decimal or character. If the data is NULL 
*      then just print "N/A". 
 
       IF (NULLABLE AND (IND-DATA(COLN) = -1)) THEN 
 
       DISPLAY "N/A" WITH NO ADVANCING 
 
*      Integer data. 
 
       ELSE IF (BASE-TYPE = IISQ-INT-TYPE) THEN 
               MOVE INT-DATA(COLN) TO DISP-INT 
               DISPLAY DISP-INT WITH NO ADVANCING 
 
*      Decimal, money and float column data will also 
*      be printed  here. 
 
      ELSE IF (BASE-TYPE = IISQ-DEC-TYPE) THEN 
 
              MOVE DEC-DATA(COLN) TO DISP-DEC 
              DISPLAY DISP-DEC WITH NO ADVANCING 
*      Character data. Print only the relevant substring. 
 
       ELSE IF (BASE-TYPE = IISQ-CHA-TYPE) THEN 
 
             MOVE SQLLEN(COLN) TO CUR-LEN 
             DISPLAY CHAR-DATA(CHAR-LEN:CUR-LEN) 
                   WITH NO ADVANCING 
             ADD CUR-LEN TO CHAR-LEN 
 
       END-IF. 
 
*      Add trailing space after each value. 
       IF (COLN < SQLD) THEN 
            DISPLAY SPACE WITH NO ADVANCING. 



Sample Applications 

3–136     Embedded SQL Companion Guide 

 
** 
*  Paragraph: PRINT-ERROR 
* 
*      SQLCA error detected. Retrieve the error message and 
*      print it. 
** 
 
       PRINT-ERROR. 
 
       EXEC SQL INQUIRE_SQL (:ERROR-BUF = ERRORTEXT) END-EXEC. 
       DISPLAY "SQL Error:". 
       DISPLAY ERROR-BUF. 
 
** 
* Paragraph: READ-STATEMENT 
* 
*      Prompt user and read input SQL statement. This paragraph 
*      can be expanded to scan and process an SQL statement 
*      string searching 
*      for delimiters (such as quotes and the semicolon). 
*      Currently the user is allowed to input only one SQL e 
*      statement on on line without any terminators. Blank or 
*      empty lines will causthe normal termination of this 
*      program. 
** 
       READ-STATEMENT. 
 
       DISPLAY STMT-NUM ">" WITH NO ADVANCING. 
       ACCEPT STMT-BUF FROM CONSOLE. 
       IF (STMT-BUF = SPACES) THEN 
            DISPLAY "**************************" 
            SET DONE-READING TO TRUE.  
 

VMS
  

IDENTIFICATION DIVISION. 
PROGRAM-ID. SQL-MONITOR. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

* Include SQL Communications and Descriptor Areas 
    EXEC SQL INCLUDE SQLCA END-EXEC. 
    EXEC SQL INCLUDE SQLDA END-EXEC. 
* Dynamic SQL statement name (documentary only) 
    EXEC SQL DECLARE stmt STATEMENT END-EXEC. 
* Cursor declaration for dynamic statement 
    EXEC SQL DECLARE csr CURSOR FOR stmt END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
* Database name 
     01 DB-NAME             PIC X(30). 
* Dynamic SQL statement buffer 
     01 STMT-BUF            PIC X(1000). 
* SQL error message buffer 
     01 ERROR-BUF           PIC X(1024). 
EXEC SQL END DECLARE SECTION END-EXEC. 
* SQL statement number 
 01 STMT-NUM            PIC 999. 
* Reading state 
 01 READING-STMT PIC S9(4) USAGE COMP. 
     88 DONE-READING    VALUE 0. 
     88 STILL-READING   VALUE 1. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–137 

* Number of rows affected by last SQL statement 
 01 STMT-ROWS            PIC ZZZZZ9. 
* Number of rows retrieved by last SELECT statement 
 01 SELECT-ROWS          PIC S9(8) USAGE COMP. 
* Dynamic SELECT statement set up state 
 01 SELECT-SETUP         PIC S9(4) USAGE COMP. 
     88 SETUP-FAIL       VALUE 0. 
     88 SETUP-OK         VALUE 1. 
* Index into SQLVAR table 
 01 COL                  PIC 999. 
* Base data type of SQLVAR item without nullability 
 01 BASE-TYPE            PIC S9(4) USAGE COMP. 
* Is a result column type nullable 
 01 IS-NULLABLE            PIC S9(4) USAGE COMP. 
     88 NOT-NULLABLE       VALUE 0. 
     88 NULLABLE           VALUE 1. 
 
* Global result data storage. This pool of data includes the maximum 
* number of result data items needed to execute a Dynamic SELECT 
* statement. There is a table of 1024 integers, decimal, large object 
* handlers, and null indicator data items, and a large character 
* string buffer. Note: Floating-point and money types are stored in 
* decimal variables. 
 01 RESULT-DATA. 
    02 INTEGER-DATA OCCURS 1024 TIMES. 
       03 INT-DATA         PIC S9(9) USAGE COMP. 
       03 IND-DATA         PIC S9(4) USAGE COMP. 
    02 DECIMAL-DATA OCCURS 1024 TIMES. 
       03 DEC-DATA         PIC S9(10)V9(8) USAGE COMP-3. 
    02 STRING-DATA. 
       03 CHAR-LEN         PIC S9(4) USAGE COMP. 
       03 CHAR-DATA        PIC X(2500). 
   02 BLOB-DATA  OCCURS 1024 TIMES. 
       03 BLOB-ARG        USAGE POINTER. 
       03 BLOB-HDLR       PIC S9(9) USAGE COMP. 
 
* User defined handler for large objects 
 01 UsrDatHdlr        PIC S9(9) USAGE COMP VALUE EXTERNAL UsrDataHdlr 
* Limit the size of a large object 
 01 BLOB-MAX          PIC S9(4) USAGE COMP IS EXTERNAL. 
* Current lengths of local character data. 
 01 CUR-LEN           PIC S9(4) USAGE COMP. 
** 
* Procedure Division: SQL-MONITOR 
* 
* Main entry of SQL Monitor application. Prompt for database name 
* and connect to the database. Run the monitor and disconnect from 
* the database. Before disconnecting roll back any pending updates. 
** 
PROCEDURE DIVISION. 
SBEGIN. 
* Prompt for database name. 
      DISPLAY "SQL Database: " WITH NO ADVANCING. 
      ACCEPT DB-NAME AT END STOP RUN. 
      DISPLAY " -- SQL Terminal Monitor -- ". 
* Treat connection errors as fatal. 
      EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
      EXEC SQL CONNECT :DB-NAME END-EXEC. 
* Run the Terminal Monitor 
      PERFORM RUN-MONITOR. 
      EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
      DISPLAY "SQL: Exiting monitor program.". 
      EXEC SQL ROLLBACK END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      STOP RUN. 



Sample Applications 

3–138     Embedded SQL Companion Guide 

** 
* Paragraph: RUN-MONITOR 
* 
* Run the SQL monitor. Initialize the global SQLDA with the number 
* of SQLVAR elements. Loop while prompting the user for input; 
* if end-of-file is detected then return to the calling paragraph 
* (the main program). If the user inputs a statement, execute it 
* (using paragraph EXECUTE-STATEMENT). 
** 
RUN-MONITOR. 
* Initialize the SQLN (set the number of SQLVAR elements) 
        MOVE 1024 TO SQLN. 
* If you increase BLOB-MAX then increase BLOB_DATA in the datahandler 
        MOVE 50 TO BLOB-MAX. 
* Now we are setup for input. Initialize statement number and 
* reading state. 
        MOVE 0 TO STMT-NUM. 
        SET STILL-READING TO TRUE. 
* Loop while prompting, reading and processing the SQL statement. 
        PERFORM UNTIL DONE-READING 
                ADD 1 TO STMT-NUM 
                PERFORM READ-STATEMENT 
                IF (STILL-READING) THEN 
                        PERFORM EXECUTE-STATEMENT THRU END-EXECUTE 
                END-IF 
        END-PERFORM. 
** 
* Paragraph: EXECUTE-STATEMENT 
* 
* Using the PREPARE and DESCRIBE facilities determine if the input 
* statement is a SELECT statement or not. If the statement is not 
* a SELECT statement then EXECUTE it, otherwise open a cursor and 
* process a dynamic SELECT statement (using paragraph EXECUTE-SELECT). 
* After processing the statement, print the number of rows affected 
* by the statement and any SQL errors. 
** 
EXECUTE-STATEMENT. 
        EXEC SQL WHENEVER SQLERROR GO TO END-EXECUTE END-EXEC. 
* PREPARE and DESCRIBE the statement. Inspect the contents of the 
* SQLDA and determine if it is a SELECT statement or not. 
        EXEC SQL PREPARE stmt FROM :STMT-BUF END-EXEC. 
        EXEC SQL DESCRIBE stmt INTO :SQLDA END-EXEC. 
* If SQLD = 0 then this is not a SELECT. 
            IF (SQLD = 0) THEN 
                EXEC SQL EXECUTE stmt END-EXEC 
                MOVE SQLERRD(3) TO STMT-ROWS 
 
* Otherwise this is a SELECT. Verify that there are enough SQLVAR 
* result variables. If there are too few print an error and continue, 
* otherwise call EXECUTE-SELECT. 
        ELSE 
                IF (SQLD > SQLN) THEN 
                        DISPLAY "SQL Error: SQLDA requires more than " 
                              "1024 result variables." 
                        MOVE 0 TO STMT-ROWS 
                ELSE 
                        PERFORM EXECUTE-SELECT THRU END-SELECT 
                        MOVE SELECT-ROWS TO STMT-ROWS 
                END-IF 
       END-IF. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–139 

* Print the number of rows processed. 
        DISPLAY "[" STMT-ROWS " row(s)]". 
* Only print the error message if we arrived at this label because 
* of an SQL error. 
END-EXECUTE. 
        EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
        IF (SQLCODE < 0) THEN 
                PERFORM PRINT-ERROR. 
** 
* Paragraph: EXECUTE-SELECT 
* 
* Execute a Dynamic SELECT statement. The SQLDA has already been 
* described, so print the table header column names, open a 
* dynamic cursor, and retrieve and print the results. Accumulate 
* the number of rows processed in SELECT-ROWS. 
** 
EXECUTE-SELECT. 
* So far no rows. 
        MOVE 0 TO SELECT-ROWS. 
* Set up the result types and data items, and print result column 
* names SETUP-ROW will set SETUP-FAIL/OK if it fails/succeeds. 
        PERFORM SETUP-ROW. 
        IF (SETUP-FAIL) THEN 
                GO TO END-SELECT. 
        EXEC SQL WHENEVER SQLERROR GO TO SELECT-ERR END-EXEC. 
* Open the dynamic cursor. 
        EXEC SQL OPEN csr FOR READONLY END-EXEC. 
* Fetch and print each row. Accumulate the number of rows fetched. 
        PERFORM UNTIL SQLCODE NOT = 0 
                EXEC SQL FETCH csr USING DESCRIPTOR :SQLDA END-EXEC 
                IF (SQLCODE = 0) THEN 
                       ADD 1 TO SELECT-ROWS 
                       PERFORM PRINT-ROW 
                END-IF 
        END-PERFORM. 
SELECT-ERR. 
        EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 
 
* Only print the error message if we arrived at this label because 
* of an SQL error. 
        IF (SQLCODE < 0) THEN 
               PERFORM PRINT-ERROR. 
        EXEC SQL CLOSE csr END-EXEC. 
END-SELECT. 
       EXIT. 
** 
* Paragraph: SETUP-ROW 
* 
* A statement has just been described so set up the SQLDA for result 
* processing. Print all the column names and allocate result data 
* items for retrieving data using paragraph SETUP-COLUMN. 
* 
* This paragraph sets SETUP-OK if it succeeds, and SETUP-FAIL if 
* there was some sort of initialization error (in SETUP-COLUMN). 
** 
SETUP-ROW. 
* Initialize column setup. No character data used yet. 
          SET SETUP-OK TO TRUE. 
          MOVE 1 TO CHAR-LEN. 
* Process each column. 
          PERFORM SETUP-COLUMN 
                   VARYING COL FROM 1 BY 1 
                   UNTIL (COL > SQLD) OR (SETUP-FAIL). 



Sample Applications 

3–140     Embedded SQL Companion Guide 

* At this point we've processed all columns for data type 
* information. End the line of column names. 
          DISPLAY SPACE. 
          DISPLAY "----------------------------". 
** 
* Paragraph: SETUP-COLUMN 
* 
* When setting up for a SELECT statement column names are printed, 
* and result data items (for retrieving data) are chosen out of a 
* pool of variables (integers, floating-points, a large character 
* string space, and null indicators). The SQLDATA and SQLIND fields 
* are pointed at the addresses of the result data items and 
* indicators. Paragraph sets SETUP-FAIL if it fails. 
** 
SETUP-COLUMN. 
* For each column print the number and name of the column, e.g.: 
*       [001] sal [002] name [003] age 
        DISPLAY "[" COL "] " WITH NO ADVANCING. 
        DISPLAY SQLNAMEC(COL)(1:SQLNAMEL(COL)) WITH NO ADVANCING. 
        IF (COL < SQLD) THEN 
              DISPLAY SPACE WITH NO ADVANCING. 
* Determine the data type of the column and to where SQLDATA and 
* SQLIND must point in order to retrieve data-compatible results. Use 
* the global numeric table and the large character string buffer from 
* which pieces can be allocated. 
 
* First find the base type of the current column. 
        IF (SQLTYPE(COL) > 0) THEN 
            MOVE SQLTYPE(COL) TO BASE-TYPE 
            SET NOT-NULLABLE TO TRUE 
            MOVE 0 TO SQLIND(COL) 
        ELSE 
            COMPUTE BASE-TYPE = 0 - SQLTYPE(COL) 
            SET NULLABLE TO TRUE 
            SET SQLIND(COL) TO REFERENCE IND-DATA(COL) 
        END-IF. 
* Collapse all different types into one of integer, float or 
* character. 
* Integer data uses 4-byte COMP. 
         IF (BASE-TYPE = 30) THEN 
                IF (NOT-NULLABLE) THEN 
                        MOVE 30 TO SQLTYPE(COL) 
                ELSE 
                        MOVE -30 TO SQLTYPE(COL) 
                END-IF 
                MOVE 4 TO SQLLEN(COL) 
                SET SQLDATA(COL) TO REFERENCE INT-DATA(COL) 
* Money, decimal and floating-point data use COMP-3. 
* 
* Note: You must encode precision and length when setting SQLLEN 
* for a decimal data type. Use the formula: SQLLEN = (256 * p+s) 
* where p is the Ingres precision and s is scale of the Decimal 
* host variable. DEC-DATA is defined as PIC S9(10)V9(8), so 
* p = 10+8 (Ingres precision is the total number of digits) 
* and s= 8. Therefore, SQLLEN = (256 * 18+8) = 4616. 
        ELSE IF (BASE-TYPE = 5) 
             OR (BASE-TYPE = 10) 
             OR (BASE-TYPE = 31) THEN 
                IF (NOT-NULLABLE) THEN 
                         MOVE 10 TO SQLTYPE(COL) 
                ELSE 
                         MOVE -10 TO SQLTYPE(COL) 
                END-IF 
                MOVE 4616 TO SQLLEN(COL) 
                SET SQLDATA(COL) TO REFERENCE DEC-DATA(COL) 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–141 

* Dates, fixed and varying-length character strings use 
* character data. 
        ELSE IF (BASE-TYPE = 3) OR (BASE-TYPE = 20) 
             OR (BASE-TYPE = 21) THEN 
* Fix up the lengths of dates and determine the length of the 
* sub-string required from the large character string buffer. 
                  IF (BASE-TYPE = 3) THEN 
                            MOVE 25 TO SQLLEN(COL) 
                  END-IF 
                  IF (NOT-NULLABLE) THEN 
                            MOVE 20 TO SQLTYPE(COL) 
                  ELSE 
                            MOVE -20 TO SQLTYPE(COL) 
                  END-IF 
                  MOVE SQLLEN(COL) TO CUR-LEN 
 
* If we do not have enough character space left print an error. 
                  IF ((CHAR-LEN + CUR-LEN) > 2500) THEN 
                     DISPLAY "SQL Error: Character result " 
                             "data overflow." 
                     SET SETUP-FAIL TO TRUE 
                  ELSE 
* There is enough space so point at the start of the corresponding 
* sub-string. Allocate space out of character buffer and accumulate 
* the currently used character space. 
                     SET SQLDATA(COL) TO REFERENCE CHAR-DATA(CHAR-LEN:) 
                     ADD CUR-LEN TO CHAR-LEN 
                  END-IF 
* For Long Varchar use Datahandler 
 
       ELSE IF (BASE-TYPE = 22) THEN 
                 IF (NOT-NULLABLE) THEN 
                      MOVE 46 TO SQLTYPE(COL) 
                 ELSE 
                      MOVE -46 TO SQLTYPE(COL) 
                 END-IF 
 
                 SET SQLDATA(COL) TO REFERENCE BLOB-DATA(COL) 
                 MOVE UsrDataHdlr to BLOB-HDLR(COL) 
                 MOVE BLOB-MAX TO SQLLEN(COL) 
                 MOVE SQLLEN(COL) TO CUR-LEN 
* If we do not have enough character space left print an error. 
                 IF ((CHAR-LEN + CUR-LEN) > 2500) THEN 
                          DISPLAY “SQL Error: Large object result “ 
                                   “data overflow.” 
                          SET SETUP-FAIL TO TRUE 
                 ELSE 
* There is enough space so point at the start of the corresponding 
* sub-string. Allocate space out of character buffer and accumulate 
* the currently used character space. 
 
                 SET BLOB-ARG(COL) TO REFERENCE CHAR-DATA(CHAR-LEN:) 
                     ADD CUR-LEN TO CHAR-LEN 
                 END-IF 
          END-IF. 



Sample Applications 

3–142     Embedded SQL Companion Guide 

** 
* Paragraph: PRINT-ROW 
* 
* For each result column inside the SQLDA, print the value. Print 
* its column number too in order to identify it with a column name 
* printed earlier in SETUP-ROW. If the value is NULL print "N/A". 
* The details of the printing are done in PRINT-COLUMN. 
** 
PRINT-ROW. 
* Reset the character counter to the first byte. 
        MOVE 1 TO CHAR-LEN. 
* Process each column. 
        PERFORM PRINT-COLUMN 
                VARYING COL FROM 1 BY 1 
                UNTIL (COL > SQLD). 
* End each line of column data. 
        DISPLAY SPACE. 
** 
* Paragraph: PRINT-COLUMN 
* 
* Detailed printing of PRINT-ROW. This paragraph does not attempt 
* to tabulate the results in a tabular format. Default formats are 
* used (using WITH CONVERSION clause). 
** 
PRINT-COLUMN. 
* For each column print the number and value of the column. 
* NULL columns are printed as "N/A". 
          DISPLAY "[" COL "] " WITH NO ADVANCING. 
 
* Find the base type of the current column. 
          IF (SQLTYPE(COL) > 0) THEN 
                MOVE SQLTYPE(COL) TO BASE-TYPE 
                SET NOT-NULLABLE TO TRUE 
          ELSE 
                COMPUTE BASE-TYPE = 0 - SQLTYPE(COL) 
                SET NULLABLE TO TRUE 
          END-IF. 
* Different types have been collapsed into one of integer, float or 
* character. If the data is NULL then just print "N/A". 
          IF (NULLABLE AND (IND-DATA(COL) = -1)) THEN 
                DISPLAY "N/A" WITH NO ADVANCING 
* Integer data. 
          ELSE IF (BASE-TYPE = 30) THEN 
               DISPLAY INT-DATA(COL) WITH CONVERSION WITH NO ADVANCING 
* Decimal data. 
          ELSE IF (BASE-TYPE = 10) THEN 
               DISPLAY DEC-DATA(COL) WITH CONVERSION WITH NO ADVANCING 
* Character and large object data. Print only the relevant substring. 
          ELSE IF (BASE-TYPE = 20) 
               OR (BASE-TYPE = 46) THEN 
                  MOVE SQLLEN(COL) TO CUR-LEN 
                  DISPLAY CHAR-DATA(CHAR-LEN:CUR-LEN) WITH NO ADVANCING 
                  ADD CUR-LEN TO CHAR-LEN 
          END-IF. 
* Add trailing space after each value. 
         IF (COL < SQLD) THEN 
                DISPLAY SPACE WITH NO ADVANCING. 
** 
* Paragraph: PRINT-ERROR 
*  
* SQLCA error detected. Retrieve the error message and print it. 
** 
PRINT-ERROR. 
        EXEC SQL INQUIRE_SQL (:ERROR-BUF = ERRORTEXT) END-EXEC. 
        DISPLAY "SQL Error:". 
        DISPLAY ERROR-BUF. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–143 

** 
* Paragraph: READ-STATEMENT 
*  
* Prompt user and read input SQL statement. This paragraph can be 
* expanded to scan and process an SQL statement string searching 
* for delimiters (such as quotes and the semicolon). Currently 
* the user is allowed to input only one SQL statement on one 
* line without any terminators. Blank lines or Control Z 
* will cause normal termination of the program. 
** 
READ-STATEMENT. 
        DISPLAY STMT-NUM "> " WITH NO ADVANCING. 
        ACCEPT STMT-BUF AT END SET DONE-READING TO TRUE. 
 
        IF (STMT-BUF = SPACES) THEN 
                 SET DONE-READING TO TRUE. 
END PROGRAM SQL-MONITOR. 
***************************************************** 
IDENTIFICATION DIVISION. 
PROGRAM-ID. UsrDataHdlr. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
 
WORKING-STORAGE SECTION. 
 
* Include SQL Communications and Descriptor Areas 
EXEC SQL INCLUDE SQLCA END-EXEC. 
 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 01  SEG-BUG           PIC X(100). 
 01  SEG-LEN           PIC S9(6) USAGE COMP. 
 01  DATA-END          PIC S9(6) USAGE COMP. 
 01  MAX-LEN           PIC S9(6) USAGE COMP. 
 01  TOTAL-LEN         PIC S9(6) USAGE COMP. 
EXEC SQL END DECLARE SECTION END-EXEC. 
 
* Limit the size of a large object. 
 01 BLOB-MAX        PIC S9(4) USAGE COMP IS EXTERNAL. 
 01 P               PIC S9(6) USAGE COMP. 
 
LINKAGE-SECTION. 
 01 BLOB-DATA       PIC X(50). 
PROCEDURE DIVISION USING BLOB-DATA. 
BEGIN. 
 
       EXEC SQL WHENEVER SQLERROR CALL SQLPRINT END-EXEC. 
 
       MOVE BLOB-MAX TO MAX-LEN. 
       MOVE 0 TO DATA-END. 
       MOVE 0 TO TOTAL-LEN. 
       PERFORM UNTIL DATA-END = 1 
                    OR TOTAL-LEN NOT < BLOB-MAX 
 
                EXEC SQL GET DATA (:SEG-BUF = SEGMENT, 
                                    :SEG-LEN = SEGMENTLENGTH, 
                                      :DATA-END = DATAEND                
                               WITH MAXLENGTH = :MAX-LEN 
                               END-EXEC 
 



Sample Applications 

3–144     Embedded SQL Companion Guide 

                ADD TOTAL-LEN 1 GIVING P 
                STRING SEG-BUG DELIMITED BY SIZE INTO BLOB-DATA WITH 
                          POINTER P 
 
                 ADD SEG-LEN TO TOTAL-LEN 
 
        END-PERFORM. 
 
        IF DATA-END = 0 THEN 
                 EXEC SQL ENDDATA END-EXEC. 
 
END PROGRAM UsrDataHdlr.  

A Dynamic SQL/Forms Database Browser 

This program lets the user browse data from and insert data into any table in 
any database, using a dynamically defined form. The program uses Dynamic 
SQL and Dynamic FRS statements to process the interactive data. You should 
already have used VIFRED to create a Default Form based on the database 
table that you want to browse. VIFRED will build a form with fields that have 
the same names and data types as the columns of the specified database 
table. 

When run, the program prompts the user for the name of the database, the 
table and the form. The form is profiled using the describe form statement, 
and the field name, data type and length information is processed. From this 
information, the program fills in the SQLDA data and null indicator areas, and 
builds two Dynamic SQL statement strings to select data from and insert data 
into the database. 

The Browse menu item retrieves the data from the database using an SQL 
cursor associated with the dynamic select statement, and displays that data 
using the dynamic putform statement. A submenu allows the user to continue 
with the next row or return to the main menu. The Insert menu item retrieves 
the data from the form using the dynamic getform statement, and adds the 
data to the database table using a prepared insert statement. The Save menu 
item commits the user’s changes and, because prepared statements are 
discarded, reprepares the select and insert statements. When the Quit menu 
item is selected, all pending changes are rolled back and the program is 
terminated. 

For readability, all Embedded SQL words are in uppercase. 

Windows UNIX
 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID.  DYNAMIC-FRS. 
       ENVIRONMENT DIVISION. 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 

*      Include SQL Communications and Descriptor Areas 
       EXEC SQL INCLUDE SQLCA END-EXEC. 
       EXEC SQL INCLUDE SQLDA END-EXEC. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–145 

        
*      Dynamic SQL SELECT and INSERT statements (documentary only) 
       EXEC SQL DECLARE sel_stmt STATEMENT END-EXEC. 
       EXEC SQL DECLARE ins_stmt STATEMENT END-EXEC. 
 
*      Cursor declaration for dynamic statement 
       EXEC SQL DECLARE csr CURSOR FOR sel_stmt END-EXEC. 
 
       EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
 
*      Database, form and table names 
       01 DB-NAME        PIC X(40). 
       01 FORM-NAME      PIC X(40). 
       01 TABLE-NAME     PIC X(40). 
 
*      Dynamic SQL SELECT and INSERT statement buffers 
       01 SEL-BUF        PIC X(1000). 
       01 INS-BUF        PIC X(1000). 
 
*      Error status and prompt error return buffer 
       01 ERR            PIC S9(8) USAGE COMP. 
       01 RET            PIC X. 
 
       EXEC SQL END DECLARE SECTION END-EXEC. 
 
*      DESCRIBE-FORM (form profiler) return state 
       01 DESCRIBED          PIC S9(4) USAGE COMP. 
          88 DESCRIBE-FAIL   VALUE 0. 
          88 DESCRIBE-OK     VALUE 1. 
 
*      Index into SQLVAR table 
       01 COLN               PIC S9(4) USAGE COMP. 
 
*      Base data type of SQLVAR item without nullability 
       01 BASE-TYPE          PIC S9(4) USAGE COMP. 
 
*      Is a result column type nullable 
       01 IS-NULLABLE        PIC S9(4) USAGE COMP. 
          88 NOT-NULLABLE   VALUE 0. 
          88 NULLABLE       VALUE 1. 
 
*      Global result data storage.  This pool of data includes the 
*      maximum number of data items needed to execute a dynamic 
*      retrieval or insertion.  There is a table of 1024 integer, 
*      decimal and null indicator data items, and a large 
*      character string buffer from which sub-strings are 
*      allocated.  Note: Floating-point and money types are stored 
*      in decimal variables. 
       01 RESULT-DATA. 
          02 ARRAY-STORAGE OCCURS IISQ-MAX-COLS TIMES. 
              03 INTEGERS          PIC S9(9) USAGE COMP-5 SYNC. 
              03 DECIMALS          PIC S9(10)V9(8) USAGE COMP-3. 
              03 INDICATORS        PIC S9(4) USAGE COMP-5 SYNC. 
          02 CHARS                PIC X(3000). 
*      Total used length of data buffer 
          02 CHAR-CNT             PIC S9(4) USAGE COMP VALUE 1. 
*      Current length required from character data buffer 
          02 CHAR-CUR             PIC S9(4) USAGE COMP. 
 
*      Buffer for building Dynamic SQL statement string names 
       01 NAMES                    PIC X(1000) VALUE SPACES. 
       01 NAME-CNT                 PIC S9(4) USAGE COMP VALUE 1. 
 
*      Buffer for collecting Dynamic SQL place holders 
       01 MARKS                    PIC X(1000) VALUE SPACES. 
       01 MARK-CNT                 PIC S9(4) USAGE COMP VALUE 1. 



Sample Applications 

3–146     Embedded SQL Companion Guide 

 
** 
* Procedure Division: DYNAMIC-FRS 
* 
*     Main body of Dynamic SQL forms application.  Prompt for 
*     database, form and table name.  Perform DESCRIBE-FORM 
*     to obtain a profile of the form and set up the SQL 
*     statements.  Then allow the user to interactively browse 
*     the database table and append new data. 
** 
 
       PROCEDURE DIVISION. 
       EXAMPLE SECTION. 
       XBEGIN. 
 
*      Turn on forms system 
 
       EXEC FRS FORMS END-EXEC. 
 
*      Prompt for database name - will abort on errors 
 
       EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
       EXEC FRS PROMPT ('Database name: ', :DB-NAME) END-EXEC. 
       EXEC SQL CONNECT :DB-NAME END-EXEC. 
 
       EXEC SQL WHENEVER SQLERROR CALL SQLPRINT END-EXEC. 
 
*      Prompt for table name - later a Dynamic SQL SELECT 
*      statement will be built from it. 
 
       EXEC FRS PROMPT ('Table name: ', :TABLE-NAME) END-EXEC. 
 
 
*      Prompt for form name.  Check forms errors through 
*      INQUIRE_FRS. 
 
       EXEC FRS PROMPT ('Form name: ', :FORM-NAME) END-EXEC. 
       EXEC FRS MESSAGE 'Loading form ...' END-EXEC. 
       EXEC FRS FORMINIT :FORM-NAME END-EXEC. 
       EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
       IF (ERR > 0) THEN 
            EXEC FRS MESSAGE 'Could not load form. 
                   Exiting.' END-EXEC 
            EXEC FRS ENDFORMS END-EXEC 
            EXEC SQL DISCONNECT END-EXEC 
            STOP RUN. 
*      Commit any work done so far - access of forms catalogs 
 
       EXEC SQL COMMIT END-EXEC. 
 
*      Describe the form and build the SQL statement strings 
 
       PERFORM DESCRIBE-FORM THROUGH END-DESCRIBE. 
       IF (DESCRIBE-FAIL) THEN 
           EXEC FRS MESSAGE 'Could not describe form.  Exiting.' 
               END-EXEC 
           EXEC FRS ENDFORMS END-EXEC 
           EXEC SQL DISCONNECT END-EXEC 
           STOP RUN. 
 
*      PREPARE the SELECT and INSERT statements that correspond 
*      to the menu items Browse and Insert.  If the Save menu item 
*      is chosen the statements are reprepared. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–147 

 
       EXEC SQL PREPARE sel_stmt FROM :SEL-BUF END-EXEC. 
       MOVE SQLCODE TO ERR. 
       EXEC SQL PREPARE ins_stmt FROM :INS-BUF END-EXEC. 
       IF (ERR < 0) OR (SQLCODE < 0) THEN 
           EXEC FRS MESSAGE  
                'Could not prepare SQL statements. 
                           Exiting.' END-EXEC 
           EXEC FRS ENDFORMS END-EXEC 
           EXEC SQL DISCONNECT END-EXEC 
           STOP RUN. 
*      Display the form and interact with user, allowing browsing 
*      and the inserting of new data. 
 
       EXEC FRS DISPLAY :FORM-NAME FILL END-EXEC 
       EXEC FRS INITIALIZE END-EXEC 
 
       EXEC FRS ACTIVATE MENUITEM 'Browse' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
 
*      Retrieve data and display the first row on the form, 
*      allowing the user to browse through successive rows.  If 
*      data types from the database table are not consistent with 
*      data descriptions obtained from the form, a retrieval 
*      error will occur.  Inform the user of this or other errors. 
*   
*      Note that the data will return sorted by the first field 
*      that was described, as the SELECT statement, sel_stmt, 
*      included an ORDER BY clause. 
 
             EXEC SQL OPEN csr FOR READONLY END-EXEC. 
 
*      Fetch and display each row 
 
       FETCH-NEXT-ROW. 
             IF (SQLCODE NOT= 0) THEN 
                  GO TO END-FETCH-NEXT. 
 
             EXEC SQL FETCH csr USING DESCRIPTOR :SQLDA END-EXEC. 
 
             IF (SQLCODE NOT= 0) THEN 
                  EXEC SQL CLOSE csr END-EXEC 
                  EXEC FRS PROMPT NOECHO ('No more rows :', :RET) 
                       END-EXEC 
                  EXEC FRS CLEAR FIELD ALL END-EXEC 
                  EXEC FRS RESUME END-EXEC. 
 
             EXEC FRS PUTFORM :FORM-NAME USING DESCRIPTOR :SQLDA 
                 END-EXEC. 
             EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
             IF (ERR > 0) THEN 
                  EXEC SQL CLOSE csr END-EXEC 
                  EXEC FRS RESUME END-EXEC. 
 
*      Display data before prompting user with submenu 
 
             EXEC FRS REDISPLAY END-EXEC. 
 
             EXEC FRS SUBMENU END-EXEC 
             EXEC FRS ACTIVATE MENUITEM 'Next', FRSKEY4 END-EXEC 
             EXEC FRS BEGIN END-EXEC 
*      Continue with cursor loop 
 
                  EXEC FRS MESSAGE 'Next row ...' END-EXEC. 
                  EXEC FRS CLEAR FIELD ALL END-EXEC. 
 



Sample Applications 

3–148     Embedded SQL Companion Guide 

             EXEC FRS END END-EXEC 
 
             EXEC FRS ACTIVATE MENUITEM 'End', FRSKEY3 END-EXEC 
             EXEC FRS BEGIN END-EXEC 
 
                 EXEC SQL CLOSE csr END-EXEC. 
                 EXEC FRS CLEAR FIELD ALL END-EXEC. 
                 EXEC FRS RESUME END-EXEC. 
 
             EXEC FRS END END-EXEC 
 
*      Fetch next row 
 
             GO TO FETCH-NEXT-ROW. 
*      End of row processing 
 
       END-FETCH-NEXT. 
             CONTINUE. 
 
       EXEC FRS END END-EXEC 
 
       EXEC FRS ACTIVATE MENUITEM 'Insert' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
 
           EXEC FRS GETFORM :FORM-NAME USING DESCRIPTOR :SQLDA 
                END-EXEC. 
           EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
           IF (ERR > 0) THEN 
                EXEC FRS CLEAR FIELD ALL END-EXEC 
                EXEC FRS RESUME END-EXEC. 
 
 
                EXEC SQL EXECUTE ins_stmt USING DESCRIPTOR :SQLDA 
                   END-EXEC. 
                IF (SQLCODE < 0) OR (SQLERRD(3) = 0) THEN 
                EXEC FRS PROMPT NOECHO  
                     ('No rows inserted :', :RET) END-EXEC 
           ELSE 
                EXEC FRS PROMPT NOECHO 
                    ('One row inserted :', :ret) END-EXEC. 
 
        EXEC FRS END END-EXEC 
 
        EXEC FRS ACTIVATE MENUITEM 'Save' END-EXEC 
        EXEC FRS BEGIN END-EXEC 
*        COMMIT any changes and then re-PREPARE the SELECT and 
*        INSERT statements as the COMMIT statements discards them. 
 
               EXEC SQL COMMIT END-EXEC. 
               EXEC SQL PREPARE sel_stmt FROM :SEL-BUF END-EXEC. 
               MOVE SQLCODE TO ERR. 
               EXEC SQL PREPARE ins_stmt FROM :INS-BUF END-EXEC. 
               IF (ERR < 0) OR (SQLCODE < 0) THEN 
                   EXEC FRS PROMPT NOECHO 
                        ('Could not reprepare SQL 
                                    statements :', :RET) 
                         END-EXEC 
                   EXEC FRS BREAKDISPLAY END-EXEC. 
       EXEC FRS END END-EXEC 
 
       EXEC FRS ACTIVATE MENUITEM 'Clear' END-EXEC 
       EXEC FRS BEGIN END-EXEC 
 
               EXEC FRS CLEAR FIELD ALL END-EXEC. 
 
       EXEC FRS END END-EXEC 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–149 

 
       EXEC FRS ACTIVATE MENUITEM 'Quit', FRSKEY2 END-EXEC 
       EXEC FRS BEGIN END-EXEC 
 
             EXEC SQL ROLLBACK END-EXEC. 
             EXEC FRS BREAKDISPLAY END-EXEC. 
       EXEC FRS END END-EXEC 
       EXEC FRS FINALIZE END-EXEC. 
 
       EXEC FRS ENDFORMS END-EXEC. 
       EXEC SQL DISCONNECT END-EXEC. 
 
       STOP RUN. 
 
** 
* Paragraph: DESCRIBE-FORM 
* 
*      Profile the specified form for name and data type 
*      information.  Using the DESCRIBE FORM statement, the SQLDA 
*      is loaded with field information from the form.  This h 
*      paragraph (together with the DESCRIBE-COLUMN paragraph) n 
*      processes the form informatio to allocate result storage, 
*      point at storage for dynamic FRS 
*      data retrieval and assignment, and build SQL statements 
*      strings for subsequent dynamic SELECT and INSERT 
*      statements.  For example, assume the form (and table) 'emp' 
*      has the following fields: 
*  
*                Field Name    Type     Nullable? 
*                ----------    ----     --------- 
*                name          char(10)  No 
*                age           integer4  Yes 
*                salary        money     Yes 
* 
*        Based on 'emp', this paragraph will construct the SQLDA. 
*        The paragraph allocates variables from a result variable 
*        pool (integers, floats and a large character string 
*        space).  The SQLDATA and SQLIND fields are pointed at the 
*        addresses of the result variables in the pool.  The 
*        following SQLDA is built: 
* 
*                SQLVAR(1) 
*                         SQLTYPE  =  CHAR TYPE 
*                         SQLLEN   =  10 
*                         SQLDATA  =  pointer into CHARS buffer 
*                         SQLIND   =  null 
*                         SQLNAME  =  'name' 
*                SQLVAR(2) 
*                         SQLTYPE   = - INTEGER TYPE 
*                         SQLLEN    = 4 
*                         SQLDATA   = address of INTEGERS(2) 
*                         SQLIND    = address of INDICATORS(2) 
*                         SQLNAME   = 'age' 
*                SQLVAR(3) 
*                         SQLTYPE   = - DECIMAL TYPE 
*                         SQLLEN    = 4616 (see below) 
*                         SQLDATA   = address of DECIMALS(3) 
*                         SQLIND    = address of INDICATORS(3) 
*                         SQLNAME   = 'salary' 
* 
*      This paragraph also builds two dynamic SQL statements 
*      strings. 
*      Note that the paragraph should be extended to verify that 
*      the statement strings do fit into the statement buffers 
*      (this was not done in this example).  The above example 
*      would construct the following statement strings: 



Sample Applications 

3–150     Embedded SQL Companion Guide 

* 
*        'SELECT name, age, salary FROM emp ORDER BY name' 
*        'INSERT INTO emp (name, age, salary) VALUES (?, ?, ?)' 
* 
 
*      This paragraph sets DESCRIBE-OK if it succeeds, and 
*      DESCRIBE-FAIL if there was some sort of initialization 
*      error. 
** 
       DESCRIBE-FORM. 
 
*      Initialize the SQLDA and DESCRIBE the form.  If we cannot 
*      fully describe the form (our SQLDA is too small) then 
*      report an error and return. 
 
       SET DESCRIBE-OK TO TRUE. 
 
       MOVE IISQ-MAX-COLS TO SQLN. 
       EXEC FRS DESCRIBE FORM :FORM-NAME ALL INTO 
                            :SQLDA END-EXEC. 
       EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
       IF (ERR > 0) THEN 
           SET DESCRIBE-FAIL TO TRUE 
           GO TO END-DESCRIBE. 
       IF (SQLD > SQLN) THEN 
           EXEC FRS PROMPT NOECHO 
                 ('SQLDA is too small for form :', :RET) END-EXEC 
           SET DESCRIBE-FAIL TO TRUE 
            GO TO END-DESCRIBE. 
       IF (SQLD = 0) THEN 
            EXEC FRS PROMPT NOECHO 
            ('There are no fields in the form :', :RET) END-EXEC 
            SET DESCRIBE-FAIL TO TRUE 
            GO TO END-DESCRIBE. 
*      For each field determine the size and type of the 
*      result data area.   This is done by DESCRIBE-COLUMN. 
*  
*      If a table field type is returned then issue an error. 
* 
*      Also, for each field add the field name to the 'NAMES' 
*      buffer and the SQL place holders '?' to the 'MARKS' 
*      buffer, which will be used to build the final SELECT and 
*      INSERT statements. 
 
       PERFORM DESCRIBE-COLUMN 
             VARYING COLN FROM 1 BY 1 
             UNTIL (COLN > SQLD) OR (DESCRIBE-FAIL). 
 
*      At this point we've processed all columns for data type 
*      information. 
*      Create final SELECT and INSERT statements.  For the SELECT 
*      statement ORDER BY the first field. 
       STRING "SELECT " NAMES(1: NAME-CNT) " FROM " 
             TABLE-NAME " ORDER BY " 
             SQLNAMEC(1)(1: SQLNAMEL(1)) 
             DELIMITED BY SIZE INTO SEL-BUF. 
       STRING "INSERT INTO " TABLE-NAME "(" 
             NAMES(1: NAME-CNT) ") VALUES (" 
             MARKS(1: MARK-CNT) ")" 
             DELIMITED BY SIZE INTO INS-BUF. 
 
       END-DESCRIBE. 
             EXIT. 
 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–151 

 
** 
*      Paragraph: DESCRIBE-COLUMN 
* 
*      When setting up data for the SQLDA result data items are 
*      chosen out of a pool of variables.  The SQLDATA and SQLIND 
*      fields are pointed at the addresses of the result data 
*      items and indicators as described in paragraph 
*      DESCRIBE-FORM. 
* 
*      Field names are collected for the building of the Dynamic 
*      SQL statement strings as described for paragraph 
*      DESCRIBE-FORM. 
* 
*      Paragraph sets DESCRIBE-FAIL if it fails. 
** 
 
       DESCRIBE-COLUMN. 
 
*      Determine the data type of the field and to where SQLDATA 
*      and SQLIND must point in order to retrieve type-compatible 
*      results. 
 
*      First find the base type of the current column. 
 
*      Note: Normally you should clear the SQLIND pointer if it 
*      is not being used using the SET TO NULL statement.  At the 
*      time of this writing, however, SET pointer-item TO NULL 
*      was not accepted.  The pointer will be ignored by 
*      Ingres if the SQLTYPE is positive. 
 
       IF (SQLTYPE(COLN) > 0) THEN 
           MOVE SQLTYPE(COLN) TO BASE-TYPE 
           SET NOT-NULLABLE TO TRUE 
           SET SQLIND(COLN) TO NULL 
       ELSE 
           COMPUTE BASE-TYPE = 0 - SQLTYPE(COLN) 
           SET NULLABLE TO TRUE 
           SET SQLIND(COLN) TO ADDRESS OF INDICATORS(COLN) 
       END-IF. 
 
*      Collapse all different types into one of integer, 
*      float or character. 
 
*      Integer data uses 4-byte COMP. 
 
       IF (BASE-TYPE = IISQ-INT-TYPE) THEN 
 
           MOVE IISQ-INT-TYPE TO SQLTYPE(COLN) 
           MOVE 4 TO SQLLEN(COLN) 
           SET SQLDATA(COLN) TO ADDRESS OF INTEGERS(COLN) 
 
*      Money and floating-point or decimal use COMP-3. 
* 
 
*      Note: You must encode precision and length when setting 
*      SQLLEN for a decimal data type.  Use the formula: SQLLEN = 
*      (256 * p+s) where p is the Ingres precision and s  
*      is scale of the decimal host variable.DEC-DATA is defined 
*      as PIC S9(10)V9(8), so p = 10+8 (Ingres precision  
*      is the total number of digits) and s= 8.  Therefore, SQLLEN 
*      - (256 * 18 + 8) = 4616. 
 
       ELSE IF (BASE-TYPE = IISQ-MNY-TYPE) 
            OR (BASE-TYPE = IISQ-DEC-TYPE) 
            OR (BASE-TYPE = IISQ-FLT-TYPE) THEN 



Sample Applications 

3–152     Embedded SQL Companion Guide 

 
              MOVE IISQ-DEC-TYPE TO SQLTYPE(COLN) 
              MOVE 4616 TO SQLLEN(COLN) 
              SET SQLDATA(COLN) TO ADDRESS OF DECIMALS(COLN) 
 
*      Dates, fixed and varying-length character strings use 
*      character data. 
 
       ELSE IF (BASE-TYPE = IISQ-DTE-TYPE) 
             OR (BASE-TYPE = IISQ-CHA-TYPE) 
             OR (BASE-TYPE = IISQ-VCH-TYPE) THEN 
 
*      Fix up the lengths of dates and determine the length of 
*      the sub-string required from the large character string 
*      buffer. 
 
             IF (BASE-TYPE = IISQ-DTE-TYPE) THEN 
                  MOVE IISQ-DTE-LEN TO SQLLEN(COLN) 
             END-IF 
             MOVE IISQ-CHA-TYPE TO SQLTYPE(COLN) 
             MOVE SQLLEN(COLN) TO CHAR-CUR 
 
*      If we do not have enough character space left display an 
*      error. 
 
             IF ((CHAR-CNT + CHAR-CUR) > 3000) THEN 
                  EXEC FRS PROMPT NOECHO 
                   ('Character pool buffer overflow :', :RET) END-EXEC 
                  SET DESCRIBE-FAIL TO TRUE 
             ELSE 
*      There is enough space so point at the start of the 
*      corresponding sub-string.  Allocate space out of character 
*       buffer and accumulate the currently used character space. 
 
                SET SQLDATA(COLN) TO ADDRESS OF CHARS(CHAR-CNT:) 
                ADD CHAR-CUR TO CHAR-CNT 
           END-IF 
 
*      Table fields are not allowed 
 
       ELSE IF (BASE-TYPE = IISQ-TBL-TYPE) THEN 
           EXEC FRS PROMPT NOECHO 
               ('Table field found in form :', :RET) END-EXEC 
           SET DESCRIBE-FAIL TO TRUE 
*      Unknown data type 
 
       ELSE 
 
           EXEC FRS PROMPT NOECHO 
                   ('Invalid field type :', :RET) END-EXEC 
           SET DESCRIBE-FAIL TO TRUE 
 
       END-IF. 
 
*      If nullable negate the data type 
       IF (NULLABLE) THEN 
            COMPUTE SQLTYPE(COLN) = 0 - SQLTYPE(COLN) 
       END-IF. 
 
*      Store field names and place holders (separated by commas) 
*      for the SQL statements. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–153 

 
       IF (COLN > 1) THEN 
           MOVE "," TO NAMES(NAME-CNT:1) 
           ADD 1 TO NAME-CNT 
           MOVE "," TO MARKS(MARK-CNT:1) 
           ADD 1 TO MARK-CNT. 
       END-IF. 
 
       MOVE SQLNAMEC(COLN)(1:SQLNAMEL(COLN)) TO 
                   NAMES(NAME-CNT:SQLNAMEL(COLN)). 
       ADD SQLNAMEL(COLN) TO NAME-CNT. 
       MOVE "?" TO MARKS(MARK-CNT:1). 
       ADD 1 TO MARK-CNT.  

VMS
  

IDENTIFICATION DIVISION. 
PROGRAM-ID. DYNAMIC-FRS. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

* Include SQL Communications and Descriptor Areas 
  EXEC SQL INCLUDE SQLCA END-EXEC. 
  EXEC SQL INCLUDE SQLDA END-EXEC. 
* Dynamic SQL SELECT and INSERT statements (documentary only) 
  EXEC SQL DECLARE sel_stmt STATEMENT END-EXEC. 
  EXEC SQL DECLARE ins_stmt STATEMENT END-EXEC. 
* Cursor declaration for dynamic statement 
 EXEC SQL DECLARE csr CURSOR FOR sel_stmt END-EXEC. 
EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
* Database, form and table names 
    01 DB-NAME                PIC X(40). 
    01 FORM-NAME              PIC X(40). 
    01 TABLE-NAME             PIC X(40). 
* Dynamic SQL SELECT and INSERT statement buffers 
    01 SEL-BUF                PIC X(1000). 
    01 INS-BUF                PIC X(1000). 
* Error status and prompt error return buffer 
    01 ERR                    PIC S9(8) USAGE COMP. 
    01 RET                    PIC X. 
EXEC SQL END DECLARE SECTION END-EXEC. 
* DESCRIBE-FORM (form profiler) return state 
  01 DESCRIBED             PIC S9(4) USAGE COMP. 
      88 DESCRIBE-FAIL      VALUE 0. 
      88 DESCRIBE-OK        VALUE 1. 
* Index into SQLVAR table 
  01 COL                    PIC S9(4) USAGE COMP. 
* Base data type of SQLVAR item without nullability 
  01 BASE-TYPE              PIC S9(4) USAGE COMP. 
* Is a result column type nullable 
  01 IS-NULLABLE            PIC S9(4) USAGE COMP. 
      88 NOT-NULLABLE        VALUE 0. 
      88 NULLABLE            VALUE 1. 
  
* Global result data storage. This pool of data includes the maximum 
* number of data items needed to execute a dynamic retrieval or 
* insertion. There is a table of 1024 integer, floating-point and 
* null indicator data items, and a large character string buffer 
* from which sub-strings are allocated. 
  01 RESULT-DATA. 
     02 INTEGERS        PIC S9(9) USAGE COMP OCCURS 1024 TIMES. 
     02 DECIMALS        PIC S9(10)V9(8) USAGE COMP-3 OCCURS 1024 TIMES. 
     02 INDICATORS      PIC S9(4) USAGE COMP OCCURS 1024 TIMES. 
     02 CHARS           PIC X(3000). 
* Total used length of data buffer 



Sample Applications 

3–154     Embedded SQL Companion Guide 

  01 CHAR-CNT           PIC S9(4) USAGE COMP VALUE 1. 
 
* Current length required from character data buffer 
  01 CHAR-CUR           PIC S9(4) USAGE COMP. 
* Buffer for building Dynamic SQL statement string names 
  01 NAMES              PIC X(1000) VALUE SPACES. 
  01 NAME-CNT           PIC S9(4) USAGE COMP VALUE 1. 
* Buffer for collecting Dynamic SQL place holders 
  01 MARKS              PIC X(1000) VALUE SPACES. 
  01 MARK-CNT           PIC S9(4) USAGE COMP VALUE 1. 
** 
* Procedure Division: DYNAMIC-FRS 
* 
* Main body of Dynamic SQL forms application. Prompt for database, 
* form and table name. Perform DESCRIBE-FORM to obtain a profile 
* of the form and set up the SQL statements. Then allow the user 
* to interactively browse the database table and append new data. 
** 
PROCEDURE DIVISION. 
SBEGIN. 
* Turn on forms system 
      EXEC FRS FORMS END-EXEC. 
* Prompt for database name - will abort on errors 
      EXEC SQL WHENEVER SQLERROR STOP END-EXEC. 
      EXEC FRS PROMPT ('Database name: ', :DB-NAME) END-EXEC. 
      EXEC SQL CONNECT :DB-NAME END-EXEC. 
      EXEC SQL WHENEVER SQLERROR CALL SQLPRINT END-EXEC. 
* Prompt for table name - later a Dynamic SQL SELECT statement 
* will be built from it. 
      EXEC FRS PROMPT ('Table name: ', :TABLE-NAME) END-EXEC. 
* Prompt for form name. Check forms errors reported through 
* INQUIRE_FRS. 
      EXEC FRS PROMPT ('Form name: ', :FORM-NAME) END-EXEC. 
      EXEC FRS MESSAGE 'Loading form ...' END-EXEC. 
      EXEC FRS FORMINIT :FORM-NAME END-EXEC. 
      EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
      IF (ERR > 0) THEN 
             EXEC FRS MESSAGE 'Could not load form. Exiting.' END-EXEC 
             EXEC FRS ENDFORMS END-EXEC 
             EXEC SQL DISCONNECT END-EXEC 
             STOP RUN. 
* Commit any work done so far - access of forms catalogs 
      EXEC SQL COMMIT END-EXEC. 
* Describe the form and build the SQL statement strings 
      PERFORM DESCRIBE-FORM THROUGH END-DESCRIBE. 
      IF (DESCRIBE-FAIL) THEN 
           EXEC FRS MESSAGE 'Could not describe form. Exiting.' 
               END-EXEC 
           EXEC FRS ENDFORMS END-EXEC 
           EXEC SQL DISCONNECT END-EXEC 
          STOP RUN. 
 
* PREPARE the SELECT and INSERT statements that correspond to the 
* menu items Browse and Insert. If the Save menu item is chosen 
* the statements are reprepared. 
      EXEC SQL PREPARE sel_stmt FROM :SEL-BUF END-EXEC. 
      MOVE SQLCODE TO ERR. 
      EXEC SQL PREPARE ins_stmt FROM :INS-BUF END-EXEC. 
      IF (ERR < 0) OR (SQLCODE < 0) THEN 
           EXEC FRS MESSAGE 
                 'Could not prepare SQL statements. Exiting.' END-EXEC 
           EXEC FRS ENDFORMS END-EXEC 
           EXEC SQL DISCONNECT END-EXEC 
           STOP RUN. 
* Display the form and interact with user, allowing browsing 
* and the inserting of new data. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–155 

 
      EXEC FRS DISPLAY :FORM-NAME FILL END-EXEC 
      EXEC FRS INITIALIZE END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Browse' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
* Retrieve data and display the first row on the form, allowing 
* the user to browse through successive rows. If data types 
* from the database table are not consistent with data descriptions 
* obtained from the form, a retrieval error will occur. Inform 
* the user of this or other errors. 
*  
* Note that the data will return sorted by the first field that 
* was described, as the SELECT statement, sel_stmt, included an 
* ORDER BY clause. 
      EXEC SQL OPEN csr FOR READONLY END-EXEC. 
* Fetch and display each row 
FETCH-NEXT-ROW. 
            IF (SQLCODE NOT= 0) THEN 
                GO TO END-FETCH-NEXT. 
            EXEC SQL FETCH csr USING DESCRIPTOR :SQLDA END-EXEC. 
            IF (SQLCODE NOT= 0) THEN 
                EXEC SQL CLOSE csr END-EXEC 
                EXEC FRS PROMPT NOECHO ('No more rows :', :RET) 
                   END-EXEC 
                EXEC FRS CLEAR FIELD ALL END-EXEC 
                EXEC FRS RESUME END-EXEC. 
            EXEC FRS PUTFORM :FORM-NAME USING DESCRIPTOR :SQLDA 
                END-EXEC. 
            EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
            IF (ERR > 0) THEN 
                 EXEC SQL CLOSE csr END-EXEC 
                 EXEC FRS RESUME END-EXEC. 
* Display data before prompting user with submenu 
            EXEC FRS REDISPLAY END-EXEC. 
            EXEC FRS SUBMENU END-EXEC 
            EXEC FRS ACTIVATE MENUITEM 'Next', FRSKEY4 END-EXEC 
            EXEC FRS BEGIN END-EXEC 
 
* Continue with cursor loop 
                  EXEC FRS MESSAGE 'Next row ...' END-EXEC. 
                  EXEC FRS CLEAR FIELD ALL END-EXEC. 
            EXEC FRS END END-EXEC 
            EXEC FRS ACTIVATE MENUITEM 'End', FRSKEY3 END-EXEC 
            EXEC FRS BEGIN END-EXEC 
                  EXEC SQL CLOSE csr END-EXEC. 
                  EXEC FRS CLEAR FIELD ALL END-EXEC. 
                  EXEC FRS RESUME END-EXEC. 
            EXEC FRS END END-EXEC 
* Fetch next row 
            GO TO FETCH-NEXT-ROW. 
* End of row processing 
END-FETCH-NEXT. 
            CONTINUE. 
      EXEC FRS END END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Insert' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
         EXEC FRS GETFORM :FORM-NAME USING DESCRIPTOR :SQLDA END-EXEC. 
         EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
         IF (ERR > 0) THEN 
              EXEC FRS CLEAR FIELD ALL END-EXEC 
              EXEC FRS RESUME END-EXEC. 
         EXEC SQL EXECUTE ins_stmt USING DESCRIPTOR :SQLDA END-EXEC. 
         IF (SQLCODE < 0) OR (SQLERRD(3) = 0) THEN 
               EXEC FRS PROMPT NOECHO ('No rows inserted :', :RET) 
                 END-EXEC 



Sample Applications 

3–156     Embedded SQL Companion Guide 

         ELSE 
         EXEC FRS PROMPT NOECHO ('One row inserted :', :ret) 
               END-EXEC. 
      EXEC FRS END END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Save' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
* COMMIT any changes and then re-PREPARE the SELECT and INSERT 
* statements as the COMMIT statements discards them. 
              EXEC SQL COMMIT END-EXEC. 
              EXEC SQL PREPARE sel_stmt FROM :SEL-BUF END-EXEC. 
              MOVE SQLCODE TO ERR. 
              EXEC SQL PREPARE ins_stmt FROM :INS-BUF END-EXEC. 
              IF (ERR < 0) OR (SQLCODE < 0) THEN 
                    EXEC FRS PROMPT NOECHO 
                        ('Could not reprepare SQL statements :', :RET) 
                        END-EXEC 
                    EXEC FRS BREAKDISPLAY END-EXEC. 
      EXEC FRS END END-EXEC 
      EXEC FRS ACTIVATE MENUITEM 'Clear' END-EXEC 
      EXEC FRS BEGIN END-EXEC 
           EXEC FRS CLEAR FIELD ALL END-EXEC. 
      EXEC FRS END END-EXEC 
 
      EXEC FRS ACTIVATE MENUITEM 'Quit', FRSKEY2 END-EXEC 
      EXEC FRS BEGIN END-EXEC 
            EXEC SQL ROLLBACK END-EXEC. 
            EXEC FRS BREAKDISPLAY END-EXEC. 
 
      EXEC FRS END END-EXEC 
      EXEC FRS FINALIZE END-EXEC. 
      EXEC FRS ENDFORMS END-EXEC. 
      EXEC SQL DISCONNECT END-EXEC. 
      STOP RUN. 
** 
* Paragraph: DESCRIBE-FORM 
* 
* Profile the specified form for name and data type information. 
* Using the DESCRIBE FORM statement, the SQLDA is loaded with 
* field information from the form. This paragraph (together with 
* the DESCRIBE-COLUMN paragraph) processes the form information 
* to allocate result storage, point at storage for dynamic FRS 
* data retrieval and assignment, and build SQL statements strings 
* for subsequent dynamic SELECT and INSERT statements. For example, 
* assume the form (and table) 'emp' has the following fields: 
*  
* Field Name Type    Nullable? 
* ---------- ----    --------- 
* name      char(10)  No 
* age       integer4  Yes 
* salary    money     Yes 
* 
* Based on 'emp', this paragraph will construct the SQLDA. 
* The paragraph allocates variables from a result variable 
* pool (integers, decimals and a large character string space). 
* The SQLDATA and SQLIND fields are pointed at the addresses 
* of the result variables in the pool. The following SQLDA 
* is built: 
* 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–157 

*       SQLVAR(1) 
*           SQLTYPE = CHAR TYPE 
*           SQLLEN  = 10 
*           SQLDATA = pointer into CHARS buffer 
*           SQLIND  = null 
*           SQLNAME = 'name' 
*       SQLVAR(2) 
*           SQLTYPE = - INTEGER TYPE 
*           SQLLEN  = 4 
*           SQLDATA = address of INTEGERS(2) 
*           SQLIND  = address of INDICATORS(2) 
*           SQLNAME = 'age' 
*       SQLVAR(3) 
*           SQLTYPE = - DECIMAL TYPE 
*           SQLLEN  = 4616 (see below) 
*           SQLDATA = address of DECIMALS(3) 
*           SQLIND  = address of INDICATORS(3) 
*           SQLNAME = 'salary' 
* 
 
* This paragraph also builds two dynamic SQL statements strings. 
* Note that the paragraph should be extended to verify that the 
* statement strings do fit into the statement buffers (this was 
* not done in this example). The above example would construct 
* the following statement strings: 
* 
* 'SELECT name, age, salary FROM emp ORDER BY name' 
* 'INSERT INTO emp (name, age, salary) VALUES (?, ?, ?)' 
* 
* This paragraph sets DESCRIBE-OK if it succeeds, and 
* DESCRIBE-FAIL if there was some sort of initialization error. 
** 
DESCRIBE-FORM. 
* Initialize the SQLDA and DESCRIBE the form. If we cannot fully 
* describe the form (our SQLDA is too small) then report an error 
* and return. 
          SET DESCRIBE-OK TO TRUE. 
          MOVE 1024 TO SQLN. 
          EXEC FRS DESCRIBE FORM :FORM-NAME ALL INTO :SQLDA END-EXEC. 
          EXEC FRS INQUIRE_FRS FRS (:ERR = ERRORNO) END-EXEC. 
          IF (ERR > 0 ) THEN 
                SET DESCRIBE-FAIL TO TRUE 
                GO TO END-DESCRIBE. 
          IF (SQLD > SQLN) THEN 
                EXEC FRS PROMPT NOECHO 
                     ('SQLDA is too small for form :', :RET) END-EXEC 
                SET DESCRIBE-FAIL TO TRUE 
                GO TO END-DESCRIBE. 
          IF (SQLD = 0) THEN 
                EXEC FRS PROMPT NOECHO 
                  ('There are no fields in the form :', :RET) END-EXEC 
                SET DESCRIBE-FAIL TO TRUE 
                GO TO END-DESCRIBE. 
  



Sample Applications 

3–158     Embedded SQL Companion Guide 

* For each field determine the size and type of the result data area. 
* This is done by DESCRIBE-COLUMN. 
*  
* If a table field type is returned then issue an error. 
* 
* Also, for each field add the field name to the 'NAMES' buffer 
* and the SQL place holders '?' to the 'MARKS' buffer, which 
* will be used to build the final SELECT and INSERT statements. 
      PERFORM DESCRIBE-COLUMN 
                VARYING COL FROM 1 BY 1 
                UNTIL (COL > SQLD) OR (DESCRIBE-FAIL). 
* At this point we've processed all columns for data type 
* information. Create final SELECT and INSERT statements. For the 
* SELECT statement ORDER BY the first field. 
     STRING "SELECT " NAMES(1: NAME-CNT) " FROM " TABLE-NAME 
               " ORDER BY " SQLNAMEC(1)(1: SQLNAMEL(1)) 
               DELIMITED BY SIZE INTO SEL-BUF. 
     STRING "INSERT INTO " TABLE-NAME "(" NAMES(1: NAME-CNT) 
               ") VALUES (" MARKS(1: MARK-CNT) ")" 
              DELIMITED BY SIZE INTO INS-BUF. 
END-DESCRIBE. 
      EXIT. 
** 
* Paragraph: DESCRIBE-COLUMN 
* 
* When setting up data for the SQLDA result data items are chosen 
* out of a pool of variables. The SQLDATA and SQLIND fields are 
* pointed at the addresses of the result data items and indicators 
* as described in paragraph DESCRIBE-FORM. 
*  
* Field names are collected for the building of the Dynamic SQL 
* statement strings as described for paragraph DESCRIBE-FORM. 
* 
* Paragraph sets DESCRIBE-FAIL if it fails. 
** 
DESCRIBE-COLUMN. 
* Determine the data type of the filed and to where SQLDATA and 
* SQLIND must point in order to retrieve type-compatible results. 
* First find the base type of the current column. 
            IF (SQLTYPE(COL) > 0) THEN 
            MOVE SQLTYPE(COL) TO BASE-TYPE 
            SET NOT-NULLABLE TO TRUE 
            MOVE 0 TO SQLIND(COL) 
      ELSE 
            COMPUTE BASE-TYPE = 0 - SQLTYPE(COL) 
            SET NULLABLE TO TRUE 
            SET SQLIND(COL) TO REFERENCE INDICATORS(COL). 
* Collapse all different types into one of integer, float 
* or character. 
* Integer data uses 4-byte COMP. 
      IF (BASE-TYPE = 30) THEN 
            IF (NOT-NULLABLE) THEN 
                  MOVE 30 TO SQLTYPE(COL) 
            ELSE 
                  MOVE -30 TO SQLTYPE(COL) 
            END-IF 
            MOVE 4 TO SQLLEN(COL) 
            SET SQLDATA(COL) TO REFERENCE INTEGERS(COL) 
* Money and floating-point or decimal data use COMP-3. 
* Note: You must encode precision and length when setting SQLLEN 
* for a decimal data type. Use the formula: SQLLEN = (256 *p+s) 
* where p is the Ingres precision and s is scale of the decimal 
* host variable. DEC-DATA is defined as PIC S9(10)V9(8), so 
* p = 10 + 8 (Ingres precision is the total number of digits) 
* and s= 8. Therefore, SQLLEN = (256 * 18+8) = 4616. 



Sample Applications 

Chapter 3: Embedded SQL for COBOL    3–159 

      ELSE IF (BASE-TYPE = 5) 
           OR (BASE-TYPE = 10) 
           OR (BASE-TYPE = 31) THEN 
          IF (NOT-NULLABLE) THEN 
                MOVE 10 TO SQLTYPE(COL) 
          ELSE 
                MOVE -10 TO SQLTYPE(COL) 
          END-IF 
          MOVE 4616 TO SQLLEN(COL) 
          SET SQLDATA(COL) TO REFERENCE DECIMALS(COL) 
 
* Dates, fixed and varying-length character strings use 
* character data. 
      ELSE IF (BASE-TYPE = 3) 
          OR  (BASE-TYPE = 20) 
          OR  (BASE-TYPE = 21) THEN 
* Fix up the lengths of dates and determine the length of the 
* sub-string required from the large character string buffer. 
          IF (BASE-TYPE = 3) THEN 
              MOVE 25 TO SQLLEN(COL) 
          END-IF 
          IF (NOT-NULLABLE) THEN 
              MOVE 20 TO SQLTYPE(COL) 
          ELSE 
              MOVE -20 TO SQLTYPE(COL) 
          END-IF 
          MOVE SQLLEN(COL) TO CHAR-CUR 
* If we do not have enough character space left display an error. 
          IF ((CHAR-CNT + CHAR-CUR) > 3000) THEN 
              EXEC FRS PROMPT NOECHO 
                  ('Character pool buffer overflow :', :RET) END-EXEC 
              SET DESCRIBE-FAIL TO TRUE 
          ELSE 
* There is enough space so point at the start of the corresponding 
* sub-string. Allocate space out of character buffer and accumulate 
* the currently used character space. 
              SET SQLDATA(COL) TO REFERENCE CHARS(CHAR-CNT:) 
              ADD CHAR-CUR TO CHAR-CNT 
          END-IF 
* Table fields are not allowed 
      ELSE IF (BASE-TYPE = 52) THEN 
            EXEC FRS PROMPT NOECHO 
                  ('Table field found in form :', :RET) END-EXEC 
            SET DESCRIBE-FAIL TO TRUE 
* Unknown data type 
      ELSE 
            EXEC FRS PROMPT NOECHO ('Invalid field type :', :RET) 
                END-EXEC 
            SET DESCRIBE-FAIL TO TRUE 
      END-IF. 
* Store field names and place holders (separated by commas) 
* for the SQL statements. 
     IF (COL > 1) THEN 
          MOVE "," TO NAMES(NAME-CNT:1) 
          ADD 1 TO NAME-CNT 
          MOVE "," TO MARKS(MARK-CNT:1) 
          ADD 1 TO MARK-CNT. 
     END-IF. 
     MOVE SQLNAMEC(COL)(1:SQLNAMEL(COL)) TO 
              NAMES(NAME-CNT:SQLNAMEL(COL)). 
     ADD SQLNAMEL(COL) TO NAME-CNT. 
     MOVE "?" TO MARKS(MARK-CNT:1). 
     ADD 1 TO MARK-CNT.  





  

 

Chapter 4: Embedded SQL for Fortran    4–1 

Chapter 4: Embedded SQL for Fortran 
 

This chapter describes the use of Embedded SQL with the Fortran 
programming language. 

Embedded SQL Statement Syntax for Fortran 
This section describes the language-specific issues inherent in embedding SQL 
database and forms statements in a Fortran program. An Embedded SQL 
database statement has the following general syntax: 

 [margin] exec sql SQL_statement 

The syntax of an Embedded SQL/FORMS statement is almost identical: 

 [margin] exec frs SQL/FORMS_statement 

For information on SQL statements, see the SQL Reference Guide. For 
information on SQL/FORMS statements, see the Forms-based Application 
Development Tools User Guide. 

The following sections describe the various syntactical elements of these 
statements as implemented in Fortran. 

The preprocessor generates tab format code. As a result, tab characters 
instead of single spaces delimit various syntactical elements, such as labels. 

Margin 

In general, Embedded SQL statements in Fortran require no special margins. 
The exec keyword can begin anywhere on the source line as long as it is 
preceded only by blank space. Host declarations can also begin on any 
column. In the case, however, of an Embedded SQL statement continuation, 
the continuation indicator must follow the rules for line continuation. For more 
information, see Line Continuation in this chapter. For more information on tab 
format for source input, see the Preprocessor Operation in this chapter. 

For portability to other implementations of SQL, you should code your SQL 
statements between columns 7 and 72. 



Embedded SQL Statement Syntax for Fortran 

4–2     Embedded SQL Companion Guide 

Terminator 

Unlike other Embedded SQL languages, there is no terminator for Fortran. For 
example, a delete statement embedded in a Fortran program looks like: 

exec sql delete from employee where eno = :numvar 

Do not follow an Embedded SQL statement on the same line with another 
Embedded SQL statement or with a Fortran statement. This causes 
preprocessor compile time syntax errors on the second statement. Only use 
white space (blanks and tabs) after the end of the statement to the end of the 
line. 

The preprocessor allows, but does not require, a semicolon (;) to be a 
statement terminator for Embedded SQL statements. It does not write the 
semicolon to the output file it creates. The terminating semicolon can be 
convenient when entering source code directly from the terminal, using the -s 
flag on the preprocessor command line to test the syntax of a particular 
statement. For further details, see Preprocessor Operation in this chapter.  

Labels 

Like Fortran statements, Embedded SQL statements can have a label prefix. 
An Embedded SQL label is a Fortran statement number specified between 
columns 1 and 5. For example: 

100 exec sql close cursor1 

The label can appear anywhere a Fortran label can appear. However, labels 
cause the preprocessor to generate Fortran continue statements. Therefore, 
you should precede only executable SQL statements with labels. Although the 
preprocessor accepts the label in front of any exec sql or exec frs prefix, it 
may not be appropriate to code the label on some lines. For example, the 
following label, although acceptable to the preprocessor, later causes a 
compiler error: 

101 exec sql include sqlca 

The preprocessor reserves statement numbers 7000 through 12000. 

Line Continuation 

You can continue embedded SQL statements over multiple lines. The line 
continuation rules are the same as those for Fortran statements. 

A line continuation indicator is: 

 For UNIX, an ampersand (&) in the first column or any character  
in column 6, except a blank or zero 



Embedded SQL Statement Syntax for Fortran 

Chapter 4: Embedded SQL for Fortran    4–3 

 For VMS, any digit, except zero, following the first tab 

 For Windows, any character except zero or blank in column 6 

The preprocessor considers the characters after the continuation indicator to 
be the first characters of the line. For example, the following select statement 
continues over four lines: 

 exec sql select ename  
1 into :namvar  
2 from employee  
3 where eno = :numvar 

You can put blank lines between Embedded SQL statement lines. Blank lines 
do not require a continuation indicator. If a line continuation indicator is 
missing from an Embedded SQL statement that spans more than one line, the 
preprocessor generates the following error message: “Syntax error on 
terminator or missing Fortran continuation indicator”. 

You must use the continuation indicator to continue Embedded SQL/Fortran 
declarations over multiple lines. Comments (except comments that use the 
SQL comment delimiters—see Comments) cannot continue over multiple lines. 
In VMS, you cannot continue variable initialization clauses over multiple lines.  

Comments 

You can use the following in column 1 to indicate that a line is a comment: 

 The letter “C”  

 The asterisk (*)  

 The lower case letter “c” (VMS and Windows) 

 The exclamation point (!) (VMS and Windows) 

The following example illustrates the correct use of the “C” comment delimiter: 

       exec sql select ename  
      1 into :namvar 
      2 from employee 
C Confirm that "eno" is the same as the current 
C value chosen 
      3 where eno = :curval 

The VMS exclamation point can also be used anywhere on the statement line 
to mark a comment that extends to the end of the line as in the following 
example. However, this type of comment line cannot be continued over 
multiple lines:  

exec sql delete from employee !Delete all employees 

A comment line can appear anywhere in an Embedded SQL program that a 
blank line is allowed, with the following exceptions: 



Embedded SQL Statement Syntax for Fortran 

4–4     Embedded SQL Companion Guide 

 In string constants. The preprocessor interprets such a comment as part of 
the string constant. 

 Between component lines of Embedded SQL/FORMS block-type 
statements. All block-type statements (such as activate and 
unloadtable) are compound statements that include a statement section 
delimited by begin and end. Comment lines must not appear between the 
statement and its section. The preprocessor interprets such comments as 
Fortran host code, causing preprocessor syntax errors. For example, the 
following statement causes a syntax error on the first comment: 

      exec frs unloadtable empform  
                            employee (:namvar = ename)  
C Illegal comment before statement body.  
     exec frs begin 
C Comment legal here  
           exec frs message :namvar  
     exec frs end 

In VMS, you could also use an exclamation point on the following line with the 
C comment. For example: 

C Comment legal here 
     exec frs message :namvar     !And legal here too 

 An example of a compound statement is the display statement, which 
typically consists of the display clause, an initialize section, activate 
sections, and a finalize section. The preprocessor translates these 
comments as host code, which causes syntax errors on subsequent 
statement components. 

 In parts of statements that are dynamically defined. For example, a 
comment in a string variable specifying a form name is interpreted as part 
of the form name. 

The SQL comment delimiter (--) indicates that the remainder of the line is a 
comment. In-line comments are not propagated to the host language file. 

String Literals 

Use single quotes to delimit Embedded SQL string literals. To embed a single 
quote in a string literal, use two single quotes, for example: 

 exec sql update employee  
1   set comments ='Doesn''t seem to relax'  
2   where eno   = :numvar 

You can continue string literals over multiple lines. Following Fortran rules, if 
the continued line ends without a closing quotation mark, the continuation line 
must follow the rules for continuation markers. The first character after the 
continuation marker is considered part of the string literal. For example: 

 exec sql update employee  
1   set comments = 'Completed all projects on time.  
2   Recommended for promotion.'  
3   where ename  = 'Jones' 



Embedded SQL Statement Syntax for Fortran 

Chapter 4: Embedded SQL for Fortran    4–5 

Do not place comment lines between string literal continuation lines. 

String Literals and Statement Strings 

The Dynamic SQL statements prepare and execute immediate both use 
statement strings, which specify an SQL statement. The statement string can 
be specified by a string literal or character string variable, for example: 

exec sql execute immediate 'drop employee' 
str = 'drop employee' 
exec sql execute immediate :str 

As with regular Embedded SQL string literals, the statement string delimiter is 
the single quote. However, quotes embedded in statement strings must 
conform to the SQL runtime rules when the statement is executed. Notice the 
doubling of the single quote in the following dynamic insert statement: 

exec sql prepare s1 from 
1 'Insert into t1 values (''single''''double"'')' 

The runtime evaluation of the previous statement string is: 

Insert into t1 values ('single''double"') 

which inserts the single'double" value into t1. 

The Create Procedure Statement 

As described in the SQL Reference Guide, the create procedure statement 
has language-specific syntax rules for line continuation, string literal 
continuation, comments, and the final terminator. These syntax rules follow 
the rules discussed in this section. For example, there is no final terminator. 
Regardless of the number of statements in the procedure’s body, the 
preprocessor treats the create procedure statement as a single statement 
and, as an Embedded SQL/Fortran statement, it has no final terminator. 
However, all statements within the body of the procedure must end with a 
semicolon. 

The following example shows a create procedure statement that follows the 
Embedded SQL/Fortran syntax rules: 

     exec sql 
     1 create procedure proc (parm integer) as 
     2 declare 
     3      var integer; 
     4 begin 
C Use Fortran comment line 
     5       if (parm > 10) then  
     6           message 'Fortran strings can continue 
     7 over lines'; 
     8           insert into tab values (:parm); 
     9       endif; 
     1 end 



Fortran Variables and Data Types 

4–6     Embedded SQL Companion Guide 

Database procedures tend to be quite long, requiring a Fortran continuation 
indicator on each line. There is no limit over how many lines the create 
procedure statement can continue, even though the Fortran compiler may 
have a limit for host Fortran statements. 

Fortran Variables and Data Types 
This section describes how to declare and use Fortran program variables in 
Embedded SQL.  

Variable and Type Declarations 

The following sections describe variable and type declarations. 

Embedded SQL Variable Declaration Sections 

Embedded SQL statements use Fortran variables to transfer data between the 
database, or a form, and the program. You can also use Fortran constants in 
those SQL statements transferring data from the program into the database. 
You must declare Fortran variables, constants and structure definitions to SQL 
before using them in any Embedded SQL statements. The preprocessor does 
not allow the declaration of Fortran variables by implication. Fortran variables 
are declared to SQL in a declaration section. This section has the following 
syntax: 

              exec sql begin declare section 
                            Fortran variable declarations 
              exec sql end declare section 

Embedded SQL variable declarations are global to the program file from the 
point of declaration onward. Multiple declaration sections can be incorporated 
into a single file, as is the case when a few different Fortran subprograms 
issue embedded statements using local variables. Each subprogram can have 
its own declaration section. For more information on the declaration of 
variables and types that are local to Fortran subprograms see The Scope of 
Variables in this chapter. 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–7 

Reserved Words in Declarations 

Fortran keywords are reserved, therefore you cannot declare types or 
variables with the same name as these keywords:  

 

 byte 
 character 
 complex 

double 
integer 
logical 

map 
parameter 
precision 

real 
record 
structure 

The Embedded SQL preprocessor does not distinguish between uppercase and 
lowercase in keywords. In generating Fortran code, it converts any uppercase 
letters in keywords to lowercase. 

Typed Data Declarations 

The preprocessor recognizes numeric variables declared with the following 
format: 

              data_type [*default_type_len]  
                            var_name [*type_len] [(array_spec)] [/init_clause/] 
                            {, var_name [*type_len] [(array_spec)] [/init_clause/]} 

The preprocessor recognizes character variables declared with the following 
format: 

              data_type [*default_type_len[,]]  
                            var_name [(array_spec)] [*type_len] [/init_clause/] 
                            {, var_name [(array_spec)] [*type_len] [/init_clause/]} 

Syntax Notes: 

 A variable or type name must begin with an alphabetic character, which 
can be followed by alphanumeric characters. In VMS and Windows, it can 
also be followed by underscores. 

 For information on the allowable data_types, see Data Types in this 
chapter. 

 The default_type_len specifies the size of the variable being declared. For 
variables of numeric type, it must be represented by an integer literal of 
an acceptable length for the particular data type. For variables of 
character type, it can be represented by an integer literal or a 
parenthesized expression followed optionally by a comma. The 
preprocessor does not parse the length field for variables of type 
character. Note the default type lengths in the declarations shown below: 

C Declares "eage" a 2-byte integer 



Fortran Variables and Data Types 

4–8     Embedded SQL Companion Guide 

    integer*2 eage  
C Declares "stat" a 4-byte integer 
    integer*4 stat 
C Declares "ename" a character string 
    character*(4+len) ename 

 The type_len allows you to declare a variable with a length different from 
default_type_len. Again, you can use a parenthesized expression only to 
declare the length of character variable declarations. The type length for a 
numeric variable must be an integer literal representing an acceptable 
numeric size. For example: 

C Default-sized integer and 2-byte integer 
    integer length 
    integer*2 height  
    character*15 name, socsec*(numlen) 

Some UNIX Fortran compilers do not permit the length of a character 
variable to be redeclared.  

 The data type and variable names must be legal Fortran 
identifiers beginning with an alphabetic character. In VMS, it can also 
begin with an underscore. 

 The array_spec should conform to Fortran syntax rules. The preprocessor 
simply notes that the declared variable is an array but does not parse the 
array_spec clause. Note that if you specify both an array and a type 
length, the order of those two clauses differs depending on whether the 
variable being declared is of character or numeric type. The following are 
examples of array declarations: 

C Array specification first 
     character*16 enames(100), edepts(15)*10  
C Type length first 
     real*4 saltab(5,12), real*8 yrtots(12)  

 The preprocessor allows you to initialize a variable or array in the 
declaration statement by means of the init_clause. The preprocessor 
accepts, but does not examine, any initial data. The Fortran compiler, 
however, will later detect any errors in the initial data. For example: 

     real*8 initcash /512.56/  
     character*4 baseyear /'1950'/  
     character*4 year /1950/ 
C Acceptable to preprocessor but not to compiler 

Do not continue initial data over multiple lines. If an initialization value is too 
long for the line, as could be the case with a string constant, instead use the 
Fortran data statement. For UNIX, init_clause is an extension to the F77 
standard. 

Constant Declarations 

UNIX  
You can declare constants to the preprocessor using the Fortran parameter 
statement using the following syntax: 

 parameter (const_name = value {, const_name = value})  



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–9 

Syntax Notes: 

 The preprocessor derives the data type of const_name from the data type 
of value. The F77 compiler uses implicit data typing; it derives the data 
type of value from the first letter of const_name. Be sure that the type of 
the specified value is the same as the implicit type derived from 
const_name.  

 The value  can be a real, integer or character literal. It cannot be an 
expression or a symbolic name. 

The following example declaration illustrates the parameter statement: 

C real constant  
    parameter (pi = 3.14159 )  
C integer and real  
    parameter (bigint = 2147483648, bignum = 999999.99  

VMS
 

You can declare constants to the preprocessor using the Fortran parameter 
statement using the following syntax: 

 parameter const_name = value {, const_name = value}   

Syntax Notes: 

 The preprocessor and the compiler derive the data type of const_name 
from the data type of value. Neither the preprocessor nor the compiler 
make use of implicit data typing. Explicit data type declarations are not 
allowed in parameter statements.  

 The value can be a real, integer or character literal. It cannot be an 
expression or a symbolic name. 

The following example declarations illustrate the parameter statement: 

parameter (pi = 3.14159 )    real constant  
 
parameter (bigint = 2147483648, 
           bignum = 999999.99) !integer and real  

Windows  
You can declare constants to the preprocessor using the Fortran parameter 
statement using the following syntax: 

 parameter [(]const_name = value {, const_name = value}[)]   

Syntax Notes: 

 The preprocessor and the compiler derive the data type of const_name by 
an explicit type declaration statement in the same scoping unit or by the 
implicit typing rules in effect for the scoping unit. If the named constant is 
implicitly typed, it can appear in a subsequent type declaration only if that 
declaration confirms the implicit typing. 

 The value can be an expression of any data type. 

The following example declarations illustrate the parameter statement: 



Fortran Variables and Data Types 

4–10     Embedded SQL Companion Guide 

C real constant  
    parameter pi = 3.14159   
C integer and real  
    parameter (bigint = 2147483648, bignum = 999999.99)  

Data Types 

The Embedded SQL preprocessor accepts the following elementary Fortran 
data types and maps them to corresponding Ingres data types. For a 
description of exact type mapping, see Data Type Conversion in this chapter. 

 

Fortran Data Types Ingres Data Types 

integer*N where N = 2 or 4 integer 

logical integer 

logical*N where N = 1, 2 or 4 integer 

byte integer 

real float 

real*N where N = 4 or 8 float 

double precision float 

character*N where N  0 character 

real*8  decimal 

integer integer 

The Integer Data Type 

The Fortran compiler allows the default size of integer variables to be either 
two or four bytes in length, depending on whether the -i2 compiler flag 
(UNIX), the noi4 flag (VMS), or the /integer_size:16 or /4I2 (Windows) is set. 

This feature is also supported in Embedded SQL/Fortran by means of the 
preprocessor flag -i2. This flag allows you to change the default size of 
integer variables to two from the normal default size of four bytes. For 
detailed information on this flag, see Preprocessor Operation in this chapter. 

You can explicitly override the default size when declaring the Fortran variable 
to the preprocessor. To do so, you must specify a size indicator (*2 or *4) 
following the integer keyword, as these examples illustrate: 

integer*2 smlint  
integer*4 bigint 

These declarations create Embedded SQL integer variables of two and four 
bytes, respectively, regardless of the default setting. 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–11 

The preprocessor treats byte and logical data type as integer data types. A 
logical variable has a default size of either 2 or 4 bytes according to whether 
the -i2 flag has been set. You can override this default size by using a size 
indicator of 1, 2, or 4. For example: 

logical logl*1, log2*2, log4*4 

The byte data type has a size of one byte. You cannot override this size. 

You can use an integer or byte variable with any numeric-valued object to 
assign or receive numeric data. For example, you can use such a variable to 
set a field in a form or to select a column from a database table. It can also 
specify simple numeric objects, such as table field row numbers. You can use a 
logical variable to assign or receive integer data, although your program 
should restrict its value to 1 and 0, which map respectively to the Fortran 
logical values .TRUE. and .FALSE.. 

The Real Data Type 

The preprocessor accepts real and double precision as legal real data types. 
The preprocessor accepts both 4-byte and 8-byte real variables. It makes no 
distinction between an 8-byte real variable and a double precision variable. 
The default size of a real variable is four bytes. However, you can override 
this size if you use a size indicator (*8) after the real keyword. For example: 

C 4-byte real variable 
    real salary 
C 8-byte real variable 
    real*8 yrtoda 
C 8-byte real variable 
    double precision saltot  

You can only use a real variable to assign or receive numeric data (both real, 
decimal, and integer). You cannot use it to specify numeric objects, such as 
table field row numbers. 

VMS
 

The preprocessor expects the internal format of real and double precision 
variables to be the standard VAX format. For this reason, you should not 
compile your program with the g_floating qualifier.  

The Character Data Type 

Variables of type character are compatible with all Ingres character string 
objects. The preprocessor does not need to know the declared length of a 
character string variable to use it at runtime. Therefore, it does not check the 
validity of any expression or symbolic name used to declare the length of the 
string variable. You should ensure that your string variables are long enough 
to accommodate any possible runtime values. For example: 

character*7         first  
character*10        last  
character*1         init  



Fortran Variables and Data Types 

4–12     Embedded SQL Companion Guide 

character*(bufsiz)  msgbuf  

For information on the interaction between character string variables and 
Ingres data at runtime, see Runtime Character and Varchar Type Conversion 
in this chapter. 

Character strings containing embedded single quotes are legal in SQL, for 
example: 

mary's 

User variables may contain embedded single quotes and need no special 
handling unless the variable represents the entire search condition of a where 
clause: 

where :variable 

In this case you must escape the single quote by reconstructing the :variable 
string so that any embedded single quotes are modified to double single 
quotes, as in: 

mary''s 

Otherwise, a runtime error will occur. For more information on escaping single 
quotes, see String Literals in this chapter. 

Indicator Variables 

An indicator variable is a 2-byte integer variable. There are three possible 
ways to use them in an application: 

 In a statement that retrieves data from Ingres, you can use an indicator 
variable to determine if its associated host variable was assigned a null. 

 In a statement that sends data to Ingres, you can use an indicator variable 
to assign a null to the database column, form field, or table field column. 

 In a statement that retrieves character data from Ingres, you can use the 
indicator variable as a check that the associated host variable was large 
enough to hold the full length of the returned character string. You can use 
SQLSTATE to do this. Although you can use SQLCODE as well, it is 
preferable to use SQLSTATE because SQLCODE is a deprecated feature. 

The following statements illustrate how to set an indicator variable: 

 C Indicator variable 
      integer*2   ind 
 C Array of indicators 
      integer*2   indarr(10)  

When using an indicator array with a host structure, as described in the SQL 
Reference Guide, you must declare the indicator array as an array of 2-byte 
integers. In the above example, the “indarr” variable can be used as an 
indicator array with a structure assignment. 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–13 

Structure and Record Declarations Syntax 

The Embedded SQL preprocessor supports the declaration and use of  user-
defined structure variables. In UNIX, the structure variables are an extension 
to the F77 standard and may not be available on all Fortran compilers. 

The syntax of a structure definition is: 

              structure [/structdef_name/] [field_namelist] 
              field_declaration 
                        {field_declaration} 
       end structure 

Syntax Notes: 

 The structdef_name is optional only for a nested structure definition. 

 The field_namelist is allowed only with a nested structure definition. Each 
name in the field_namelist constitutes a field in the enclosing structure. 

 The field_declaration can be a typed data declaration, a nested structure 
declaration, a union declaration, a record declaration, or a fill item. 

The syntax of a union declaration is: 

              union 
                            map_declaration 
                            map_declaration 
                            {map_declaration} 
              end union 

where map_declaration is: 

              map 
                            field_declaration 
                            {field_declaration} 
              end map 

To use a structure with Embedded SQL statements, you must both define the 
structure and declare the structure’s record in the Embedded SQL declaration 
section of your program. The syntax of the record declaration is: 

              record /structdef_name/ structurename {,[/structdef_name/]  
                                                                                 structurename} 

Syntax Note:  

The structdef_name must have been previously defined in a structure 
statement. 

For information on the use of structure variables in Embedded SQL 
statements, see Structure Variables in this chapter. 



Fortran Variables and Data Types 

4–14     Embedded SQL Companion Guide 

The following example includes a structure definition and a record declaration: 

structure /name_map/ 
        union 
            map 
                character*30 fullname 
            end map 
            map 
                character*10 firstnm 
                character*2  init 
                character*18 lastnm 
            end map 
        end union 
end structure 
 
record /name_map/ empname 

The next example shows the definition of a structure containing an array of 
nested structures:  

structure /class_struct/ 
           character*10   subject 
           integer*2      year 
           structure      student(100) 
C No structure definition name needed 
                   character*12 name 
                   byte       grade 
         end structure 
end structure 
 
record /class_struct/ classrec   

The DCLGEN Utility 

DCLGEN (Declaration Generator) is a utility that maps the columns of a 
database table into a Fortran structure that can be included in a declaration 
section. The following command invokes DCLGEN from the operating system 
level: 

 dclgen language dbname tablename filename structurename 

where: 

 language is the Embedded SQL host language, in this case, “fortran” 

 dbname is the name of the database containing the table 

 tablename is the name of the database table 

 filename is the output file into which the structure declaration is placed 

 structurename is the name of the Fortran structure variable that the 
command generates. The command generates a structure definition 
named structurename followed by an underscore character (_). It also 
generates a record statement for the structure variable of structurename. 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–15 

The DCLGEN utility creates the declaration file filename, containing a structure 
or a series of Fortran variables, if the -f77 flag is used, corresponding to the 
database table. The file also includes a declare table statement that serves 
as a comment and identifies the database table and columns from which the 
variables were generated. 

UNIX  
DCLGEN has the option to map the columns of a database table into a series 
of Fortran variables rather than into a Fortran structure. This is useful if your 
Fortran compiler does not support structures. Specify the -f77 flag to 
indicate this DCLGEN option as follows: 

dclgen -f77 language dbname tablename filename prefixname 

prefixname is required when -f77 is used. This prefix is appended to the 
column names of the table to produce the Fortran variables.  

After the file is generated, you can use an Embedded SQL include statement 
to incorporate it into the variable declaration section. The following example 
demonstrates how to use DCLGEN in a Fortran program. 

Assume the “employee” table was created in the “personnel” database as: 

exec sql create table employee  
    (eno      smallint not null, 
    ename     char(20) not null, 
    age       integer1, 
    job       smallint, 
    sal       decimal(14,2) not null, 
    dept      smallint) 

When the DCLGEN system-level command is: 

dclgen fortran personnel employee employee.dcl emprec 

The “employee.dcl” file created by this command contains a comment, and 
three statements. The first statement is the declare table description of 
“employee,” which serves as a comment. The second statement is a 
declaration of the Fortran structure “emprec_”. The last statement is a record 
statement for “emprec”. The contents of the “employee.dcl” file are: 

c  Description of table employee from database personnel 
    exec sql declare employee table 
    1 (eno    smallint not null, 
    1  ename  char(20) not null, 
    1  age    integer1, 
    1  job    smallint, 
    1  sal    decimal(14,2) not null, 
    1  dept   smallint) 
    structure /emprec_/ 
      integer*2      eno 
      character*20   ename 
      integer*2      age 
      integer*2      job 
      real*8         sal 
      integer*2      dept 
    end structure 
    record /emprec_/ emprec 



Fortran Variables and Data Types 

4–16     Embedded SQL Companion Guide 

UNIX  
For this example the DCLGEN system-level command is: 

dclgen -f77 fortran personnel employee employee.dcl emp 

The “employee.dcl” file created by this command contains a comment, a 
declare table statement and the variable declarations. The declare table 
statement describes the employee table and serves as a comment. The exact 
contents of the ”employee.dcl” file are: 

C   Description of table employee from database personnel 
   exec sql declare employee table 
    1 (eno         smallint not null, 
    1 ename        char(20) not null, 
    1 age          integer1, 
    1 job          smallint, 
    1 sal          decimal(14,2) not null, 
   1 dept         smallint) 
 
    integer*2    empeno 
    character*20 empename 
    integer*2    empage 
    integer*2    empjob 
    real*8       empsal 
    integer*2    empdept   

The Ingres integer1 data type is mapped to the Fortran integer*2 data type, 
rather than to byte. 

Include this file, by means of the Embedded SQL include statement, in an 
Embedded SQL declaration section: 

exec sql begin declare section 
      exec sql include 'employee.dcl' 
exec sql end declare section 

You can then use the variables in data manipulation statements. 

The field names of the structure that DCLGEN generates are identical to the 
column names in the specified table. Therefore, if the column names in the 
table contain any characters that are illegal for host language variable names 
you must modify the name of the field before attempting to use the variable in 
an application. 

DCLGEN and Large Objects 

When a table contains a large object column, DCLGEN will issue a warning 
message and map the column to a zero length character string variable. You 
must modify the length of the generated variable before attempting to use the 
variable in an application. 

For example, assume that the “job_description” table was created in the 
“personnel” database as: 

create table job_description 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–17 

      (job smallint, description long varchar))  

and the DCLGEN system-level command is: 

dclgen fortran personnel job_description jobs.dcl jobs_rec 

The contents of the “jobs.dcl” file would be: 

C Description of table job_description from database 
C personnel 
      exec sql declare job_description table 
     1    (job         smallint not null, 
                       description long varchar) 
 
      structure /jobs_rec_/ 
                    integer*2     job 
                    character*0    description 
      end structure 
      record /jobs_rec/ blobs_rec 

The table definition when used with the -f77 flag (assuming the prefix of “b_” 
was specified) results in the following DCLGEN generated output in “jobs.dcl”: 

  exec sql declare job_description table 
1        (job              smallint, 
           description long varchar) 
 
             character*0    b_description 

Indicator Variables 

An indicator variable is a 2-byte integer variable.  You can use an indicator 
variable in an application in three ways: 

 In a statement that retrieves data from Ingres, you can use an indicator 
variable to determine if its associated host variable was assigned a null. 

 In a statement that sets data to Ingres, you can use an indicator variable 
to assign a null to the database column, form field, or table field column. 

 In a statement that retrieves character (or byte) data from Ingres, you 
can use the indicator variable as a check that the associated host variable 
was large enough to hold the full length of the returned string. However, 
the preferred method is to use SQLSTATE.  

The base type for a null indicator variable must be the integer type 
integer*2. For example: 

C Indicator variable 
      integer*2   indvar 
 
C Array of indicator variables 
      integer*2 indarr(10) 

The word indicator is reserved. 



Fortran Variables and Data Types 

4–18     Embedded SQL Companion Guide 

When using an indicator array with a host structure (see Using Indicator 
Variables in this chapter), you must declare the indicator array as an array of 
integer*2 variables. In the above example, you can use the variable “indarr” 
as an indicator array with a structure assignment. 

Declaring External Compiled Forms 

You can precompile your forms in the Visual Forms Editor (VIFRED). This saves 
the time otherwise required at runtime to extract the form’s definition from 
the database forms catalogs.  

In UNIX, when you compile a form in VIFRED, VIFRED creates a file in your 
directory describing the form in the C language. VIFRED prompts you for the 
name of the file. After creating the file, you can compile it into a linkable 
object module. For an outline of steps, see Linking Precompiled Forms in this 
chapter. 

In Windows, when you compile a form in VIFRED, VIFRED creates a file in your 
directory describing the form in the C language. VIFRED prompts you for the 
name of the file. After creating the file, you can compile it into a linkable 
object module. For an outline of steps, see Linking Precompiled Forms in this 
chapter. 

In VMS, when you compile a form in VIFRED, VIFRED creates a file in your 
directory describing the form in the MACRO language. VIFRED prompts you for 
the name of the file with the MACRO description. When the file is created, you 
can assemble it into a linkable object module with the VMS command that 
produces an object file containing a global symbol with the same name as your 
form:  

 macro filename 

In UNIX, Windows, and VMS, before the Embedded SQL/FORMS statement 
addform can refer to this object, the object must be declared in an Embedded 
SQL declaration section, with the following syntax: 

 integer formname 

Next, in order for the program to access the external form definition, you must 
declare the formname as an external symbol: 

 external formname 

This second declaration must take place outside the Embedded SQL 
declaration section. (Note, however, that the previous declaration of 
formname as an integer must occur inside the declaration section, so that you 
can use formname with the addform statement.) 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–19 

Syntax Notes: 

 The formname is the actual name of the form. VIFRED gives this name to 
the address of the global object. The formname is also used as the title of 
the form in other Embedded SQL/FORMS statements. 

 The external statement associates the object with the external form 
definition. 

The following example shows a typical form declaration and illustrates the 
difference between using the form’s object definition and the form’s name: 

      exec sql begin declare section  
          integer empfrm  
          ... 
 
      exec sql end declare section 
 
          external empfrm  
          ... 
 
C The global object  
      exec frs addform :empfrm  
C The name of the form  
      exec frs display empfrm 
          ... 

Concluding Example 

The following example demonstrate some simple Embedded SQL/Fortran 
declarations: 

C Include error handling  
    exec sql include sqlca 
   exec sql begin declare section 
 
C Variables of each data type  
       byte              dbyte 
       logical*1         dlog1 
       logical*2         dlog2 
       logical*4         dlog4  
       logical           dlog  
       integer*2         dint2  
       integer*4         dint4  
       integer           dint  
       real*4            dreal4  
       real*8            dreal8  
       real              dreal  
       double precision  ddoub 
 
       parameter (max = 1000) 
 
       character*12 dbname  
       character*12 fname, tname, cname 
 



Fortran Variables and Data Types 

4–20     Embedded SQL Companion Guide 

C Structure with a union 
       structure /person/ 
            byte      age 
            integer   flags 
            union 
                map 
      character*30  fullnm 
                end map 
                map 
      character*12  first 
      character*18  last 
                end map 
             end union 
       end structure 
 
       record /person/ person, ptable(MAX) 
 
C From DCLGEN  
       exec sql include 'employee.dcl' 
 
C Compiled forms 
       integer  empfrm, dptfrm 
 
  exec sql end declare section 
       external  empfrm, dptfrm  

The Scope of Variables 

You can reference all variables declared in an Embedded SQL declaration 
section and the preprocessor accepts them from the point of declaration to the 
end of the file. This may not be true for the Fortran compiler, which allows 
references to variables only in the scope of the program unit in which they 
were declared. If you have two unrelated subprograms in the same file, each 
of which contains a variable with the same name to be used by Embedded 
SQL, do not redeclare the variable to Embedded SQL. The preprocessor uses 
the data type information supplied the first time you declared the variable. 

In the following program fragment, the variable dbname is passed as a 
parameter between two subroutines. In the first subroutine, the variable is a 
local variable. In the second subroutine, the variable is a formal parameter 
passed as a string to be used with the connect statement. The declaration of 
dbname in the second subroutine must not occur in an Embedded SQL 
declaration section. In both subroutines, the preprocessor uses the data 
attributes from the variable’s declaration in the first subroutine: 

   subroutine Scopes 
 
   exec sql include sqlca 
   exec sql begin declare section  
      character*20 dbname  
   exec sql end declare section 
 
C Prompt for and read database name  
   type *, 'Database: '  
   accept *, dbname  
   call OpenDb(dbname)  
      ... 
 
   end 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–21 

 
   subroutine OpenDb(dbname) 
 
   exec sql include sqlca 
 
   character*(*) dbname 
 
   exec sql whenever sqlerror stop  
C Declared to SQL in first subroutine  
   exec sql connect :dbname  
         ... 
 
    end  

Take special care when using variables in a declare cursor statement. The 
variables used in such a statement must also be valid in the scope of the open 
statement for that same cursor. The preprocessor actually generates the code 
for the declare at the point that the open is issued and, at that time, 
evaluates any associated variables. For example, in the following program 
fragment, even though the variable “number” is valid to the preprocessor at 
the point of both the declare cursor and open statements, it is not an 
explicitly declared variable name for the Fortran compiler at the point that the 
open is issued, possibly resulting in a runtime error. Because Fortran allows 
implicit variable declarations (although Embedded SQL does not), the compiler 
itself does not generate an error message. For example: 

C This example contains an error 
      subroutine IniCsr 
 
     exec sql include sqlca 
 
     exec sql begin declare section 
C A local variable 
      integer number 
      exec sql end declare section 
 
     exec sql declare cursor1 cursor for 
      1     select ename, age 
      2     from employee 
      3     where eno = :number 
C Initialize "number" to a particular value 
       ... 
 
     end 
 
     subroutine PrcCsr 
 
     exec sql include sqlca 
 
     exec sql begin declare section 
       character*16 ename 
       integer      eage 
      exec sql end declare section 
 
C Illegal evaluation of "number" 
 
     exec sql open cursor1 
 
     exec sql fetch cursor1 into :ename, :eage 
     ... 
 
     end 



Fortran Variables and Data Types 

4–22     Embedded SQL Companion Guide 

You must issue the include sqlca statement in each subprogram that contains 
Embedded SQL statements. 

Variable Usage 

Fortran variables declared in an Embedded SQL declaration section can 
substitute for most elements of Embedded SQL statements that are not 
keywords. Of course, the variable and its data type must make sense in the 
context of the element. When you use a Fortran variable in an Embedded SQL 
statement, you must precede it with a colon (:). You must further verify that 
the statement using the variable is in the scope of the variable’s declaration. 
As an example, the following select statement uses the variables “namevar” 
and “numvar” to receive data and the variable “idno” as an expression in the 
where clause: 

 exec sql select ename, eno 
1   into :namevar, :numvar 
2   from employee 
3   where eno = :idno 

Various rules and restrictions apply to the use of Fortran variables in 
Embedded SQL statements. The following sections describe the usage syntax 
of different categories of variables and provide examples of such use. 

Simple Variables 

The following syntax refers to a simple scalar-valued variable (integer, real or 
character string): 

 :simplename  

Syntax Notes: 

 If you use the variable to send values to Ingres, it can be any scalar-
valued variable. 
 

 If you use the variable to receive values from Ingres, it must be a scalar-
valued variable. 

The following program fragment demonstrates a typical error handling routine, 
which can be called either directly or by a whenever statement. The variables 
“buffer” and “buflen” are scalar-valued variables: 

subroutine ErrHnd 
 
exec sql include sqlca 
 
exec sql begin declare section 
       parameter (buflen = 100) 
       character*(buflen) buffer 
exec sql end declare section 
 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–23 

exec sql whenever sqlerror continue 
exec sql inquire_sql (:buffer= errrortext) 
print *, 'the following error occurred aborting session.' 
print *, buffer 
exec sql abort 
      ... 
end  

Array Variables 

The following syntax refers to an array variable: 

 :arrayname (subscripts) 

Syntax Notes: 

 You must subscript the variable because only scalar-valued 
elements (integers, reals and character strings) are legal SQL values. 

 When you declare the array, the Embedded SQL preprocessor does 
not parse the array bounds specification. Consequently, the preprocessor 
accepts illegal bounds values. Also, when you reference an array, the 
preprocessor does not parse the subscript. The preprocessor confirms only 
that an array subscript is used with an array variable. You must ensure 
that the subscript is legal and that the correct number of indices is used. 

 The preprocessor does not accept substring references for character 
variables. 

 Arrays of indicator variables used with structure assignments must not 
include subscripts when referenced. 

The following example uses the “i” variable as a subscript. It does not need to 
be declared in the declaration section because it is not parsed: 

      exec sql begin declare section 
          character*8 frmnam(3) 
      exec sql end declare section 
 
      integer i 
         frmnam(1) = "empfrm" 
         frmnam(2) = "dptfrm" 
         frmnam(3) = "hlpfrm" 
      do 100 i=1,3 
100      exec frs forminit:formname  

Structure Variables 

A structure variable can be used in two different ways if your Fortran compiler 
supports structures. First, the structure can be used as a simple variable, 
implying that all its members are used. This would be appropriate in the 
Embedded SQL select, fetch, and insert statements. Second, a member of a 
structure may be used to refer to a single element. This member must be a 
scalar value (integer, real or character string). 



Fortran Variables and Data Types 

4–24     Embedded SQL Companion Guide 

Using a Structure as a Collection of Variables 

The syntax for referring to a complete structure is the same as referring to a 
simple variable: 

 :structurename 

Syntax Notes: 

 The structurename can refer to a main or nested structure. It can be an 
element of an array of structures. Any variable reference that denotes a 
structure is acceptable. For example: 

C A simple structure 
  :emprec  
C An element of an array of structures 
  :struct_array(i)  
 C A nested structure at level 3 
  :struct.minor2.minor3   

 In order to be used as a collection of variables, the final structure in 
the reference must have no nested structures or arrays. All the members 
of the structure will be enumerated by the preprocessor and must have 
scalar values. The preprocessor generates code as though the program 
had listed each structure member in the order in which it was declared. 

 You must not use a structure containing a union declaration when the 
structure is being used as a collection of variables. The preprocessor 
generates references to all components of the structure and ignores the 
map groupings. Using a union declaration results in either a “wrong 
number of errors” preprocessor error or a runtime error. 

The following example uses the” employee.dcl” file that DCLGEN generates to 
retrieve values into a structure. This example is not applicable if DCLGEN was 
run with the -f77 flag: 

    exec sql begin declare section 
             exec sql include 'employee.dcl'  
    exec sql end declare section 
 
    exec sql select * 
1    into :emprec 
2    from employee 
3    where eno = 123 

The example above generates code as though the following statement had 
been issued instead: 

exec sql select * 
1   into :emprec.eno, :emprec.ename, :emprec.age, 
2       :emprec.job, :emprec.sal, :emprec.dept 
3   from employee 
4   where eno = 123 

The example below fetches the values associated with all the columns of a 
cursor into a record: 

exec sql begin declare section 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–25 

            exec sql include 'employee.dcl'  
exec sql end declare section 
 
exec sql declare empcsr cursor for 
1   select * 
2   from employee 
3   order by ename 
             ... 
 
exec sql open empcsr 
        exec sql fetch empcsr into :emprec 
exec sql close empcsr 

The following example inserts values by looping through a locally declared 
array of structures whose elements have been initialized: 

exec sql begin declare section 
   exec sql declare person table 
   1    (pname     char(30), 
    2     page      integer1, 
   3     paddr     varchar(50) 
 
   structure /person_/ 
     character*30  name 
     integer*2     age 
     character*50  addr 
   end structure 
 
   record /person_/ person(10) 
   integer*2 I 
 
exec sql end declare section 
   ... 
 
do i=1,10 
   exec sql insert into person 
   1   values (:person(i)) 
end do 

The insert statement in the example above generates code as though the 
following statement had been issued instead: 

exec sql insert into person 
1 values (:person(i).name, :person(i).age,:person(i).addr) 

Using a Structure Member 

The syntax Embedded SQL uses to refer to a structure member is the same as 
in Fortran: 

 :structure.member{.member} 

Syntax Notes: 

 The structure member denoted by the above reference must be a scalar 
value (integer, real or character string). There can be any combination of 
arrays and structures, but the last object referenced must be a scalar 
value. Thus, the following references are all legal: 



Fortran Variables and Data Types 

4–26     Embedded SQL Companion Guide 

C Member of a structure 
    :employee.sal  
C Member of an element of an array 
    :person(3).name  
C Deeply nested member 
    :struct1.mem2.mem3.age  

 Any array elements referred to within the structure reference, and not at 
the very end of the reference, are not checked by the preprocessor. 
Consequently, both of the following references are accepted, even though 
one must be wrong, depending on whether “person” is an array: 

:person(1).age 
:person.age 

 The preprocessor expects unambiguous and fully qualified structure 
member references. 

The following example uses the “emprec” structure, similar to the structure 
generated by DCLGEN, to put values into the “empform” form: 

  exec sql begin declare section 
     structure /emprec_/ 
      integer*2       eno 
      character*2     ename 
      integer*2       age 
      integer*2       job 
      real*8          sal 
      integer*2       dept 
     end structure 
 
    record /emprec_/ emprec 
 
exec sql end declare section 
    ... 
 
exec frs putform empform 
1    (eno = :emprec.eno, ename = :emprec.ename, 
2     age = :emprec.age, job = :emprec.job, 
3     sal = :emprec.sal, dept = :emprec.dept) 

Using Indicator Variables 

The syntax for referring to an indicator variable is the same as for a simple 
variable, except that an indicator is always associated with a host variable: 

 :host_variable:indicator_variable 
or 
 :host_variable indicator :indicator_variable 

Syntax Notes: 

 The indicator variable can be a simple variable or an array element 
that yields a 2-byte integer. For example: 

integer*2 indvar, indarr(5) 
  
:var_1:indvar 
:var_2:indarr(2) 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–27 

 If the host variable associated with the indicator variable is a structure, 
the indicator variable should be an array of 2-byte integers. In this case 
the array should not be dereferenced with a subscript. 

 When an indicator array is used, the first element of the array corresponds 
to the first member of the structure, the second element with the second 
member, and so on. Array elements begin at subscript 1. 

The following example uses the “employee.dcl” file that DCLGEN generates to 
retrieve non-null values into a structure and null values into the “empind” 
array: 

exec sql begin declare section 
   exec sql include 'employee.dcl'  
   integer*2 empind(10) 
exec sql end declare section 
exec sql select * 
1    into :emprec:empind 
2    from employee 

The previous example generates code as though the following statement had 
been issued: 

exec sql select * 
1   into :emprec.eno:empind(1), :emprec.ename:empind(2), 
2        :emprec.age:empind(3), :emprec.job:empind(4), 
3        :emprec.sal:empind(5), :emprec.dept:empind(6), 
4   from employee 

Data Type Conversion 

A Fortran variable declaration must be compatible with the Ingres value it 
represents. Numeric Ingres values can be set by and retrieved into numeric 
variables, and Ingres character values can be set by and retrieved into 
character variables. 

Data type conversion occurs automatically for different numeric types, such as 
from floating-point Ingres database column values into integer Fortran 
variables, and for character strings, such as from varying-length Ingres 
character fields into fixed-length Fortran character string buffers. 

Ingres does not automatically convert between numeric and character types. 
You must use the Ingres type conversion operators, the Ingres ascii function, 
or a Fortran conversion routine for this purpose. 

The following table shows the default type compatibility for each Ingres data 
type. 



Fortran Variables and Data Types 

4–28     Embedded SQL Companion Guide 

Ingres and Fortran Data Type Compatibility 
 

Ingres Type Fortran Type 

char(N) character*N  < 2000 

varchar(N) character*N   < 2000 

integer1 integer*2 

integer2 integer*2 

smallint integer*2 

integer4 integer*4 

integer integer*4 

bigint integer*8 

float4 real*4 

float8 real*8 

date character*25 

money real*8 

table_key character*8 

object_key character*16 

decimal  real* 8  

long varchar  character*N > 2000 

Runtime Numeric Type Conversion 

The Ingres runtime system provides automatic data type conversion between 
numeric-type values in the database and the forms system and numeric 
Fortran variables. The standard type conversion rules in UNIX are followed 
according to standard Fortran rules. In VMS, the standard VAX rules are 
followed. For example, if you assign a real variable to an integer-valued field, 
the digits after the decimal point of the variable’s value are truncated. Runtime 
errors are generated for overflow on conversion. 

The default size of integers in Embedded SQL/Fortran is four bytes. You can 
change the default size to two bytes by means of the -i2 preprocessor flag. If 
you use this flag, you should also compile the program with the -i2 compiler 
flag (UNIX), the noi4 qualifier (VMS), or the /integer_size:16 or /4I2 
(Windows).  

The Ingres money type is represented as real*8, an 8-byte real value. 



Fortran Variables and Data Types 

Chapter 4: Embedded SQL for Fortran    4–29 

Runtime Character and Varchar Type Conversion 

Automatic conversion occurs between Ingres character string values and 
Fortran fixed-length character variables. String-valued Ingres objects that can 
interact with character string variables are: 

 Ingres names, such as form and column names 

 Database columns of type character 

 Database columns of type varchar 

 Form fields of type character 

 Database columns of type long varchar 

Several considerations apply when dealing with character string conversions, 
both to and from Ingres. 

The conversion of Fortran character variables used to represent Ingres names 
is simple: trailing blanks are truncated from the variables, because the blanks 
make no sense in that context. For example, the string constants “empform ” 
and “empform” refer to the same form. 

The conversion of other Ingres objects is a bit more complex. First, the 
storage of character data in Ingres differs according to whether the medium of 
storage is a database column of type character, a database column of type 
varchar, or a character form field. Ingres pads columns of type character 
with blanks to their declared length. Conversely, it does not add blanks to the 
data in columns of type varchar or long varchar, or in form fields. 

Second, the Fortran convention is to blank-pad fixed-length character strings. 
For example, the character string “abc” is stored in a Fortran character*5 
variable as the string “abc  ” followed by two blanks. 

When character data is retrieved from a database column or form field into a 
Fortran character variable and the variable is longer than the value being 
retrieved, the variable is padded with blanks. If the variable is shorter than the 
value being retrieved, the value is truncated. You should always ensure that 
the variable is at least as long as the column or field, in order to avoid 
truncation of data. 

When inserting character data into an Ingres database column or form field 
from a Fortran variable, note the following conventions: 

 When you insert data from a Fortran variable into a database column of 
type character and the column is longer than the variable, the column is 
padded with blanks. If the column is shorter than the variable, the data is 
truncated to the length of the column.  



Fortran Variables and Data Types 

4–30     Embedded SQL Companion Guide 

 When you insert data from a Fortran variable into a database column of 
type long varchar or varchar and the column is longer than the variable, 
no padding of the column takes place. Furthermore, by default, all trailing 
blanks in the data are truncated before the data is inserted into the 
varchar column. For example, when a string “abc” stored in a Fortran 
character*5 variable as “abc ” (see above) is inserted into the varchar 
column, the two trailing blanks are removed and only the string “abc” is 
stored in the database column. To retain such trailing blanks, you can use 
the Ingres notrim function. It has the following syntax: 

 notrim(:charvar) 

where charvar is a character string variable. An example 
demonstrating this feature follows later. If the varchar column is shorter 
than the variable, the data is truncated to the length of the column. 

 When you insert data from a Fortran variable into a character form field 
and the field is longer than the variable, no padding of the field takes 
place. In addition, all trailing blanks in the data are truncated before the 
data is inserted into the field. If the field is shorter than the data (even 
after all trailing blanks have been truncated), the data is truncated to the 
length of the field. 

When comparing character data in a database column with character data in a 
Fortran variable, note the following. When comparing data in character or 
varchar database columns with data in a character variable, trailing blanks 
are ignored. Initial and embedded blanks are significant. To retain the 
significance of the trailing blanks in the comparison, you can use the notrim 
function, as shown in the following example. 

Caution: As just described, the conversion of character string data between 
Ingres objects and Fortran variables often involves the trimming or padding of 
trailing blanks, with resultant change to the data. If trailing blanks have 
significance in your application, give careful consideration to the effect of any 
data conversion. 

The Ingres date data type is represented as a 25-byte character string. 

The following program fragment demonstrates the notrim function and the 
truncation rules previously explained: 

      exec sql include sqlca 
      exec sql begin declare section 
           exec sql declare varychar table 
     1    (row integer, 
C Note the vchar type 
     2     data vchar(10)) 
 
           integer*2   row 
           character*7 data 
      exec sql end declare section 
 
C The variable data holds "abc" followed by 4 blanks 
      data = 'abc  ' 
 



The SQL Communications Area 

Chapter 4: Embedded SQL for Fortran    4–31 

C The following INSERT adds the string "abc"  
C (blanks truncated)  
      exec sql insert into varychar (row, data) 
     1   values (1, :data) 
 
C 
C This statement adds the string "abc ", with 4 trailing 
C blanks left intact by using the NOTRIM function 
C 
      exec sql insert into varychar (row, data) 
     1   values (2, notrim(:data)) 
 
C 
C This SELECT will retrieve the second row, because the  
C NOTRIM function leaves trailing blanks in the "data" 
C variable for the comparison with Ingres 
C vchar data. 
      exec sql select row 
     1   into :row 
     2   from varychar 
     3   where data = notrim(:data) 
      print *, 'row found = ', row   

The SQL Communications Area 

The Include SQLCA Statement 

You should issue the include sqlca statement in your main program module 
and in each subprogram of your Fortran file that includes Embedded SQL 
statements. If the file is composed of one main program and a few 
subprograms include sqlca should be the first Embedded SQL statement in 
each of the program units. For example: 

program EmpPrc 
   exec sql include sqlca  
   ... 
end 
 
subroutine EmpSub 
 
   exec sql include sqlca  
   ... 
end 
 
integer function EmpFun 
 
   exec sql include sqlca  
   ... 
end  

The include sqlca statement instructs the preprocessor to generate code to 
call Ingres runtime libraries. It generates a Fortran include statement to 
make all the generated calls acceptable to the compiler. 



The SQL Communications Area 

4–32     Embedded SQL Companion Guide 

Regardless of whether you intend to use the SQLCA for error handling, you 
must issue an include sqlca statement in each program unit containing 
Embedded SQL statements; if you do not, the Fortran compiler can complain 
about undeclared functions. Furthermore, the program aborts at runtime 
because program memory is overwritten. This occurs because, without explicit 
declaration of the SQLCA by means of the include sqlca statement, the 
Fortran compiler implicitly declares all references (including preprocessor-
generated references) to the SQLCA as type real. Therefore, to help detect 
runtime errors due to missing include sqlca statements, you may want either 
to include the Fortran implicit undefined statement (UNIX) or implicit none 
statement (VMS and Windows) in each program unit, or to use the -u flag 
(UNIX), qualifier warnings=declarations (VMS), or /warn:declarations or 
/4Yd (Windows) with the compiler command. By doing so, you can ensure 
that the compiler generates a warning upon encountering a reference to an 
undeclared SQLCA. 

Contents of the SQLCA 

One of the results of issuing the include sqlca statement is the declaration of 
the SQLCA (SQL Communications Area), which you can use for error handling 
in the context of database statements. As mentioned above, you should issue 
the statement in your main program and in each subprogram that contains 
Embedded SQL statements. The declaration for the SQLCA is: 

  character*8    sqlcai  
  integer*4      sqlcab  
  integer*4      sqlcod  
  integer*2      sqltxl  
  character*70   sqltxt  
  character*8    sqlerp  
  integer*4      sqlerr(6)  
  character*1    sqlwrn(0:7)  
  character*8    sqlext 
 common /sqlca/ sqlcai, sqlcab, sqlcod, sqltxl, sqltxt,  
1           sqlerp, sqlerr, sqlwrn, sqlext 

This definition varies from the more standard definition of some other 
implementations. Also, because the names of the SQLCA fields conform to the 
names given in other implementations of Embedded SQL/Fortran, they are 
different from those mentioned in the SQL Reference Guide. The names of the 
fields most commonly used are sqlcod and sqlerr. These fields are equivalent 
to the fields sqlcode and sqlerrd described in the SQL Reference Guide. For a 
full description of all the SQLCA fields, see that guide. 

The SQLCA is initialized at load time. The sqlcai and sqlcab fields are 
initialized to the string “SQLCA” and the constant 136, respectively. 



The SQL Communications Area 

Chapter 4: Embedded SQL for Fortran    4–33 

The preprocessor is not aware of the SQLCA declaration. Therefore, you 
cannot use SQLCA fields in an Embedded SQL statement. For example, the 
following statement, attempting to insert the error code sqlcod into a table, 
generates an error: 

C This statement is illegal 
   exec sql insert into employee (eno)  
   1 values (:sqlcod) 

All modules (written in Fortran or other Embedded SQL languages) share the 
same SQLCA. 

Using the SQLCA for Error Handling 

User-defined error, message and dbevent handlers offer the most flexibility for 
handling errors, database procedure messages, and database events. For 
more information, see Advanced Processing in this chapter. 

However, you can do error handling with the SQLCA implicitly by using 
whenever statements or explicitly by checking the contents of the SQLCA 
fields sqlcod, sqlerr(3), and sqlwrn(0). 

Error Handling with the Whenever Statement 

The syntax of the whenever statement is as follows: 

 exec sql whenever condition action 

where condition is dbevent, sqlwarning, sqlerror, sqlmessage, or not 
found, and action is continue, stop, goto a label, or call a Fortran 
subroutine. For a detailed description of this statement, see the SQL Reference 
Guide. 

In Fortran, all subroutine names must be legal Fortran identifiers, beginning 
with an alphabetic character. In VMS, you can also use an underscore. If the 
subroutine name is an Embedded SQL reserved word, specify it in quotes. All 
labels specified in a whenever goto action must be legal statement numbers. 
Note that Embedded SQL reserves statement numbers 7000 through 12000. 
The label targeted by the goto action must be within the scope of all 
subsequent Embedded SQL statements until another whenever statement is 
encountered for the same action. This is necessary because the preprocessor 
may generate the Fortran statement: 

 if (condition) goto label 

after an Embedded SQL statement. If the label is an invalid statement 
number, the Fortran compiler generates an error. 



The SQL Communications Area 

4–34     Embedded SQL Companion Guide 

The same scope rules apply to subroutine names used with the call action as 
to label numbers used with the goto action. However, the reserved subroutine 
name sqlprint, which prints errors or database procedure messages and then 
continues, is always within the scope of the program. 

When a whenever statement specifies a call as the action, the target 
subroutine is called, and after its execution, control returns to the statement 
following the statement that caused the subroutine to be called. Consequently, 
after handling the whenever condition in the called subroutine, you may want 
to take some action, instead of merely issuing a Fortran return statement. 
The Fortran return statement causes the program to continue execution with 
the statement following the Embedded SQL statement that generated the 
error. 

The following example demonstrates the use of the whenever statements in 
the context of printing some values from the Employee table. The comments 
do not relate to the program but to the use of error handling. 

C  
C Main error handling program  
C 
 
     program DbTest 
 
     exec sql include sqlca 
 
     exec sql begin declare section  
      integer*2     eno  
      character*20  ename  
      integer*1     eage  
      exec sql end declare section 
 
     exec sql declare empcsr cursor for  
     1   select eno, ename, age  
     2   from employee 
 
C An error when opening the "personnel" database will  
C cause the error to be printed and the program  
C to abort. 
 
     exec sql whenever sqlerror stop 
      exec sql connect personnel 
 
C Errors from here on will cause the program to clean up 
 
     exec sql whenever sqlerror call ClnUp 
      exec sql open empcsr 
      print *, 'Some values from the "employee" table' 
 
C When no more rows are fetched, close the cursor 
 
     exec sql whenever not found goto 200 
 
C The last executable Embedded SQL statement was  
C an OPEN, so we know that the value of "sqlcod"  
C cannot be SQLERROR or NOT FOUND. 
 
C The following loop is broken by NOT FOUND 
 
exec sql fetch empcsr  
 



The SQL Communications Area 

Chapter 4: Embedded SQL for Fortran    4–35 

     1   into :eno, :ename, :age 
 
C This "print" does not execute after the previous  
C FETCH returns the NOT FOUND condition. 
 
     print *, eno, ename, age 
      if (sqlcod .eq. 0) goto 100 
 
C From this point in the file onwards, ignore all 
C errors.  
C Also turn off the NOT FOUND condition, for 
C consistency. 
 
     exec sql whenever sqlerror continue  
      exec sql whenever not found continue 
 
 200   exec sql close empcsr 
 
     exec sql disconnect 
 
     end 
 
C  
C ClnUp: Error handling subroutine (print error  
C and disconnect).  
C 
 
     subroutine ClnUp 
 
     exec sql include sqlca 
 
     exec sql begin declare section  
     character*100 errmsg  
      exec sql end declare section 
 
     exec sql inquire_sql (:errmsg=ERRORTEXT)  
      print *, 'Aborting because of error'  
      print *, errmsg 
 
     exec sql disconnect 
 
C Do not return to DbTest 
 
     stop 
 
     end  

Whenever Goto Action in Embedded SQL Blocks 

An Embedded SQL block-structured statement is a statement delimited by the 
words begin and end. For example, the select loop and unloadtable loops 
are block-structured statements. You can terminate these statements only by 
the methods specified for their termination in the SQL Reference Guide. For 
example, the select loop is terminated either when all the rows in the 
database result table are processed or by an endselect statement. The 
unloadtable loop is terminated either when all the rows in the forms table 
field are processed or by an endloop statement. 



The SQL Communications Area 

4–36     Embedded SQL Companion Guide 

Therefore, if you use a whenever statement with the goto action in an SQL 
block, you must avoid going to a label outside the block. Such a goto causes 
the block to be terminated without issuing the runtime calls necessary to clean 
up the information that controls the loop. (For the same reason, you must not 
issue a Fortran return or goto statement that causes control to leave or enter 
the middle of an SQL block.) The target label of the whenever goto 
statement should be a label in the block. If however, it is a label for a block of 
code that cleanly exits the program, you do not need to take such precautions. 

The above information does not apply to error handling for database 
statements issued outside an SQL block or to explicit hard-coded error 
handling. For an example of hard-coded error handling, see The Table Editor 
Table Field Application in this chapter. 

Explicit Error Handling 

The program can also handle errors by inspecting values of the SQLCA at 
various points. For further details, see the SQL Reference Guide. 

The following example is functionally the same as the previous example, 
except that the error handling is hard-coded in Fortran statements: 

C  
C Main error handling program  
C 
 
     program DbTest 
 
     exec sql include sqlca 
 
     exec sql begin declare section  
     integer*2       eno  
     character*20    ename  
     integer*1       eage  
      exec sql end declare section 
 
     exec sql declare empcsr cursor for  
      1   select eno, ename, age  
      2   from employee 
 
C Exit if database cannot be opened 
 
     exec sql connect personnel 
 
     if (sqlcod .lt. 0) then  
     print *, 'Cannot access database'  
     stop  
      end if 
 
C Error if cannot open cursor 
 
     exec sql open empcsr  
      if (sqlcod .lt. 0) call ClnUp('OPEN "empcsr"') 
 
     print *, 'Some values from the "employee" table' 
 



The SQL Communications Area 

Chapter 4: Embedded SQL for Fortran    4–37 

C The last executable Embedded SQL statement was  
C an OPEN, so we know that the value of "sqlcod"  
C cannot be SQLERROR or NOT FOUND. 
 
C The following loop is broken by NOT FOUND  
C (condition 100) or an 
C error 
 
100          exec sql fetch empcsr  
      1           into :eno, :ename, :age 
 
            if (sqlcod .lt. 0) then  
                 call ClnUp('FETCH "empcsr"') 
 
C Do not print the last values twice 
 
            else if (sqlcod .ne. 100) then  
                 print *, eno, ename, age  
            end if 
 
      if (sqlcod .eq. 0) goto 100 
 
      exec sql close empcsr 
       exec sql disconnect 
 
      end 
 
C  
C ClnUp: Error handling subroutine  
C (print error and disconnect).  
C 
 
      subroutine ClnUp(reason) 
 
      exec sql include sqlca 
 
      exec sql begin declare section  
        character*(50) reason  
        character*100 errmsg  
       exec sql end declare section 
 
      print *, 'Aborting because of error in ', reason  
       exec sql inquire_sql (:errmsg=ERRORTEXT)  
       print *, errmsg 
 
      exec sql disconnect 
 
C Do not return to DbTest 
 
      stop 
 
      end 



Dynamic Programming for Fortran 

4–38     Embedded SQL Companion Guide 

Determining the Number of Affected Rows 

The SQLCA variable sqlerr(3) indicates how many rows were affected by the 
last row-affecting statement. (Note that in the SQL Reference Guide, this field 
is called sqlerrd(3).) The following program fragment, which deletes all 
employees whose employee numbers are greater than a given number, 
demonstrates how to use sqlerr: 

      subroutine DelRow(lbnum) 
 
          exec sql include sqlca 
 
          exec sql begin declare section  
         integer lbnum  
      exec sql end declare section 
 
      exec sql delete from employee  
     1    where eno > :lbnum 
 
C Print the number of employees deleted 
 
       print *, sqlerr(3), 'row(s) were deleted.' 
 
       end 

Using the SQLSTATE Variable 

You can use the SQLSTATE variable in an ESQL/Fortran program to return 
status information about the last SQL statement that was executed. 
SQLSTATE must be declared in a declaration section and must be in 
uppercase. Also, it is valid across all sessions, so you only need to declare one 
SQLSTATE per application. 

To declare this variable, use: 

character*5 SQLSTATE 

or : 

character*5 SQLSTA 

Dynamic Programming for Fortran 
Ingres provides Dynamic SQL and Dynamic FRS to allow you to write generic 
programs. Dynamic SQL allows a program to build and execute SQL 
statements at runtime.  For example, an application can include an expert 
mode in which the runtime user can type in select queries and browse the 
results at the terminal. Dynamic FRS allows a program to interact with any 
form at runtime. For example, an application can load in any form, allowing 
the runtime user to retrieve new data from the form and insert it into the 
database. 



Dynamic Programming for Fortran 

Chapter 4: Embedded SQL for Fortran    4–39 

The Dynamic SQL and Dynamic FRS statements are described in the SQL 
Reference Guide and the Forms-based Application Development Tools User 
Guide. This section discusses the Fortran-dependent issues of dynamic 
programming. For a complete example of using Dynamic SQL to write an SQL 
Terminal Monitor application, see The SQL Terminal Monitor Application in this 
chapter. For an example of using both Dynamic SQL and Dynamic FRS to 
browse and update a database using any form, see A Dynamic SQL/Forms 
Database Browser in this chapter. 

The VMS examples in this section make use of the VMS extensions to the 
Fortran language. Because the SQLDA is a structure, the UNIX examples in 
this section apply only to those F77 Fortran compilers that have been 
extended to include the support of the structures.  

The SQLDA Structure 

You use the SQLDA (SQL Descriptor Area) to pass type and size information 
about an SQL statement, an Ingres form, or an Ingres table field, between 
Ingres and your program. 

To use the SQLDA, issue the include sqlda statement in each subprogram of 
your source file that references the SQLDA. The include sqlda statement 
generates a Fortran include directive to a file that defines the SQLDA structure 
type. The file does not declare an SQLDA variable; your program must declare 
a variable of the specified type. You can also code this structure variable 
directly instead of using the include sqlda statement. You can choose any 
name for the structure. 

The definition of the SQLDA (as specified in the include file) is: 

UNIX
  

C 
C Single element of SQLDA variable 
C 
    structure /IISQLVAR/ 
     integer*2     sqltype 
     integer*2     sqllen 
     integer*4     sqldata 
     integer*4     sqlind 
     structure /IISQLNAME/ sqlname 
      integer*2             sqlname1 
      character*34          sqlnamec 
     end structure 
    end structure 
 
C 
C Maximum number of columns returned from Ingres 
C 
    parameter (IISQ_MAX_COLS = 1024) 
 



Dynamic Programming for Fortran 

4–40     Embedded SQL Companion Guide 

C  
C IISQLDA - SQLDA with maximum number of entries  
C for variables. 
C 
    structure /IISQLDA/ 
     character*8 sqldaid 
     integer*4   sqldabc 
     integer*2   sqln 
     integer*2   sqld 
     record /IISQLVAR/ sqlvar(IISQ_MAX_COLS) 
    end structure 
 
    structure /IISQLHDLR/ 
C     Optional argument to pass through 
   integer*4   sqlarg 
C     user-defined datahandler function 
   integer*4   sqlhdlr 
    end structure 
 
C  
C Allocation sizes 
C 
    parameter (IISQDA_HEAD_SIZE = 16, 
   1          IISQDA_VAR_SIZE = 48) 
C 
C Type and length codes 
C 
C 
 
    parameter (IISQ_DTE_TYPE = 3,  
   1      IISQ_MNY_TYPE  = 5, 
   2      IISQ_DEC_TYPE  = 10,   
   3      IISQ_CHA_TYPE  = 20,  
   4      IISQ_VCH_TYPE  = 21,  
   5      IISQ_LVCH_TYPE = 22, 
   6      IISQ_INT_TYPE  = 30,  
   7      IISQ_FLT_TYPE  = 31,  
   8      IISQ_OBJ_TYPE  = 45, 
   9      IISQ_HDLR_TYPE = 46, 
   1      IISQ_TBL_TYPE  = 52,  
   2      IISQ_DTE_LEN   = 25) 
    parameter (IISQ_LVCH_TYPE = 22, 
   1          IISQ_HDLR_TYPE = 46)   

VMS
  

    structure /IISQLVAR/ ! Single SQLDA variable 
          integer*2 sqltype 
          integer*2 sqllen 
          integer*4 sqldata ! Address of any type 
          integer*4 sqlind  ! Address of 2-byte integer 
          structure /IISQLNAME/ sqlname 
             integer*2 sqlname1 
             character*34 sqlnamec 
          end structure 
    end structure 
 
    parameter IISQ_MAX_COLS = 1024 ! Maximum number of 
C                                    columns 
 



Dynamic Programming for Fortran 

Chapter 4: Embedded SQL for Fortran    4–41 

    structure /IISQLDA/ 
       character*8 sqldaid 
       integer*4 sqldabc 
       integer*2 sqln 
       integer*2 sqld 
       record /IISQLVAR/ sqlvar(IISQ_MAX_COLS) 
    end structure 
 
    structure /IISQLHDR/ 
       integer*4   sqlarg  ! Optional argument to pass 
       integer*4   sqlhdlr ! User-defined datahandler fn 
    end structure 
 
! Type codes 
    parameter IISQ_DTE_TYPE = 3, ! Date - Output 
   1    IISQ_MNY_TYPE = 5,  ! Money - Output 
   2    IISQ_DEC_TYPE = 10, ! Decimal - Output 
   3    IISQ_CHA_TYPE = 20, ! Char - Input, Output 
   4    IISQ_VCH_TYPE = 21, ! Varchar - Input, Output 
   5    IISQ_LVCH_TYPE= 22, ! Long Varchar - Input,Output 
   6    IISQ_INT_TYPE = 30, ! Integer - Input, Output 
   7    IISQ_FLT_TYPE = 31, ! Float - Input, Output 
   8    IISQ_OBJ_TYPE = 45, ! 4GL Object: Output 
   9    IISQ_HDLR_TYPE= 46, ! IISQLHDLR: Datahandler 
   1    IISQ_TBL_TYPE = 52, ! Table Field - Output 
   2    IISQ_DTE_LEN = 25,  ! Date length 
 
! Allocation sizes 
    parameter IISQDA_VAR_SIZE = 16, 
   1     IISQDA_VAR = 48  
 
    parameter IISQ_LVCH_TYPE = 22, 
   1         IISQ_HDLR_TYPE = 46   

Windows
  

 structure /IISQLVAR/ 
  integer*2 sqltype 
  integer*2  sqllen 
  integer*4 sqldata  ! Address of any type 
  integer*4 sqlind  ! Address of 2-byte integer 
  structure /IISQLNAME/ sqlname 
      integer*2    sqlnamel 
      character*34  sqlnamec 
  end structure 
 end structure 
 
C 
C IISQ_MAX_COLS - Maximum number of columns returned from INGRES 
C 
 parameter IISQ_MAX_COLS = 1024 
 
C 
C IISQLDA - SQLDA with maximum number of entries for variables. 
C 
 structure /IISQLDA/ 
     character*8  sqldaid 
     integer*4  sqldabc 
     integer*2  sqln 
     integer*2  sqld 
     record /IISQLVAR/  sqlvar(IISQ_MAX_COLS) 
 end structure 
 
C 
C IISQLHDLR - Structure type with function pointer and function argument 
C       for the DATAHANDLER. 



Dynamic Programming for Fortran 

4–42     Embedded SQL Companion Guide 

C 
 structure /IISQLHDLR/ 
     integer*4  sqlarg 
     integer*4  sqlhdlr 
 end structure 
 
 
C 
C Allocation sizes - When allocating an SQLDA for the size use: 
C  IISQDA_HEAD_SIZE + (N * IISQDA_VAR_SIZE) 
C 
 parameter IISQDA_HEAD_SIZE = 16, 
 1   IISQDA_VAR_SIZE  = 48 
 
C 
C Type and Length Codes 
C 
 parameter IISQ_DTE_TYPE = 3, ! Date - Output 
 1   IISQ_MNY_TYPE = 5, ! Money - Output 
 2   IISQ_DEC_TYPE = 10, ! Decimal - Output 
 3   IISQ_CHA_TYPE = 20, ! Char - Input, Output 
 4   IISQ_VCH_TYPE = 21, ! Varchar - Input, Output 
 5   IISQ_INT_TYPE = 30, ! Integer - Input, Output 
 6   IISQ_FLT_TYPE = 31, ! Float - Input, Output 
 7   IISQ_TBL_TYPE = 52, ! Table field - Output 
 8   IISQ_DTE_LEN  = 25 ! Date length 
 parameter IISQ_LVCH_TYPE = 22 ! Long varchar 
 parameter IISQ_LBIT_TYPE = 16 ! Long bit 
 parameter IISQ_HDLR_TYPE = 46 ! Datahandler 
 parameter IISQ_BYTE_TYPE = 23 ! Byte - Input, Output 
 parameter IISQ_VBYTE_TYPE = 24 ! Byte Varying - Input, Output 
 parameter IISQ_LBYTE_TYPE = 25 ! Long Byte - Output 
    parameter IISQ_OBJ_TYPE = 45     ! Object - Output 

Structure Definition and Usage Notes: 

 The structure type definition of the SQLDA is called IISQLDA. This is done 
so that an SQLDA variable may be called “SQLDA” without causing a 
compile-time conflict. 

 The sqlvar array is an array of IISQ_MAX_COLS (1024) elements. If a 
variable of type IISQLDA is declared, the program will have a variable of 
IISQ_MAX_COLS elements. 

 The sqlvar array begins at subscript 1. 

 If your program defines its own SQLDA type, you must confirm that the 
structure layout is identical to that of the IISQLDA structure type, although 
you can declare a different number of sqlvar elements. 

 The nested structure sqlname is a varying length character string  
consisting of a length and data area. The sqlnamec field contains the 
name of a result field or column after the describe (or prepare into) 
statement. The length of the name is specified by sqlnamel. The 
characters in the sqlnamec field are blank padded. The sqlname 
structure can also be set by a program using Dynamic FRS. The program is 
not required to pad sqlname with blanks. (See Setting SQLNAME for 
Dynamic FRS in this chapter.) 



Dynamic Programming for Fortran 

Chapter 4: Embedded SQL for Fortran    4–43 

 The list of type codes represents the types that are returned by the 
describe statement, and the types used by the program when using an 
SQLDA to retrieve or set data. The type code IISQ_TBL_TYPE indicates a 
table field and is set by the FRS when describing a form that contains a 
table field. 

Declaring an SQLDA Variable 

Once the SQLDA definition has been included (or hard-coded) the program can 
declare an SQLDA variable. This variable must be declared outside a declare 
section, as the preprocessor does not understand the special meaning of the 
SQLDA. When the variable is used, the preprocessor will accept any object 
name and assume that the variable refers to a legal SQLDA. 

If a program requires a statically declared SQLDA with the same number of 
sqlvar variables as the IISQLDA type, it can accomplish this as in the 
following example: 

   exec sql include SQLDA 
   record /IISQLDA/ sqlda 
C Set the size 
   sqlda.sqln = IISQ_MAX_COLS 
 
. . . 
 
   exec sql describe s1 into :sqlda 

Recall that you must confirm that the SQLDA object being used is a valid 
SQLDA. 

If a program requires a statically declared SQLDA with a different number of 
variables (not IISQ_MAX_COLS), it can declare its own type. For example: 

 structure /MYSQLDA/ 
   character*8       sqldaid 
   integer*4         sqldabc 
   integer*2         sqln 
   integer*2         sqld 
   record /IISQLVAR/ sqlvar(10) 
end structure 

In the above declaration, the names of the structure components do not need 
to be the same as those of the IISQLDA structure. 



Dynamic Programming for Fortran 

4–44     Embedded SQL Companion Guide 

Using the SQLVAR 

The SQL Reference Guide discusses the legal values of the sqlvar array. The 
describe and prepare into statements assign type, length, and name 
information into the SQLDA. This information refers to the result columns of a 
prepared select statement, the fields of a form, or the columns of a table 
field. When the program uses the SQLDA to retrieve or set Ingres data, it must 
assign the type and length information that now refers to the variables being 
pointed at by the SQLDA. 

Fortran Variable Type Codes 

The type codes listed below are the types that describe Ingres result fields and 
columns. For example, the SQL types date, long varchar, money, and 
decimal do not describe program variables, but rather data types that are 
compatible with Fortran types character and real*8. When these types are 
returned by the describe statement, the type code must be changed to a 
compatible SQL/Fortran type. 

The following table describes the type codes to use with Fortran variables that 
will be pointed at by the sqldata pointers. 

Embedded SQL/Fortran Type Codes 
 

Embedded SQL/Fortran Type 
Codes (sqltype) 

Length  

(sqllen) 

Fortran Variable Type 

IISQ_INT_TYPE 1 byte 

IISQ_INT_TYPE 2 integer*2 

IISQ_INT_TYPE 4 integer*4 

IISQ_FLT_TYPE 4 real*4 

IISQ_FLT_TYPE 8 real*8 

IISQ_CHA_TYPE LEN character*LEN 

IISQ_VCH_TYPE LEN character*LEN 

IISQ_HDLR_TYPE 0 IISQHDLR 

To retrieve a decimal value from the DBMS, you must use a float because 
Fortran does not have decimal variables. 

Nullable data types (those variables that are associated with a null indicator) 
are specified by assigning the negative of the type code to the sqltype field. If 
the type is negative, a null indicator must be pointed at by the sqlind field. 



Dynamic Programming for Fortran 

Chapter 4: Embedded SQL for Fortran    4–45 

Character data and the SQLDA have exactly the same rules as character data 
in regular Embedded SQL statements. 

Pointing at Fortran Variables 

In order to fill an element of the sqlvar array, you must set the type 
information and assign a valid address to sqldata. The address must be that 
of a legal variable address. 

For example, the following fragment sets the type information of and points at 
a 4-byte integer variable, an 8-byte nullable floating-point variable, and an 
sqllen-specified character substring. The following example demonstrates how 
a program can maintain a pool of available variables, such as large arrays of 
the few different typed variables, and a large string space. The next available 
spot is chosen from the pool: 

UNIX  Note: On UNIX the Fortran function “loc” may be provided. If your UNIX 
Fortran library does not contain a function for obtaining the address of 
variables, the Ingres functions “IInum” and “IIsadr” can be used to return the 
address of number and character strings respectively. 

It has the following usage: 
    sqlda.sqlvar(i).sqldata = IInum(current_integer) 
    sqlda.sqlvar(i).sqldata = IIsadr (current_string) 
 

C Assume sqlda has been declared 
 
     sqlda.sqlvar(1).sqltype = IISQ_INT_TYPE 
     sqlda.sqlvar(1).sqllen = 4 
     sqlda.sqlvar(1).sqldata  
   1             = loc(integer_array(current_integer)) 
     sqlda.sqlvar(1).sqlind = 0 
     current_integer = current_integer + 1 
 
     sqlda.sqlvar(2).sqltype = -IISQ_FLT_TYPE 
     sqlda.sqlvar(2).sqllen = 8 
     sqlda.sqlvar(2).sqldata  
   1                = loc(real_array(current_real)) 
     sqlda.sqlvar(2).sqlind  
   1                = loc(indicator_array(current_ind)) 
     current_real = current_real + 1 
     current_ind = current_ind + 1 
C 
C SQLLEN has been assigned by DESCRIBE to be the  
C length of a specific result column. This length  
C is used to pick off 
C a substring out of a large string space. 
C 
     needlen = sqlda.sqlvar(3).sqllen 
     sqlda.sqlvar(3).sqltype = IISQ_CHA_TYPE 
     sqlda.sqlvar(3).sqldata =  
   1            loc(large_string(current_string:needlen)) 
     sqlda.sqlvar(3).sqlind = 0 
     current_string = current_string + needlen   



Dynamic Programming for Fortran 

4–46     Embedded SQL Companion Guide 

VMS
 Note: On VMS the Fortran function “%loc” is used to access the address of 

variables. 

! Assume sqlda has been declared 
 
    sqlda.sqlvar(1).sqltype = IISQ_INT_TYPE 
    sqlda.sqlvar(1).sqllen = 4 
    sqlda.sqlvar(1).sqldata  
   1             = %loc(integer_array(current_integer)) 
    sqlda.sqlvar(1).sqlind = 0 
    current_integer = current_integer + 1 
 
    sqlda.sqlvar(2).sqltype = -IISQ_FLT_TYPE 
    sqlda.sqlvar(2).sqllen = 8 
    sqlda.sqlvar(2).sqldata  
   1                = %loc(real_array(current_real)) 
    sqlda.sqlvar(2).sqlind 
   1             = %loc(indicator_array(current_ind)) 
    current_integer = current_real + 1 
    current_integer = current_ind + 1 
! 
! SQLLEN has been assigned by DESCRIBE to be the length 
! of a specific result column. This length is used to 
! pick off a substring out of a large string space. 
! 
    needlen = sqlda.sqlvar(3).sqllen 
    sqlda.sqlvar(3).sqltype = IISQ_CHA_TYPE 
    sqlda.sqlvar(3).sqldata 
   1          = %loc(large_string(current_string:needlen)) 
    sqlda.sqlvar(3).sqlind = 0 
    current_string = current_string + needlen   

Windows  Note: On Windows the “loc” intrinsic function (or the “%loc” built-in function) 
is used to access the address of variables. 

C Assume sqlda has been declared 
 
    sqlda.sqlvar(1).sqltype = IISQ_INT_TYPE 
    sqlda.sqlvar(1).sqllen = 4 
    sqlda.sqlvar(1).sqldata  
   1             = %loc(integer_array(current_integer)) 
    sqlda.sqlvar(1).sqlind = 0 
    current_integer = current_integer + 1 
 
    sqlda.sqlvar(2).sqltype = -IISQ_FLT_TYPE 
    sqlda.sqlvar(2).sqllen = 8 
    sqlda.sqlvar(2).sqldata  
   1                = %loc(real_array(current_real)) 
    sqlda.sqlvar(2).sqlind 
   1             = %loc(indicator_array(current_ind)) 
    current_integer = current_real + 1 
    current_integer = current_ind + 1 
C 
C SQLLEN has been assigned by DESCRIBE to be the length 
C of a specific result column. This length is used to 
C pick off a substring out of a large string space. 
C 
    needlen = sqlda.sqlvar(3).sqllen 
    sqlda.sqlvar(3).sqltype = IISQ_CHA_TYPE 
    sqlda.sqlvar(3).sqldata 
   1          = %loc(large_string(current_string:needlen)) 
    sqlda.sqlvar(3).sqlind = 0 
    current_string = current_string + needlen   



Dynamic Programming for Fortran 

Chapter 4: Embedded SQL for Fortran    4–47 

You may also set the SQLVAR to point to a datahandler for large object 
columns. For details, see Advanced Processing in this chapter. 

Setting SQLNAME for Dynamic FRS 

A few extra steps are required when you use the sqlvar with Dynamic FRS 
statements. These extra steps relate to the differences between Dynamic FRS 
and Dynamic SQL and are described in the SQL Reference Guide and the 
Forms-based Application Development Tools User Guide. 

When using the SQLDA in a forms input or output using clause, set the 
sqlname to a valid field or column name. If this name was set by a previous 
describe statement, it must be retained or reset by the program. If the name 
refers to a hidden table field column, the program must set sqlname directly. 
If your program sets sqlname directly, it must also set sqlnamel and 
sqlnamec. The name portion does not need to be padded with blanks. 

For example, a dynamically named table field has been described, and the 
application always initializes any table field with a hidden 6-byte character 
column called “rowid.” The code used to retrieve a row from the table field 
including the hidden column and _state variable would have to construct the 
two named columns: 

UNIX
  

... 
     character*6 rowid 
      integer*4 rowstate 
 
... 
 
     exec frs describe table :formname :tablename  
    1     into :sqlda 
 
... 
 
     sqlda.sqld = sqlda.sqld + 1 
      col_num = sqlda.sqld 
 
C Set up to retrieve rowid 
      sqlda.sqlvar(col_num).sqltype = IISQ_CHA_TYPE 
      sqlda.sqlvar(col_num).sqllen = 6 
      sqlda.sqlvar(col_num).sqldata = loc(rowid) 
      sqlda.sqlvar(col_num).sqlind = 0 
      sqlda.sqlvar(col_num).sqlname.sqlnamel = 5 
    sqlda.sqlvar(col_num).sqlname.sqlnamec(1:5) = 'rowid' 
 
      sqlda.sqld = sqlda.sqld + 1 
      col_num = sqlda.sqld 
 



Dynamic Programming for Fortran 

4–48     Embedded SQL Companion Guide 

C Set up to retrieve _STATE 
      sqlda.sqlvar(col_num).sqltype = IISQ_INT_TYPE 
      sqlda.sqlvar(col_num).sqllen = 4 
      sqlda.sqlvar(col_num).sqldata = loc(rowstate) 
      sqlda.sqlvar(col_num).sqlind = 0 
      sqlda.sqlvar(col_num).sqlname.sqlnamel = 6 
      sqlda.sqlvar(col_num).sqlname.sqlnamec(1:6) 
    1                                       = '_state' 
 
... 
 
     exec frs getrow :formname :tablename using 
    1       descriptor :sqlda   

VMS
  

... 
     character*6 rowid 
     integer*4 rowstate 
 
... 
 
     exec frs describe table :formname :tablename  
    1     into :sqlda 
 
... 
 
     sqlda.sqld = sqlda.sqld + 1 
     col_num = sqlda.sqld 
 
! Set up to retrieve rowid 
     sqlda.sqlvar(col_num).sqltype = IISQ_CHA_TYPE 
     sqlda.sqlvar(col_num).sqllen = 6 
     sqlda.sqlvar(col_num).sqldata = %loc(rowid) 
     sqlda.sqlvar(col_num).sqlind = 0 
     sqlda.sqlvar(col_num).sqlname.sqlnamel = 5 
     sqlda.sqlvar(col_num).sqlname.sqlnamec(1:5) = 'rowid' 
     sqlda.sqld = sqlda.sqld + 1 
     col_num = sqlda.sqld 
 
! Set up to retrieve _STATE 
     sqlda.sqlvar(col_num).sqltype = IISQ_INT_TYPE 
     sqlda.sqlvar(col_num).sqllen = 4 
     sqlda.sqlvar(col_num).sqldata = %loc(rowstate) 
     sqlda.sqlvar(col_num).sqlind = 0 
     sqlda.sqlvar(col_num).sqlname.sqlnamel = 6 
     sqlda.sqlvar(col_num).sqlname.sqlnamec(1:6)  
    1                                       = '_state' 
 
... 
 
     exec frs getrow :formname :tablename using 
    1        descriptor:sqlda   

Windows
  

... 
     character*6 rowid 
      integer*4 rowstate 
 
... 
 
     exec frs describe table :formname :tablename  
    1     into :sqlda 
 



Advanced Processing 

Chapter 4: Embedded SQL for Fortran    4–49 

... 
 
     sqlda.sqld = sqlda.sqld + 1 
      col_num = sqlda.sqld 
 
C Set up to retrieve rowid 
      sqlda.sqlvar(col_num).sqltype = IISQ_CHA_TYPE 
      sqlda.sqlvar(col_num).sqllen = 6 
      sqlda.sqlvar(col_num).sqldata = loc(rowid) 
      sqlda.sqlvar(col_num).sqlind = 0 
      sqlda.sqlvar(col_num).sqlname.sqlnamel = 5 
    sqlda.sqlvar(col_num).sqlname.sqlnamec(1:5) = 'rowid' 
 
      sqlda.sqld = sqlda.sqld + 1 
      col_num = sqlda.sqld 
 
C Set up to retrieve _STATE 
      sqlda.sqlvar(col_num).sqltype = IISQ_INT_TYPE 
      sqlda.sqlvar(col_num).sqllen = 4 
      sqlda.sqlvar(col_num).sqldata = loc(rowstate) 
      sqlda.sqlvar(col_num).sqlind = 0 
      sqlda.sqlvar(col_num).sqlname.sqlnamel = 6 
      sqlda.sqlvar(col_num).sqlname.sqlnamec(1:6) 
    1                                       = '_state' 
 
... 
 
     exec frs getrow :formname :tablename using 
    1       descriptor :sqlda   

Advanced Processing 
This section describes user-defined handlers. It includes information about 
user-defined error, dbevent, and message handlers as well as data handlers 
for large objects. 

User-Defined Error, DBevent, and Message Handlers 

You can use user-defined handlers to capture errors, messages, or events 
during the processing of a database statement. Use these handlers instead of 
the sql whenever statements with the SQLCA when you want to do the 
following: 

 Capture more than one error message on a single database statement 

 Capture more than one message from database procedures fired by rules 

 Trap errors, events, and messages as the DBMS raises them 
 If an event is raised when an error occurs during query execution, the 
WHENEVER mechanism detects only the error and defers acting on the 
event until the next database statement is executed. 



Advanced Processing 

4–50     Embedded SQL Companion Guide 

User-defined handlers offer you flexibility. If, for example, you want to trap an 
error, you can code a user-defined handler to issue an inquire_sql to get the 
error number and error text of the current error. You can then switch sessions 
and log the error to a table in another session; however, you must switch back 
to the session from which the handler was called before returning from the 
handler. When the user handler returns, the original statement continues 
executing. User code in the handler cannot issue database statements for the 
session from which the handler was called. 

The handler must be declared to return an integer. However, the preprocessor 
ignores the return value. 

Syntax Notes: 

The following syntax describes the three types of handlers: 

exec sql set_sql (errorhandler   = error_routine|0) 
exec sql set_sql (dbeventhandler = event_routine|0) 
exec sql set_sql (messagehandler = message_routine|0) 

 Errorhandler, dbeventhandler, and messagehandler denote a user-defined 
handler to capture errors, events, and database messages respectively, as 
follows: 

– error_routine is the name of the function the Ingres runtime system 
calls when an error occurs. 

– event_routine is the name of the function the Ingres runtime system 
calls when an event is raised. message_routine is the name of the 
function the Ingres runtime system calls whenever a database 
procedure generates a message. 

Errors that occur in the error handler itself do not cause the error handler 
to be re-invoked. You must use inquire_sql to handle or trap any errors 
that may occur in the handler. 

 Unlike regular variables, the handler must not be declared  
in an ESQL declare section; therefore, do not use a colon before the 
handler argument. (However, you must declare the handler to the 
compiler.) 

 If you specify a zero (0) instead of a name, the zero will unset 
the handler. 

User-defined handlers are also described in the SQL Reference Guide. 

Declaring and Defining User-Defined Handlers 

The following example shows how to declare a handler for use in the set_sql 
errorhandler statement for ESQL/Fortran: 

program TestProg 



Advanced Processing 

Chapter 4: Embedded SQL for Fortran    4–51 

 
     exec sql include sqlca 
 
     external error_func 
     integer error_func 
 
      exec sql connect dbname 
  
     exec sql set_sql (errorhandler = error_func) 
     ... 
         program code 
     ... 
end 
 
integer function error_func 
 
      exec sql include sqlca 
  
      exec sql begin declare section 
          integer errnum 
      exec sql end declare section 
      exec sql inquire_sql (:errnum = ERRORNO) 
     write (*,60) errnum 
60    format ('Errnum is ', I) 
end 

User-Defined Data Handlers for Large Objects 

You can use user-defined datahandlers to transmit large object column values 
to or from the database a segment at a time. For more details on Large 
Objects, the datahandler clause, the get data statement, and the put data 
statement, see the SQL Reference Guide and the Forms-based Application 
Development Tools User Guide. 

ESQL/Fortran Usage Notes 

Use datahandlers in the following ways: 

 The datahandler, and the datahandler argument, should not be declared in 
an ESQL declare section. Therefore do not use a colon before the 
datahandler or its argument. 

 You must ensure that the datahandler argument is a valid Fortran variable 
address. ESQL will not do any syntax or datatype checking of the 
argument. 

 The datahandler must be declared to return an integer. However, the 
actual return value will be ignored. 



Advanced Processing 

4–52     Embedded SQL Companion Guide 

DATAHANDLERS and the SQLDA 

You may specify a user-defined datahandler as an SQLVAR element of the 
SQLDA, to transmit large objects to or from the database. The “eqsqlda.h” file 
included via the include sqlda statement defines an IISQLHDLR type which 
may be used to specify a datahandler and its argument. It is defined: 

structure /IISQLHDLR/ 
       integer*4 sqlarg  ! Optional argument to pass 
       integer*4 sqlhdlr ! User-defined datahandler 
end structure 

The file does not declare an IISQLHDLR variable; the program must declare a 
variable of the specified type and set the values: 

record /IISQLHDLR/   dathdlr 
structure   /hdlr_arg/ 
     character*100    argstr 
     integer          argint 
end structure 
record /hdlr_arg/ hdlarg 
 
external Get_Handler() 
integer  Get_Handler() 

UNIX
  

dathdlr.sqlarg  = loc(hdlarg) 
dathdlr.sqlhdlr = loc(Get_Handler)   

VMS
  

     dathdlr.sqlarg  = %loc(hdlarg) 
     dathdlr.sqlhdlr = %loc(Get_Handler)   

Windows
  

 dathdlr.sqlarg  = %loc(hdlarg) 
 dathdlr.sqlhdlr = %loc(Get_Handler)   

The sqltype, sqlind and sqldata fields of the SQLVAR element of the SQLDA 
should then be set as follows: 

/* 
** assume sqlda is a pointer to a dynamically allocated  
** SQLDA  
*/ 
sqlda.sqlvar[i].sqltype = IISQ_HDLR_TYPE; 
sqlda.sqlvar[i].sqlind  = loc(indvar) 
sqlda.sqlvar[i].sqldata = loc(dathdlr) 

Sample Programs 

The programs in this section are examples of how to declare and use user-
defined datahandlers in an ESQL/Fortran program. There are examples of a 
handler program, a put handler program, a get handler program and a 
dynamic SQL handler program. 



Advanced Processing 

Chapter 4: Embedded SQL for Fortran    4–53 

Handler Program 

This example assumes that the book table was created with the statement: 

exec sql create table book (chapter_num integer,  
      chapter_name char(50), chapter_text long varchar) 

This program inserts a row into the book table using the data handler 
Put_Handler to transmit the value of column chapter_text from a text file to 
the database. Then it selects the column chapter_text from the table book 
using the data handler Get_Handler to retrieve the chapter_text column a 
segment at a time. 

C main program 
C *************** 
    program handler 
 
    exec sql include sqlca 
 
C Do not declare the datahandlers nor the datahandler  
C argument to the ESQL pre-processor. 
 
    external Put_Handler 
    integer  Put_Handler 
 
    external Put_Handler 
    integer  Get_Handler 
  
      structure       /hdlr_arg/ 
        character*1000     argstr 
        integer            argint 
      end structure 
 
   record /hdlr_arg/hdlarg 
 
C Null indicator for datahandler must be declared 
C to ESQL 
 
   exec sql begin declare section 
      integer*2 indvar 
            integer*4 chapter_num 
   exec sql end declare section 
 
C INSERT a long varchar value chapter_text into the table book 
C using the datahandler Put_Handler. 
C The argument passed to the datahandler is the address of 
C the record hdlarg. 
 
   . . . 
 
   exec sql insert into book (chapter_num, chapter_name, 
           chapter_text) 
     1     values (5, 'One Dark and Stormy Night', 
     2                  Datahandler(Put_Handler(hdlarg))) 
      . . . 
 
C Select the column chapter_num and the long varchar column 
C chapter_text from the table book.  
C The Datahandler (Get_Handler) will be invoked for each non-null 
C value of column chapter_text retrieved. For null values the  
C indicator variable will be set to “-1” and the datahandler will  
C not be called.  
 



Advanced Processing 

4–54     Embedded SQL Companion Guide 

   ... 
   exec sql select chapter_num, chapter_text into 
    1       :chapter_num, 
    2       datahandler(Get_Handler(hdlarg)):indvar from book 
 
   exec sql begin 
      process row ... 
   exec sql end 
     
   . . . 
 
   end 

Put Handler 

This example shows how to read the long varchar chapter_text from a text 
file and insert it into the database a segment at a time: 

C Put_Handler 
C *********** 
 
   integer function Put_Handler(info) 
 
   structure        /hdlr_arg/ 
    character*100     argstr 
    integer*4         argint 
   end structure 
   record /hdlr_arg/ info 
 
   exec sql begin declare section 
    character*1000    segbuf 
    integer*4         seglen 
    integer*4         datend 
   exec sql end declare section 
 
   process information passed in via the info record ... 
   open file ... 
    
 
   datend = 0 
 
    do while not end-of-file 
 
   read segment of less than 1000 characters from file into segbuf . . . 
      
    if end-of-file then 
         datend = 1 
 
    end if 
 
    exec sql put data (segment = :segbuf,  
  1                 segmentlength = :seglen, dataend = :datend) 
   end do 
   . . . 
   close file ... 
   set info record to return appropriate values ... 
   . . . 
   Put_Handler = 0 
   end 



Advanced Processing 

Chapter 4: Embedded SQL for Fortran    4–55 

Get Handler 

This example shows how to get the long varchar chapter_text from the 
database and write it to a text file: 

C Get_Handler 
C *********** 
 
   integer function Get_Handler(info) 
 
   structure         /hdlr_arg/ 
    character*100      argstr 
    integer            argint 
   end structure 
   record /hdlr_arg/ info 
 
   exec sql begin declare section 
    character*2000    segbuf 
    integer*4         seglen 
    integer*4         datend 
    integer*4         maxlen 
   exec sql end declare section 
 
   process information passed in via the info record ... 
   open file ... 
    
 
C Get a maximum segment length of 2000 bytes 
 
  maxlen = 2000 
  datend = 0 
 
 
  do while (datend .eq. 0) 
C segmentlength: will contain the length of the segment retrieved. 
C seg_buf:       will contain a segment of the column chapter_text 
C data_end:      will be set to '1' when the entire value in  
C                chapter_text has been retrieved. 
 
    exec sql get data (:seqbuf = segment, :seglen = 
 1           segmentlength, :datend = dataend) 
 2           with maxlength= :maxlen 
 
    write segment to file ... 
  end do 
  ... 
  set info record to return appropriate values ... 
  ... 
   Get_Handler = 0 
  end 

Dynamic SQL Handler Program 

The following examples are of a dynamic SQL handler program that uses the 
SQLDA. This program fragment shows the declaration and usage of a 
datahandler in a dynamic SQL program, using the SQLDA. It uses the 
datahandler Get_Handler() and the HDLR_PARAM structure described in the 
previous example. 



Advanced Processing 

4–56     Embedded SQL Companion Guide 

UNIX
  

C main program using SQLDA 
C ************************* 
 
  program dynamic_hdlr 
 
  exec sql include sqlca  
  exec sql include sqlda  
 
C   Do not declare the datahandlers nor the datahandler argument 
C   to the ESQL pre-processor. 
 
  external  Put_Handler 
  integer*4 Put_Handler 
 
  external  Get_Handler 
  integer*4 Get_Handler 
 
C  Declare argument to be passed to datahandler. 
 
  structure          /hdlr_arg/ 
   character*100     argstr 
   integer*4         argint 
  end structure 
  record /hdlr_arg/ hdlarg 
 
C  Declare SQLDA and IISQLHDLR 
  record /IISQLDA/ sqlda 
   common /sqlda_area/sqlda 
  record /IISQLHDLR/ dathdlr 
 
  integer base_type 
 
C   Declare null indicator to ESQL 
  exec sql begin declare section 
   integer*2       indvar 
   Character*100   stmt_buf 
  exec sql end declare section 
  . . . 
C  Set the IISQLHDLR structure with the appropriate datahandler 
C  and datahandler argument. 
 
  dathdlr.sqlhdlr = loc(Get_Handler) 
  dathdlr.sqlarg  = loc(hdlarg) 
 
C  Describe the statement into the SQLDA. 
 
  stmt_buf = 'select * from book'. 
  exec sql prepare stmt from :stmt_buf 
  exec sql describe stmt into SQLDA 
  . . . 
C  Determine the base_type of the sqldata variables. 
  do 20, i = 1, sqlda.sqld 
 
    if (sqlda.sqlvar(i).sqltype .gt. 0) then 
     base_type = sqlda.sqlvar(i).sqltype 
    else 
     base_type = -sqlda.sqlvar(i).sqltype 
    end if 
C Set the sqltype, sqldata and sqlind for each column 
C The long varchar column chapter_text will be set to use a 
C datahandler 



Advanced Processing 

Chapter 4: Embedded SQL for Fortran    4–57 

  if (base_type .eq. IISQ_LVCH_TYPE) then 
    sqlda.sqlvar(i).sqltype = IISQ_HDLR_TYPE 
    sqlda.sqlvar(i).sqldata = loc(dathdlr) 
    sqlda.sqlvar(i).sqlind = loc(indvar) 
  else 
    . . . 
  end if 
 
20  continue 
 
C The Datahandler (Get_Handler) will be invoked for each non-null  
C value of column chapter_text retrieved. For null values the  
C indicator variable will be set to “-1” and the datahandler 
C will not be called. 
 
  . . . 
  exec sql execute immediate :stmt_buf using :sqlda 
  exec sql begin 
      process row... 
  exec sql end 
  . . . 
  end   

VMS
  

C main program using SQLDA 
C ************************* 
 
  program dynhdl 
  exec sql include sqlca  
  exec sql include sqlda  
 
 
C  Do not declare the datahandlers nor the datahandler argument 
C  to the ESQL pre-processor. 
 
  external  Put_Handler 
  integer*4 Put_Handler 
 
  external  Get_Handler 
  integer*4 Get_Handler 
 
C   Declare argument to be passed to datahandler. 
 
  structure          /hdlr_arg/ 
   character*100     argstr 
   integer*4         argint 
  end structure 
  record /hdlr_arg/ hdlarg 
 
C  Declare SQLDA and IISQLHDLR 
 
  record /IISQLDA/ sqlda 
   common /sqlda_area/sqlda 
 
  record /IISQLHDLR/ dathdlr 
 
  integer base_type 
 
C   Declare null indicator to ESQL 
 
 exec sql begin declare section 
    integer*2       indvar 
    Character*100   stmt_buf 
 exec sql end declare section 
 



Advanced Processing 

4–58     Embedded SQL Companion Guide 

   . . . 
 
C  Set the IISQLHDLR structure with the appropriate datahandler and  
C  datahandler argument. 
 
  dathdlr.sqlhdlr = %loc(Get_Handler) 
  dathdlr.sqlarg  = %loc(hdlarg) 
 
C  Describe the statement into the SQLDA. 
 
 stmt_buf = 'select * from book'. 
 exec sql prepare stmt from :stmt_buf 
 exec sql describe stmt into SQLDA 
 
 . . . 
 
C  Determine the base_type of the sqldata variables. 
 
 do 20, i = 1, sqlda.sqld 
 
   if (sqlda.sqlvar(i).sqltype .gt. 0) then 
     base_type = sqlda.sqlvar(i).sqltype 
   else 
     base_type = -sqlda.sqlvar(i).sqltype 
   end if 
 
C Set the sqltype, sqldata and sqlind for each column 
C The long varchar column chapter_text will be set to use a 
C datahandler 
 
   if (base_type .eq. IISQ_LVCH_TYPE) then 
     sqlda.sqlvar(i).sqltype = IISQ_HDLR_TYPE 
     sqlda.sqlvar(i).sqldata = %loc(dathdlr) 
     sqlda.sqlvar(i).sqlind = %loc(indvar) 
   else 
     . . . 
   end if 
 
20    continue 
 
C  The Datahandler (Get_Handler) will be invoked for each non-null  
C  value of column chapter_text retrieved. For null values the  
C  indicator variable will be set to “-1” and the datahandler 
C  will not be called. 
 
   . . . 
   exec sql execute immediate :stmt_buf using :sqlda 
      exec sql begin 
    process row... 
   exec sql end 
   . . . 
      end   

Windows
  

C main program using SQLDA 
C ************************* 
 
  program dynhdl 
  exec sql include sqlca  
  exec sql include sqlda  
 
 



Advanced Processing 

Chapter 4: Embedded SQL for Fortran    4–59 

C  Do not declare the datahandlers nor the datahandler argument 
C  to the ESQL pre-processor. 
 
  external  Put_Handler 
  integer*4 Put_Handler 
 
  external  Get_Handler 
  integer*4 Get_Handler 
 
C   Declare argument to be passed to datahandler. 
 
  structure          /hdlr_arg/ 
   character*100     argstr 
   integer*4         argint 
  end structure 
  record /hdlr_arg/ hdlarg 
 
C  Declare SQLDA and IISQLHDLR 
 
  record /IISQLDA/ sqlda 
   common /sqlda_area/sqlda 
 
  record /IISQLHDLR/ dathdlr 
 
  integer base_type 
 
C   Declare null indicator to ESQL 
 
 exec sql begin declare section 
    integer*2       indvar 
    Character*100   stmt_buf 
 exec sql end declare section 
 
   . . . 
 
C  Set the IISQLHDLR structure with the appropriate datahandler and  
C  datahandler argument. 
 
  dathdlr.sqlhdlr = %loc(Get_Handler) 
  dathdlr.sqlarg  = %loc(hdlarg) 
 
C  Describe the statement into the SQLDA. 
 
 stmt_buf = 'select * from book'. 
 exec sql prepare stmt from :stmt_buf 
 exec sql describe stmt into SQLDA 
 
 . . . 
 
C  Determine the base_type of the sqldata variables. 
 
 do 20, i = 1, sqlda.sqld 
 
   if (sqlda.sqlvar(i).sqltype .gt. 0) then 
     base_type = sqlda.sqlvar(i).sqltype 
   else 
     base_type = -sqlda.sqlvar(i).sqltype 
   end if 
 
C Set the sqltype, sqldata and sqlind for each column 
C The long varchar column chapter_text will be set to use a 
C datahandler 
 



Preprocessor Operation 

4–60     Embedded SQL Companion Guide 

   if (base_type .eq. IISQ_LVCH_TYPE) then 
     sqlda.sqlvar(i).sqltype = IISQ_HDLR_TYPE 
     sqlda.sqlvar(i).sqldata = %loc(dathdlr) 
     sqlda.sqlvar(i).sqlind = %loc(indvar) 
   else 
     . . . 
   end if 
 
20    continue 
 
C  The Datahandler (Get_Handler) will be invoked for each non-null  
C  value of column chapter_text retrieved. For null values the  
C  indicator variable will be set to “-1” and the datahandler 
C  will not be called. 
 
   . . . 
   exec sql execute immediate :stmt_buf using :sqlda 
      exec sql begin 
    process row... 
   exec sql end 
   . . . 
      end   

Preprocessor Operation 
This section describes the embedded SQL preprocessor for Fortran and the 
steps required to create, compile, and link an Embedded SQL program.  

Include File Processing 

The following sections describe include file processing for UNIX, VMS, and 
Windows. 

Including Files – UNIX 

The Embedded SQL include statement provides a means to include external 
files in your program’s source code. Its syntax is: 

 exec sql include filename 

where filename is a single quoted string constant specifying a file name, or an 
external symbol that points to the file name. If you do not specify an 
extension to the filename, the default Fortran input file extension “.sf” is 
assumed. 

This statement is normally used to include variable declarations, although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 



Preprocessor Operation 

Chapter 4: Embedded SQL for Fortran    4–61 

The included file is preprocessed and an output file with the same name but 
with the default output extension “.f” (UNIX) or “.for” (VMS and Windows), is 
generated. You can override this default output extension with the -o.ext flag 
on the command line. In the original source file that specified the include 
statement, a new reference is made to the output file with the Fortran include 
statement. If you use the -o flag with no extension, an output file is not 
generated for the include statement.  

If you use both the -o.ext and the -o flags, then the preprocessor generates 
the specified extension for the translated include statements in the program, 
but does not generate new output files for the statements. 

For example, assume that no overriding output extension was explicitly given 
on the command line. The Embedded SQL statement: 

exec sql include 'employee.dcl' 

is preprocessed to the Fortran statement: 

include 'employee.f'  

and the “employee.dcl” file is translated into the Fortran file “employee.f”.  

As another example, assume that a source file called “inputfile” contains the 
following include statement: 

exec sql include 'mydecls' 

The name “mydecls” can be defined as a system environment variable pointing 
to the file “/usr/headers/myvars.sf”. For example: 

setenv mydecls "/usr/headers/myvars.sf" 

Because the extension “.sf” is the default input extension for Embedded SQL 
include files, you do not need to specify it when defining a logical name for 
the file. 

Assume now that “inputfile” is preprocessed with the command: 

esqlf -o.hdr inputfile 

The command line specifies “.hdr” as the output file extension for include files. 
As the file is preprocessed, the include statement shown earlier is translated 
into the Fortran statement: 

include '/usr/headers/myvars.hdr' 

and the Fortran file “/usr/headers/myvars.hdr” is generated as output for the 
original include file, “/usr/headers/myvars.sf”. 

You can also specify include files with a relative path. For example, if you 
preprocess the file “/dev/mysource/myfile.sf”, the ESQL statement: 

exec sql include '../headers/myvars.sf' 



Preprocessor Operation 

4–62     Embedded SQL Companion Guide 

is preprocessed to the Fortran statement: 

include '../headers/myvars.f' 

and the Fortran file “/dev/headers/myvars.f” is generated as output for the 
original include file, “/dev/headers/myvars.sf”.  

Including Files – VMS 

The Embedded SQL include statement provides a means to include external 
files in your program’s source code. Its syntax is: 

 exec sql include filename 

where filename is a single quoted string constant specifying a file name, or a 
logical name that points to the file name. If you do not specify an extension to 
the filename, the default Fortran input file extension “.sf” is assumed. 

This statement is normally used to include variable declarations, although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 

The included file is preprocessed and an output file with the same name but 
with the default output extension “.for” is generated. You can override this 
default output extension with the -o.ext flag on the command line. In the 
original source file that specified the include statement, a new reference is 
made to the output file with the Fortran include statement. If you use the -o 
flag with no extension, an output file is not generated for the include 
statement. This is useful for program libraries that use MMS dependencies.  

If you use both the -o.ext and the -o flags, then the preprocessor generates 
the specified extension for the translated include statements in the program, 
but does not generate new output files for the statements. 

For example, assume that no overriding output extension was explicitly given 
on the command line. The Embedded SQL statement: 

exec sql include 'employee.dcl' 

is preprocessed to the Fortran statement: 

include 'employee.for' 

and the employee.dcl file is translated into the Fortran file “employee.for”. 

As another example, assume that a source file called “inputfile” contains the 
following include statement: 

exec sql include 'mydecls' 



Preprocessor Operation 

Chapter 4: Embedded SQL for Fortran    4–63 

The name “mydecls” can be defined as a system logical name pointing to the 
file “dra1:[headers]myvars.sf” by means of the following command at the 
system level: 

define mydecls dra1:[headers]myvars 

Because the extension “.sf” is the default input extension for Embedded SQL 
include files, it does not need to be specified when defining a logical name for 
the file. 

Assume now that “inputfile” is preprocessed with the command: 

esqlf -o.hdr inputfile 

The command line specifies “.hdr” as the output file extension for include files. 
As the file is preprocessed, the include statement shown earlier is translated 
into the Fortran statement: 

include 'dra1:[headers]myvars.hdr' 

and the Fortran file “dra1:[headers]myvars.hdr” is generated as output for the 
original include file, “dra1:[headers]myvars.sf”. 

You can also specify include files with a relative path. For example, if you 
preprocess the file “dra1:[mysource]myfile.sf”, the Embedded SQL statement: 

exec sql include '[-.headers]myvars.sf' 

is preprocessed to the Fortran statement: 

include '[-.headers]myvars.for' 

and the Fortran file “dra1:[headers]myvars.for” is generated as output for the 
original include file, “dra1:[headers]myvars.sf”. 

Including Files – Windows 

The Embedded SQL include statement provides a means to include external 
files in your program’s source code. Its syntax is: 

 exec sql include filename 

where filename is a single quoted string constant specifying a file name, or a 
logical name that points to the file name. If you do not specify an extension to 
the filename, the default Fortran input file extension “.sf” is assumed. 

This statement is normally used to include variable declarations, although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 



Preprocessor Operation 

4–64     Embedded SQL Companion Guide 

The included file is preprocessed and an output file with the same name but 
with the default output extension “.for” is generated. You can override this 
default output extension with the -o.ext flag on the command line. Within the 
original source file that specified the include statement, a new reference is 
made to the output file with the Fortran include statement. If you use the -o 
flag with no extension, an output file is not generated for the include 
statement.  

If you use both the -o.ext and the -o flags, then the preprocessor generates 
the specified extension for the translated include statements in the program, 
but does not generate new output files for the statements. 

For example, assume that no overriding output extension was explicitly given 
on the command line. The Embedded SQL statement: 

exec sql include 'employee.dcl' 

is preprocessed to the Fortran statement: 

include 'employee.for' 

and the employee.dcl file is translated into the Fortran file “employee.for”. 

As another example, assume that a source file called “inputfile” contains the 
following include statement: 

exec sql include 'mydecls' 

The name “mydecls” can be defined as a system logical name pointing to the 
file “c:\usr\header\myvars.for” by means of the following command at the 
system level: 

set mydecls=c:\usr\header\myvars 

Because the extension “.for” is the default input extension for Embedded SQL 
include files, it does not need to be specified when defining a logical name for 
the file. 

Assume now that “inputfile” is preprocessed with the command: 

esqlf -o.hdr inputfile 

The command line specifies “.hdr” as the output file extension for include files. 
As the file is preprocessed, the include statement shown earlier is translated 
into the Fortran statement: 

include 'c:\usr\header\myvars.hdr' 

and the Fortran file “c:\usr\header\myvars.hdr” is generated as output for the 
original include file, “c:\usr\header\myvars.for”. 

You can also specify include files with a relative path. For example, if you 
preprocess the file “c:\usr\mysource\myfile.sf”, the Embedded SQL statement: 

exec sql include '..\header\myvars' 



Preprocessor Operation 

Chapter 4: Embedded SQL for Fortran    4–65 

is preprocessed to the Fortran statement: 

include '..header\myvars.for' 

and the Fortran file “..header\myvars.for” is generated as output for the 
original include file, “..header\myvars”. 

Including Source Code with Labels 

Some Embedded SQL statements generate labels (statement numbers). The 
statement numbers 7000 through 12000 are reserved for the preprocessor. If 
you include a file containing statements that generate labels, be careful to 
include the file only once in a given Fortran scope. Otherwise, you may find 
that the compiler later complains that the generated labels are defined more 
than once in that scope. 

The statements that generate labels are the Embedded SQL select statement 
and all the Embedded SQL/FORMS block-type statements, such as display 
and unloadtable. 

Coding Requirements for Writing Embedded SQL Programs 

The following sections describe the coding requirements for writing Embedded 
SQL programs. 

Comments Embedded in Fortran Output 

Each Embedded SQL statement generates one comment and a few lines of 
Fortran code. You may find that the preprocessor translates 50 lines of 
Embedded SQL into 200 lines of Fortran. This can confuse the program 
developer who is trying to debug the original source code. To facilitate 
debugging, a comment corresponding to the original Embedded SQL source 
delimits each group of Fortran statements associated with a particular 
statement. Each comment is one line long and informs the reader of the file 
name, line number, and type of statement in the original source file. 

Embedded SQL Statements and Fortran If Blocks 

Because each Embedded SQL statement must be on a line by itself, you must 
use the block-style Fortran if statement to conditionally transfer control to 
Embedded SQL statements. For example: 

if (error) then 
     exec sql message 'Error on update' 
      exec sql sleep 2 
end if 



Preprocessor Operation 

4–66     Embedded SQL Companion Guide 

Note that the esqlf preprocessor also generates many nested constructs of do 
loops and if blocks—specifically, for Embedded SQL block-structured 
statements, such as display and unloadtable. If you mistakenly omit an end 
if from your Fortran source, the Fortran compiler complains that there is a 
missing end statement, which you can trace back to a preprocessor-generated 
if or do (VMS or Windows). 

You can usually solve this problem by checking for matching if-end pairs in 
the original Embedded SQL Fortran source file. In VMS or Windows, you can 
also check for do-end pairs as well. 

Embedded SQL Statements that Generate Labels 

The Embedded SQL statements that generate labels are the Embedded SQL 
select statement and all the Embedded SQL/FORMS block-type statements. 
Each of these statements reserves its own range of 200 labels in a defined 
range for such statements of 7000 through 12000. Consequently, you cannot 
have more than 200 of any single label-generating statement in the same 
program unit. For example, 201 display statements in a single subroutine 
causes a compiler error indicating that a particular label was used more than 
once. You could, however, have 200 display statements and 200 
unloadtable statements without causing a problem. 

Embedded SQL Statements that Do Not Generate Code 

The following Embedded SQL declarative statements do not generate any 
Fortran code: 
 
declare cursor 
declare statement 
declare table  
whenever 

These statements must not contain labels. Also, they must not be coded as the 
only statements in Fortran constructs that do not allow null statements.  

Command Line Operations 

The following sections describe command line operations that you can use to 
turn your Embedded SQL/Fortran source program into an executable program. 
The commands to preprocess, compile, and link your program are also 
described in these sections. 



Preprocessor Operation 

Chapter 4: Embedded SQL for Fortran    4–67 

The Embedded SQL Preprocessor Command 

The Fortran preprocessor is invoked by the following command line: 

 esqlf {flags} {filename} 

where flags are 

 

 Flag Description 

 -d Adds debugging information to the runtime database error 
messages generated by Embedded SQL. The source file 
name, error number and the statement in error are printed 
with the error message. 

 -f[filename] Writes preprocessor output to the named file. If you do not 
specify filename, the output is sent to standard output, 
one screen at a time. 

 -iN Sets the default size of integers to N bytes. N must be 
either 2 or 4. The default is 4. If 2 is used, you must also 
use the -i2 compiler flag (UNIX), the noi4 qualifier (VMS), 
or the /integer_size:16 compiler flag (Windows). 

 -l Writes preprocessor error messages to the preprocessor’s 
listing file, as well as to the terminal. The listing file 
includes preprocessor error messages and your source text 
in a file named filename.lis, where filename is the name of 
the input file. 

 -lo Like -l, but the generated Fortran code also appears in the 
listing file. 

 -o Directs the processor not to generate output files for 
include files. This flag does not affect the translated 
include statement in the main program. The preprocessor 
generates a default extension for the translated include file 
statements unless you use the -o.ext flag. 

 -o.ext Specifies the extension given by the preprocessor to both 
the translated include statements in the main program 
and the generated output files. If this flag is not provided, 
the default extension is “.f” (UNIX) or “.for” (VMS and 
Windows). 

If you use this flag in combination with the -o flag, then 
the preprocessor generates the specified extension for the 
translated include statements, but does not generate new 
output files for the include statements. 



Preprocessor Operation 

4–68     Embedded SQL Companion Guide 

 Flag Description 

 -s Reads input from standard input and generates Fortran 
code to standard output. This is useful for testing 
unfamiliar statements. If you specify the -l option with this 
flag, the listing file is called “stdin.lis.” To terminate the 
interactive session, type Control-D (UNIX) or Control-Z 
(VMS and Windows). 

 -sqlcode 

-nosqlcode 

Indicates the file declares an integer variable named 
SQLCODE to receive status information from SQL 
statements. That declaration need not be in an exec sql 
begin/end declare section. This feature is provided for ISO 
Entry SQL-92 conformity. However, the ISO Entry SQL92 
specification describes SQLCODE as a “deprecated 
feature,” and recommends using the SQLSTATE variable. 

Tells the preprocessor not to assume the existence of a 
status variable named SQLCODE. 

 -w Prints warning messages. 

 -wopen This flag is identical to -wsql=open. However, -wopen is 
supported only for backwards capability. See -wsql=open 
for more information. 

VMS
 

-? Shows the command line options for the esqlf 
command.  

UNIX
 

-- Shows the command line options for the esqlf 
command.  

Windows
 

-? Shows the command line options for the esqlf 
command.  

 -wsql=entry_ 
SQL92 

 
-wsql=open 

Causes the preprocessor to flag any usage of syntax or 
features that do not conform to the ISO Entry SQL92 entry 
level standard. (This is also known as the “FIPS flagger” 
option.)  

Use open only with OpenSQL syntax. -wsql = open 
generates a warning if the preprocessor encounters an 
Embedded SQL statement that does not conform to 
OpenSQL syntax. (For OpenSQL syntax, see the OpenSQL 
Reference Guide.) This flag is useful if you intend to port 
an application across an Enterprise Access product. The 
warnings do not affect the generated code and the output 
file may be compiled. This flag does not validate the 
statement syntax for any Enterprise Access product whose 
syntax is more restrictive than that of OpenSQL. 



Preprocessor Operation 

Chapter 4: Embedded SQL for Fortran    4–69 

The Embedded SQL/Fortran preprocessor assumes that input files are named 
with the extension “.sf”. You can override this default by specifying the file 
extension of the input file(s) on the command line. The output of the 
preprocessor is a file of generated Fortran statements in tab format with the 
same name and the extension “.f” (UNIX) or ”.for” (VMS and Windows). 

If you enter the command without specifying any flags or a filename, Ingres 
displays a list of flags available for the command. 

The following table presents a range of the options available with esqlf. 

Esqlf Command Examples 
 

Command Comment 

esqlf file1 Preprocesses “file1.sf” to:  

      “file1.f” (UNIX)  
      “file1.for” (VMS and Windows) 

esqlf file2.xf Preprocesses “file2.xf” to 

      “file2.f” (UNIX 
      “file2.for” (VMS and Windows) 

esqlf -l file3 Preprocesses “file3.sf” to: 

      “file3.f” (UNIX)  

      “file3.for” (VMS and Windows) 

and creates listing “file3.lis” 

esqlf -s Accepts input from standard input 

esqlf -ffile4.out file4 Preprocesses “file4.sf” to “file4.out” 

esqlf Displays a list of flags available for this command 

The Fortran Compiler 

The preprocessor generates Fortran code. The code generated is in tab format, 
in which each Fortran statement follows an initial tab. (For information on the 
Embedded SQL format acceptable as input to the preprocessor, see Embedded 
SQL Statement Syntax for Fortran in this chapter.)  

UNIX  
Use the UNIX f77 command to compile this code. You can use most of the 
f77 command line options. If you use the -i2 compiler flag to interpret 
integer and logical declarations as 2-byte objects, you must have run the 
Fortran preprocessor with the -i2 preprocessor flag.  



Preprocessor Operation 

4–70     Embedded SQL Companion Guide 

As mentioned in The SQL Communications Area in this chapter, you may want 
to use the -u compiler flag to verify that the SQLCA has been declared 
correctly with an include sqlca statement in all program units containing 
Embedded SQL statements. 

The following example preprocesses and compiles the file “test1.” The 
Embedded SQL preprocessor assumes the default extension: 

esqlf test1 
f77 test1.f   

VMS
 

Use the VMS fortran command to compile this code. Most of the fortran 
command line options can be used. If you use the noi4 qualifier to interpret 
integer and logical declarations as 2-byte objects, you must have run the 
Fortran preprocessor with the -i2 flag. You must not use the g_floating 
qualifier if floating-point values in the file are interacting with Ingres floating-
point objects. Note, too, that many of the statements that the Embedded 
SQL preprocessor generates are nonstandard extensions provided by 
VAX/VMS. Consequently, you should not attempt to compile with the nof77 
qualifier. 

As mentioned in The SQL Communications Area in this chapter, you may want 
to use the warnings=declarations qualifier to verify that the SQLCA has 
been declared correctly with an include sqlca statement in all program units 
containing Embedded SQL statements. 

As of Ingres II 2.0/0011 (axm.vms/00) Ingres uses member alignment and 
IEEE floating-point formats. Embedded programs must be compiled with 
member alignment turned on. In addition, embedded programs accessing 
floating-point data (including the MONEY data type) must be compiled to 
recognize IEEE floating-point formats.  

The following example preprocesses and compiles the file “test1.” The 
Embedded SQL preprocessor assumes the default extension: 

esqlf test1 
fortran/list test1   

Windows  
Use the Windows df command to compile this code. The following compile 
options are required for Windows:  

/name:as_is Treat uppercase and lowercase letters as 
different. 

/iface:nomixed_str_len_
arg 

Requests that the hidden lengths be placed in 
sequential order at the end of the argument 
list. 

/iface:cref Names are not decorated, the caller cleans the 
call stack, and var args are supported. 



Preprocessor Operation 

Chapter 4: Embedded SQL for Fortran    4–71 

If you use the /integer_size:16 qualifier to interpret integer and logical 
declarations as 2-byte objects, you must have run the Fortran preprocessor 
with the -i2 flag. 

As mentioned in the chapter “The SQL Communications Area,” you may want 
to use the warnings=declarations qualifier to verify that the SQLCA has 
been declared correctly with an include sqlca statement in all program units 
containing Embedded SQL statements. 

The following example preprocesses and compiles the file “test1.” The 
Embedded SQL preprocessor assumes the default extension: 

esqlf test1 
df /compile_only /name:as_is /iface:nomixed_str_len_arg /iface:cref test1  

Note: For any operating system specific information on compiling and linking 
ESQL/Fortran programs, see the Readme file. 

Linking an Embedded SQL Program  

Embedded SQL programs require procedures from an Ingres library or libraries 
depending on your operating system as described below. 

UNIX  
The Ingres library “libingres.a” must be included in your compile (f77) or link 
(ld) command after all user modules. The following example demonstrates 
how to compile and link an Embedded SQL program called “dbentry” that has 
passed through the preprocessor: 

f77 -o dbentry dbentry.f \ 
     $II_SYSTEM/ingres/lib/libingres.a\ 
     -lm\ 
     -lc 

Note that you must include the math library (the “m” argument to the -l flag). 

Ingres shared libraries are available on some Unix platforms. To link with 
these shared libraries replace “libingres.a” in your link command with: 

-L $II_SYSTEM/ingres/lib -linterp.1 -lframe.1 -lq.1 \ 
     -lcompat.1 

To verify if your release supports shared libraries check for the existence of 
any of these four shared libraries in the $II_SYSTEM/ingres/lib directory. For 
example: 

ls -l $II_SYSTEM/ingres/lib/libq.1.*   

VMS
 

Embedded SQL programs require procedures from several VMS shared 
libraries. When you have preprocessed and compiled an Embedded SQL 
program, you can link it. Assuming the object file for your program is called 
“dbentry,” use the following link command: 

link dbentry.obj,- 
 ii_system:[ingres.files]esql.opt/opt   



Preprocessor Operation 

4–72     Embedded SQL Companion Guide 

Windows  
The Ingres library “ingres.lib” must be included in your compile (df) or link 
(link) command after all user modules. The following example demonstrates 
how to compile and link an Embedded SQL program called “dbentry” that has 
passed through the preprocessor: 

df /name:as_is /iface:nomixed_str_len_arg /iface:cref dbentry.for \ 
     %II_SYSTEM%\ingres\lib\ingres.lib \ 
     /link /nodefaultlib   

Linking Precompiled Forms 

The Forms-based Application Development Tools User Guide and the Fortran 
Variables and Data Types section in this chapter, discuss how to declare a 
precompiled form to the FRS. In order to use such a form in your program, 
you must also follow the steps described below depending on your operating 
system. 

UNIX  
In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a C language source file in your directory that contains a 
description of the form. VIFRED lets you select the name for the file. Before 
compiling and linking this file with your Embedded SQL program, you must 
make the form name, or formid, contained therein consistent with the way 
Fortran stores external symbols. 

When you compile the Fortran source file generated from your Embedded SQL 
program, the Fortran compiler appends an underscore to all external symbols. 
Some Fortran compilers also truncate names to six characters before 
appending the underscore. Because the formid is an external symbol, it too 
has an underscore appended and may be truncated. In order to resolve this 
link-time inconsistency, you must change the formid as it appears in the file 
created by VIFRED. 

This means you must edit the C source file created by VIFRED that contains 
your compiled form. When you invoke the editor, go to the end of the file. You 
will see a line that begins “FRAME * formid” where formid is the name of the 
form. You must append an underscore to formid and truncate the name, if 
necessary. The following example shows the relevant lines of a C source file 
created by VIFRED where “empfrm” is the formid: 

     ... 
 
FRAME * empfrm = { 
      &_empfrm, }; 

You should modify the file to append the required underscore, as follows: 

     ... 
 
FRAME * empfrm_ = { 
      &_empfrm, }; 

This example assumes that your compiler does not truncate external symbols. 



Preprocessor Operation 

Chapter 4: Embedded SQL for Fortran    4–73 

Note that you do not need to make changes to the declarations containing the 
formid in your Embedded SQL program. The Fortran compiler changes this 
reference when it creates the object file. 

After modifying your C file this way, you can compile it into linkable object 
code with the UNIX command: 

cc -c formfile.c 

where “formfile.c” is the name of the compiled form source file created by 
VIFRED. 

The output of this command is a file with the extension “.o”. You then link this 
object file with your program, as in the following example: 

f77 -o formentry formentry.f \ 
      formfile.o \ 
      $II_SYSTEM/ingres/lib/libingres.a\ 
     -lm \ 
     -lc    

VMS
 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in the MACRO 
language. VIFRED lets you select the name for the file. Once you have 
created the MACRO file this way, you can assemble it into linkable object 
code with the VMS command: 

     macro filename 

The output of this command is a file with the extension “.obj”. You then link 
this object file with your program by listing it in the link command, as in the 
following example: 

link formentry,- 
 empform.obj,- 
 ii_system:[ingres.files]esql.opt/opt   

Windows  
In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a C language file in your directory describing the form. 
VIFRED lets you select the name for the file. Once you have created the C 
language file this way, you can compile it into linkable object code with the 
Windows command: 

    cl –c –MD filename 

The output of this command is a file with the extension “.obj”. You then link 
this object file with your program by listing it in the link command, as in the 
following example: 

link /out:formentry.exe, \ 
 empform.obj,\ 
 %II_SYSTEM%\ingres\lib\ingres.lib   



Preprocessor Operation 

4–74     Embedded SQL Companion Guide 

Linking an Embedded SQL Program without Shared Libraries -VMS 

While the use of shared libraries in linking Embedded SQL programs is 
recommended for optimal performance and ease of maintenance, non-shared 
versions of the libraries have been included in case you need them. Non-
shared libraries required by Embedded SQL are listed in the “esql.noshare” 
options file. The options file must be included in your link command after all 
user modules. The libraries must be specified in the order given in the options 
file. 

The following example demonstrates the link command for an Embedded SQL 
program called “dbentry” that has been preprocessed and compiled: 

link dbentry,- 
 ii_system:[ingres.files]esql.noshare/opt 

Placing User-written Embedded SQL Routines in Shareable Images -VMS 

When you plan to place your code in a shareable image, note the following 
about the psect attributes of your global or external variables:  

 As a default, some compilers mark global variables as shared (SHR: every 
user who runs a program linked to the shareable image sees the same 
variable) and others mark them as not shared (NOSHR: every user who 
runs a program linked to the shareable image gets their own private copy 
of the variable). 

 Some compilers support modifiers you can place in your source code 
variable declaration statements to explicitly state which attributes to 
assign a variable. 

 The attributes that a compiler assigns to a variable can be overridden at 
link time with the psect_attr link option. This option overrides attributes 
of all variables in the psect. 

Consult your compiler reference manual for further details. 

Embedded SQL/Fortran Preprocessor Errors 

To correct most errors, you may wish to run the Embedded SQL preprocessor 
with the listing (-l) option on. The listing is sufficient for locating the source 
and reason for the error. 

For preprocessor error messages specific to Fortran, see Preprocessor Error 
Messages in this chapter. 



Preprocessor Error Messages 

Chapter 4: Embedded SQL for Fortran    4–75 

Preprocessor Error Messages 
The following is a list of error messages specific to the Fortran language. 

E_DC000A “Table ‘employee’ contains column(s) of unlimited length.” 

Explanation: Character string(s) of zero length have been generated. This 
causes a compile-time error. You must modify the output file to specify an 
appropriate length. 

E_E10001 “Unsupported Fortran type ‘%0c’ used. Double assumed. Ingres does not 
support the Fortran types complex and double complex.” 

Explanation: There is no Ingres type corresponding to complex or double 
complex, so the preprocessor does not map this declaration to a Ingres type. 
The preprocessor will continue to generate code as if you had declared the 
variable in question to be of type double precision. If you want to store the 
two real (or double precision) components of a complex (or double complex) 
variable, declare a pair of real (or double precision) variables to the 
preprocessor, copy the components to them, and then store the copies. 

E_E10002 “Fortran parameter may only be used with values. Type names, variable 
names, and parameter names are not allowed.” 

Explanation: You have used the Fortran “parameter name = value” 
statement, but value is not an integer constant, a floating constant, or a string 
constant. You may have used the name of a Fortran data type, or a variable 
(or parameter) name instead of one of the legal constant types. If you do wish 
Ingres to know about this name then you must change the value to be a 
constant. 

E_E10003 “Incorrect indirection on variable ’%0c’. The variable is declared as an array 
and is not subscripted, or is subscripted but is not declared as an array (%1c, 
%2c).” 

Explanation: This error occurs when the value of a variable is incorrectly 
expressed because of faulty indirection. For example, the name of an integer 
array has been given instead of a single array element, or, in the case of 
string variables, a single element of the string (for example, a character) has 
been given instead of the name of the array. The preprocessor will continue to 
generate code, but the program will not execute correctly if it is compiled and 
run. Either redeclare the variable with the intended indirection, or change its 
use in the current statement. 



Preprocessor Error Messages 

4–76     Embedded SQL Companion Guide 

E_E10004 “Last Fortran structure field referenced in ’%0c’ is unknown.” 

Explanation: This error occurs when the preprocessor encounters an 
unrecognized name in a structure reference. The preprocessor will continue to 
generate code, but this statement will either cause a runtime error or produce 
the wrong result if the resulting program is compiled and run. Check for 
misspellings in field names and ensure that all of the structure fields have 
been declared to the preprocessor. 

E_E1000A “Undefined structure name ’%0c’ used in record declaration.” 

Explanation: You have declared a record variable using the name of a 
structure that is unknown to the preprocessor. The preprocessor will continue 
to generate code, but the resulting program will not run properly. If you do not 
use this variable with a Ingres statement, remove the record declaration. 
Otherwise, ensure that the corresponding structure declaration is made known 
to the preprocessor. 

E_E1000B “Field ’%0c’ in record ’%1c’ is not an elementary variable.” 

Explanation: Record variables used in SQL as a single object must contain 
only scalar fields. Arrays and nested records are not allowed in this context. 
For example the following will cause an error on “obj.oname” in the select 
statement because it is an array variable: 

exec sql begin declare section  
     structure /object/ 
        character*10   oname  
        integer        ovals(4) 
     end structure  
     record/object/ obj 
exec sql end declare section 
exec sql select * into :obj from objects 

Either flatten the record variable declaration or enumerate all fields when 
using the variable.  

E_E1000C “Illegal length specified for Fortran numeric variable.” 

Explanation:  Fortran integer variables can be 1, 2, or 4 bytes, and floating-
point variables can be either 4 or 8 bytes. Specifying any other value is illegal. 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–77 

Sample Applications 
This section contains sample applications.  

The Department-Employee Master/Detail Application 

This application uses two database tables joined on a specific column. This typical 
example of a department and its employees demonstrates how to process two 
tables as a master and a detail. 

The program scans through all the departments in a database table, in order 
to reduce expenses. Based on certain criteria, the program updates 
department and employee records. The conditions for updating the data are 
the following: 

Departments: 

 If a department has made less than $50,000 in sales, the department 
is dissolved. 

Employees: 

 If an employee was hired since the start of 1985, the employee is 
terminated. 

 If the employee’s yearly salary is more than the minimum company wage 
of $14,000 and the employee is not nearing retirement (over 58 years of 
age), the employee takes a 5% pay cut. 

 If the employee’s department is dissolved and the employee is not 
terminated, the employee is moved into a state of limbo to be resolved by 
a supervisor. 

This program uses two cursors in a master/detail fashion. The first cursor is for 
the “department” table, and the second cursor is for the “employee” table. 
Both tables are described in declare table statements at the start of the 
program. The cursors retrieve all the information in the tables, some of which 
is updated. The cursor for the “employee” table also retrieves an integer date 
interval whose value is positive if the employee was hired after January 1, 
1985. 

Each row that is scanned, from both the “department” table and the 
“employee” table, is recorded in an output file. This file serves both as a log of 
the session and as a simplified report of the updates that were made. 

Each section of code is commented for the purpose of the application and also 
to clarify some of the uses of the Embedded SQL statements. The program 
illustrates table creation, multi-statement transactions, all cursor statements, 
direct updates and error handling. 



Sample Applications 

4–78     Embedded SQL Companion Guide 

If your application requires the use of structures, see Fortran Variables and 
Data Types in this chapter for more information. 

This application runs in UNIX, VMS, and Windows environments.  

C 
C  Program: ProcessExpenses 
C  Purpose: Main entry point to process department and employee expenses 
C 
 
      program ProcessExpenses 
 
      exec sql include sqlca 
 
      exec sql declare dept table 
     1 (name          char(12) not null, 
     2 totsales       decimal(14,2) not null, 
     3 employees      integer2 not null)  
      exec sql declare employee table 
     1 (name          char(20) not null,  
     2 age            integer1 not null,  
     3 idno           integer4 not null, 
     4 hired          date not null,  
     5 dept           char(12) not null,  
     6 salary         decimal(14,2)  not null) 
 
C "State-of-Limbo" for employees who lose their departments  
      exec sql declare toberesolved table 
     1 (name        char(20) not null,  
     2 age          integer1 not null, 
     3 idno         integer4 not null, 
     4 hired        date not null,  
     5 dept         char(12) not null,  
     6 salary       decimal(14,2) not null) 
 
      print *, 'Entering application to process expenses.'  
      open(unit = 1, file = 'expenses.log', status = 'new') 
      call InitDb 
      call ProcessDepts 
      call EndDb 
      close(unit = 1, status = 'keep') 
      print *, 'Successful completion of application.' 
      end 
 
C 
C Subroutine: InitDb 
C Purpose:    Initialize the database. Connect to the database and  
C             abort if an error. Before processing employees,  
C             confirm that the table for employees who lose  
C             their departments,"toberesolved,"  
C             exists. Initiate multi-statement transaction. 
C Parameters: None. 
C 
 
      subroutine InitDb 
 
      exec sql include sqlca 
 
      exec sql whenever sqlerror stop 
 
      exec sql connect personnel 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–79 

      write (1, 10)  
10    format ('Creating "To_Be_Resolved" table.') 
      exec sql create table toberesolved 
     1     (name       char(20) not null,   
     2      age        integer1 not null, 
     3      idno       integer4 not null, 
     4      hired      date not null, 
     5      dept       char(10) not null, 
     6      salary     decimal(14,2) not null) 
 
      end 
 
C 
C Subroutine:     EndDb 
C Purpose:        End the multi-statement transaction and access 
C                 to the database. 
C Parameters:     None. 
C 
 
      subroutine EndDb 
 
      exec sql include sqlca 
 
      exec sql commit 
      exec sql disconnect 
 
      end 
 
C 
C Subroutine: ProcessDepts 
C Purpose:    Scan through all the departments, processing each 
C             one. If the department has made less than $50,000  
C             in sales,then the department is  
C             dissolved. For each department, process all the 
C             employees (they may even be moved to 
C             another table.) If an employee was terminated, 
C             update the department's employee counter. 
C Parameters: None 
C 
 
      subroutine ProcessDepts 
 
      exec sql include sqlca 
 
      exec sql begin declare section 
 
           character*12        dname 
           double precision    dsales 
           integer*2           demps 
C Employees terminated 
           integer*2           dterm 
 
      exec sql end declare section 
 
C Minimum sales of department 
      parameter (mindeptsales = 50000.00) 
C Was the dept deleted? 
      logical deldept  
C Formatting value 
      character*20 deptformat 
 
      exec sql declare deptcsr cursor for 
     1    select name, totsales, employees 
     2    from dept 
     3    for direct update of name, employees 
 



Sample Applications 

4–80     Embedded SQL Companion Guide 

C All errors from this point on close down the application  
      exec sql whenever sqlerror call closedown 
C Close deptcsr 
      exec sql whenever not found go to 100 
 
      exec sql open deptcsr 
      dterm = 0 
55    if (sqlcod .ne. 0) go to 555 
      exec sql fetch deptcsr into :dname, :dsales, :demps 
 
C Did the department reach minimum sales? 
      if (dsales .lt. mindeptsales) then 
          exec sql delete from dept 
     1          where current of deptcsr 
          deldept = .true. 
          deptformat = ' -- DISSOLVED --' 
      else 
          deldept = .false. 
          deptformat = ' ' 
      endif 
 
C Log what we have just done 
       write (1, 11) dname, dsales, deptformat 
11     format ('Department: ', a14, ', Total Sales: ', f12.3, a) 
 
C Now process each employee in the department 
      call ProcessEmployees(dname, deldept, dterm) 
 
C If some employees were terminated, record this fact  
      if (dterm .gt. 0 .and. .not. deldept) then 
          exec sql update dept 
     1         set employees = :demps - :dterm 
     2         where current of deptcsr 
      endif 
      go to 55 
 
555   continue 
 
      exec sql whenever not found continue 
 
100   exec sql close deptcsr 
 
      end 
C 
C Subroutine:  ProcessEmployees 
C Purpose:     Scan through all the employees for a particular  
C              department.Based on given conditions, the employee 
C              may be terminated or given a salary reduction. 
C            1. If an employee was hired since 1985, the employee 
C               is terminated. 
C            2. If the employee's yearly salary is more than the 
C               minimum company wage of $14,000 and the employee 
C               is not close to retirement (over 58 years of age), 
C               the employee takes a 5% salary reduction. 
C            3. If the employee's department is dissolved and the 
C               employee is not terminated, then the employee is 
C               moved into the "toberesolved" table. 
C 
C Parameters: sname      - Name of current department 
C             sdel       - Is current department being dissolved? 
C             sterm      - Set locally to record how many employees 
C                           were terminated for the current  
C                           department. 
C 
 
      subroutine ProcessEmployees(sname, sdel, sterm) 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–81 

 
      exec sql include sqlca 
 
      exec sql begin declare section 
 
           character*12     sname 
           character*20     name 
           integer*2        age 
           integer*4        idno 
           character*25     chired 
           real             salary 
           integer*4        ihired 
 
           parameter (salreduc = 0.95) 
 
      exec sql end declare section 
 
C Minimum employee salary 
      parameter        (minsal = 14000.00) 
      parameter        (nearlyretired = 58) 
C Formatting values 
      character*12 title 
      character*25 description 
 
C Subroutine arguments 
      logical        sdel 
      integer*2      sterm 
 
C Note the use of the Ingres function to find out who 
C has been hired since 1985. 
 
      exec sql declare empcsr cursor for 
     1   select name, age, idno, hired, salary, 
     2     int4(interval('days', hired-date('01-jan-1985'))) 
     3   from employee 
     4   where dept = :sname 
     5   for direct update of name, salary 
 
C  All errors from this point on close down the application  
      exec sql whenever sqlerror call closedown 
C Close empcsr 
      exec sql whenever not found go to 200 
 
      exec sql open empcsr 
 
      sterm = 0  
66    if (sqlcod .ne. 0) go to 666 
 
      exec sql fetch empcsr into :name, :age, :idno,   
     1     :chired, :salary, :ihired 
 
      if (ihired .gt. 0) then 
           exec sql delete from employee 
     1          where current of empcsr 
           title = 'Terminated:' 
           description = 'Reason: Hired since 1985.' 
           sterm = sterm + 1 
 
      else if (salary .gt. minsal) then 
 



Sample Applications 

4–82     Embedded SQL Companion Guide 

C Reduce salary if not nearly retired 
           if (age .lt. nearlyretired) then 
               exec sql update employee 
    1                 set salary = salary * :salreduc   
    2                 where current of empcsr 
               title = 'Reduction:' 
               description = 'Reason: Salary.'   
           else 
C  Do not reduce salary 
               title = 'No Changes:' 
               description = 'Reason: Retiring.' 
           endif 
 
      else  
C  Leave employee alone 
           title = 'No Changes:' 
           description = 'Reason: Salary.' 
      endif 
 
C  Was employee's department dissolved? 
      if (deldept) then 
          exec sql insert into toberesolved 
    1          select * 
    2          from employee 
    3          where idno = :idno 
          exec sql delete from employee 
    1          where current OF empcsr 
      endif 
 
C  Log the employee's information 
      write (1, 12) title, idno, name, age, salary, description 
12    format (' ', a, ' ', i6, ', ', a, ', ', i2, ', ', f8.2, ';',  
     1        ' ' a) 
 
      go to 66 
666   continue 
 
      exec sql whenever not found continue 
 
200   exec sql close empcsr 
 
      end 
C 
C Subroutine:   CloseDown 
C Purpose:      Error handler called any time after InitDb has been 
C               successfully completed. In all cases, print the 
C               cause of the error and abort the transaction,  
C               backing out  
C               change Note that disconnecting from the database 
C               will implicitly close any open cursors. 
C Parameters:   None 
C 
 
      subroutine CloseDown 
 
      exec sql include sqlca 
 
      exec sql begin declare section 
          character*100 errbuf 
      exec sql end declare section 
 
C  Turn off error handling 
      exec sql whenever sqlerror continue 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–83 

      exec sql copy sqlerror into :errbuf with 100 
      write (1, 13) 
13    format ('Closed down because of database error:') 
      write (1, 14) errbuf 
14    format (a) 
      close(unit = 1, status = 'keep') 
 
      exec sql rollback 
      exec sql disconnect 
      print *, stop 'An SQL error occurred - Check the log file.' 
      stop 
 
      end 

The Table Editor Table Field Application 

This application edits the Person table in the Personnel database. It is a forms 
application that allows the user to update a person’s values, remove the 
person, or add new persons. Various table field utilities are provided with the 
application to demonstrate how they work. 

The objects used in this application are shown in the following table: 

 

Object Description 

personnel The program's database environment. 

person A table in the database, with three columns: 

      name (char(20)) 

      age (smallint) 

      number (integer)    

Number is unique. 

personfrm The VIFRED form with a single table field. 

persontbl A table field in the form, with two columns: 

      name (char(20) 

      age (integer) 

When initialized, the table field includes the hidden column 
number (integer). 

At the start of the application, a database cursor is opened to load the table 
field with data from the “person table”. After loading the table field, you can 
browse and edit the displayed values. You can add, update or delete entries. 
When finished, the values are unloaded from the table field, and your updates 
are transferred back into the “person” table. 

The application runs in UNIX, VMS, and Windows environments. 



Sample Applications 

4–84     Embedded SQL Companion Guide 

C 
C Program: TableEdit 
C Purpose: entry point to edit the "person" 
C           table in the database, 
C           via a table field. 
 
      program TableEdit 
 
      exec sql include sqlca 
 
      exec sql declare person table 
     1 (name  char(20), 
     2 age    integer2, 
     3 number integer4) 
 
      exec sql begin declare section 
 
C Person information 
           character*20   pname 
           integer        page 
           integer        pnum 
 
           integer maxid 
 
C Table field entry information 
C State of data set entry 
           integer state  
C Record number 
           integer    recnum  
C Last row in table field 
           integer    lastrow 
 
C Utility buffers 
C Message buffer 
           character*100 msgbuf  
C Response buffer for prompts 
           character*20 respbuf 
 
      exec sql end declare section 
 
C Update error from database 
      logical updaterr 
C Transaction aborted 
      logical xaborted 
 
C Function to fill table field 
      integer LoadTable 
 
C Table field row states 
C Empty or undefined row 
      parameter (rowundef = 0) 
C Appended by user 
      parameter (rownew = 1) 
C Loaded by program - not updated 
      parameter (rowunchanged = 2) 
C Loaded by program - since changed 
      parameter (rowchanged = 3) 
C Deleted by program 
      parameter (rowdeleted = 4) 
 
C SQL value for no rows 
      parameter (notfound = 100) 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–85 

C Set up error handling for main program 
      exec sql whenever sqlwarning continue 
      exec sql whenever not found continue 
      exec sql whenever sqlerror stop 
 
C Start up Ingres and the FORMS system 
      exec sql connect 'personnel' 
 
      exec frs forms 
 
C Verify that the user can edit the "person" table  
   exec frs prompt noecho ('Password for table editor: ', :respbuf) 
 
      if (respbuf .ne. 'MASTER_OF_ALL') then 
           exec frs endforms 
           exec sql disconnect 
           stop 'No permission for task. Exiting . . .' 
      endif 
 
C Assume no SQL errors can happen during screen updating  
      exec sql whenever sqlerror continue 
 
      exec frs message ‘Initializing Person Form . . .'  
      exec frs forminit personfrm 
 
C 
C Initialize "persontbl" table field with a data set in FILL mode, 
C so that the runtime user can append rows. To keep track of 
C events occurring to original rows loaded into the table field, 
C hide the unique person number. 
C 
    exec frs inittable personfrm persontbl fill (number = integer4) 
 
      maxid = LoadTable() 
 
      exec frs display personfrm update 
      exec frs initialize 
 
      exec frs activate menuitem 'Top' 
      exec frs begin 
C 
C Provide menu items to scroll to both extremes of 
C the table field. 
C 
           exec frs scroll personfrm persontbl to 1 
      exec frs end 
 
      exec frs activate menuitem 'Bottom' 
      exec frs begin 
           exec frs scroll personfrm persontbl to end  
      exec frs end 
 
      exec frs activate menuitem 'Remove' 
      exec frs begin 
C 
C Remove the person in the row the user's cursor is on. 
C If there are no persons, exit operation with message. 
C Note that this check cannot really happen, as there is 
C always an UNDEFINED row in FILL mode. 
C 
           exec frs inquire_frs table personfrm 
     1           (lastrow = lastrow(persontbl)) 
           if (lastrow .eq. 0) then 
                exec frs message 'Nobody to Remove' 
                exec frs sleep 2 
                exec frs resume field persontbl 



Sample Applications 

4–86     Embedded SQL Companion Guide 

           endif 
 
C Record it later 
           exec frs deleterow personfrm persontbl 
 
      exec frs end 
 
      exec frs activate menuitem 'Find' 
      exec frs begin 
C 
C Scroll user to the requested table field entry. 
C Prompt the user for a name, and if one is typed in, 
C loop through the data set searching for it. 
C 
          exec frs prompt ('Person''s name : ', :respbuf) 
          if (respbuf(1:1) .eq. ' ') then 
               exec frs resume field persontbl 
          endif 
 
          exec frs unloadtable personfrm persontbl 
     1           (:pname  = name, 
     2            :recnum = _record, 
     3            :state  = _state) 
          exec frs begin 
 
C Do not compare with deleted rows 
              if ((pname .eq. respbuf) .and. 
     1            (state .ne. rowdeleted)) then 
 
                   exec frs scroll personfrm persontbl 
     1                 to :recnum 
                   exec frs resume field persontbl 
              endif 
 
          exec frs end 
 
C Fell out of loop without finding name 
          write (msgbuf, 10) respbuf  
10        format ('Person "', a,  
     1         '" not found in table [HIT RETURN] ') 
          exec frs prompt noecho (:msgbuf, :respbuf) 
 
      exec frs end 
 
      exec frs activate menuitem 'Exit' 
      exec frs begin 
          exec frs validate field persontbl 
          exec frs breakdisplay 
      exec frs end 
 
      exec frs finalize 
 
C 
C Exit person table editor and unload the table field. If any 
C updates, deletions or additions were made, duplicate these 
C changes in the source table. If the user added new people, 
C assign a unique person id to each person before adding the person 
C to the table. To do this, increment the previously-saved maximum 
C id number with each insert. 
C 
 
C Do all the updates in a transaction 
      exec sql savepoint savept 
 
C 
C Hard code the error handling in the UNLOADTABLE loop, in  



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–87 

C order to cleanly exit the loop. 
C 
      exec sql whenever sqlerror continue 
 
      updaterr = .false. 
      xaborted = .false. 
 
      exec frs message 'Exiting Person Application . . .' 
      exec frs unloadtable personfrm persontbl 
     1      (:pname = name, :page = age, 
     2       :pnum = number, :state = _state) 
      exec frs begin 
 
C Appended by user. Insert with new unique id. 
           if (state .eq. rownew) then 
 
                maxid = maxid + 1 
                exec sql insert into person (name, age, number) 
     1                 values (:pname, :page, :maxid) 
 
C Updated by user. Reflect in table. 
           else if (state .eq. rowchanged) then 
 
                exec sql update person set 
     1               name = :pname, age = :page 
     2               where number = :pnum 
C 
C Deleted by user, so delete from table. Note that only 
C original rows, not rows appended at runtime, are saved 
C by the program. 
C 
           else if (state .eq. rowdeleted) then 
 
                exec sql delete from person 
     1               where number = :pnum 
 
C Ignore UNDEFINED or UNCHANGED - No updates 
           endif 
 
C 
C Handle error conditions - 
C If an error occurred, abort the transaction. 
C If no rows were updated, inform user and prompt 
C for continuation. 
C 
           if (sqlcod .lt. 0) then  
C SQL error 
                exec sql inquire_sql (:msgbuf = errortext) 
                exec sql rollback to savept 
                updaterr = .true. 
                xaborted = .true. 
                exec frs endloop 
 
           else if (sqlcod .eq. notfound) then 
 
                write (msgbuf, 11) pname  
11              format ('Person "', a,  
     1                        '" not updated. Abort all updates?') 
                exec frs prompt (:msgbuf, :respbuf) 
                if ((respbuf(1:1) .eq. 'y') .or. 
     1               (respbuf(1:1) .eq. 'y')) then 
 



Sample Applications 

4–88     Embedded SQL Companion Guide 

                     exec sql rollback to savept 
                     xaborted = .true. 
                     exec frs endloop 
                endif 
           endif 
 
      exec frs end 
 
      if (.not. xaborted) then 
C Commit the updates 
            exec sql commit 
      endif 
 
C Terminate the FORMS and Ingres 
      exec frs endforms 
      exec sql disconnect 
 
        if (updaterr) then 
            print *, 'Your updates were aborted because of error:' 
            print *, msgbuf 
        endif 
 
        end 
 
C 
C Function:   LoadTable 
C Purpose:     Load the table field from the 'person' table. The 
C             columns 'name' and 'age' will be displayed, and 
C             'number' will be hidden. 
C Parameters: None 
C Returns:    Maximum employee number 
C 
 
      integer function LoadTable() 
 
      exec sql include sqlca 
C 
C Declare person information: 
C The preprocessor already knows that these variables have been 
C declared, from their declarations in the main program. 
C 
      character*20 pname 
      integer      page 
      integer      pnum 
 
C Max person id number to return 
      integer maxid 
 
      exec sql declare loadtab cursor for 
     1    select name, age, number 
     2    from person 
 
C Set up error handling for loading procedure 
C Close loadtab 
      exec sql whenever sqlerror go to 100  
C Close loadtab 
      exec sql whenever not found go to 100 
 
      exec frs message 'Loading Person Information . . .' 
 
      maxid = 0 
 
C Fetch the maximum person id number for later use  
      exec sql select max(number) 
     1      into :maxid 
     2      from person 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–89 

 
      exec sql open loadtab 
 
55    if (sqlcod .ne. 0) go to 555 
 
C Fetch data into record and load table field 
      exec sql fetch loadtab into :pname, :page, :pnum 
 
      exec frs loadtable personfrm persontbl 
     1      (name = :pname, age = :page, number = :pnum) 
 
      go to 55 
 
555   continue 
 
      exec sql whenever sqlerror continue 
 
100   exec sql close loadtab 
      LoadTable = maxid 
      end 

The Professor-Student Mixed Form Application 

This application lets the user browse and update information about graduate 
students who report to a specific professor. The program is structured in a 
master/detail fashion, with the professor being the master entry, and the 
students the detail entries. The application uses two forms—one to contain 
general professor information and another for detailed student information. 

The objects used in this application are shown in the following table: 

 

Object Description 

personnel The program's database environment. 

professor A database table with two columns:  

      pname (char(25))  

      pdept (char(10)).  

See its declare table statement in the program for a full 
description. 



Sample Applications 

4–90     Embedded SQL Companion Guide 

Object Description 

student A database table with seven columns: 

      sname (char(25)) 

      sage (integer1) 

      sbdate (char(25)) 

      sgpa (float4) 

      sidno (integer) 

      scomment (varchar(200) 

      sadvisor (char(25)) 

See its declare table statement for a full description. 
The “sadvisor” column is the join field with the “pname” 
column in the “professor” table. 

masterfrm The main form has the “pname” and “pdept” fields, 
which correspond to the information in the “professor” 
table, and “studenttbl” table field. The “pdept” field is 
display-only. 

studenttbl A table field in “masterfrm” with the “sname” and “sage” 
columns. When initialized, it also has five hidden 
columns corresponding to information in the “student” 
table. 

studentfrm The detail form, with seven fields, which correspond to 
information in the “student” table. Only the “sgpa”, 
“scomment”, and “sadvisor” fields are updatable. All 
other fields are display-only. 

grad A Fortran common area, whose fields correspond in 
name and type to the columns of the “student” database 
table, the “studentfrm” form and the “studenttbl” table 
field. 

The program uses the “masterfrm” as the general-level master entry, in which 
you can only retrieve and browse data, and the “studentfrm” as the detailed 
screen, in which you can update specific student information. 

Enter a name in the pname field and then select the Students menu operation. 
The operation fills the studenttbl table field with detailed information of the 
students reporting to the named professor. This is done by the studentcsr 
database cursor in the LoadStudents procedure. 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–91 

The program assumes that each professor is associated with exactly one 
department. You can then browse the table field (in read mode), which 
displays only the names and ages of the students. You can request more 
information about a specific student by selecting the Zoom menu operation. 
This operation displays the studentfrm form (in update mode). The fields of 
“studentfrm” are filled with values stored in the hidden columns of 
“studenttbl”. You can make changes to three fields (“sgpa”, “scomment”, and 
“sadvisor”). If validated, these changes are written back to the Database table 
(based on the unique student ID), and to the table field’s data set. You can 
repeat this process for different professor names. 

Note: Records can be used in this application but variables must be used with 
F77. 

The application runs in UNIX, VMS, and Windows environments.  

C 
C Program: ProfessorStudent 
C Purpose: Main entry point into "Professor-Student" mixed-form  
C           master-detail application. 
C 
      program ProfessorStudent 
 
      exec sql include sqlca 
 
C Graduate student table 
      exec sql declare student table 
     1    (sname     char(25),  
     2     sage      integer1, 
     3     sbdate    char(25),  
     4     sgpa      float4, 
     5     sidno     integer4, 
     6     scomment  char(200), 
     7     sadvisor  char(25)) 
 
C Professor table 
      exec sql declare professor table 
     1     (pname    char(25),  
     2      pdept    char(10)) 
 
      exec sql begin declare section 
 
C Externally compiled master and student form 
           integer masterfrm, studentfrm 
 
      exec sql end declare section 
 
      external masterfrm, studentfrm 
 
C Start up Ingres and the FORMS system 
      exec frs forms 
 
      exec sql whenever sqlerror stop 
      exec frs message 'Initializing Student Administrator . . .' 
      exec sql connect personnel 
 
      exec frs addform :masterfrm 
      exec frs addform :studentfrm 
 
      call Master 
 



Sample Applications 

4–92     Embedded SQL Companion Guide 

      exec frs clear screen 
      exec frs endforms 
      exec sql disconnect 
 
      end 
 
C 
C Subroutine: Master 
C Purpose:    Drive the application, by running "masterfrm" and 
C              allowing the user to "zoom" into a selected student. 
C Parameters: 
C              None - Uses the global student "grad" common area.  
C 
 
      subroutine Master 
 
      exec sql include sqlca 
 
      exec sql begin declare section 
 
C Global grad common area maps to database table 
            character*25    sname 
            integer*2       sage 
            character*25    sbdate 
            real            sgpa 
            integer         sidno 
            character*200   scomment 
            character*25    sadvisor 
 
C Professor info maps to database table 
            character*25 pname 
            character*10 pdept 
 
C Useful forms system information 
C Lastrow in table field 
            integer lastrow  
C Is a table field? 
            integer istable 
 
C Local utility buffers 
C Message buffer 
            character*100 msgbuf  
C Response buffer 
            character respbuf  
C Old advisor before ZOOM 
            character*25 oldavisor 
 
      exec sql end declare section 
 
C Make definition global 
      common /grad/ sgpa, sidno, sage, sname, sbdate, scomment,  
     1     sadvisor 
 
C Function defined below 
      logical StudentInfoChanged 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–93 

C 
C Initialize "studenttbl" with a data set in READ mode. 
C Declare hidden columns for all the extra fields that 
C the program will display when more information is 
C requested about a student. Columns "sname" and "sage" 
C are displayed. All other columns are hidden, to be 
C used in the student information form. 
C 
      exec frs inittable masterfrm studenttbl read 
     1    (sbdate = char(25), 
     2     sgpa   = float4, 
     3     sidno    = integer4, 
     4     scomment = char(200), 
     5     sadvisor = char(25)) 
 
      exec frs display masterfrm update 
 
      exec frs initialize 
      exec frs begin 
          exec frs message 'Enter an Advisor name . . .' 
          exec frs sleep 2 
      exec frs end 
 
      exec frs activate menuitem 'Students', field 'pname'  
      exec frs begin 
 
C Load the students of the specified professor 
           exec frs getform (:pname = pname) 
 
C If no professor name is given, resume 
           if (pname(1:1) .eq.' ') then 
               exec frs resume field pname 
           endif 
 
C 
C Verify that the professor exists. Local error 
C handling just prints the message and continues. 
C Assume that each professor has exactly one 
C department. 
C 
           exec sql whenever sqlerror call sqlprint 
           exec sql whenever not found continue 
           pdept = ' ' 
           exec sql select pdept 
     1          into :pdept 
     2          from professor 
     3          where pname = :pname 
 
           if (pdept(1:1) .eq.' ') then 
 
                write (msgbuf, 10) pname 
10              format ('No professor with name "', a,  
     1                   '" [Press RETURN]') 
                exec frs prompt noecho (:msgbuf, :respbuf) 
                exec frs clear field all 
                exec frs resume field pname 
 
           endif 
 
C Fill the department field and load students 
           exec frs putform (pdept = :pdept) 
C Refresh for query 
           exec frs redisplay 
 
           call loadstudents(pname) 
 



Sample Applications 

4–94     Embedded SQL Companion Guide 

           exec frs resume field studenttbl 
 
      exec frs end 
 
      exec frs activate menuitem 'Zoom' 
      exec frs begin 
 
C 
C Confirm that user is in "studenttbl" and that 
C the table field is not empty. Collect data from 
C the row and zoom for browsing and updating. 
C 
           exec frs inquire_frs field masterfrm 
     1         (:istable = table) 
 
           if (istable .eq. 0) then 
               exec frs prompt noecho 
     1             ('Select from the student table [Press RETURN]', 
     2               :respbuf) 
               exec frs resume field studenttbl 
           endif 
 
           exec frs inquire_frs table masterfrm 
     1          (:lastrow = lastrow) 
 
           if (lastrow .eq. 0) then 
                exec frs prompt noecho 
     1              ('There are no students [Press RETURN]', 
     2                :respbuf) 
                exec frs resume field pname 
           endif 
 
C Collect all data on student into global record 
           exec frs getrow masterfrm studenttbl 
     1          (:sname = sname, 
     2           :sage = sage, 
     3           :sbdate = sbdate, 
     4           :sgpa = sgpa, 
     5           :sidno = sidno, 
     6           :scomment = scomment, 
     7           :sadvisor = sadvisor) 
 
C 
C Display "studentfrm", and if any changes were made, 
C make the updates to the local table field row. 
C Only make updates to the columns corresponding to 
C writable fields in "studentfrm". If the student 
C changed advisors, then delete the row from the 
C display. 
C 
           oldavisor = sadvisor 
           if (StudentInfoChanged()) then 
 
                if (oldavisor .ne. sadvisor) then 
                      exec frs deleterow masterfrm studenttbl 
                else 
                      exec frs putrow masterfrm studenttbl 
     1                   (sgpa     = :sgpa, 
     2                    scomment = :scomment, 
     3                   sadvisor = :sadvisor) 
                endif 
           endif 
 
      exec frs end 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–95 

      exec frs activate menuitem 'Exit' 
      exec frs begin 
             exec frs breakdisplay 
      exec frs end 
 
      exec frs finalize 
 
      end 
 
C 
C Subroutine:  LoadStudents 
C Purpose:     Given an advisor name, load into the "studenttbl" 
C              table field all the students who report to the 
C              professor with that name. 
C Parameters: 
C              advisor - User-specified professor name. 
C              Uses the global student record. 
C 
 
      subroutine LoadStudents(advisor) 
 
      exec sql include sqlca 
 
      exec sql begin declare section 
             character*(*) advisor 
      exec sql end declare section 
 
C Global "grad" common fields 
          character*25     sname 
          integer*2        sage 
          character*25     sbdate 
          real             sgpa 
          integer          sidno 
          character*200    scomment 
          character*25     sadvisor 
 
      common /grad/ sgpa, sidno, sage, sname, sbdate, scomment, 
     1           sadvisor 
 
       exec sql declare studentcsr cursor for 
     1      select sname, sage, sbdate, sgpa, 
     2          sidno, scomment, sadvisor 
     3          from student 
     4          where sadvisor = :advisor 
 
C 
C Clear previous contents of table field. Load the table 
C field from the database table based on the advisor name. 
C Columns "sname" and "sage" will be displayed, and all 
C others will be hidden. 
C 
      exec frs message 'Retrieving Student Information . . .' 
 
      exec frs clear field studenttbl 
 
C End loading 
      exec sql whenever sqlerror go to 100  
      exec sql whenever not found go to 100 
 
      exec sql open studentcsr 
 
C 
C Before we start the loop, we know that the OPEN was 
C successful and that NOT FOUND was not set. 
C 
55    if (sqlcod .ne. 0) go to 555 



Sample Applications 

4–96     Embedded SQL Companion Guide 

 
       exec sql fetch studentcsr into :sname, :sage, :sbdate,  
      1     sgpa, :sidno, :scomment, :sadvisor 
 
       exec frs loadtable masterfrm studenttbl 
     1   (sname    = :sname, 
     2    sage     = :sage, 
     3    sbdate   = :sbdate, 
     4    sgpa     = :sgpa, 
     5    sidno    = :sidno, 
     6    scomment = :scomment, 
     7    sadvisor = :sadvisor) 
 
      go to 55 
 
555   continue 
 
C Clean up on an error, and close cursors 
      exec sql whenever not found continue 
 
100   exec sql whenever sqlerror continue 
      exec sql close studentcsr 
 
      end 
 
C 
C Function: StudentInfoChanged 
C Purpose:  Allow the user to zoom into the details of a selected 
C            student. Some of the data can be updated by the user. 
C            If any updates were made, then reflect these back into 
C            the database table. The procedure returns TRUE if any 
C            changes were made. 
C Parameters: 
C            None - Uses data in the global "grad" common area. 
C Returns: 
C           true/false - Changes were made to the database. 
C           Sets the global "grad" common area with the new data. 
C 
      logical function StudentInfoChanged() 
 
      exec sql include sqlca 
 
      exec sql begin declare section 
C Changes made to data in form 
          integer changed  
C Valid advisor name? 
          integer validadvisor 
      exec sql end declare section 
 
C Global "grad" common fields 
      character*25   sname   
      integer*2      sage 
      character*25   sbdate 
      real           sgpa 
      integer        sidno 
      character*200  scomment 
      character*25   sadvisor 
 
      common /grad/ sgpa, sidno, sage, sname, sbdate, scomment, 
     1      sadvisor 
 
C Local error handler just prints error and continues  
      exec sql whenever sqlerror call sqlprint 
      exec sql whenever not found continue 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–97 

      exec frs display studentfrm fill 
      exec frs initialize 
     1     (sname = :sname, 
     2      sage = :sage, 
     3      sbdate = :sbdate, 
     4      sgpa = :sgpa, 
     5      sidno = :sidno, 
     6      scomment = :scomment, 
     7      sadvisor = :sadvisor) 
 
      exec frs activate menuitem 'Write' 
      exec frs begin 
 
C 
C If changes were made, then update the database 
C table. Only bother with the fields that are not 
C read-only. 
C 
           exec frs inquire_frs form (:changed = change) 
 
           if (changed .eq. 1) then 
 
                exec frs validate 
 
                exec frs getform 
     1               (:sgpa = sgpa, 
     2                :scomment = scomment, 
     3                :sadvisor = sadvisor) 
 
C Enforce integrity of professor name 
                validadvisor = 0 
                exec sql select 1 into :validadvisor 
     1               from professor 
     2               where pname = :sadvisor 
 
                if (validadvisor .eq. 0) then 
                     exec frs message 'Not a valid advisor name' 
                     exec frs sleep 2 
                     exec frs resume field sadvisor 
                endif 
 
                exec frs message 'Writing changes to database. . .' 
                exec sql update student set 
     1                sgpa = :sgpa, 
     2                scomment = :scomment, 
     3                sadvisor = :sadvisor 
     4                where sidno = :sidno 
 
           endif 
           exec frs breakdisplay 
      exec frs end 
 
      exec frs activate menuitem 'Quit' 
      exec frs begin 
C Quit without submitting changes 
           changed = 0 
           exec frs breakdisplay 
      exec frs end 
 
      exec frs finalize 
 
      StudentInfoChanged = (changed .EQ. 1) 
 
      end 



Sample Applications 

4–98     Embedded SQL Companion Guide 

The SQL Terminal Monitor Application 

This application executes SQL statements that are read in from the terminal. 
The application reads statements from input and writes results to output. 
Dynamic SQL is used to process and execute the statements. 

When the application starts, it prompts the user for the database name. The 
program then prompts for an SQL statement. Each SQL statement can 
continue over multiple lines, and must end with a semicolon. No SQL 
comments are accepted. The SQL statement is processed using Dynamic SQL, 
and results and SQL errors are written to output. At the end of the results, the 
program displays an indicator of the number of rows affected. The loop is then 
continued and the program prompts the user for another SQL statement. 
When the user types in end-of-file, the application rolls back any pending 
updates and disconnects from the database. 

The user’s SQL statement is prepared using prepare and describe. If the SQL 
statement is not a select statement, then it is run using execute and the 
number of rows affected is printed. If the SQL statement is a select 
statement, a Dynamic SQL cursor is opened, and all the rows are fetched and 
printed. The routines that print the results do not try to tabulate the results. A 
row of column names is printed, followed by each row of the results. 

Keyboard interrupts are not handled. Fatal errors, such as allocation errors, 
and boundary condition violations are handled by rolling back pending updates 
and disconnecting from the database session. 

Note: Use your system function to obtain the address. 

The application runs in UNIX, VMS, and Windows environments.  

C 
C Program: SQL_Monitor 
C Purpose: Main entry of SQL Monitor application. Prompt for 
C          database name and connect to the database. Run the  
C          monitor and disconnect from the database. Before 
C          disconnecting roll back any pending updates. 
C 
C Note:   UNIX compiler will generate - “Warning: %LOC function 
C         treated as LOC.” 
C         This is for compatibility with VMS. Just ignore the 
C         message or change %LOC to LOC. 
C 
 
      program SQL_Monitor 
 
      exec sql include sqlca 
 
      exec sql begin declare section 
           character*50   dbname 
      exec sql end declare section 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–99 

C    Prompt for database name. 
      write   (*, 50) 
50    format (' SQL Database: ', $) 
      read (*, 51, err = 59, end = 59) dbname 
51    format (A) 
 
      print *, ' -- SQL Terminal Monitor --' 
 
C     Treat connection errors as fatal. 
      exec sql whenever sqlerror stop 
      exec sql connect :dbname 
 
      call Run_Monitor() 
 
      exec sql whenever sqlerror continue 
 
      print *, 'SQL: Exiting monitor program.' 
 
      exec sql rollback 
      exec sql disconnect 
59    end 
 
C 
C Subroutine:Run_Monitor 
C Purpose:   Run the SQL monitor. Initialize the global SQLDA with 
C            the number of SQLVAR elements. Loop while prompting  
C            the user for input; if end-of-file is detected then 
C            return to the main program. 
C 
C            If the statement is not a SELECT statement then  
C            EXECUTE it, otherwise open a cursor a process a  
C            dynamic SELECT statement (using Execute_Select). 
C 
 
      subroutine Run_Monitor 
 
C     Declare the SQLCA and the SQLDA structure definition 
      exec sql include sqlca 
      exec sql include sqlda 
 
      exec sql begin declare section 
          character*1000  stmt_buf 
 
      exec sql end declare section 
      record /IISQLDA/ sqlda 
      common /sqlda_area/ sqlda 
 
      integer  stmt_num 
 
      integer      rows 
      logical      Read_Stmt 
      integer      Execute_Select 
      exec sql declare stmt statement 
 
C     Initialize the SQLDA 
      sqlda.sqln = IISQ_MAX_COLS 
 
C     Now we are set for input 
      stmt_num = 0 
      do while (.TRUE.) 
 
           stmt_num = stmt_num + 1 
 



Sample Applications 

4–100     Embedded SQL Companion Guide 

C 
C     Prompt and read the next statement. If Read_Stmt 
C     returns FALSE then end-of-file was detected. 
C 
           if (.not. Read_Stmt(stmt_num, stmt_buf)) return 
 
C     Handle database errors. 
           exec sql whenever sqlerror goto 62 
 
C 
C     Prepare and describe the statement. If the statement is not 
C     a SELECT then EXECUTE it, otherwise inspect the contents of 
C     the SQLDA and call Execute_Select. 
C 
           exec sql prepare stmt from :stmt_buf 
           exec sql describe stmt into :sqlda 
 
C     If SQLD = 0 then this is not a SELECT. 
           if (sqlda.sqld .eq. 0) then 
                exec sql execute stmt 
                rows = sqlerr(3) 
 
           else 
 
C        Are there enough result variables 
                if (sqlda.sqld .le. sqlda.sqln) then 
                     rows = Execute_Select() 
                else 
 
                     write(*, 60) sqlda.sqld, sqlda.sqln 
60                   format (' SQL Error: SQLDA requires ', I3, 
     1                        ' variables, but has only ', I3 '.') 
                     rows = 0 
                end if 
 
           end if 
 
C     Print number of rows processed. 
           write (*, 61) rows 
61         format (' [', I6, ' row(s)]') 
 
           exec sql whenever sqlerror continue 
C    If we got here because of an error then print the error  
C    message. 
62         if (sqlcod .lt. 0) call Print_Error() 
      end do  
      return 
      end 
 
C 
C Function: Execute_Select 
C Purpose:  In a dynamic SELECT statement. The SQLDA has already  
C           been described, so print the column header (names),  
C           open a cursor and retrieve and print the results.  
C           Accumulate the number of rows processed. 
C Parameters: 
C            None 
C Returns: 
C            Number of rows processed. 
C 
 
      integer function Execute_Select() 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–101 

      exec sql include sqlca 
      exec sql include sqlda 
      record /IISQLDA/ sqlda 
      common /sqlda_area/ sqlda 
 
      integerrows 
      logical Print_Header 
 
      exec sql declare csr cursor for stmt 
 
C   
C  Print result column names, set up the result types and 
C  variables. Print_Header returns FALSE if the dynamic  
C  set-up failed. 
C   
      if (.not. Print_Header()) then 
           Execute_Select = 0 
           return 
      end if 
 
      exec sql whenever sqlerror goto 70 
 
C  Open the dynamic cursor. 
      exec sql open csr for readonly 
 
C  Fetch and print each row. 
      rows = 0 
 
      do while (sqlcod .eq. 0) 
 
           exec sql fetch csr using descriptor :sqlda 
           if (sqlcod .eq. 0) then 
                rows = rows + 1 
                call Print_Row() 
           end if 
 
      end do 
 
C   If we got here because of an error then print the error  
C   message. 
70    if (sqlcod .lt. 0) call Print_Error() 
 
      exec sql whenever sqlerror continue 
      exec sql close csr 
 
      Execute_Select = rows 
      return 
      end 
 
C 
C Function: Print_Header 
C Purpose:  A statement has just been described so set up the SQLDA 
C           for result processing. Print all the column names and 
C           allocate result variables for retrieving data. The 
C           result variables are chosen out of a pool of variables  
C           (integers, floats and a large character string space).  
C           The SQLDATA and SQLIND fields are pointed at the  
C           addresses of the result variables. 
C Returns: 
C           TRUE if successfully set up the SQLDA for  
C           result variables, 
C           FALSE if an error occurred. 
C 
 
      logical function Print_Header () 
 



Sample Applications 

4–102     Embedded SQL Companion Guide 

      exec sql include sqlda 
      record /IISQLDA/ sqlda 
      common /sqlda_area/ sqlda 
 
C  User defined handler for large objects 
      external UsrDataHandler 
      integer  UsrDataHandler 
 
C  Limit the size of a large object 
C  If you increase BLOB_MAX than increase hdlarg.argstr  
C  and 'segbuf' 
       parameter (BLOB_MAX = 50) 
 
       record /IISQLHDLR/ datahdlr(IISQ_MAX_COLS) 
 
C     Global result data storage 
      structure      /hdlr_arg/ 
          character*50 argstr 
          integer arglen 
      end structure 
      record /hdlr_arg/ hdlarg(IISQ_MAX_COLS) 
 
      integer*4         integers(IISQ_MAX_COLS) 
      real*8            reals(IISQ_MAX_COLS) 
      integer*2         inds(IISQ_MAX_COLS) 
      character*2500    characters 
      character*3000    disp_results 
      common /result_area/ integers, reals, inds, characters, 
     1      disp_results 
 
      integer          cl 
      integer          clc 
      integer          dl 
      character*2000   names 
      integer          nl 
      integer          nlc 
      integer          i 
      integer          base_type 
      logical          is_null 
 
C 
C Add the name and number of each column into a column name buffer. 
C Display this buffer as a header when done with all the columns. 
C While processing each column determine the type of the column 
C and to where SQLDATA must point in order to retrieve compatible 
C results. 
C 
      cl = 1 
      nl = 1 
      dl = 0 
      do 85, i = 1, sqlda.sqld    
C   
C  Fill up the names buffer. If it overflows print an error and 
C  return that we failed. 
C   
      if (nl .gt. (len(names) - 40)) then 
          print *, 'SQL Error: Result column name overflow.' 
          Print_Header = .false. 
          return 
      end if 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–103 

C 
C  Store column title in the form "[column #] column_name " 
C  For example, the employee table may look like: 
C     [1] name [ 2] age [ 3] salary [ 4] dept 
C 
      write (names(nl:),80)i 
80    format ('[', I3, '] ') 
      nl = nl + 6 
      nlc = sqlda.sqlvar(i).sqlname.sqlnamel 
      names(nl:nl+nlc) = sqlda.sqlvar(i).sqlname.sqlnamec(1:nlc) 
      nl = nl + nlc 
      names(nl:nl) = ' ' 
      nl = nl + 1 
 
C 
C  At this point we've stored away the column name. Now we 
C  process the column for type and length information. Use the 
C  global numeric array and the large character buffer from which 
C  pieces can be allocated. 
C 
C  Also accumulate the length of the display buffer that we will 
C  need later to print the results - they will all be converted 
C  into character data in the display buffer. Make sure that 
C  the default field widths of the different types will fit into 
C  the buffer 'disp_results'. For example, the display buffer for 
C  a single row of the employee table may look like: 
C  [ 1] mark [ 2] 36 [ 3] 52000.0 [ 4] eng 
C 
 
      dl = dl + 7 
 
C  Find the base-type of the result (non-nullable). 
      if (sqlda.sqlvar(i).sqltype .gt. 0) then 
          base_type = sqlda.sqlvar(i).sqltype 
          is_null = .false. 
      else 
          base_type = -sqlda.sqlvar(i).sqltype 
          is_null = .true. 
      end if 
 
C 
C  Collapse all different types into one of INTEGER, REAL 
C  or CHARACTER. Accumulate the number of characters required 
C  from the display buffer (use default format lengths). 
C 
      if (base_type .eq. IISQ_INT_TYPE) then 
 
         sqlda.sqlvar(i).sqltype = IISQ_INT_TYPE 
         sqlda.sqlvar(i).sqllen = 4 
         sqlda.sqlvar(i).sqldata = %loc(integers(i)) 
         dl = dl + 12 
 
      else if ((base_type .eq. IISQ_FLT_TYPE) .or. 
     1          (base_type .eq. IISQ_DEC_TYPE)    .or.  
     2          (base_type .eq. IISQ_MNY_TYPE)) then 
 
         sqlda.sqlvar(i).sqltype = IISQ_FLT_TYPE 
         sqlda.sqlvar(i).sqllen = 8 
         sqlda.sqlvar(i).sqldata = %loc(reals(i)) 
         dl = dl + 25 
 
      else if ((base_type .eq. IISQ_CHA_TYPE) .or. 
     1          (base_type .eq. IISQ_VCH_TYPE) .or. 
     2          (base_type .eq. IISQ_DTE_TYPE)) then 
 



Sample Applications 

4–104     Embedded SQL Companion Guide 

C 
C Determine the length of the sub-string required from the 
C the large character array. If we have enough space left 
C then point at the start of the corresponding substring, 
C otherwise print an error and return. 
C 
           if (base_type .eq. IISQ_DTE_TYPE) then 
              clc = 25 
           else 
              clc = sqlda.sqlvar(i).sqllen  
           end if 
 
           if ((cl + clc) .gt. len(characters)) then 
                write (*, 81) cl+clc 
81           format (' SQL Error: Character result data overflow. ' 
     1                   'Need ', I4, ' bytes.') 
                Print_Header = .false. 
                return 
           end if  
 
C       Grab space out of the large character buffer 
           sqlda.sqlvar(i).sqltype = IISQ_CHA_TYPE 
           sqlda.sqlvar(i).sqllen = clc 
           sqlda.sqlvar(i).sqldata = %loc(characters(cl:)) 
           cl = cl + clc 
           dl = dl + clc 
      else if (base_type .eq. IISQ_LVCH_TYPE) then 
C 
C Long varchar, so use datahandler. Use Blob Max to limit the 
C length of the Blob sub-string returned/displayed. 
C        
           sqlda.sqlvar(i).sqltype = IISQ_HDLR_TYPE 
           sqlda.sqlvar(i).sqllen = BLOB_MAX 
           sqlda.sqlvar(i).sqldata = %loc(datahdlr(i)) 
 
           datahdlr(i).sqlhdlr = %loc(UserDataHandler) 
           datahdlr(i).sqlarg = %loc(hdlrag(i)) 
         
           hdlarg(i).arglen = BLOB_MAX 
 
           d1 = d1 + BLOB_MAX 
      end if 
 
C Remember to save the null indicator 
      if (is_null) then 
           sqlda.sqlvar(i).sqltype = -sqlda.sqlvar(i).sqltype 
           sqlda.sqlvar(i).sqlind = %loc(inds(i)) 
      else 
           sqlda.sqlvar(i).sqlind = 0 
      end if 
 
85    continue 
 
C 
C  Print all the saved column names. This loop does not use any 
C  special formats, but just breaks the line at column 75. 
C 
      nl = nl - 1 
      do 88 i = 1, nl , 75 
           write (*, 87) names(i:min(i+74,nl)) 
87         format (' ', A) 
88    continue 
      print *, '--------------------------------' 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–105 

C 
C   Confirm that the character representation of the results  
C   will fit inside the display buffer. 
C 
      if (dl .gt. len(disp_results)) then 
           write (*, 81) dl 
89         format (' SQL Error: Result display buffer overflow. ' 
     1              'Need ', I4, ' bytes.') 
           Print_Header = .false. 
           return 
      end if 
 
      Print_Header = .true. 
      return 
 
      end 
C 
C Procedure:Print_Row 
C Purpose:  For each element inside the SQLDA, print the value.  
C           Print its column number too in order to identify it  
C           with a column name printed earlier in Print_Header. If  
C           the value is NULL print "N/A". 
C Parameters: 
C           None 
C 
 
      subroutine Print_Row       
      exec sql include sqlda 
      record /IISQLDA/ sqlda 
      common /sqlda_area/ sqlda 
 
C  Global result data storage 
      structure     /hdlr_arg/ 
         character*50   argstr 
         integer        arglen  
      end structure 
      record /hdlr_arg/ hdlarg(IISQ_MAX_COLS) 
 
      integer*4     integers(IISQ_MAX_COLS) 
      real*8        reals(IISQ_MAX_COLS) 
      integer*2     inds(IISQ_MAX_COLS) 
      character*2500     characters 
      character*3000     disp_results 
      common /result_area/ integers, reals, inds, characters,  
     1    disp_results, hdlarg 
 
      integer      cl 
      integer      clc 
 
      integer      dl 
 
      integer      i 
      integer      base_type 
      logical      is_null 
 
C 
C  For each column, print the column number and the data. 
C  NULL columns print as "N/A". The printing is done by 
C  encoding the complete row into a display buffer (that is 
C  already guaranteed to be able to contain the whole row), 
C  and then displaying the data at the end of the row. 
C 
      cl = 1 
      dl = 1 
      do 95, i = 1, sqlda.sqld 
 



Sample Applications 

4–106     Embedded SQL Companion Guide 

C Store result column number in the form "[ # ]" 
           write(disp_results(dl:),90)i 
90         format ('[', I3, '] ') 
           dl = dl + 6 
 
C  Find the base-type of the result (non-nullable) 
           if (sqlda.sqlvar(i).sqltype .gt. 0) then 
               base_type = sqlda.sqlvar(i).sqltype 
               is_null = .false. 
           else 
               base_type = -sqlda.sqlvar(i).sqltype 
               is_null = .true. 
           end if 
 
C 
C Collapse different types into INTEGER, REAL or CHARACTER. 
C If the data is NULL then just print "N/A". 
C  
           if (is_null .and. (inds(i) .eq. -1)) then 
 
                disp_results(dl:dl+2) = 'N/A' 
                dl = dl + 3 
 
           else if (base_type .eq. IISQ_INT_TYPE) then 
 
                write(disp_results(dl:),91)i 
91              format (I) 
                dl = dl + 12 
 
           else if (base_type .eq. IISQ_FLT_TYPE) then 
 
                write(disp_results(dl:),92)i 
92              format (G) 
                dl = dl + 25 
 
           else if (base_type .eq. IISQ_CHA_TYPE) then 
 
C    Use the characters out of the large character buffer 
                clc = sqlda.sqlvar(i).sqllen  
                disp_results(dl:dl+clc-1) = characters(cl:) 
                dl = dl + clc 
                cl = cl + clc 
           else if (base_type .eq. IISQ_HDLR_TYPE) then 
C  Use the argstr out of the handler structure buffer 
                clc = sqlda.sqlvar(i).sqllen 
                disp_results(d1:d1+clc-1) = hdlarg(i).argstr 
                dl = dl + clc 
           end if 
 
           disp_results(dl:dl) = ' ' 
           dl = dl + 1 
 
95    continue 
 
      ! 
      ! Print the result data. This loop does not use any special 
      ! formats, but just breaks the line at column 75. 
      ! 
      dl = dl - 1 
      do 98 i = 1, dl , 75 
           write (*, 97) disp_results(i:min(i+74,dl)) 
97         format (' ', A) 
98    continue 
      return 
      end 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–107 

C 
C Subroutine: Print_Error 
C Purpose:    SQLCA error detected. Retrieve the error message  
C              and print it. 
C Parameters: 
C              None 
C 
      subroutine Print_Error 
 
      exec sql include sqlca 
      exec sql begin declare section 
           character*200  error_buf 
      exec sql end declare section 
 
      exec sql inquire_sql (:error_buf = ERRORTEXT) 
      print *, 'SQL Error:' 
      print *, error_buf 
      return 
      end 
 
C 
C Function:Read_Stmt 
C Purpose: Reads a statement from standard input. This routine 
C          prompts the user for input (using a statement  
C          number) and scans input tokens for the statement  
C          delimiter (semicolon). The scan continues  
C          over new lines, and uses SQL string literal 
C          rules. 
C Parameters: 
C            stmt_num - Statement number for prompt. 
C            stmt_buf - Buffer to fill for input. 
C Returns: 
C           TRUE if a statement was read, FALSE if  
C          end-of-file typed. 
C 
 
      integer function Read_Stmt(stmt_num, stmt_buf) 
 
      integer         stmt_num 
      character*(*)   stmt_buf 
 
      integer      stmt_max 
      integer      sl 
 
      character   input_buf(256) 
      integer     line_len 
      integer     i 
 
      logical     in_string 
      logical     current_line 
 
      stmt_max = len(stmt_buf) 
 
C    Prompt user for SQL statement. 
110   write (*, 111) stmt_num 
111   format (' ', I3, ' ', $) 
 
      stmt_buf = ' ' 
      in_string = .false. 
      sl = 1 
 
C   Loop while scanning input for statement terminator. 
      do while (.TRUE.) 
 



Sample Applications 

4–108     Embedded SQL Companion Guide 

C   Read input line up to the number of characters entered 
           read (*, 112, err = 119, end = 119) line_len, 
     1          (input_buf(i), i = 1, line_len) 
112        format (Q, 100A1) 
 
           current_line = .true. ! We are in a line 
C 
C Keep processing while we can (we have not reached the end of 
C the line, and our statement buffer is not full). 
C  
           i = 1 
           do while (current_line .and. (sl .le. stmt_max)) 
 
C     Not in string - check for delimiters and new lines 
                if (.not. in_string) then 
 
                     if (i .gt. line_len) then 
C                 New line outside of string is replaced with blank 
                          input_buf(i) = ' ' 
                          current_line = .false. 
                     else if (input_buf(i) .eq. ';') then 
                          Read_Stmt = .true. 
                          return 
                     else if (input_buf(i) .eq. '''') then 
                          in_string = .true. 
                     end if 
                     stmt_buf(sl:sl) = input_buf(i) 
                     sl = sl + 1 
                     i = i + 1 
 
                else 
 
C     End of line inside string is ignored 
                     if (i .gt. line_len) then 
                          current_line = .false. 
                     else if (input_buf(i) .eq. '''') then 
                          in_string = .false. 
                     end if 
 
                     if (current_line) then 
                          stmt_buf(sl:sl) = input_buf(i) 
                          sl = sl + 1 
                          i = i + 1 
                     end if 
 
                end if 
           end do 
C 
C Dropped out of above loop because end of line reached or buffer 
C limit exceeded. 
C 
 
C Statement is too large - ignore it and try again. 
           if (sl .gt. stmt_max) then 
                write (*, 113) stmt_max 
113             format (' SQL Error: Maximum statement length  
     1                 (', I4,') exceeded.') 
                goto 110 
           else 
                write (*, 114) 
114             format (' ---> ', $) 
           end if 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–109 

      end do 
119   Read_Stmt = .false. 
      return 
      end 
 
C 
C Procedure: UsrDataHandler 
C Purpose:   Use GET DATA to get the BLOB from the database. 
C Parameters: 
C            hdlarg - the structure with handler info 
     
      subroutine UsrDataHandler (hdlarg) 
       
      exec sql include sqlca 
       
      exec sql whenever sqlerror stop 
       
      exec sql begin declare section 
            structure /hdlr_arg/ 
                character*50 argstr 
                 integer     arglen 
            end structure 
            record /hdlr_arg/ hdlarg 
 
            character*50      segbuf 
            integer*4         dataend 
            integer*4         seglen 
      exec sql end declare sections 
 
      integer totlen 
      integer nsegs 
 
      if (hdlarg.arglen .gt. len(hdlarg.argstr)) then 
          hdlarg.arglen = len(hdlarg.argstr) 
          write (*,120) hdlarg.arglen 
120       format ('BLOB length error....reducing to: ',I) 
      end if 
 
      nsegs = 0 
      totlen = 0 
      dataend = 0 
      do while ((dataend .eq. 0) .and. (totlen .lt. hdlarg.arglen)) 
           segbuf= ' ' 
           exec sql get data (:segbuf  = segment, 
     1                         :seglen  = segmentlength, 
     2                         :dataend = dataend) 
     3          with maxlength = :hdlarg.arglen; 
 
           hdlarg.argstr(totlen+1:) = segbuf(1:seglen) 
 
           nsegs = nsegs + 1 
           totlen = totlen + seglen 
      end do 
 
      if (dataend .eq. 0) then 
           exec sql enddata; 
      end if 
 
      end 



Sample Applications 

4–110     Embedded SQL Companion Guide 

A Dynamic SQL/Forms Database Browser 

This program lets the user browse data from and insert data into any table in 
any database, using a dynamically defined form. The program uses Dynamic 
SQL and Dynamic FRS statements to process the interactive data. You should 
already have used VIFRED to create a Default Form based on the database 
table that you want to browse. VIFRED will build a form with fields that have 
the same names and data types as the columns of the specified database 
table. 

When run, the program prompts the user for the name of the database, the 
table and the form. The form is profiled using the describe form statement, 
and the field name, data type, and length information is processed. From this 
information, the program fills in the SQLDA data and null indicator areas, and 
builds two Dynamic SQL statement strings to select data from and insert 
data into the database. 

The Browse menu item retrieves the data from the database using an SQL 
cursor associated with the dynamic select statement, and displays that data 
using the dynamic putform statement. A submenu allows the user to 
continue with the next row or return to the main menu. The Insert menu item 
retrieves the data from the form using the dynamic getform statement, and 
adds the data to the database table using a prepared insert statement. The 
Save menu item commits the changes and, because prepared statements are 
discarded, prepares the select and insert statements again. When the user 
selects the Quit menu item, all pending changes are rolled back and the 
program is terminated. 

Note: Use your system function to obtain the address. 

C 
C Program: Dynamic_FRS 
C Purpose: Main body of Dynamic SQL forms application. Prompt for 
C          database, form and table name. Call Describe_Form  
C          to obtain a profile of the form and set up the SQL 
C          statements. Then allow the user to interactively browse 
C          database table and append new data. 
C 
 
C 
C Note: The UNIX compiler will generate - “Warning: %LOC function 
C       treated as LOC”. This is for compatibility with VMS. 
C       Just ignore the message. Or Change %LOC to LOC. 
C  
 
      program Dynamic_FRS 
 
C  Declare the SQLCA and the SQLDA 
      exec sql include sqlca 
      exec sql include sqlda 
 
      record /IISQLDA/ sqlda 
      common /sqlda_are/ sqlda 
 
      exec sql declare sel_stmt statement  
      exec sql declare ins_stmt statement  
      exec sql declare csr cursor for sel_stmt 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–111 

 
      logical Describe_Form 
 
      exec sql begin declare section 
           character*40       dbname 
           character*40       formname 
           character*40       tabname 
           character*1000     sel_buf 
           character*1000     ins_buf  
           integer*4          err  
           character*1        ret  
      exec sql end declare section 
 
      exec frs forms 
 
C  Prompt for database name - will abort on errors 
      exec sql whenever sqlerror stop 
      exec frs prompt ('Database name: ', :dbname) 
      exec sql connect :dbname 
 
      exec sql whenever sqlerror call sqlprint 
 
C  
C  Prompt for table name - later a Dynamic SQL SELECT statement 
C  will be built from it. 
C  
      exec frs prompt ('Table name: ', :tabname) 
 
C 
C  Prompt for form name. Check forms errors reported 
C   through INQUIRE_FRS. 
C  
      exec frs prompt ('Form name: ', :formname) 
      exec frs message 'Loading form ...' 
      exec frs forminit :formname 
      exec frs inquire_frs frs (:err = ERRORNO) 
      if (err .gt. 0) then 
          exec frs message 'Could not load form. Exiting.' 
          exec frs endforms 
          exec sql disconnect 
          stop 
      end if 
 
C  Commit any work done so far - access of forms catalogs 
      exec sql commit 
 
C  Describe the form and build the SQL statement strings 
      if (.not. Describe_Form(formname, tabname, sel_buf, ins_buf)) 
     1 then 
           exec frs message 'Could not describe form. Exiting.' 
           exec frs endforms 
           exec sql disconnect 
           stop 
      end if 
 



Sample Applications 

4–112     Embedded SQL Companion Guide 

C  
C  PREPARE the SELECT and INSERT statements that correspond to the  
C  menu items Browse and Insert. If the Save menu item is chosen 
C  the statements are reprepared. 
C  
      exec sql prepare sel_stmt from :sel_buf 
      err = sqlcod 
      exec sql prepare ins_stmt from :ins_buf 
      if ((err .lt. 0) .or. (sqlcod .lt. 0)) then 
       exec frs message 'Could not prepare SQL statements. Exiting' 
          exec frs endforms 
          exec sql disconnect 
          stop 
      end if 
 
C 
C  Display the form and interact with user, allowing browsing 
C  and the inserting of new data. 
C 
 
      exec frs display :formname fill 
      exec frs initialize 
      exec frs activate menuitem 'Browse' 
      exec frs begin 
C 
C  Retrieve data and display the first row on the form,  
C  allowing the user to browse through successive rows. If  
C  data types from the database table are not consistent  
C  with data descriptions obtained from the form, a 
C  retrieval error will occur. Inform the user of this or other 
C  errors. 
C 
C  Note that the data will return sorted by the first field 
C  that was described, as the SELECT statement, sel_stmt, 
C  included an ORDER BY clause. 
C 
           exec sql open csr 
 
C  Fetch and display each row 
           do while (sqlcod .eq. 0) 
 
                exec sql fetch csr using descriptor :sqlda 
                if (sqlcod .ne. 0) then 
                     exec sql close csr 
                    exec frs prompt noecho ('No more rows :', :ret) 
                     exec frs clear field all 
                     exec frs resume 
                end if 
 
                exec frs putform :formname using descriptor :sqlda 
                exec frs inquire_frs frs (:err = ERRORNO) 
                if (err .gt. 0) then 
                     exec sql close csr 
                     exec frs resume 
                end if 
 
C  Display data before prompting user with submenu 
                exec frs redisplay 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–113 

                exec frs submenu 
                exec frs activate menuitem 'Next', frskey4 
                exec frs begin 
C  Continue with cursor loop 
                     exec frs message 'Next row ...' 
                     exec frs clear field all 
                exec frs end 
                exec frs activate menuitem 'End', frskey3 
                exec frs begin 
                     exec sql close csr 
                     exec frs clear field all 
                     exec frs resume 
                exec frs end 
 
           end do 
 
      exec frs end 
 
      exec frs activate menuitem 'Insert' 
      exec frs begin 
           exec frs getform :formname using descriptor :sqlda 
           exec frs inquire_frs frs (:err = ERRORNO) 
           if (err .gt. 0) then 
                exec frs clear field all 
                exec frs resume 
           end if 
           exec sql execute ins_stmt using descriptor :sqlda 
           if ((sqlcod .lt. 0) .or. (sqlerr(3) .eq. 0)) then 
               exec frs prompt noecho ('No rows inserted :', :ret) 
           else 
               exec frs prompt noecho ('One row inserted :', :ret) 
           end if 
      exec frs end 
 
      exec frs activate menuitem 'Save' 
      exec frs begin 
C 
C  COMMIT any changes and then re-PREPARE the SELECT and INSERT 
C  statements as the COMMIT statements discards them. 
C 
           exec sql commit 
           exec sql prepare sel_stmt from :sel_buf 
           err = sqlcod 
           exec sql prepare ins_stmt from :ins_buf 
           if ((err .lt. 0) .or. (sqlcod .lt. 0)) then 
                 exec frs prompt noecho 
     1               ('Could not reprepare SQL statements :', :ret) 
                 exec frs breakdisplay 
           end if 
      exec frs end 
 
      exec frs activate menuitem 'Clear' 
      exec frs begin 
           exec frs clear field all 
      exec frs end 
 
      exec frs activate menuitem 'Quit', frskey2 
      exec frs begin 
           exec sql rollback 
           exec frs breakdisplay 
      exec frs end 
      exec frs finalize 
 
      exec frs endforms 
      exec sql disconnect 
 



Sample Applications 

4–114     Embedded SQL Companion Guide 

      end         
 
C 
C Procedure: Describe_Form 
C Purpose:   Profile the specified form for name and data type 
C            information. 
C            Using the DESCRIBE FORM statement, the SQLDA is loaded 
C            with field information from the form. This procedure 
C            processes this information to allocate result storage, 
C            point at storage C for dynamic FRS data retrieval and 
C            assignment, and build C SQL statements strings for 
C            subsequent dynamic SELECT and INSERT statements. For 
C            example, assume the form (and table) 'emp' has the 
C            following fields: 
C 
C             Field Name   Type       Nullable? 
C             ----------   ----       --------- 
C             name         char(10)   No 
C             age          integer4   Yes 
C             salary       money      Yes 
C 
C         Based on 'emp', this procedure will construct the SQLDA. 
C         The procedure allocates variables from a result variable 
C         pool (integers, floats and a large character string  
C         space). The SQLDATA and SQLIND fields are pointed at the  
C         addresses of the result variables in the pool. The  
C         following SQLDA is built: 
C 
C                    sqlvar(1) 
C                           sqltype   = IISQ_CHA_TYPE 
C                           sqllen    = 10 
C                           sqldata = pointer into characters array 
C                           sqlind    = null 
C                           sqlname   = 'name' 
C                    sqlvar(2) 
C                           sqltype   = -IISQ_INT_TYPE 
C                           sqllen    = 4 
C                           sqldata   = address of integers(2) 
C                           sqlind    = address of indicators(2) 
C                           sqlname   = 'age' 
C                    sqlvar(3) 
C                           sqltype   = -IISQ_FLT_TYPE 
C                           sqllen    = 8 
C                           sqldata   = address of floats(3) 
C                           sqlind    = address of indicators(3) 
C                           sqlname   = 'salary' 
C 
C       This procedure also builds two dynamic SQL statements 
C       strings. Note that the procedure should be extended to  
C       verify that the statement strings do fit into 
C       the statement buffers (this was not done in this example). 
C       The above example would construct the following  
C       statement strings: 
C 
C       'SELECT name, age, salary FROM emp ORDER BY name' 
C       'INSERT INTO emp (name, age, salary) VALUES (?, ?, ?)' 
C 
C Parameters: 
C         formname - Name of form to profile. 
C         tabname - Name of database table. 
C         sel_buf - Buffer to hold SELECT statement string. 
C         ins_buf - Buffer to hold INSERT statement string. 
C Returns: 
C         TRUE/FALSE - Success/failure - will fail on error 
C                       or upon finding a table field. 
C 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–115 

 
      logical function  
     1      Describe_Form (formname, tabname, sel_buf, ins_buf) 
 
      character*(*) formname, tabname, sel_buf, ins_buf 
 
C  Declare the SQLCA and the SQLDA 
      exec sql include sqlca 
      exec sql include sqlda 
      record /IISQLDA/ sqlda 
      common /sqlda_area/ sqlda 
 
C  Global result data storage 
      integer*4       integers(IISQ_MAX_COLS) 
      real*8          reals(IISQ_MAX_COLS) 
      integer*2       inds(IISQ_MAX_COLS) 
      character*2500  characters  
      common /result_area/ integers, reals, inds, characters 
 
      integer        char_cnt  
      integer        char_cur 
 
      integer        i  
      integer        base_type  
      logical        nullable 
 
      character*1000 names  
      integer        name_cnt  
      integer        name_cur  
      character*1000 marks  
      integer        mark_cnt 
 
      integer*4      err 
      character*     ret 
 
C  
C Initialize the SQLDA and DESCRIBE the form. If we cannot fully 
C describe the form (our SQLDA is too small) then report an error 
C and return. 
C  
      sqlda.sqln = IISQ_MAX_COLS 
 
      exec frs describe form :formname all into :sqlda 
      exec frs inquire_frs frs (:err = ERRORNO) 
      if (err .gt. 0) then 
           Describe_Form = .false. 
           return 
      end if 
      if (sqlda.sqld .gt. sqlda.sqln) then 
          exec frs prompt noecho ('SQLDA is too small for form :', 
     1                             :ret) 
          Describe_Form = .false. 
          return 
      else if (sqlda.sqld .eq. 0) then 
           exec frs prompt noecho  
     1                  ('There are no fields in the form :', :ret) 
           Describe_Form = .false. 
           return 
      end if 
 



Sample Applications 

4–116     Embedded SQL Companion Guide 

C  
C   For each field determine the size and type of the result data 
C   area. This data area will be allocated out of the result 
C   variable pool (integers, floats and characters) and will be 
C   pointed at by SQLDATA and SQLIND. 
C 
C   If a table field type is returned then issue an error. 
C  
C   Also, for each field add the field name to the 'names' buffer 
C   and the SQL place holders '?' to the 'marks' buffer, which 
C   will be used to build the final SELECT and INSERT statements. 
C  
 
      char_cnt = 1 
      name_cnt = 1 
      mark_cnt = 1 
 
      do 20, i = 1, sqlda.sqld 
 
C  Find the base-type of the result (non-nullable). 
           if (sqlda.sqlvar(i).sqltype .gt. 0) then 
                base_type = sqlda.sqlvar(i).sqltype 
                nullable = .false. 
           else 
                base_type = -sqlda.sqlvar(i).sqltype 
                nullable = .true. 
           end if 
 
C  
C  Collapse all different types into one of INTEGER, REAL 
C  or CHARACTER. Figure out where to point SQLDATA and 
C  SQLIND - which member of the result variable pool is 
C  compatible with the data. 
C  
           if (base_type .eq. IISQ_INT_TYPE) then 
 
                sqlda.sqlvar(i).sqltype  = IISQ_INT_TYPE 
                sqlda.sqlvar(i).sqllen   = 4 
                sqlda.sqlvar(i).sqldata  = %loc(integers(i)) 
 
           else if ((base_type .eq. IISQ_FLT_TYPE) .or. 
     1          (base_type .eq. IISQ_DEC_TYPE) .or. 
     2          (base_type .eq. IISQ_MNY_TYPE)) then  
 
                sqlda.sqlvar(i).sqltype = IISQ_FLT_TYPE 
                sqlda.sqlvar(i).sqllen = 8 
                sqlda.sqlvar(i).sqldata = %loc(reals(i)) 
 
           else if ((base_type .eq. IISQ_CHA_TYPE) .or. 
     1          (base_type .eq. IISQ_VCH_TYPE) .or. 
     2          (base_type .eq. IISQ_DTE_TYPE)) then 
 
C  
C  Determine the length of the sub-string required from the 
C  the large character array. If we have enough space left 
C  then point at the start of the corresponding substring, 
C  otherwise display an error and return. 
C  
                     if (base_type .eq. IISQ_DTE_TYPE) then 
                          char_cur = IISQ_DTE_LEN 
                     else 
                          char_cur = sqlda.sqlvar(i).sqllen  
                     end if 
 



Sample Applications 

Chapter 4: Embedded SQL for Fortran    4–117 

                    if ((char_cnt + char_cur) .gt. len(characters)) 
     1                    then 
                          exec frs prompt noecho 
     1                   ('Character pool buffer overflow :', :ret) 
                          Describe_Form = .false. 
                          return 
                     end if 
 
C  
C  Grab space out of the large character buffer and accumulate used 
C  characters. 
C  
                     sqlda.sqlvar(i).sqltype  = IISQ_CHA_TYPE 
                     sqlda.sqlvar(i).sqllen   = char_cur 
                     sqlda.sqlvar(i).sqldata   
     1                                = %loc(characters(char_cnt:)) 
                     char_cnt                 = char_cnt + char_cur 
 
                else if (base_type .eq. IISQ_TBL_TYPE) then 
 
                     exec frs prompt noecho  
     1                     ('Table field found in form :', :ret) 
                     Describe_Form = .false. 
                     return 
 
                else 
 
                     exec frs prompt noecho 
     1                      ('Invalid field type :', :ret) 
                     Describe_Form = .false. 
                     return 
 
                end if 
 
C  Remember to save the null indicator 
                if (nullable) then 
                 sqlda.sqlvar(i).sqltype = -sqlda.sqlvar(i).sqltype 
                     sqlda.sqlvar(i).sqlind = %loc(inds(i)) 
                else 
                     sqlda.sqlvar(i).sqlind = 0 
                end if 
 
C  
C  Store field names and place holders (separated by commas) 
C  for the SQL statements. 
C  
                if (i .gt. 1) then 
                     names(name_cnt:name_cnt) = ',' 
                     name_cnt = name_cnt + 1 
                    marks(mark_cnt:mark_cnt) = ',' 
                    mark_cnt = mark_cnt + 1 
               end if 
               name_cur = sqlda.sqlvar(i).sqlname.sqlnamel 
               names(name_cnt:name_cnt+name_cur) = 
     1                sqlda.sqlvar(i).sqlname.sqlnamec(1:name_cur) 
               name_cnt = name_cnt + name_cur 
               marks(mark_cnt:mark_cnt) = '?' 
               mark_cnt = mark_cnt + 1 
 
20         continue 
 



Sample Applications 

4–118     Embedded SQL Companion Guide 

C  
C  Create final SELECT and INSERT statements. For the SELECT  
C  statement ORDER BY the first field. 
C  
      name_cur = sqlda.sqlvar(1).sqlname.sqlnamel 
      sel_buf = 'select ' // names(1:name_cnt-1) // ' from ' 
     1              // tabname // ' order by ' 
     2              // sqlda.sqlvar(1).sqlname.sqlnamec(1:name_cur) 
      ins_buf = 'insert into ' // tabname // ' (' 
     1      // names(1:name_cnt-1) // ') values (' 
     2      // marks(1:mark_cnt-1) // ')' 
 
      Describe_Form = .true. 
      return 
 
      end 



  

Chapter 5: Embedded SQL for Ada    5–1 

Chapter 5: Embedded SQL for Ada 
 

This chapter describes the use of Embedded SQL with the Ada programming 
language. 

Embedded SQL Statement Syntax for Ada 
This section describes the language-specific issues inherent in embedding SQL 
database and forms statements in an Ada program. An Embedded SQL 
database statement has the following general syntax: 

 [margin] exec sql SQL_statement terminator 

The syntax of an Embedded SQL/FORMS statement is almost identical: 

 [margin] exec frs SQL/FORMS_statement terminator 

For information on SQL statements, see the SQL Reference Guide. For 
information on SQL/FORMS statements, see the Forms-based Application 
Development Tools User Guide. 

The sections below describe the various syntactical elements of these 
statements as implemented in Ada. 

Margin 

There are no specified margins for Embedded SQL statements in Ada. The 
exec keyword can begin anywhere on the source line. 

Terminator 

The terminator for Ada is the semicolon (;). For example, a select statement 
embedded in an Ada program would look like: 

exec sql select ename  
  into :namevar 
  from employee 
  where eno = :numvar; 

An Embedded SQL statement cannot be followed on the same line by another 
embedded statement or an Ada statement. Doing so will cause preprocessor 
syntax errors on the second statement. Following the Ada terminator, only 
comments and white space (blanks and tabs) are allowed to the end of the 
line. 



Embedded SQL Statement Syntax for Ada 

5–2     Embedded SQL Companion Guide 

Labels 

Like Ada statements, Embedded SQL statements can have a label prefix.  The 
label must begin with an alphabetic character, must be the first word on the 
line (optionally preceded by white space), and must be delimited with double 
angle brackets. For example: 

<<close_cursor>> exec sql close cursor1; 

The label can appear anywhere an Ada label can appear. Even though the 
preprocessor accepts the label in front of any exec sql or exec frs prefix, it 
may not be appropriate to code it on some lines. For example, the following, 
although acceptable to the preprocessor, later generates a compiler error 
because labels are not allowed before declarations: 

<<include_sqlca>> exec sql include sqlca; 

As a general rule, use labels only with executable statements. 

Line Continuation 

There are no line continuation rules for Embedded SQL statements in Ada. 
Statements can continue across multiple lines, extending to the Ada 
terminator. You can also include blank lines. 

Comments 

You can include Ada comments delimited by “--” and extending to the end of 
the line, anywhere in an Embedded SQL statement that a line break is allowed, 
with the following exceptions: 

 In string constants. 

 In parts of statements that are dynamically defined. For example, a 
comment in a string variable specifying a form name is interpreted as part 
of the form name and causes a runtime syntax error. 

 Between component lines of Embedded SQL block-type statements.  All 
block-type statements (such as activate and unloadtable) are compound 
statements that include a statement section delimited by begin and end. 
Comment lines must not appear between the statement and its section. 
The preprocessor interprets such comments as Ada host code, which 
causes preprocessor syntax errors. (Note, however, that comments can 
appear on the same line as the statement.) For example, the following 
statement causes a syntax error on the first Ada comment: 

exec frs unloadtable empform 
  employee (:namevar = ename); 
 -- Illegal comment before statement body 
exec frs begin; -- comment legal here 
  msgbuf := namevar; 
 exec frs end; 



Embedded SQL Statement Syntax for Ada 

Chapter 5: Embedded SQL for Ada    5–3 

 Statements made up of more than one compound statement, such as the 
display statement, which typically consists of the display clause, an 
initialize section, activate sections, and a finalize section, cannot have 
Ada comments between any of the components. These comments are 
translated as host code and cause syntax errors on subsequent statement 
components. 

String Literals 

Embedded SQL string literals are delimited by single quotes. To embed a 
single quote in a string literal, precede it with another single quote character, 
as in: 

exec sql insert  
  into comments (id, val) 
  values (15, 'This is ''Student'' information'); 

Because the single quote is the SQL string delimiter, Ada single-character 
literals are treated like SQL string literals. Embedded SQL/Ada string literals 
cannot be continued over multiple lines. 

Note that the preprocessor does not accept the Ada character string delimiter, 
the double quote ("). No special characters are required to embed a double 
quote in an Embedded SQL string literal. 

String Literals and Statement Strings 

The Dynamic SQL statements prepare and execute immediate both use 
statement strings that specify an SQL statement. The statement string can be 
specified by a string literal or character string variable, as in: 

exec sql execute immediate 'drop employee'; 

or: 

str := "drop employee"; 
exec sql execute immediate :str; 

As with regular Embedded SQL string literals, the statement string delimiter is 
the single quote. However, single quotes embedded in statement strings must 
conform to the runtime rules of SQL when the statement is executed. For 
example, the following two dynamic insert statements are equivalent: 

exec sql prepare s1 from 
     'insert into t1 values (''single''''double" ''); 

and: 

str := "insert into t1 values ('single'' double"" ')"; 
exec sql prepare s1 from :str; 



Ada Variables and Data Types 

5–4     Embedded SQL Companion Guide 

In fact, the string literal generated by the Embedded SQL/Ada preprocessor for 
the first example is identical to the string literal assigned to the variable “str” 
in the second example. 

The runtime evaluation of the above statement string is: 

insert into t1 values ('single''double" ') 

As a general rule it is best to avoid using a string literal for a statement string 
whenever it may contain quotes. Instead you should build the statement string 
using the Ada language rules for string literals together with the SQL rules for 
the runtime evaluation of the string. 

The Create Procedure Statement 

As mentioned in the SQL Reference Guide, the create procedure statement 
has language-specific syntax rules for line continuation, string literal 
continuation, comments, and the final terminator. These syntax rules follow 
the rules discussed in this chapter. For example, the final terminator is a 
semicolon (;). Although the preprocessor treats the create procedure 
statement as a single statement, you must terminate all statements in the 
body of the procedure with a semicolon as is an Embedded SQL/Ada 
statement. 

The following example shows a create procedure statement that follows the 
Embedded SQL/Ada syntax rules: 

exec sql 
  create procedure proc (parm integer) as 
  declare 
    var integer; 
  begin 
    if parm > 10 then -- use Ada comment delimiter 
      message 'Ada strings cannot continue over lines'; 
      insert into tab values (:parm); 
    endif; 
  end;  

Ada Variables and Data Types 
This section describes how to declare and use Ada program variables in 
Embedded SQL.  

Embedded SQL/Ada Declarations 

The following sections discuss syntax, types, and definitions of Embedded 
SQL/Ada declarations. 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–5 

Embedded SQL Variable Declaration Sections 

Embedded SQL statements use Ada variables to transfer data to and from the  
database or a form into the program. You must declare Ada variables and 
constants to Embedded SQL before using them in any Embedded SQL 
statements. Ada variables, types and constants are declared to Embedded SQL 
in a declaration section. This section has the following syntax: 

 exec sql begin declare section; 
  Ada type and variable declarations 
 exec sql end declare section; 

Note that placing a label in front of the exec sql end declare section 
statement causes a preprocessor syntax error. 

Embedded SQL variable declarations are global to the program file from the 
point of declaration onwards. You can incorporate multiple declaration sections 
into a single program, as would be the case when a few different Ada 
procedures issue embedded statements using local variables. Each procedure 
can have its own declaration section. For a discussion of the declaration of 
variables that are local to Ada procedures, see The Scope of Variables in this 
chapter. 

Reserved Words in Declarations 

The following keywords are reserved by the Embedded SQL/Ada preprocessor. 
Therefore you cannot declare types or variables with the same name as these 
keywords: 

 

access 
digits 
limited 
package 
renames 

array 
end 
new 
private 
return 

case 
for 
null 
raise 
sql_standard 

constant 
function 
of 
range 
subtype 

delta 
is 
others 
record 
type 

Data Types and Constants 

The Embedded SQL/Ada preprocessor defines certain data types and constants 
from the Ada STANDARD and SYSTEM packages. The table below maps the 
types to their corresponding Ingres type categories. For a description of the 
exact type mapping, see Data Type Conversion in this chapter. 



Ada Variables and Data Types 

5–6     Embedded SQL Companion Guide 

Ada Data Types and Corresponding Ingres Types 
 

Ada Type Ingres Type 

short_short_integer  integer  

short_integer  integer  

integer  integer  

natural  integer  

positive  integer  

boolean  integer  

float  float  

long_float  float  

f_float  float  

d_float  float  

character  character  

string  character  

None of the types listed above should be redefined by your program. If they 
are redefined, your program might not compile and will not work correctly at 
runtime. 

The following table maps the Ada constants to their corresponding Ingres type 
categories. 

Constants and Corresponding Ingres Types 
 

Ada Constant Ingres Type 

max_int  integer  

min_int  integer  

true  integer  

false  integer  

Note that if the type or constant is derived from the SYSTEM package, the 
program unit must specify that the SYSTEM package should be included—
Embedded SQL does not do so itself. You cannot refer to a SYSTEM object by 
using the package name as a prefix, because Embedded SQL does not allow 
this type of qualification. The types f_float and d_float and the constants 
max_int and min_int are derived from the SYSTEM package. 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–7 

The Integer Data Type 

All integer types and their derivatives are accepted by the preprocessor.  
Even though some integer types have Ada constraints, such as the types 
natural and positive, Embedded SQL does not check these constraints, either 
during preprocessing or at runtime. An integer constant is treated as an 
Embedded SQL constant value and cannot be the target of an Ingres 
assignment. 

The type boolean is handled as a special type of integer. In Ada, the 
boolean type is defined as an enumerated type with enumerated literals false 
and true. Embedded SQL treats the boolean type as an enumerated type and 
generates the correct code in order to use this type to interact with an Ingres 
integer. Enumerated types are described in more detail later. 

The Float Data Type 

The preprocessor accepts four floating-point types. The types float and 
f_float are the 4-byte floating-point types. The types long_float and d_float 
are the 8-byte floating-point types. Long_float requires some extra 
definitions for default Ada pragmas to be able to interact with Ingres floating-
point types. Note that the preprocessor does not accept the long_long_float 
and h_float data types. 

The Long Float Storage Format 

Ingres requires that the storage representation for long floating-point variables 
be d_float, because the Embedded SQL runtime system uses that format for 
floating-point conversions. If your Embedded SQL program has long_float 
variables that interact with the Embedded SQL runtime system, you must 
make sure they are stored in the d_float format. Floating-point values of 
types g_float and h_float are stored in different formats and sizes. The 
default Ada format is g_float; consequently, you must convert your long 
floating-point variables to type d_float. There are three methods you can use 
to ensure that the Ada compiler always uses the d_float format. 

The first method is to issue the following Ada pragma before every compilation 
unit that declares long_float variables: 

pragma long_float( d_float ); 
exec sql begin declare section; 
   dbl: long_float; 
exec sql end declare section; 

Note that the pragma statement is not an Embedded SQL statement, but an 
Ada statement that directs the compiler to use a different storage format for 
long_float variables. 



Ada Variables and Data Types 

5–8     Embedded SQL Companion Guide 

The second method is a more general instance of the first. If you are certain 
that all long_float variables in your Ada program library will use the d_float 
format, including those not interacting with Ingres, then you can install the 
pragma into the program library by issuing the following ACS command: 

acs set pragma/long_float=d_float 

This system-level command is equivalent to issuing the Ada pragma 
statement for each file that uses long_float variables. 

The third method is to use the type d_float instead of the type long_float. 
This has the advantage of allowing you to mix both d_float and g_float 
storage formats in the same compilation unit. Of course, all Embedded SQL 
floating-point variables must be of the d_float type and format. For example: 

exec sql begin declare section; 
  d_dbl: d_float; 
exec sql end declare section; 
 
  g_dbl: g_float; -- Unknown to Embedded SQL 

One side effect of all the above conversions is that some default system 
package instantiations for the type long_float become invalid because they 
are set up under the g_float format. For example, the package 
long_float_text_io, which is used to write long floating-point values to text 
files, must be reinstantiated. Assuming that you have issued the following ACS 
command on your program library: 

acs set pragma/long_float=d_float 

you must reinstantiate the long_float_text_io package before you can use it. 
A typical file might contain the following two lines, which serve to enter your 
own copy of long_float_text_io into your library: 

with text_io; 
package long_float_text_io is new 
             text_io.float_io(long_float); 

A later statement, such as: 

with long_float_text_io; use long_float_text_io; 

will pick up your new copy of the package, which is defined using the d_float 
internal storage format. 

The Character and String Data Types 

Both the character and string data types are compatible with Ingres string 
objects. By default, the string data type is an array of characters. 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–9 

The character data type does have some restrictions. Because it must be 
compatible with Ingres string objects, you can use only a one-dimensional 
array of characters. Therefore, you cannot use a single character or a multi-
dimensional array of characters as a Ingres string. Note that you can use a 
multi-dimensional array of strings. For example, the following four declarations 
are legal: 

subtype Alphabet is Character range 'a'..'z'; 
type word_5 is array(1..5) of Character;  
                                -- 1-dimensional array 
word_6: String(1..6);           -- Default string type 
word_arr: array(1..5) of String(1..6);  
                                -- Array of strings 

However, the declarations below are illegal because they violate the Embedded 
SQL restrictions for the character type. Although the declarations may not 
generate Embedded SQL errors, the Ada compiler does not accept the 
references when used with Embedded SQL statements. 

letter: Character;        -- 1 character 
word_arr: array(1..5) of word_5;  
                          -- 2-dimensional array of char 

Both could be declared instead with the less restrictive string type: 

letter: String(1..1); 
word_arr: array(1..5) of String(1..5);  
                         -- Array of strings 

Character strings containing embedded single quotes are legal in SQL, for 
example: 

mary's 

User variables may contain embedded single quotes and need no special 
handling unless the variable represents the entire search condition of a where 
clause: 

where :variable 

In this case you must escape the single quote by reconstructing the :variable 
string so that any embedded single quotes are modified to double single 
quotes, as in: 

mary''s 

Otherwise, a runtime error will occur.  

For more information on escaping single quotes, see String Literals in this 
chapter. For more information on character strings that contain embedded 
nulls, see The Character and String Data Types in this chapter. 

Variable and Number Declaration Syntax 

The following sections discuss variable and number declaration syntax. 



Ada Variables and Data Types 

5–10     Embedded SQL Companion Guide 

Simple Variable Declarations 

An Embedded SQL/Ada variable declaration has the following syntax:  

              identifier {, identifier} : 
                                                        [constant] 
                                                        [array (dimensions) of] 
                                                        type_name 
                                                        [type_constraint] 
                                                        [:= initial_value]; 

Syntax Notes: 

 The identifier must be a legal Ada identifier beginning with an alphabetic 
character. 

 If you specify the constant clause, the declaration must include an explicit 
initialization. 

 If you specify the constant clause, the declared variables cannot be 
targets of Ingres assignments. 

 The Embedded SQL preprocessor does not parse the dimensions of an 
array specification. Consequently, the preprocessor accepts unconstrained 
array bounds and multi-dimensional array bounds. However, an illegal 
dimension (such as a non-numeric expression) is also accepted but causes 
Ada compiler errors.  

For example, both of the following declarations are accepted, even though 
only the first is legal Ada: 

square:        array (1..10, 1..10) of Integer; 
 bad_array:     array ("dimensions") of Float; 

 A variable or type name must begin with an alphabetic character, which 
can be followed by alphanumeric characters or underscores. 

 The type_name must be either an Embedded SQL/Ada type (refer to the 
list of acceptable types earlier in this chapter) or a type name already 
declared to Embedded SQL. 

 The legal type_constraints are described in the next section. 

 The preprocessor does not parse initial_value. Consequently, the 
preprocessor accepts any initial value, even if it can later cause an Ada 
compiler error. For example, both of the following initializations are 
accepted, even though only the first is legal Ada: 

rowcount: Integer := 1; 
msgbuf:   String(1..100) := 2; -- Incompatible value 

You must not use a single quote in an initial value to specify an Ada attribute. 
Embedded SQL treats it as the beginning of a string literal and generates an 
error. For example, the following declaration generates an error: 

id: Integer := Integer'First 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–11 

The following is a sample variable declaration: 

rows, records:    Integer range 0..500 := 0; 
was_error:        Boolean; 
min_sal:          constant Float := 15000.00; 
msgbuf:           String(1..100) := (1..100 => ' '); 
operators:        constant array(1..6) of String(1..2) := 
      ("= ", "!=", "<=", ">="); 

Type Constraints 

Type constraints can optionally follow the type name in an Ada object 
declaration. In general, they do not provide Embedded SQL with runtime type 
information, so they are not fully processed. The following two constraints 
describe the syntax and restrictions of Embedded SQL type constraints. 

The Range Constraint 

The syntax of the range constraint is:  

 range lower_bound .. upper_bound 

In a variable declaration, its syntax is: 

 identifier: type_name range lower_bound .. upper_bound; 

Syntax Notes: 

 Even if Ada does not allow a range constraint, Embedded SQL does accept 
it. For example, both of the following range constraints are accepted, 
although the second is illegal in Ada because the string type is not a 
discrete scalar type: 

digit: Integer range 0..9; 
 chars: String range 'a'..'z'; 

 The two bounds, lower_bound and upper_bound, must be integer literals, 
floating-point literals, character literals, or identifiers. Other expressions 
are not accepted. 

 The bounds are not checked for compatibility with the type_name or with 
each other. For example, the preprocessor accepts the following three 
range constraints, even though only the first is legal Ada: 

byte: Integer range -128..127; 
word: Integer range 1.0..30000.0; 
     --Incompatible with type name 
long: Integer range 1..'z';  
     --Incompatible with each other 



Ada Variables and Data Types 

5–12     Embedded SQL Companion Guide 

The Discriminant and Index Constraints 

The discriminant and index constraints have the following syntax:  

 (discriminant_or_index_constraint) 

In a variable declaration the syntax is: 

 identifier: type_name (discriminant_or_index_constraint); 

Syntax Notes: 

 Even if Ada does not allow a constraint, Embedded SQL does accept it. For 
example, Embedded accepts both of the following constraints, even though 
the second is illegal in Ada because the integer type does not have a 
discriminant: 

who: String(1..20); -- Legal index constraint 
nat: Integer(0);  -- Illegal context for discriminant 

 The contents of the constraint contained in the parentheses are not 
processed. Consequently, Embedded SQL accepts any constraint, even if 
Ada does not allow it. For example, Embedded SQL accepts the following 
declaration but generates a later Ada compiler error because of the illegal 
index constraint: 

password: String(secret word); 

Note that the above type constraints are not discussed in detail after this 
section, and their rules and restrictions are considered part of the Embedded 
SQL/Ada declaration syntax. 

Formal Parameter Declarations 

An Embedded SQL/Ada formal parameter declaration has the following syntax: 

              identifier {, identifier} : 
                            [in | out | in out 
                            type_name 
                            [:= default_value ] 
                            [;] 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–13 

Like other Embedded SQL declarations, the formal parameter declaration must 
occur inside a declaration section. In a subprogram specification, its syntax is: 

              procedure name  
                            exec sql begin declare section; 
                                          ( parameter_declaration {; 
parameter_declaration} ) 
                            exec sql end declare section; 
                                          is 
                                          ... 

or: 

              function name  
                            exec sql begin declare section; 
                                          ( parameter_declaration {; 
parameter_declaration} ) 
                            exec sql end declare section; 
                                          return type_name is 
                                          ... 

Syntax Notes: 

 The Embedded SQL preprocessor processes only the formal parameter 
declarations in a subprogram specification. 

 If you specify the in mode alone, the declared parameters are considered 
constants and cannot be targets of Ingres assignments. 

 If you do not specify a mode, the default in mode is used and the declared 
parameters are considered constants. 

 The type_name must be either an Embedded SQL/Ada type or a type 
name already declared to Embedded SQL. 

 The preprocessor does not parse the default_value. Consequently, the 
preprocessor accepts any default value, even if it can later cause a Ada 
compiler error. For example, Embedded SQL accepts both of the following 
parameter defaults, even though only the first is legal in Ada: 

procedure Load_Table 
 exec sql begin declare section; 
  (clear_it: in Boolean := TRUE; 
   is_error: out Boolean := "FALSE") 
 exec sql end declare section; 
 is 
 ... 

You must not use a single quote in a default value to specify an Ada attribute. 
Embedded SQL treats it as the beginning of a string literal and generates an 
error. 

 You must use the semicolon with all parameter declarations except the 
last. 



Ada Variables and Data Types 

5–14     Embedded SQL Companion Guide 

 As with all other Embedded SQL/Ada declarations, formal parameter 
declarations are global from the point of declaration to the end of the file. 
For more information, see The Scope of Variables in this chapter. 

Number Declarations 

An Embedded SQL/Ada number declaration has the following syntax: 

  identifier {, identifier} : 
      constant      := initial_value; 

Syntax Notes: 

 You can only use a number declaration for integer numbers. You cannot 
declare a floating-point number declaration using this format. If you do, 
Embedded SQL treats it as an integer number declaration, later causing 
compiler errors. For example, the preprocessor treats the following two 
number declarations as integer number declarations, even though the 
second is a float number declaration: 

max_employees: constant := 50000; 
 min_salary: constant := 13500.0; -- Treated as INTEGER 

In order to declare a constant float declaration, you must use the 
constant variable syntax. For example, you should declare the second 
declaration above as: 

min_salary: constant Float := 13500.0; 
                                 -- Treated as FLOAT 

 The declared numbers cannot be the targets of Ingres assignments. 

 The preprocessor does not parse the initial_value. Consequently, the 
preprocessor accepts any initial value, even if it can later cause an Ada 
compiler error. For example, Embedded SQL accepts both of the following 
initializations, even though only the first is a legal Ada number declaration: 

no_rows: constant := 0; 
bad_num: constant := 123 + "456"; 

You must not use a single quote in an initial value to specify an Ada attribute. 
Embedded SQL treats it as the beginning of a string literal and generates an 
error. 

Renaming Variables 

The syntax for renaming variables is:  

 identifier: type_name renames declared_object; 

Syntax Notes: 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–15 

 The type_name must be an Embedded SQL/Ada type or a type name 
already declared to Embedded SQL and the declared_object must be a 
known Embedded SQL variable or constant. 

 The declared_object must be compatible with the type_name in base type, 
array dimensions, and size. 

 If the declared object is a record component, any subscripts used to 
qualify the component are ignored. For example, the preprocessor accepts 
both of the following rename statements, even though one of them must 
be wrong, depending on whether “emprec” is an array: 

eage1: Integer renames emprec(2).age; 
eage2: Integer renames emprec.age; 

Type Declaration Syntax 

Embedded SQL/Ada supports a subset of Ada type declarations. In a 
declaration, the Embedded SQL preprocessor only notes semantic information 
relevant to the use of the variable in Embedded SQL statements at runtime. 
The preprocessor ignores other semantic information. Refer to the syntax 
notes in this section and its subsections for details. 

Type Definition 

An Embedded SQL/Ada full type declaration has the following syntax:  

 type identifier [discriminant_part] is type_definition; 

Syntax Notes: 

 The discriminant_part has the syntax: 

(discriminant_specifications) 

and is not processed by Embedded SQL. As with variable declarations, 
Embedded SQL always accepts a discriminant specification, even if Ada 
does not allow it. For example, Embedded SQL accepts the following 
declaration but later generates an Ada compiler error because the 
discriminant type is not a discrete type, and the discriminant part is not 
allowed in a non-record declaration: 

type shapes(name: String := "BOX")  
   is array(1..10) of String(1..3); 

From this point on, discriminant parts are not included in the syntax 
descriptions or notes. 

 The legal type_definitions allowed in type declarations are described 
below. 



Ada Variables and Data Types 

5–16     Embedded SQL Companion Guide 

Subtype Definition 

An Embedded SQL/Ada subtype declaration has the following syntax: 

 subtype identifier is type_name [type_constraint]; 

Syntax Note: 

 The type_constraint has the same rules as the type constraint of a variable 
declaration. The range, discriminant and index constraints are all allowed 
and are not processed against the type_name being used. For more details 
about these constraints, see the section above on variable type 
constraints. The floating-point constraint and the digits clause, which are 
allowed in subtype declarations, are discussed later. 

Integer Type Definitions 

The syntax of an Embedded SQL/Ada integer type definition is:  

              range lower_bound .. upper_bound 

In the context of an integer type declaration, the syntax is: 

              type identifier is range lower_bound .. upper_bound; 

In the context of an integer subtype declaration, the syntax is: 

              subtype identifier is integer_type_name 
                            range lower_bound .. upper_bound; 

Syntax Notes: 

 In an integer type declaration (not a subtype declaration), Embedded SQL 
processes the range constraint of an integer type definition to evaluate 
storage size information. Both lower_bound and upper_bound must be 
integer literals. Based on the specified range and the actual values of the 
bounds, Embedded SQL treats the type as a byte-size, a word-size or a 
longword-size integer. For example: 

type Table_Num is range 1..200; 

 In an integer subtype declaration, the range constraint is treated as a 
variable range constraint and is not processed. Consequently, the same 
rules that apply to range constraints for variable declarations apply to 
integer range constraints for integer subtype declarations. The base type 
and storage size information is determined from the integer_type_name 
used. For example: 

subtype Ingres_I1 is Integer range -128..127; 
subtype Ingres_I2 is Integer range -32768..32767; 
subtype Table_Low is Table_Num range 1..10; 
subtype Null_Ind is  Short_Integer range -1..0; 
                                   -- Null Indicator 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–17 

Floating-point Type Definitions 

The syntax of an Embedded SQL/Ada floating-point type definition is:  

              digits digit_specification [range_constraint] 

In the context of a floating-point type declaration, the syntax is: 

              type identifier is digits digit_specification [range_constraint]; 

The syntax of a floating-point subtype declaration is: 

              subtype identifier is floating_type_name 
                            [digits digit_specification] 
                            [range_constraint]; 

Syntax Notes: 

 The value of digit_specification must be an integer literal. Based on the 
value of the specification, Embedded SQL determines whether to treat a 
variable of that type as a 4-byte float or an 8-byte float. The following 
rules apply: 

 

Digit Range Type 

1 < = d < = 6 4-byte floating-point type 

7 <= d < = 16 8-byte floating-point type 

Note that if the digits specified are out of range, the type is unusable. 
Recall that Embedded SQL does not accept either the long_long_float or 
the h_float type. For detailed information on the internal storage format 
for 8-byte floating-point variables, see The Long Float Storage Format in 
this chapter. 

 The range_constraint for floating-point types and subtypes is treated as a 
variable range constraint and is not processed. Although Embedded SQL 
allows any range constraint, you should not specify a range constraint that 
alters the size needed to store the declared type. Embedded SQL obtains 
its type information from the digits clause, and altering this type 
information by a range clause, which may require more precision, results 
in runtime errors. 

 The digits clause in a subtype declaration does not have any effect on the 
Embedded SQL type information. This information is obtained from 
floating_type_name. 

type Emp_Salary is digits 8 range 0.00..500000.00; 
subtype Directors_Sal  
               is Emp_Salary 100500.00..500000.00; 
subtype Raise_Percent  
               is Float range 1.05..1.20; 



Ada Variables and Data Types 

5–18     Embedded SQL Companion Guide 

Enumerated Type Definitions 

The syntax of an Embedded SQL/Ada enumerated type definition is:  

 (enumerated_literal {, enumerated_literal}) 

In the context of a type declaration, the syntax is: 

 type identifier is (enumerated_literal {, enumerated_literal}); 

In the context of a subtype declaration, the syntax is: 

 subtype identifier is enumerated_type_name [range_constraint]; 

Syntax Notes: 

 An enumerated type declaration can contain no more than 1000 
enumerated literals. The preprocessor treats all literals and variables 
declared with this type as integers. Enumerated literals are treated as 
though they were declared with the constant clause, and therefore cannot 
be the targets of Ingres assignments. When using an enumerated literal 
with Embedded SQL statements, only the ordinal position of the value in 
relation to the original enumerated list is relevant. When assigning from an 
enumerated literal, Embedded SQL generates: 

 enumerated_type_name'pos(enumerated_variable_or_literal) 

When assigning from or into an enumerated variable, Embedded SQL passes 
the object by address and assumes that the value being assigned from or into 
the variable will not raise a runtime constraint error. 

 An enumerated literal can be an identifier or a character literal. Embedded 
SQL does not store or process enumerated literals that are character 
literals. 

 Enumerated literal identifiers must be unique in their scope. Embedded 
SQL does not allow the overloading of variables or constants. 

 The range_constraint for enumerated subtypes is treated as a variable 
range constraint and is not processed. The type information is determined 
from enumerated_type_name. 

type Table_Field_States is 
 (UNDEFINED, NEWROW, UNCHANGED,CHANGED, DELETED); 
 subtype Updated_States is 
    Table_Field_States range CHANGED..DELETED; 
 tbstate: Table_Field_States := UNDEFINED; 

 ESQL accepts the predefined enumeration type name Boolean, which 
contains the two literals FALSE and TRUE. You can use a representation 
clause for enumerated types. When you do so, however, you should not 
reference any enumerated literals of that type in embedded statements, 
though you can reference the variables. 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–19 

Enumerated literals are interpreted into their integer relative position 
(pos) and representation clauses invalidate the effect of the pos attribute 
that the preprocessor generates. The representation clause must be 
outside of the declare section. 

 You can only use enumerated variables and literals to assign to or from 
Ingres. You cannot use these objects to specify simple numeric objects, 
such as table field row numbers or sleep statement seconds. 

Array Type Definitions 

The syntax of an Embedded SQL/Ada array type definition is:  

              array (dimensions) of type_name; 

In the context of a type declaration, the syntax is: 

              type identifier is array (dimensions) of 
                            type_name [type_constraint]; 

Syntax Notes: 

 The dimensions of an array specification are not parsed by the Embedded 
SQL preprocessor. Consequently, the preprocessor accepts unconstrained 
array bounds and multi-dimensional array bounds. However, an illegal 
dimension (such as a non-numeric expression) is also accepted but later 
causes Ada compiler errors. For example, both of the following type 
declarations are accepted, even though only the first is legal in Ada: 

type Square is array(1..10, 1..10) of Integer; 
type What is array("dimensions") of Float; 

Because the preprocessor does not store the array dimensions, it only 
checks to determine that when you use the array variable, it is followed by 
a subscript in parentheses. 

 The type_constraint for array types is treated as a variable type constraint 
and is not processed. The type information is determined from type_name. 

 Any array built from the base type character (not string) must be exactly 
one-dimensional. Embedded SQL treats the whole array as though you 
declared it as type string. If you declare more dimensions for a variable of 
type character, Embedded SQL still treats it as a one-dimensional array. 

 The type string is the only array type. 



Ada Variables and Data Types 

5–20     Embedded SQL Companion Guide 

Record Type Definitions 

The syntax of an Embedded SQL/Ada record type definition is: 

              record 
                            record_component {record_component} 
              end record; 

where record_component is: 

              component_declaration ; | variant_part; | null; 

where component_declaration is: 

              identifier {, identifier} : 
                            type_name [type_constraint] [:= initial_value] 

In the context of a type declaration, the syntax of a record type definition is: 

              type identifier is 
                            record 
                                          record_component { record_component} 
                            end record; 

Note that the SQL Reference Guide refers to records as structures and record 
components as structure members. 

Syntax Notes: 

 In a component_declaration, all clauses have the same rules and 
restrictions as they do in a regular type declaration. For example, as in 
regular declarations, the preprocessor does not check initial values for 
correctness. 

 The variant_part accepts the Ada syntax for variant records: if specified, it 
must be the last component of the record. The variant discriminant name, 
choice names, and choice ranges are all accepted. There is no syntactic or 
semantic checking on those variant objects. Embedded SQL uses only the 
final component names of the variant part and not any of the variant 
object names. 

 You can specify the null record. 

The following example illustrates the use of record type definitions: 

type Address_Rec is 
    record 
        street:    String(1..30); 
        town:      String(1..10); 
        zip:       Positive; 
    end record; 
 
type Employee_Rec is 
    record 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–21 

        name:      String(1..20); 
        age:       Short_Short_Integer; 
        salary:    Float := 0.0; 
        address:   Address_Rec; 
    end record; 

Incomplete Type Declarations and Access Types 

The incomplete type declaration should be used with an access type. The 
syntax for an incomplete type declaration is: 

 type identifier [discriminant_part]; 

Syntax Notes: 

 As with other type declarations, the discriminant_part is ignored. 

 You must fully define an incomplete type before using any object declared 
with it. 

The syntax for an access type declaration is: 

 type identifier is access type_name [type_constraint]; 

Syntax Notes: 

 The type_name must be an Embedded SQL/Ada type or a type name 
already declared to Embedded SQL, whether it is a full type declaration or 
an incomplete type declaration. 

 The type_constraint has the same rules as other type declarations. 

type Employee_Rec; -- Incomplete declaration 
type Employee is access Employee_Rec;  
                  -- Access to above 
 
type Employee_Rec is -- Real definition 
  record 
   name:     String(1..20); 
   age:      Short_Short_Integer; 
   salary:   Float := 0.0; 
   link:     Employee; 
  end record; 

Derived Types 

The syntax for a derived type is:  

 type identifier is new type_name [type_constraint]; 

Syntax Notes: 

 The type_name must be an embedded SQL/Ada type or a type name 
already declared to Embedded SQL, whether it is a full type declaration or 
an incomplete type declaration. 



Ada Variables and Data Types 

5–22     Embedded SQL Companion Guide 

 Embedded SQL assigns the type being declared the same properties as the 
type_name specified. The preprocessor makes sure that any variables of a 
derived type are cast into the original base type when used with the 
runtime routines. 

 The type_constraint has the same rules as other type declarations. 

type Dbase_Integer is new Integer; 

Private Types 

The syntax for a private type is:  

 type identifier is [limited] private; 

Syntax Note:   

This type declaration is treated as an incomplete type declaration. You must 
fully define a private type before using any object declared with it. 

Representation Clauses 

With one exception, you must not use representation clauses for any types or 
objects you have declared to Embedded SQL and intend to use with the 
Embedded SQL runtime system. Any such clauses causes runtime errors. 
These clauses include the Ada statement: 

 for type_or_attribute use expression; 

and the Ada pragma: 

 pragma pack(type_name); 

The exception is that you can use a representation clause to specify internal 
values for enumerated literals. When you do so, however, you should not 
reference any enumerated literals of the modified enumerated type in 
embedded statements. The representation clause invalidates the effect of the 
pos attribute that the preprocessor generates. If the application context is one 
that requires the assignment from the enumerated type, then you should 
deposit the literal into a variable of the same enumerated type and assign that 
variable to Ingres. In all cases, do not include the representation clause in a 
declare section. For example: 

exec sql begin declare section; 
    type opcode is (opadd, opsub, opmul); 
exec sql end declare section; 
... 
 
for opcode use (opadd => 1, opsub => 2, opmul => 4); 
... 
 
opcode_var := opsub; 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–23 

exec sql insert into codes values (:opcode_var); 

The DCLGEN Utility 

DCLGEN (Declaration Generator) is a record-generating utility that maps the 
columns of a database table into a record that can be included in a variable 
declaration. Use the following command to invoke DCLGEN from the operating 
system level: 

 dclgen language dbname tablename filename recordname 

where 

 language is the Embedded SQL host language, in this case, “ada.” 

 dbname is the name of the database containing the table. 

 tablename is the name of the database table. 

 filename is the output file into which the record declaration is placed. 

 recordname is the name of the Ada record variable that the command 
creates. The command generates a record type definition named 
recordname, followed by “_rec”. It also generates a variable declaration 
for recordname. 

This command creates the declaration file filename. The file contains a record 
type definition corresponding to the database table and a variable declaration 
of that record type. The file also includes a declare table statement that 
serves as a comment and identifies the database table and columns from 
which the record was generated. 

After you have generated the file, you can use an Embedded SQL include 
statement to incorporate it into the variable declaration section. The following 
example demonstrates how to use DCLGEN in an Ada program. 

Assume the Employee table was created in the Personnel database as: 

exec sql create table employee  
   (eno    smallint not null, 
   ename   char(20) not null, 
   age     integer1, 
   job     smallint, 
   sal     decimal(14,2) not null, 
   dept    smallint); 

and the DCLGEN system-level command is: 

dclgen ada personnel employee employee.dcl emprec 



Ada Variables and Data Types 

5–24     Embedded SQL Companion Guide 

The employee.dcl file created by this command contains a comment and three 
statements. The first statement is the declare table description of 
“employee,” which serves as a comment. The second statement is a 
declaration of the Ada record type definition “emprec_rec.” The last statement 
is a declaration, using the “emprec_rec” type, for the record variable 
“emprec.” The exact contents of the employee.dcl file are: 

-- Description of table employee from database personnel 
exec sql declare employee table 
    (eno       smallint not null, 
    ename      char(20) not null, 
    age        integer1, 
    job        smallint, 
    sal        decimal(14,2) not null, 
    dept       smallint); 
type emprec_rec is 
    record 
    eno:       short_integer; 
    ename:     string(1..20); 
    age:       short_short_integer; 
    job:       short_integer; 
    sal:       long_float; 
    dept:      short_integer; 
    end record; 
emprec: emprec_rec; 

You should include this file, by means of the Embedded SQL include 
statement, in an Embedded SQL declaration section: 

exec sql begin declare section; 
    exec sql include 'employee.dcl'; 
exec sql end declare section; 

You can then use the emprec record in a select, fetch, or insert statement.  

The field names of the structure that DCLGEN generates are identical to the 
column names in the specified table. Therefore, if the column names in the 
table contain any characters that are illegal for host language variable names 
you must modify the name of the field before attempting to use the variable in 
an application. 

DCLGEN and Large Objects 

When a table contains a large object column, DCLGEN will issue a warning 
message and map the column to a zero length character string variable. You 
must modify the length of the generated variable before attempting to use the 
variable in an application. 

For example, assume that the “job_description” table was created in the 
personnel database as: 

create table job_description (job smallint, 
     description long varchar); 

and the DCLGEN system level command is: 

dclgen ada personnel job_descriptionjobs.dcl jobs_rec 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–25 

The contents of the jobs.dcl file would be: 

-- Description of table job_description from  
-- database personnel 
exec sql declare job_description table 
                (job         smallint, 
                long_column long varchar); 
 
type jobs_rec_rec is 
record 
         job:         short_integer; 
         description: string(1..0); 
 
end record 
jobs_rec: jobs_rec_rec; 

Indicator Variables 

An indicator variable is a 2-byte integer variable. You can use an indicator 
variable in three possible ways in an application: 

 In a statement that retrieves data from Ingres. You can use an indicator 
variable to determine if its associated host indicator variable was assigned 
a null. 

 In a statement that sets data to Ingres. You can use an indicator variable 
to assign a null to the database column, form field, or table field column. 

 In a statement that retrieves character data from Ingres, you can use the 
indicator variable as a check that the associated host variable was large 
enough to hold the full length of the returned character string. However, 
the preferred method is to use SQLSTATE. 

In order to declare an indicator variable, you should use the short_integer 
data type. The following example declares two indicator variables: 

ind:     Short_Integer; -- Indicator variable 
ind_arr: array(1..10) of Short_Integer; --Indicator array 

When using an indicator variable with an Ada record, you must declare the 
indicator variable as an array of 2-byte integers. In the above example, you 
can use the variable “ind_arr” as an indicator array with a record assignment. 
Note that a variable declared with any derivative of the short_integer data 
type will be accepted as an indicator variable 

Assembling and Declaring External Compiled Forms 

 You can pre-compile your forms in the Visual Forms Editor (VIFRED). This 
saves the time otherwise required at runtime to extract the form’s definition 
from the database forms catalogs. When you compile a form in VIFRED, 
VIFRED creates a file in your directory describing the form in the VAX-11 
MACRO language. VIFRED prompts you for the name of the file with the 
MACRO description. After the file is created, use the following VMS command 
to assemble it into a linkable object module: 



Ada Variables and Data Types 

5–26     Embedded SQL Companion Guide 

 macro filename 

This command produces an object file containing a global symbol with the 
same name as your form. Before the Embedded SQL/FORMS statement 
addform can refer to this global object, it must be declared in an Embedded 
SQL declaration section. The Ada compiler requires that the declaration be in a 
package and that the objects be imported with the import_object pragma.  

The syntax for a compiled form package is: 

 package compiled_forms_package is 
  exec sql begin declare section; 
   formname: Integer; 
  exec sql end declare section; 
  pragma import_object( formname ); 
 end compiled_forms_package; 

You must then issue the Ada with and use statements on the compiled form 
package before every compilation unit that refers to the form: 

 with compiled_forms_package; use compiled_forms_package; 

Syntax Notes: 

 The formname is the actual name of the form. VIFRED gives this name to 
the address of the external object. The formname is also used as the title 
of the form in other Embedded SQL/FORMS statements. 

 The import_object pragma associates the object with the external form 
definition. To use this pragma, the package must be issued in the 
outermost scope of the file. 

The example below shows a typical form declaration and illustrates the 
difference between using the form’s object definition and the form’s name. 

package Compiled_Forms is 
  exec sql begin declare section; 
 
    empform: Integer; 
  exec sql end declare section; 
  pragma import_object( empform ); 
end Compiled_Forms; 
     ... 
 
with Compiled_Forms; use Compiled_Forms; 
      ... 
 
exec frs addform :empform; -- The imported object 
exec frs display empform; -- The name of the form 
      ... 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–27 

Concluding Example 

The following example demonstrates some simple Embedded SQL/Ada 
declarations. 

package Compiled_Forms is 
 
  exec sql begin declare section; 
 
     empform, deptform: Integer; -- Compiled forms 
  exec sql end declare section; 
 
  pragma import_object( empform ); 
  pragma import_object( deptform ); 
 end Compiled_Forms; 
 
with Compiled_Forms; use Compiled_Forms; 
 
exec sql include sqlca; -- Include error handling 
 
package Concluding_Example is 
  exec sql begin declare section; 
 
     max_persons: constant := 1000; 
     dbname:             String(1..9):="personnel"; 
     formname, tablename, columnname: String(1..12); 
     salary:             Float; 
 
          type datatypes_rec is -- Structure of all types 
             d_byte: Short_Short_Integer; 
             d_word: Short_integer; 
             d_long: Integer; 
             d_single: Float; 
             d_double: Long_float; 
             d_string: String(1..20); 
          end record; 
          d_rec: datatypes_rec; 
 
          -- Record with a discriminant 
         record persontype_rec (married: in Boolean) is 
          age:   Short_Short_Integer; 
          flags: Integer; 
          case married: 
         when TRUE = 
       spouse_name: String(1..30); 
         when FALSE = 
        dog_name: String(1..12); 
          end case; 
          end record; 
          person: persontype_rec(TRUE); 
          person_store: array(1..max_persons) of 
       persontype_rec(false); 
 
       exec sql include 'employee.dcl'; -- From dclgen 
       ind_var: Short_Integer := -1;    -- Indicator 
                                            -- variable 
 
    exec sql end declare section; 
end concluding_examples; 



Ada Variables and Data Types 

5–28     Embedded SQL Companion Guide 

The Scope of Variables 

The preprocessor can reference and accept all variables declared in an 
Embedded SQL declaration section from the point of declaration to the end of 
the file, regardless of the Ada scope of the declaration. This holds true for 
declarations in a package body or specification (even if they are private), 
formal parameters, and local variables of functions and procedures. Once an 
object has been declared to Embedded SQL, it must be the same size and 
type. It must not be redeclared to Embedded SQL for use in a different Ada 
scope; the preprocessor uses the type information supplied by the original 
declaration. The object must, however, be redeclared to Ada in the second 
scope to avoid errors from the Ada compiler.  

This restriction means that two package specifications cannot declare two 
different objects with the same name. The following example generates an 
error because of the redeclaration of the object “ptr”: 

package Stack is 
  exec sql begin declare section; 
    stack_max:    constant := 50; 
    ptr:          Integer range 1..stack_max; 
    stack_arr:    array(1..stack_max) of integer; 
  exec sql end declare section; 
end Stack; 
 
package Employees is 
  exec sql begin declare section; 
    ename_arr: array(1..1000) of string(1..20); 
    ptr: string(1..20); 
  exec sql end declare section; 
end Employees; 

In the following program fragment, the variable “dbname” is passed as a 
parameter to the second procedure. In the first declaration section, the 
variable is a local variable. In the second procedure, the variable is a formal 
parameter passed as a string to be used with the connect statement. The 
declaration of “dbname” as a formal parameter to the second procedure should 
not occur in an Embedded SQL declaration section. In both procedures, the 
preprocessor uses the type information from the variable’s declaration in the 
first procedure. 

package Decl_Test is 
        procedure Open_Db(dbname: in String); 
        procedure Access_Db; 
end Decl_Test; 
 
exec sql include sqlca; 
package body Decl_Test is 
    procedure Access_Db is 
        exec sql begin declare section; 
            dbname: String(1..15); 
        exec sql end declare section; 
    begin 
        -- Prompt for database name 
        put( "Database:" ); 
        get( dbname ); 
        Open_Db( dbname ); 
            ... 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–29 

 
    end Access_Db; 
 
    procedure Open_Db (dbname: in String) is  
    begin 
        exec sql whenever error stop; 
        exec sql connect :dbname; 
            ... 
 
    end Open_Db; 
end Decl_Test; 

Note that you can declare record components with the same name but 
different record types. The following example declares two records, each of 
which has the components “firstname” and “lastname”: 

exec sql begin declare section; 
    type child is 
        record 
            firstname: String(1..15); 
            lastname:  String(1..20); 
            age:       Integer; 
        end record; 
 
    type some_childs is array(1..10) of child; 
 
    type mother is 
        record 
            firstname: String(1..15); 
            lastname:  String(1..20); 
            num_child: Integer range 1..10; 
            children:  Some_Childs; 
        end record; 
exec sql end declare section; 

Special care should be taken when using variables with a declare cursor 
statement. The variables used in such a statement must also be valid in the 
scope of the open statement for that same cursor. The preprocessor actually 
generates the code for the declare at the point that the open is issued and, 
at that time, evaluates any associated variables. For example, in the following 
program fragment, even though the variable “number” is valid to the 
preprocessor at the point of both the declare cursor and open statements, it 
is not a valid variable name for the Ada compiler at the point that the open is 
issued. 

package Bad_Cursors is -- This example contains an error 
   procedure Init_Csr1 is 
   exec sql begin declare section; 
    number: Integer; 
   exec sql end declare section; 
  begin 
   exec sql declare cursor1 cursor for 
    select ename, age 
    from employee 
    where eno = :number; 
 
     -- Initialize "number" to a particular value 
      ... 
 
  end Init_Csr1; 
 
   procedure Process_Csr1 is 



Ada Variables and Data Types 

5–30     Embedded SQL Companion Guide 

   exec sql begin declare section; 
    ename: String(1..15); 
    age:   Integer; 
   exec sql end declare section; 
   begin 
 
    -- illegal evaluation of "number" 
    exec sql open cursor1; 
 
    exec sql fetch cursor1 into :ename, :age; 
    ... 
 
  end Process_Csr1; 
end Bad_Cursors; 

If you must use a group of types and variables in multiple subprograms and 
package bodies, you can put their declarations in a package and explicitly 
issue with and use clauses before each subprogram or package that uses 
them. The following example declares two variables inside a package 
specification. The variables are used by two procedures, each of which must 
be preceded by the with and use clauses:  

package Vars is 
    exec sql begin declare section; 
            var1: Integer; 
            var2: String(1..3); 
    exec sql end declare section; 
end Vars; 
 
with Vars; use Vars; -- Explicit Ada visibility clauses 
 
procedure Read_Vars is 
begin 
    -- Embedded sql statements that retrieve "var1" and  
    -- "var2" 
end Read_Vars; 
 
with Vars; use Vars; -- Explicit ada visibility clauses 
 
procedure Write_Vars is 
begin 
    -- Embedded sql statements that insert "var1"  
    -- and "var2" 
end Write_Vars; 

Variable Usage 

Ada variables declared to Embedded SQL can substitute for many non key-
word elements of Embedded SQL statements. Of course, the variable and its 
data type must make sense in the context of the element. When you use an 
Ada variable (or named constant) in an Embedded SQL statement, you must 
precede it with a colon. You must further verify that the statement using the 
variable is in the scope of the variable’s declaration. As an example, the 
following select statement uses the variables “namevar” and “numvar” to 
receive data, and the variable “idnovar” as an expression in the where clause: 

exec sql select name, num 
  into :namevar, :numvar 
  from employee 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–31 

  where idno = :idnovar; 

When referencing a variable, you cannot use an Ada attribute, because the 
attribute is introduced by a single quote. Embedded SQL treats this single 
quote as the beginning of a string literal and generates a syntax error. 

Various rules and restrictions apply to the use of Ada variables in Embedded 
SQL statements. The sections below describe the usage syntax of different 
categories of variables and provide examples of such use. 

Simple Variables 

A simple scalar-valued variable (integer, floating-point or character string) is 
referred to by the syntax: 

 :simplename 

Syntax Notes: 

 If you use the variable to send data to Ingres, it can be any scalar-valued 
variable, constant, or enumerated literal. 

 If you use the variable to receive data from Ingres, it cannot be a variable 
declared with the constant clause, a formal parameter that does not 
specify the out mode, a number declaration, or an enumerated literal. 

 A string variable (a 1-dimension array of characters) is referenced as a 
simple variable. 

The following program fragment demonstrates a typical message-handling 
routine that uses two scalar-valued variables, “buffer” and “seconds”: 

procedure Msg 
 exec sql begin declare section; 
  (buffer: String; seconds: Integer) 
 exec sql end declare section; 
is 
begin 
 exec frs message :buffer; 
 exec frs sleep :seconds; 
end Msg; 

A special case of a scalar type is the enumerated type. Embedded SQL treats 
all enumerated literals and any variables declared with an enumerated type as 
integers. When an enumerated literal is used in an Embedded SQL statement, 
only the ordinal position of the value in relation to the original enumerated list 
is relevant. When assigning from an enumerated variable or literal, Embedded 
SQL generates the following: 

 enumerated_type_name'pos(enumerated_variable_or_literal) 



Ada Variables and Data Types 

5–32     Embedded SQL Companion Guide 

When assigning from or into an enumerated variable, the preprocessor passes 
the object by address and assumes that the value being assigned from or into 
the variable does not raise a runtime constraint error. In order to relax the 
restriction imposed by the preprocessor on enumerated literal assignments (of 
enumerated types that have included representation clauses to modify their 
values), you should assign the literal to a variable of the same enumerated 
type before using it in an embedded statement. For example, the following 
enumerated type declares the states of a table field row, and the variable of 
that type always receives one of those values: 

exec sql begin declare section; 
   type Table_Field_States is  
   (undefined, newrow, unchanged, changed, deleted); 
   tbstate: Table_Field_States := undefined; 
   ename: String(1..20); 
exec sql end declare section; 
  ... 
 
exec frs getrow empform employee (:ename = name, 
  :tbstate = _state); 
 
case tbstate is 
   when undefined => 
   ... 
end case; 

Another example retrieves the value TRUE (an enumerated literal of type 
boolean) into a variable when a database qualification is successful: 
exec sql begin declare section; 
  found: Boolean; 
  name:  String(1..30); 
exec sql end declare section; 
  ... 
 
exec sql select :true  
  into :found  
  from personnel  
  where ename = :name; 
if (not found) then  
  ... 
end if; 

Note that a colon precedes the Ada enumerated literal “TRUE.” The colon is 
required before all named Ada objects—constants and enumerated literals, as 
well as variables—used in Embedded SQL statements. 

Array Variables 

An array variable is referred to by the syntax:  

 :arrayname(subscript{,subscript}) 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–33 

Syntax Notes: 

 You must subscript the variable because only scalar-valued elements 
(integers, floating-point, and character strings) are legal Embedded SQL 
values. 

 When you declare the array, the Embedded SQL preprocessor does not 
parse the array bounds specification. Consequently, the preprocessor 
accepts illegal bounds values. Also, when you reference an array, the 
subscript is not parsed, allowing you to use illegal subscripts. The 
preprocessor only confirms that you used an array subscript for an array 
variable. You must make sure that the subscript is legal and that you used 
the correct number of indices.  

 A character string variable is not an array and cannot be subscripted in 
order to reference a single character or a slice of the string. For example, 
if the following variable were declared: 

abc: String(1..3) := "abc"; 

you could not reference 

:abc(1) 

to access the character “a”. To perform such a task, you should declare 
the variable as an array of three one-character long strings: 

abc: array(1..3) of String(1..1) := ("a","b","c"); 

Note that you can only declare variables of the Ada character type as a 
one-dimensional array. When you use a variable of that type, you must 
not subscript it. 

 Arrays of null indicator variables used with record assignments should not 
include subscripts when referenced. 

In the following example, the loop variable “i” is used as a subscript and need 
not be declared to Embedded SQL, as it is not parsed. 

exec sql begin declare section; 
  formnames: array(1..3) of String(1..8); 
exec sql end declare section; 
 ... 
 
for i in 1..3 loop 
  exec frs forminit :formnames(i); 
end loop; 

Record Variables 

You can use a record variable in two different ways. First, you can use the 
record as a simple variable, implying that all its components are used. This 
would be appropriate in the Embedded SQL select, fetch and insert 
statements. Second, you can use a component of a record to refer to a single 
element. Of course, this component must be a scalar value (integer, floating-
point or character string). 



Ada Variables and Data Types 

5–34     Embedded SQL Companion Guide 

Using a Record as a Collection of Variables 

The syntax for referring to a complete record is the same as referring to a 
simple variable: 

 :recordname 

Syntax Notes: 

 The recordname can refer to a main or nested record. It can be an 
element of an array of records. Any variable reference that denotes a 
record is acceptable. For example: 

:emprec           -- A simple record 
:record_array(i) -- An element of an array of records 
:record.minor2.minor3 -- A nested record at level 3 

 In order to be used as a collection of variables, the final record in the 
reference must have no nested records or arrays. The preprocessor 
enumerates all the components of the record and they must have scalar 
values. The preprocessor generates code as though the program had listed 
each record component in the order in which it was declared. 

 You must not use a record with a variant part as a complete record. The 
preprocessor generates explicit references to each of its components, 
including the components of the variant. Because the preprocessor 
generates references to all variant components but not to discriminants, 
which it ignores (see the section above on the discriminant constraint), the 
use of a record with a variant part results in either a “wrong number of 
values” preprocessor error or a runtime error. 

The following example uses the employee.dcl file generated by DCLGEN, to 
retrieve values into a record. 

exec sql begin declare section; 
 exec sql include 'employee.dcl';  
   -- see above for description 
exec sql end declare section; 
 ... 
 
exec sql select *  
  into :emprec 
  from employee 
  where eno = 123; 

The example above generates code as though the following statement had 
been issued instead: 

exec sql select * 
  into :emprec.eno, :emprec.ename, :emprec.age, 
        :emprec.job, :emprec.sal, :emprec.dept 
  from employee 
  where eno = 123; 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–35 

The example below fetches the values associated with all the columns of a 
cursor into a record. 

exec sql begin declare section; 
 exec sql include 'employee.dcl';  
   -- see above for description 
exec sql begin declare section; 
 
exec sql declare empcsr cursor for 
  select * 
  from employee 
  order by ename; 
  ... 
exec sql fetch empcsr into :emprec; 

The following example inserts values by looping through a locally declared 
array of records whose elements have been initialized: 

exec sql begin declare section; 
  exec sql declare person table 
     (pname    char(30), 
       page     integer1, 
       paddr    varchar(50)); 
 
  type Person_Rec is record 
      name:  String(1..30); 
      age:   Short_Short_Integer; 
      addr:  String(1..50); 
  end record; 
  person: array(1..10) of Person_Rec; 
exec sql end declare section; 
    ... 
 
for i in 1..10 loop 
 exec sql insert into person 
    values (:person(i)); 
end loop; 

The insert statement in the example above generates code as though the 
following statement had been issued instead: 

exec sql insert into person 
  values (:person(i).name,:person(i).age,:person(i).addr); 

Using Record Components 

The syntax Embedded SQL uses to refer to a record component is the same as 
in Ada: 

 :record.component{.component} 

Syntax Notes: 

 The last record component denoted by the above reference must be a 
scalar value (integer, floating-point or character string). There can be any 
combination of arrays and records, but the last object referenced must be 
a scalar value. Thus, the following references are all legal: 



Ada Variables and Data Types 

5–36     Embedded SQL Companion Guide 

-- Assume correct declarations for "employee," 
 -- "person" and other records. 
 employee.sal       -- Component of a record 
person(3).name 
          -- Component of an element of an array 
rec1.mem1.mem2.age -- Deeply nested component 

 You must fully qualify all record components when referenced. You can 
shorten the qualification by using the Ada renames clause in another 
declaration to rename some components or nested records. 

The following example uses the array of emprec records to load values into the 
emptable tablefield in empform form. 

exec sql begin declare section; 
  type Employee_Rec is 
    record 
     ename:    String(1..20); 
     eage:     Short_Integer; 
     eidno:    Integer; 
     ehired:   String(1..25); 
     edept:    String(1..10); 
     esalary:  Float; 
    end record; 
    emprec: array(1..100) of Employee_Rec; 
 exec sql begin declare section; 
     ... 
 
for i in 1..100 loop 
  exec frs loadtable empform emptable 
   (name = :emprec(i).ename, age = :emprec(i).eage, 
    idno = :emprec(i).eidno, hired =  
       :emprec(i).ehired, 
    dept = :emprec(i).edept,  
   salary =:emprec(i).esalary); 
end loop; 

If you want to shorten the reference to the record, you can use the renames 
clause to rename a particular member of the emprec array, as in the following 
example: 

for i in 1..100 loop 
 declare 
    exec sql begin declare section; 
    er: Employee_Rec renames emprec(i); 
    exec sql end declare section; 
 begin 
    exec frs loadtable empform emptable 
    (name = :er.ename, age = :er.eage, 
     idno = :er.eidno, hired = :er.ehired, 
       dept = :er.edept, salary = :er.esalary); 
 end; 
end loop; 

Access Variables 

An access variable must qualify another object using the dot operator, and 
using the same syntax as a record component: 

 :access.reference 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–37 

Syntax Notes: 

 By the time you reference an access variable, you must fully define the 
type to which it is pointing. This is true even for access types that were 
declared to point at incomplete types. 

 The final object denoted by the above reference must be a scalar value 
(integer, floating-point or character string). There can be any combination 
of arrays, records or access variables, but the last object referenced must 
be a scalar value. 

 If an access variable is pointing at a scalar-valued type, then the 
qualification must include the Ada .all clause to refer to the scalar value. If 
you use the .all clause, it must be the last component in the qualification. 
For example: 

exec sql begin declare section; 
 type Access_Integer is access Integer; 
 ai: Access_Integer; 
exec sql end declare section; 
 ... 
 
ai := new Integer'(2); 
exec frs sleep :ai.all; 

In the following example, an access type to an employee record is used to load 
a linked list of values into the Employee database table. 

exec sql begin declare section; 
  type Employee_Rec; 
  type Emp_Link is access Employee_Rec; 
  type Employee_Rec is 
    record 
     ename: String(1..20); 
     eage:  Short_integer; 
     eidno: Integer; 
     enext: Emp_Link; 
    end record; 
  elist: Emp_Link; 
exec sql end declare section; 
 ... 
 
while (elist <= null) loop 
 exec sql insert into employee (name, age, idno) 
  values (:elist.ename, :elist.eage, :elist.eidno); 
 elist := elist.enext; 
end loop; 

Using Indicator Variables 

The syntax for referring to an indicator variable is the same as for a simple 
variable, except that an indicator is always associated with a host variable: 

 :host_variable:indicator_variable 
or 
 :host_variable indicator :indicator variable 



Ada Variables and Data Types 

5–38     Embedded SQL Companion Guide 

Syntax Notes: 

 The indicator variable can be a simple variable, an array element, or a 
record component that yields a 2-byte integer (short_integer). For 
example: 

ind: Short_Integer;  -- Indicator variable 
ind_arr: array(1..10) of Short_Integer; 
                     -- Indicator array 
:var_1:ind_var 
:var_2:ind_arr(2) 

 If the host variable associated with the indicator variable is a record, then 
the indicator variable should be an array of 2-byte integers. In this case 
the array should not be dereferenced with a subscript. 

 When you use an indicator array, the first element of the array 
corresponds to the first component of the record, the second element with 
the second component, and so on. Indicator array elements begin at 
subscript 1 regardless of the range with which the array was declared. 

The following example uses the employee.dcl file generated by DCLGEN and 
the empind array to retrieve values and nulls into a structure. 

exec sql include sqlca; 
exec sql begin declare section; 
 
    exec sql include 'employee.dcl';  
                   -- See above for description 
    empind: array(1..10) of short_integer; 
 
exec sql end declare section; 
 
exec sql select * 
 into :emprec:empind 
 from employee; 

The above example generates code as though the following statement had 
been issued: 

exec sql select * 
 into :emprec.eno:empind(1), :emprec.ename:empind(2), 
   :emprec.age:empind(3), :emprec.job:empind(4), 
   :emprec.sal:empind(5), :emprec.dept:empind(6), 
 from employee; 

Data Type Conversion 

An Ada variable declaration must be compatible with the Ingres value it 
represents. Numeric Ingres values can be set by and retrieved into numeric 
variables, and Ingres character values can be set by and retrieved into 
character string variables. 

Data type conversion occurs automatically for different numeric types, such as 
from floating-point database column values into integer Ada variables, and for 
character strings, such as from varying-length Ingres character fields into 
fixed-length Ada character string buffers.  



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–39 

Ingres does not automatically convert between numeric and character types. 
You must use the Ingres type conversion operators, the Ingres ascii function, 
or an Ada conversion procedure for this purpose. 

The following table shows the default type compatibility for each Ingres data 
type. Note that some Ada types do not match exactly and, consequently, may 
go through some runtime conversion. 

Ingres Data Types and Corresponding Ada Data Types 
 

Ingres Type Ada Type 

char(N)  string(1..N)  

char(N)  array(1..N) of character  

varchar(N)  string(1..N)  

varchar(N)  array(1..N) of character  

integer1  short_short_integer  

smallint  short_integer  

integer  integer  

float4  float  

float4  f_float  

float  long_float  

float  d_float  

date  string(1..25)  

money  long_float  

table_key  string (1..8)  

object_key  string (1..16)  

decimal  float  

long varchar  string( )  

Runtime Numeric Type Conversion 

The Ingres runtime system provides automatic data type conversion between 
numeric-type values in the database and the forms system and numeric Ada 
variables. The standard type conversion rules (according to standard VAX 
rules) are followed. For example, if you assign a float variable to an integer-
valued field, the digits after the decimal point of the variable’s value are 
truncated. Runtime errors are generated for overflow on conversion. 



Ada Variables and Data Types 

5–40     Embedded SQL Companion Guide 

The Ingres money type is represented as long_float, an 8-byte floating-point 
value. 

Runtime Character and Varchar Type Conversion 

Automatic conversion occurs between Ingres character string values and Ada 
character string variables. The string-valued Ingres objects that can interact 
with character string variables are: 

 Ingres names, such as form and column names 

 Database columns of type character 

 Database columns of type varchar 

 Form fields of type character.  

 Database columns of type long varchar 

Several considerations apply when dealing with character string conversions, 
both to and from Ingres. 

The conversion of Ada character string variables used to represent Ingres 
names is simple: trailing blanks are truncated from the variables because the 
blanks make no sense in that context. For example, the string literals 
“empform ” and “empform” refer to the same form. 

The conversion of other Ingres objects is a bit more complicated. First, the 
storage of character data in Ingres differs according to whether the medium of 
storage is a database column of type character, a database column of type 
varchar, or a character form field. Ingres pads columns of type character 
with blanks to their declared length. Conversely, it does not add blanks to the 
data in columns of type varchar or long varchar, or in form fields. 

Second, Embedded SQL assumes that the convention is to blank-pad fixed-
length character strings. Character string variables not blank-padded may be 
storing ASCII nulls or data left over from a previous assignment. For example, 
the character string “abc” can be stored in an Ada string(1..5) variable as the 
string “abc  ” followed by two blanks. 

When character data is retrieved from a Ingres database column or form field 
into an Ada character string variable and the variable is longer than the value 
being retrieved, the variable is padded with blanks. If the variable is shorter 
than the value being retrieved, the value is truncated. You should always 
ensure that the variable is at least as long as the column or field in order to 
avoid truncation of data. 



Ada Variables and Data Types 

Chapter 5: Embedded SQL for Ada    5–41 

When inserting character data into a Ingres database column or form field 
from an Ada variable, note the following conventions: 

 When you insert data from an Ada variable into a database column of type 
character and the column is longer than the variable, the column is 
padded with blanks. If the column is shorter than the variable, the data is 
truncated to the length of the column. 

 When you insert data from an Ada variable into a database column of type 
varchar or long varchar and the column is longer than the variable, no 
padding of the column takes place. Furthermore, by default, all trailing 
blanks in the data are truncated before the data is inserted into the 
varchar column. For example, when a string “abc” stored in an Ada 
string(1..5) variable as “abc  ” followed by two blanks is inserted into the 
varchar column, the two trailing blanks are removed and only the string 
“abc” is stored in the database column. To retain such trailing blanks, you 
can use the Ingres notrim function. It has the following syntax: 

 notrim(:stringvar) 

where stringvar is a character string variable. An example demonstrating 
this feature follows later. If the varchar column is shorter than the 
variable, the data is truncated to the length of the column. 

 When you insert data from an Ada variable into a character form field and 
the field is longer than the variable, no padding of the field takes place. In 
addition, all trailing blanks in the data are truncated before inserting the 
data into the field. If the field is shorter than the data (even after all 
trailing blanks have been truncated), the data is truncated to the length of 
the field. 

When comparing character data in an Ingres database column with 
character data in an Ada variable, note the following convention: 

 When comparing data in character or varchar database columns with 
data in a character variable, all trailing blanks are ignored. Initial and 
embedded blanks are significant. 

Note: As described above, the conversion of character string data between 
Ingres objects and Ada variables often involves the trimming or padding of 
trailing blanks, with resultant change to the data. If trailing blanks have 
significance in your application, give careful consideration to the effect of any 
data conversion. For a complete description of the significance of blanks in 
string comparisons, see the SQL Reference Guide. 

The Ingres date data type is represented as a 25-byte character string. 

The program fragment in the next example demonstrates the notrim function 
and the truncation rules explained above. 

exec sql include sqlca; 
    ... 
exec sql begin declare section; 
  exec sql declare varychar table 



The SQL Communications Area 

5–42     Embedded SQL Companion Guide 

   (row     integer, 
    data   varchar(10));  
    -- Note the varchar data type 
  row:  Integer; 
  data: String(1..7) := (1..7 => ' '); 
exec sql end declare section; 
  ... 
 
data(1..3):="abc    ";-- Holds "abc" followed by 4 blanks 
 
-- The following insert adds the string "abc" 
-- (blanks truncated) 
 
exec sql insert into varychar (row, data)  
  values (1, :data); 
 
-- This statement adds the string "abc    ", with 4  
-- trailing blanks left intact by using the  
-- notrim function. 
 
exec sql insert into varychar (row, data)  
  values (2, notrim(:data)); 
 
-- This select will retrieve row #2, because the notrim  
-- function left trailing blanks in the "data" variable  
-- in the last insert statement. 
 
exec sql select row  
  into :row 
  from varychar  
  where length(data) = 7; 
 
put("Row found = "); 
put(row);  

The SQL Communications Area 
This section describes the SQL Communications Area (SQLCA) as implemented 
in Ada.  

The Include SQLCA Statement 

You must issue the include sqlca statement in front of each compilation unit 
(subprogram specification, subprogram body, package specification, or 
package body) containing Embedded SQL statements. You cannot issue the 
include sqlca statement inside a compilation unit because the statement 
causes the preprocessor to generate with and use clauses, which are not 
legal in that context. 

exec sql include sqlca; 
package Employees is 
 procedure Emp_Util_1 is 
   -- Declarations for emp_util_1 
 begin 
   -- Embedded statements for emp_util_1 
 end Emp_Util_1; 
 



The SQL Communications Area 

Chapter 5: Embedded SQL for Ada    5–43 

 procedure Emp_Util_2 
   -- Declarations for emp_util_2 
 begin 
   -- Embedded statements for emp_util_2 
 end Emp_Util_2; 
end Employees; 

The include sqlca statement instructs the preprocessor to generate code that 
includes references to the SQLCA (SQL Communications Area) record for error 
handling on database statements. It generates Ada with and use statements 
referencing a package that defines the SQLCA record variable. The package 
specification must first be entered in your Ada program library by the 
procedure described in Entering Embedded SQL Package Specifications in this 
chapter. 

Whether or not you intend to use the SQLCA for error handling, you must 
issue an include sqlca statement. If you do not issue it, the Ada compiler 
generates errors about undeclared function names. 

Contents of the SQLCA 

One of the results of issuing the include sqlca statement is the declaration of 
the SQLCA structure, which you can use for error handling in the context of 
database statements. The record declaration for the SQLCA is: 

type IISQL_ERRM is       -- Varying length string. 
  record 
 
    sqlerrml: Short_Integer; 
    sqlerrmc: String(1..70); 
  end record; 
 
type IISQL_ERRD is array(1..6) of Integer; 
 
type IISQL_WARN is       -- Warning structure. 
  record 
    sqlwarn0: Character; 
    sqlwarn1: Character; 
    sqlwarn2: Character; 
    sqlwarn3: Character; 
    sqlwarn4: Character; 
    sqlwarn5: Character; 
    sqlwarn6: Character; 
    sqlwarn7: Character; 
  end record; 
 
type IISQLCA is  
  record 
    sqlcaid: String(1..8); 
    sqlcabc: Integer; 
    sqlcode: Integer; 
    sqlerrm: IISQL_ERRM; 
    sqlerrp: String(1..8); 
    sqlerrd: IISQL_ERRD; 
    sqlwarn: IISQL_WARN; 
    sqlext:  String(1..8); 
  end record; 
 
sqlca: IISQLCA; 



The SQL Communications Area 

5–44     Embedded SQL Companion Guide 

The nested record sqlerrm is a varying length character string consisting of 
the two variables sqlerrml and sqlerrmc described in the SQL Reference 
Guide. For a full description of all the SQLCA structure members, see the SQL 
Reference Guide. 

The SQLCA is initialized at load-time. The sqlcaid and sqlcabc fields are 
initialized to the string “SQLCA” and the constant 136, respectively. 

Note that the preprocessor is not aware of the record declaration. Therefore, 
you cannot use members of the record in an Embedded SQL statement. For 
example, the following statement, attempting to insert the string “SQLCA” 
into a table generates an error: 

exec sql insert into  
  employee (ename) -- This statement is illegal 
  values (:sqlca.sqlcaid); 

All modules written in Ada and other Embedded SQL languages share the 
same SQLCA. 

Using the SQLCA for Error Handling 

User-defined error, message and dbevent handlers offer the most flexibility for 
handling errors, database procedure messages, and database events. For 
more information, see Advanced Processing in this chapter. 

However, you can do error handling with the SQLCA implicitly by using 
whenever statements, or explicitly by checking the contents of the SQLCA 
fields sqlcode, sqlerrd, and sqlwarn0. 

Error Handling with the Whenever Statement 

The syntax of the whenever statement is as follows:  

 exec sql whenever condition action; 

condition is dbevent, sqlwarning, sqlerror, sqlmessage, or not found. 
action is continue, stop, goto a label, call an Ada procedure, or raise an 
Ada exception. For a detailed description of this statement, see the SQL 
Reference Guide.  

Embedded SQL/Ada provides the raise exception action as well as the regular 
SQL actions. You can use this instead of the less desirable goto action. Note 
that you should not declare the named exception in an SQL declare section.  



The SQL Communications Area 

Chapter 5: Embedded SQL for Ada    5–45 

For example: 

exec sql include sqlca; 
stmt_error: exception; 
... 
exec sql whenever sqlerror raise stmt_error; 
... 
-- Database statements 
exception 
   when stmt_error => 
      put_line("An error occurred."); 
      ... 

In Ada, all label, exception, and procedure names must be legal Ada 
identifiers, beginning with an alphabetic character. If the name is an 
Embedded SQL reserved word, specify it in quotes. Note that the label 
targeted by the goto action and the exception targeted by the raise action 
must be in the scope of all subsequent Embedded SQL statements until you 
encounter another whenever statement for the same action. This is 
necessary because the preprocessor may generate the Ada statement: 

 if (condition) then 
  goto label; --raise exception 
 end if; 

after an Embedded SQL statement. If the scope of the label or exception is 
invalid, the Ada compiler generates an error. 

The same scope rules apply to procedure names used with the call action. 
Note that the reserved procedure sqlprint, which prints errors or database 
procedure messages and then continues, is always in the scope of the 
program. When a whenever statement specifies a call as the action, the 
target procedure is called, and after its execution, control returns to the 
statement following the statement that caused the procedure to be called. 
Consequently, after handling the whenever condition in the called procedure, 
you may want to take some action, instead of merely issuing an Ada return 
statement. The Ada return statement causes the program to continue 
execution with the statement following the Embedded SQL statement that 
generated the error. 

The following example demonstrates use of the whenever statements in the 
context of printing some values from the Employee table. The comments do 
not relate to the program but to the use of error handling. 

-- I/O packages 
with text_io; use text_io; 
 
with integer_text_io; use integer_text_io; 
with short_integer_text_io; use short_integer_text_io; 
 
exec sql include sqlca; 
 
procedure Db_Test is 
  exec sql begin declare section; 
    eno:        Short_Integer; 
    ename:      String(1..20); 



The SQL Communications Area 

5–46     Embedded SQL Companion Guide 

    age:        String(1..1); 
  exec sql end declare section; 
 
  sql_error: Exception; 
 
  exec sql declare empcsr cursor for 
   select eno, ename, age 
   from employee; 
 
    -- 
    -- Clean_Up: error handling procedure (print error 
    -- and disconnect). 
 
    procedure Clean_Up is 
        exec sql begin declare section; 
            errmsg: String(200); 
        exec sql end declare section; 
 
    begin -- Clean_Up 
        exec sql inquire_sql (:errmsg = errortext); 
        put_line( "aborting because of error: " ); 
        put_line( errmsg ); 
        exec sql disconnect; 
 
        raise sql_error; -- No return 
    end Clean_Up; 
 
    begin     -- Db_Test 
    -- 
    -- An error when opening the personnel database  
    -- will cause the error to be printed and the 
    -- program to abort. 
    -- 
 
    exec sql whenever sqlerror stop; 
    exec sql connect personnel; 
 
    -- Errors from here on will cause the program to 
    -- clean up. 
    exec sql whenever sqlerror call Clean_Up; 
 
    exec sql open empcsr; 
 
    put_line( "Some values from the ""employee"" 
             table."); 
 
    -- When no more rows are fetched, close the cursor. 
    exec sql whenever not found goto Close_Csr; 
 
    -- 
    -- The last executable Embedded SQL statement was an 
    -- OPEN, so we know that the value of "sqlcode"  
    -- cannot be SQLERROR or NOT FOUND. 
    -- 
 
    while (sqlca.sqlcode = 0) loop  
        -- Loop is broken by NOT found 
        exec sql fetch empcsr 
            into :eno, :ename, :age; 
 
        -- 
        -- These "put" statements do not execute after 
        -- the previous FETCH returns the NOT FOUND 
        -- condition. 
        -- 
 



The SQL Communications Area 

Chapter 5: Embedded SQL for Ada    5–47 

        put( eno ); 
        put( ", " & ename & ", "); 
        put( age ); 
        new_line; 
    end loop; 
    -- 
    -- From this point in the file onwards, ignore all  
    -- errors. Also turn off the NOT FOUND condition,  
    -- for consistency. 
    -- 
 
    exec sql whenever sqlerror continue; 
    exec sql whenever not found continue; 
<<Close_Csr>> 
    exec sql close empcsr; 
    exec sql disconnect; 
 
    -- 
    -- "Sqlerror" is raised only in Clean_Up, which 
    -- has already taken care of the error. 
    -- 
 
    exception 
        when sql_error => 
            null;       -- Just go away quietly 
end Db_Test; 

The Whenever Goto Action in Embedded SQL Blocks 

An Embedded SQL block-structured statement is a statement delimited by the 
begin and end clauses. For example, the select loop and the unloadtable 
loops are both block-structured statements. You can terminate these 
statements only by the methods specified for the particular statement in the 
SQL Reference Guide. For example, the preprocessor terminates the select 
loop either when all the rows in the database result table have been processed 
or by an endselect statement, and the preprocessor terminates the 
unloadtable loop either when all the rows in the forms table field have been 
processed or by an endloop statement. 

Therefore, if you use a whenever statement with the goto action in an SQL 
block, you must avoid going to a label outside the block. Such a goto causes 
the block to be terminated without issuing the runtime calls necessary to clean 
up the information that controls the loop. (For the same reason, you must not 
issue an Ada return, exit, goto, or raise statement that causes control to 
leave or enter an SQL block.) The target label of the whenever goto 
statement should be a label in the block. If however, it is a label for a block of 
code that cleanly exits the program, the above precaution need not be taken. 

The above information does not apply to error handling for database 
statements issued outside an SQL block, nor to explicit hard-coded error 
handling. For an example of hard-coded error handling, see The Table Editor 
Table Field Application in this chapter. 



The SQL Communications Area 

5–48     Embedded SQL Companion Guide 

Explicit Error Handling 

The program can also handle errors by inspecting values in the SQLCA 
structure at various points. For further details, see the SQL Reference Guide. 

The example on the following page is functionally the same as the previous 
example, except that the error handling is hard-coded in Ada statements. 

-- I/O packages 
with text_io; use text_io; 
with integer_text_io; use integer_text_io; 
with short_integer_text_io; use short_integer_text_io; 
 
exec sql include sqlca; 
 
procedure Db_Test is 
    exec sql begin declare section; 
        eno:   Short_Integer; 
        ename: String(1..20); 
        age:   String(1..1); 
    exec sql end declare section; 
 
    sql_error: Exception; 
    not_found: constant := 100; 
 
    exec sql declare empcsr cursor for 
        select eno, ename, age 
        from employee; 
 
    -- 
    -- Clean_Up: Error handling procedure (print error 
    -- and disconnect). 
    -- 
 
    procedure Clean_Up( str: in String) is 
  
        exec sql begin declare section; 
            err_stmt: String(40) := str; 
            errmsg:   String(200); 
        exec sql end declare section; 
 
    begin         -- Clean_Up 
        exec sql inquire_sql (:errmsg = ERRORTEXT); 
        put_line 
             ( "Aborting because of error in " &  
                err_stmt & ": "); 
        put_line( errmsg ); 
        exec sql disconnect; 
 
        raise sql_error; -- No return 
    end Clean_Up; 
 
begin -- Db_Test 
 
    -- Exit if the database cannot be opened. 
    exec sql connect personnel; 
    if (sqlca.sqlcode < 0) then 
        put_line( "Cannot access database."); 
        raise sql_error; 
    end if; 
 
    -- Errors if cannot open cursor. 
    exec sql open empcsr; 
    if (sqlca.sqlcode < 0) then 



The SQL Communications Area 

Chapter 5: Embedded SQL for Ada    5–49 

        Clean_Up( "OPEN ""empcsr""" ); 
    end if; 
 
    put_line("Some values from the ""employee"" table."); 
 
    -- 
    -- The last executable Embedded SQL statement was an 
    -- OPEN, so we know that the value of "sqlcode" 
    -- cannot be SQLERROR or NOT FOUND. 
    -- 
 
    while (sqlca.sqlcode = 0) loop  
                           -- Loop is broken by NOT FOUND 
        exec sql fetch empcsr 
            into :eno, :ename, :age; 
 
        -- Do not print the last values twice 
        if (sqlca.sqlcode < 0) then 
            Clean_Up( "FETCH ""empcsr""" ); 
        elsif (sqlca.sqlcode <= NOT_FOUND) then 
            put( eno ); 
            put( ", " & ename & ", "); 
            put( age ); 
            new_line; 
        end if; 
    end loop; 
 
    -- From this point in the file onwards, ignore all 
    -- errors. 
 
    exec sql close empcsr; 
    exec sql disconnect; 
 
    -- 
    -- "Sql_error" is raised only in Clean_Up, which has 
    -- already taken care of the error, or in opening 
    -- the database. 
    -- 
 
    exception 
        when sql_error => 
            null; -- Just go away quietly 
end Db_Test; 

Determining the Number of Affected Rows 

The third element of the SQLCA array sqlerrd indicates how many rows were 
affected by the last row-affecting statement. The following program fragment, 
which deletes all employees whose employee numbers are greater than a 
given number, demonstrates how to use sqlerrd:  

procedure Delete_Rows( lower_bound: in Integer ) is 
  exec sql begin declare section; 
    lower_bound_num: integer := lower_bound; 
  exec sql end declare section; 
 
begin 
  exec sql delete from employee 
    where eno > :lower_bound_num; 
 
  -- Print the number of employees deleted. 
  put( sqlca.sqlerrd(3) ); 
  put_line( " (rows) were deleted."); 



Dynamic Programming for Ada 

5–50     Embedded SQL Companion Guide 

end Delete_Rows; 

Using the SQLSTATE Variable 

You can use the SQLSTATE variable in an ESQL/ Ada program to return status 
information about the last SQL statement that was executed. SQLSTATE must 
be declared in a declaration section and must be in uppercase. Also, it is valid 
across all sessions, so you only need to declare one SQLSTATE per 
application. 

To declare this variable, use: 

SQLSTATE: String(1..5); 

For more information about SQLSTATE, see the SQL Reference Guide. 

Dynamic Programming for Ada  
Ingres provides Dynamic SQL and Dynamic FRS to allow you to write generic 
programs. Dynamic SQL allows a program to build and execute SQL 
statements at runtime.  For example, an application can include an expert 
mode in which the runtime user can type in select queries and browse the 
results at the terminal. Dynamic FRS allows a program to interact with any 
form at runtime. For example, an application can load in any form, allowing 
the runtime user to retrieve new data from the form and insert it into the 
database. 

The Dynamic SQL and Dynamic FRS statements are described in the SQL 
Reference Guide and Forms-based Application Development Tools User Guide, 
respectively. This section discusses the Ada-dependent issues of Dynamic 
programming. For a complete example of using Dynamic SQL to write an SQL 
Terminal Monitor application, see The SQL Terminal Monitor Application in this 
chapter. For an example of using both Dynamic SQL and Dynamic FRS to 
browse and update a database using any form, see A Dynamic SQL/Forms 
Database Browser in this chapter. 

This chapter is written for VAX/VMS Ada and makes use of the VAX/Ada data 
type definitions, in particular the address data type defined by the SYSTEM 
package. 

The SQLDA Record 

The SQLDA (SQL Descriptor Area) is used to pass type and size information 
about an SQL statement, an Ingres form, or a table field, between Ingres and 
your program. 



Dynamic Programming for Ada 

Chapter 5: Embedded SQL for Ada    5–51 

To use the SQLDA, you should issue the include sqlda statement in front of 
each compilation unit containing references to the SQLDA. You cannot issue 
the include sqlda statement inside a compilation unit because the statement 
causes the preprocessor to generate Ada with and use clauses, which are not 
legal in that context. The package specified by the include sqlda statement is 
called ESQLDA and contains the SQLDA record type definition. The package 
does not declare an SQLDA record variable; your program must declare a 
variable of the specified type. You can also code the SQLDA record variable 
directly instead of using the include sqlda statement. When coding the 
declaration yourself, you can choose any name for the record type. 

The definition of the SQLDA record (as specified in package ESQLDA) is: 

-- IISQ_MAX_COLS - Maximum number of columns  
-- returned from Ingres 
IISQ_MAX_COLS: constant := 1024; 
 
-- Data Type Codes 
IISQ_DTE_TYPE: constant := 3;  -- Date - Output 
IISQ_MNY_TYPE: constant := 5;  -- Money - Output 
IISQ_DEC_TYPE: constant := 10; -- Decimal - Output 
IISQ_CHA_TYPE: constant := 20; -- Char-Input, Output 
IISQ_VCH_TYPE: constant := 21; -- Varchar- Input, Output 
IISQ_LVCH_TYPE:constant := 22; -- Long Varchar - Output 
IISQ_INT_TYPE: constant := 30; -- Integer-Input, Output 
IISQ_FLT_TYPE: constant := 31; -- Float-Input, Output 
IISQ_OBJ_TYPE: constant := 45; -- 4GL Object: Output 
IISQ_HDLR_TYPE:constant := 46; -- Datahandler -Inp/Output 
IISQ_TBL_TYPE: constant := 52; -- Table field - Output 
IISQ_DTE_LEN:  constant := 25; -- Date length 
 
-- Address constant to avoid SYSTEM requirement 
 IISQ_ADR_ZERO: constant ADDRESS := ADDRESS_ZERO; 
 
type IISQL_NAME is -- Varying length name 
 record 
    sqlnamel: Short_Integer; 
    sqlnamec: String(1..34); 
 end record; 
 
type IISQL_VAR is  
               -- Single element of SQLDA column/variable 
  record 
    sqltype: Short_Integer; 
   sqllen:  Short_Integer; 
   sqldata: Address; -- Address of any type 
    sqlname: IISQL_NAME; 
  end record; 
 
type IISQL_VARS is -- Array of IISQL_VAR elements 
  array(Short_Integer range <>) of IISQL_VAR; 
 
-- IISQLDA - SQLDA with varying number of  
-- result variables.  
-- Default is maximum number (IISQ_MAX_COLS). 
type IISQLDA (sqln: Short_Integer := IISQ_MAX_COLS) is 
  record 
    sqldaid: String(1..8); 
    sqldabc: Integer; 
    sqld:    Short_Integer; 
    sqlvar:  IISQL_VARS(1..sqln); 
  end record; 
 



Dynamic Programming for Ada 

5–52     Embedded SQL Companion Guide 

-- Generic SQL-compatible record layout description. 
-- for IISQLDA use 
 record 
  sqldaid at 0 range 0..63; 
           -- Bytes 0..7 = String(1..8); 
  sqldabc at 8 range 0..31; 
          -- Bytes 8..11 = Integer; 
  sqln at 12 range 0..15; 
         -- Bytes 12..13 = Short_Integer; 
  sqld at 14 range 0..15; 
         -- Bytes 14..15 = Short_Integer; 
 end record; 
 
-- 
-- IISQHDLR - Structure type with function pointer and  
-- function argument for the DATAHANDLER 
-- 
type IISQHDLR is 
    record 
         sqlarg:    Address; 
         sqlhdlr:   Address; 
    end record; 

Record Definition and Usage Notes: 

 The record type definition of the SQLDA is called IISQLDA. This is done so 
that an SQLDA variable can be called “SQLDA” without causing an Ada 
compile-time conflict. You are not required to call your SQLDA record 
variable “SQLDA.” 

 The record type definition includes a discriminant, sqln. This discriminant 
indicates how many elements are allocated in the varying length array, 
sqlvar. The VAX/Ada default is to allocate space for the discriminant at 
the start of the record. In order to enforce a compatible SQLDA record 
layout with the Ingres runtime system and other embedded languages, an 
Ada representation clause is issued. This clause causes the discriminant, 
sqln, to be placed among the record components as defined in the SQL 
Reference Guide. This is described in more detail later. 

 The varying length sqlvar array, whose length is determined by the 
discriminant sqln, has a default size of IISQ_MAX_COLS (1024) elements. 
If you declare an SQLDA record variable of type IISQLDA without a 
discriminant constraint, then the program will have declared a record with 
IISQ_MAX_COLS elements. 

 Note that the sqlvar array begins at subscript 1. If you code your own 
SQLDA record you can specify any number for a lower bound. 

 The sqldata and sqlind record components are declared as addresses. 
You must set these to point at variables using the Ada address attribute. 
You must set the addresses before using the SQLDA to retrieve or set 
Ingres data in the database or in a form. Because you can use null 
indicators, a constant (IISQ_ADR_ZERO) is provided so that you can set 
sqlind to the zero address without including the SYSTEM package. 



Dynamic Programming for Ada 

Chapter 5: Embedded SQL for Ada    5–53 

 If your program defines its own SQLDA record type you must verify that 
the internal record layout is identical to that of the IISQLDA record type, 
although you can declare a different number of sqlvar elements. You need 
not declare the type with a discriminant, but if you do, you must issue an 
Ada representation clause to force the 2-byte discriminant to be placed 
between sqldabc and sqld. The internal layout of the IISQLDA record 
type is equivalent to the following pseudo Ada declaration: 

type IISQLDA_RECORD_LAYOUT is 
     record 
      sqldaid: String(1..8); 
      sqldabc: Integer; 
      sqln:    Short_Integer; -- See FOR clause 
      sqld:    Short_Integer; 
      sqlvar:  IISQL_VARS(1..sqln); 
     end record; 

Consequently, if you declare a record type without a discriminant (that is, 
with a fixed length array of sqlvar elements), you should position the 
sqln component as shown above. 

 The sqlname component is a varying length character string consisting of 
a length and data area. The sqlnamec component contains the name of a 
result field or column after a describe or prepare into statement. The 
length of the name is specified by sqlnamel. The characters in sqlnamec 
are padded with blanks. You can also set the sqlname component by a 
program using Dynamic FRS. The program is not required to pad 
sqlnamec with blanks. For more information, see Setting SQLNAME for 
Dynamic FRS in this chapter. 

 The list of type codes represent the types that are returned by the 
describe statement, and the types used by the program when retrieving 
or setting data with an SQLDA. The type code IISQ_TBL_TYPE indicates a 
table field and is set by the FRS when describing a form that contains a 
table field. 

Declaring an SQLDA Record Variable 

Once you have included (or hard-coded) the SQLDA type definition, the 
program can declare an SQLDA record variable. You must declare this record 
variable outside of a declare section, as the preprocessor does not 
understand the special meaning of the SQLDA record or the IISQLDA record 
type. When you use the variable in the context of a Dynamic SQL or Dynamic 
FRS statement, the preprocessor accepts any object name, and assumes that 
the variable refers to a legally declared SQLDA record variable, for which 
storage has been allocated. 

If your program requires an SQLDA variable with IISQ_MAX_COLS sqlvar 
elements, you can accomplish this by declaring the variable without a 
discriminant constraint. Unlike other languages, an Ada program cannot set 
the value of sqln. Because sqln is a type discriminant, its value is implicit 
from the declaration.  



Dynamic Programming for Ada 

5–54     Embedded SQL Companion Guide 

For example: 

exec sql include sqlda; 
sqlda: IISQLDA; 
   -- Default sets sqlda.sqln to IISQ_MAX_COLS 
   -- This is outside of a DECLARE SECTION. 
... 
exec sql describe s1 into :sqlda; 

However, when you do not use a discriminant constraint in the record 
declaration, you cannot later use an Ada renames statement as a shorthand 
into the sqlvar array. A shorthand can be desirable over continued long 
references such as: 

sqlda.sqlvar(i).sqldata 
sqlda.sqlvar(i).sqlname.sqlnamec 

For example, the above declaration of the SQLDA is equivalent to: 

exec sql include sqlda; 
max_sqlda: IISQLDA(IISQ_MAX_COLS); -- Includes constraint 
... 
exec sql describe s1 into :max_sqlda; 
... 
for i in 1..max_sqlda.sqld loop; 
    declare 
        sqv: IISQL_VAR renames max_sqlda.sqlvar(i); 
    begin 
        -- Use shorthand sqv instead of 
        -- max_sqlda.sqlvar(i) 
    end; 
end loop; 

If you require an SQLDA with a different number of sqlvar elements, then you 
can use a different discriminant constraint. For example: 

sqlda_10:IISQLDA(10); -- Implicitly sets sqlda.sqln to 10 

You can also dynamically allocate an SQLDA with a varying number of sqlvar 
elements. In the following example an SQLDA access variable is declared. Note 
that when you reference the variable in the describe statement the Ada all 
clause is used, as the preprocessor expects a valid SQLDA record variable and 
not a pointer to a record: 

exec sql include sqlda; 

procedure Process_Dynamic_SQL (num_cols: in 

       Short_Integer) is 

    type SQLDA_PTR is access IISQLDA; 

    sp: SQLDA_PTR; 

begin 

    sp := new SQLDA_PTR(num_cols); 

    ... 

    exec sql describe s1 INTO :sp.all; -- Note .all 

    ... 

end Process_Dynamic_SQL; 



Dynamic Programming for Ada 

Chapter 5: Embedded SQL for Ada    5–55 

As long as you use the IISQLDA record type, or a derivative of that type, you 
need not be concerned with the SQLDA record layout. When you code your 
own SQLDA record type then you must confirm that the internal record layout 
is identical to that of the IISQLDA record. One reason you might code your 
own SQLDA record type is to avoid the runtime overhead required to validate 
offsets into a record variable containing a varying length array, such as 
sqlvar. You may prefer a fixed length record variable without a discriminant. 
In that case you must declare the sqln component in the correct position, and 
you must explicitly set the value of sqln in order for the describe statement 
to succeed. For example: 

max_sq: constant := 50; 
type fixed_sqlda_max is -- Layout is correct 
    record 
   my_sqid:  String(1..8); 
   my_sqbc:  Integer; 
   my_vars:  Short_Integer;  -- Equivalent to sqln 
   res_vars: Short_Integer;  -- and SQLD 
   col_vars: IISQL_VARS(1..MAX_SQ); 
    end record; 
 
my_sq: FIXED_SQLDA_MAX; 
 
... 
my_sq.my_vars := MAX_SQ; -- Size must be set 
 
... 
 
exec sql describe s1 into :my_sq; 

In the above record type definition, the names of the record components are 
not the same as those of the IISQLDA record, but their layout is identical. 

As shown above there are a variety of ways to declare an SQLDA record 
variable. Names of record components are not important; internal component 
layout, however, is critical. 

Using the SQLVAR 

The SQL Reference Guide discusses the legal values of the sqlvar array. The 
describe and prepare into statements set the type, length, and name 
information of the SQLDA. This information refers to the result columns of a 
prepared select statement, the fields of a form, or the columns of a table 
field. When the program uses the SQLDA to retrieve or set Ingres data, it must 
assign type and length information that now refers to the variables being 
pointed at by the SQLDA. 



Dynamic Programming for Ada 

5–56     Embedded SQL Companion Guide 

Ada Variable Type Codes 

The type codes listed above (as Ada constants) are the types that describe 
Ingres result fields and columns. For example, the SQL types date, decimal, 
long varchar and money do not describe a program variable, but rather data 
types that are compatible with the Ada character string and numeric data 
types. When these types are returned by the describe statement, the type 
code must be changed to a compatible Ada or ESQL/Ada type. 

The following table describes the data type codes to use with Ada variables 
that are pointed at by the sqldata pointers: 

The SQL Type Codes 
 

Ada Type SQL Type Codes 
(sqltype) 

SQL Length (sqllen) 

Short_Short_Integer IISQ_INT_TYPE 1 

Short_Integer IISQ_INT_TYPE 2 

Integer IISQ_INT_TYPE 4 

Float IISQ_FLT_TYPE 4 

Long_Float IISQ_FLT_TYPE 8 

String(1..LEN) IISQ_CHA_TYPE LEN 

IISQLHDLR IISQ_HDLR_TYPE 0 

As described in Ada Variables and Data Types, all other types are compatible 
with the above Ada data types. For example, you can retrieve an SQL date 
into an Ada string variable, while you can retrieve money into a long_float 
variable. 

You can specify nullable data types (those variables that are associated with a 
null indicator) by assigning the negative of the type code to sqltype. If the 
type is negative then you must point at a null indicator by sqlind. The type of 
the null indicator must be a 2-byte integer, short_integer, or a derivative of 
that type. For information on how to declare and use a null indicator in Ada, 
see Ada Variables and Data Types in this chapter. 

Character data and the SQLDA have the same rules as character data in 
regular Embedded SQL statements. For details of character string processing 
in SQL, see Ada Variables and Data Types in this chapter. 



Dynamic Programming for Ada 

Chapter 5: Embedded SQL for Ada    5–57 

Pointing at Ada Variables 

In order to fill an element of the sqlvar array, you must set the type 
information, and assign a valid address to sqldata. The address must be that 
of a legally declared and allocated variable. If the element is nullable then the 
corresponding sqlind component must point at a legally declared null 
indicator. 

In order to assign addresses to sqldata and sqlind, you should use the Ada 
address attribute or some other function that yields an address. Because null 
indicators are not always required, you can sometimes assign sqlind a zero-
valued address. This can be accomplished by assigning to sqlind the constant 
IISQ_ADR_ZERO, as defined in the ESQLDA package, or the constant 
ADDRESS_ZERO, if you have included the SYSTEM package. 

When assigning addresses, you should be careful to follow the guidelines set 
by the VAX/VMS Ada. For example, you should not reference a variable whose 
lifetime has expired, and you should not access storage beyond the allocated 
amount. You can use the volatile pragma when addressing variables local to a 
subprogram body in order to prevent the compiler from referring to a local 
copy of a variable. When dynamically allocating result storage variables, you 
may want to use the controlled pragma together with an instantiation of the 
generic unchecked_deallocation procedure. The SQL Terminal Monitor 
Application and A Dynamic SQL/Forms Database Browser, which use Dynamic 
SQL and the SQLDA, do not use any of these pragmas, but rely on the rules 
defined in the VAX Ada Programmer’s Runtime Reference Manual. 

The following example fragment sets the type information of and points at a 4-
byte integer variable, an 8-byte nullable floating-point variable, and a 
character slice (sub-string) whose length is specified by sqllen. This example 
demonstrates how a program can maintain a pool of available variables, such 
as large arrays of a few different typed variables and a large string space. 
When a variable is allocated out of the pool the next available spot is 
incremented: 

exec sql include SQLDA; 
max_pool: constant := 50; 
sqlda: IISQLDA(MAX_POOL); 
... 
 
-- Numeric and string pool declarations. 
ind_store: array(1..MAX_POOL) of 
       Short_Integer;               -- Indicators 
current_ind: Integer := 0; 
int4_store: array(1..MAX_POOL) of Integer;  -- Integers 
current_int: Integer := 0; 
flt8_store: array(1..MAX_POOL) of Long_Float; -- Floats 
current_flt: Integer := 0; 
char_store: String(1..3000);             -- String buffer 
current_chr: Integer := 1; 
 
... 
sqlda.sqlvar(1).sqltype := IISQ_INT_TYPE; 
                                      -- 4-byte integer 
sqlda.sqlvar(1).sqllen  := 4; 



Dynamic Programming for Ada 

5–58     Embedded SQL Companion Guide 

sqlda.sqlvar(1).sqldata:= int4_store(current_int)'Address; 
sqlda.sqlvar(1).sqlind := IISQ_ADR_ZERO; 
current_int            := current_int + 1; 
                        -- Update integer pool 
 
sqlda.sqlvar(2).sqltype := -IISQ_FLT_TYPE; 
                                 -- 8-byte nullable float 
sqlda.sqlvar(2).sqllen := 8; 
sqlda.sqlvar(2).sqldata :=flt8_store(current_flt)'Address; 
sqlda.sqlvar(2).sqlind := ind_store(current_ind)'Address; 
current_flt          := current_flt + 1; -- Update float 
current_ind          := current_ind + 1; -- and indicator 
                                          -- pool 
 
-- 
-- SQLLEN has been assigned by DESCRIBE to be the length  
-- of a specific result column. This length is used to    
-- pick off a slice out of the large string buffer. 
-- The character counter is then updated. 
-- 
 
sqlda.sqlvar(3).sqltype := IISQ_CHA_TYPE; 
sqlda.sqlvar(3).sqldata  
     := char_store(current_chr)'Address; 
sqlda.sqlvar(3).sqlind := IISQ_ADR_ZERO; 
current_chr := current_chr + sqlda.sqlvar(3).sqllen; 

Of course, in the above example, you must verify enough pool storage before 
referencing each cell of the different arrays in order to prevent sqldata and 
sqlind from pointing at undefined storage. For demonstrations of this method, 
see The The SQL Terminal Monitor Application and A Dynamic SQL/Forms 
Database Browser in this chapter. 

You may also set the SQLVAR to point to a datahandler for large object 
columns. 

If you code your own SQLDA and, in place of sqldata, you declare a variant 
record of access types to a subset of different data types you may find that 
you can use the Ada allocator, new, and basic access type assignments. If you 
confirm that the layout of the record with the variant component is the same 
as that of IISQLDA, then you can use this type of record as an SQLDA without 
the need to access object addresses. This approach is not discussed further. 

Setting SQLNAME for Dynamic FRS 

Using the sqlvar with Dynamic FRS statements requires a few extra steps. 
These extra steps relate to the differences between Dynamic FRS and Dynamic 
SQL and are described in the Forms-based Application Development Tools User 
Guide and the SQL Reference Guide. 



Advanced Processing 

Chapter 5: Embedded SQL for Ada    5–59 

When using the SQLDA in a forms input or output using clause, you must set 
the value of sqlname to a valid field or column name. If a previous describe 
statement has set the name, it must be retained or reset by the program. If 
the name refers to a hidden column in a table field, the program must set 
sqlname directly. If your program sets sqlname directly, it must also set 
sqlnamel and sqlnamec. The name portion need not be padded with blanks. 

For example, a dynamically named table field has been described, and the 
application always initializes any table field with a hidden 6-byte character 
column called “rowid.” The code used to retrieve a row from the table field 
including the hidden column and _state variable must construct the two 
named columns: 

... 
rowid:    String(1..6); 
 
rowstate: Integer; 
... 
exec frs describe table :formname :tablename into :sqlda; 
 
... 
sqlda.sqld := sqlda.sqld + 1; 
col_num := sqlda.sqld; 
 
-- Set up to retrieve rowid 
sqlda.sqlvar(col_num).sqltype          := IISQ_CHA_TYPE; 
sqlda.sqlvar(col_num).sqllen           := 6; 
sqlda.sqlvar(col_num).sqldata          := rowid'Address; 
sqlda.sqlvar(col_num).sqlind           := IISQ_ADR_ZERO; 
sqlda.sqlvar(col_num).sqlname.sqlnamel := 5; 
sqlda.sqlvar(col_num).sqlname.sqlnamec(1..5) := "rowid"; 
 
sqlda.sqld := sqlda.sqld + 1; 
col_num := sqlda.sqld; 
 
-- Set up to retrieve _STATE 
sqlda.sqlvar(col_num).sqltype := IISQ_INT_TYPE; 
sqlda.sqlvar(col_num).sqllen := 4; 
sqlda.sqlvar(col_num).sqldata := rowstate'Address; 
sqlda.sqlvar(col_num).sqlind := IISQ_ADR_ZERO; 
sqlda.sqlvar(col_num).sqlname.sqlnamel := 6; 
sqlda.sqlvar(col_num).sqlname.sqlnamec(1..6) := "_state"; 
 
... 
exec frs getrow :formname :tablename using descriptor :sqlda; 

Advanced Processing 
This section describes user-defined handlers. It includes information about 
user-defined error, dbevent, and message handlers as well as data handlers 
for large objects. 



Advanced Processing 

5–60     Embedded SQL Companion Guide 

User-Defined Error, DBevent, and Message Handlers 

You can use user-defined handlers to capture errors, messages, or events 
during the processing of a database statement. Use these handlers instead of 
the sql whenever statements with the SQLCA when you want to do the 
following: 

 Capture more than one error message on a single database statement. 

 Capture more than one message from database procedures fired by rules. 

 Trap errors, events, and messages as the DBMS raises them. If an event is 
raised when an error occurs during query execution, the WHENEVER 
mechanism detects only the error and defers acting on the event until the 
next database statement is executed. 

User-defined handlers offer you flexibility. If, for example, you want to trap an 
error, you can code a user-defined handler to issue an inquire_sql to get the 
error number and error text of the current error. You can then switch sessions 
and log the error to a table in another session; however, you must switch back 
to the session from which the handler was called before returning from the 
handler. When the user handler returns, the original statement continues 
executing. User code in the handler cannot issue database statements for the 
session from which the handler was called. 

The handler must be declared to return an integer. However, the preprocessor 
ignores the return value. 

Syntax Notes: 

The following syntax describes the three types of handlers: 

  exec sql set_sql (errorhandler   = error_routine|0); 
  exec sql set_sql (dbeventhandler = event_routine|0); 
  exec sql set_sql (messagehandler = message_routine|0); 

Errorhandler, dbeventhandler, and messagehandler denote a user-defined 
handler to capture errors, events, and database messages respectively, as 
follows: 

 error_routine is the name of the function the Ingres runtime system calls 
when an error occurs. 

 event_routine is the name of the function the Ingres runtime system calls 
when an event is raised. 

 message_routine is the name of the function the Ingres runtime system 
calls whenever a database procedure generates a message. 

Errors that occur in the error handler itself do not cause the error handler 
to be re-invoked. You must use inquire_sql to handle or trap any errors 
that may occur in the handler. 



Advanced Processing 

Chapter 5: Embedded SQL for Ada    5–61 

 Unlike regular variables, the handler must not be declared in an ESQL 
declare section; therefore, do not use a colon before the handler 
argument. (However, you must declare the handler to the compiler.) 

 If you specify a zero (0) instead of a name, the zero will unset the handler. 

User-defined handlers are also described in the SQL Reference Guide. 

Declaring and Defining User-Defined Handlers 

The following example shows how to declare a handler for use in the set_sql 
errorhandler statement for ESQL/Ada: 

exec sql include sqlca; 
 
package Error_Trap is 
  function Error_Func return Integer; 
  pragma export_function (Error_Func); 
end Error_Trap; 
 
with text_io; use text_io; 
with integer_text_io; use integer_text_io; 
 
package body Error_Trap is 
  function Error_Func return Integer is 
  exec sql begin declare section; 
    errnum : Integer; 
  exec sql end declare section; 
  begin 
    exec sql inquire_sql(:errnum = ERRORNO); 
    put ("Error number is: "); 
    put (Errnum); 
  end Error_Func; 
end; 
 
with Error_Trap; use Error_Trap; 
procedure TEST is 
begin 
  exec sql connect dbname; 
 
  exec sql set_sql (ERRORHANDLER = Error_Func); 
       -- 
       -- ESQL will generate 
       -- IILQshSetHandler ( 1, Error_Func'Address ); 
       -- 
       . . . 
end; 

User-Defined Data Handlers for Large Objects 

You can use user-defined datahandlers to transmit large object column values 
to or from the database a segment at a time. For more details on Large 
Objects, the datahandler clause, the get data statement and the put data 
statement, see the SQL Reference Guide and the Forms-based Application 
Development Tools User Guide. 



Advanced Processing 

5–62     Embedded SQL Companion Guide 

ESQL/Ada Usage Notes 

 The datahandler, and datahandler argument, should not be declared in an 
ESQL declare section. Therefore do not use a colon before the datahandler 
or its argument. 

 You must ensure that the datahandler argument is a valid Ada variable 
address. ESQL will not do any syntax or datatype checking of the 
argument. 

 The datahandler must be declared to return an integer. However, the 
actual return value will be ignored. 

DATAHANDLERS and the SQLDA 

You may specify a user-defined datahandler as an SQLVAR element of the 
SQLDA, to transmit large objects to or from the database. The eqsqlda.h file 
included with the include sqlda statement defines an IISQLDHDLR type which 
may be used to specify a datahandler and its argument. It is defined: 

-- 
-- IISQLHDLR - Structure type with function pointer and  
--             function argument for the DATAHANDLER. 
-- 
type IISQLHDLR is 
    record 
       sqlarg:  Address;-- Optional argument to pass 
       sqlhdlr: Address;--User-defined datahandler function 
    end record; 

The file does not declare an IISQLHDLR variable; the program must declare a 
variable of the specified type and set the values: 

-- Declare argument to be passed to datahandler 
      hdlr_arg:     Hdlr_Rec; 
 
-- Declare IISQLHDLR 
      data_handler: IISQLHDLR; 
-- Declare Get_Handler function to return an integer 
function Get_Handler(info: Hdlr_Rec) return Integer 
  data_handler.sqlhdlr = Get_Handler'Address; 
  data_handler.sqlarg  = hdlr_arg'Address; 

The sqltype, sqlind and sqldata fields of the SQLVAR element of the SQLDA 
should then be set as follows: 

 sqlda.sqlvar(i).sqltype := IISQ_HDLR_TYPE; 
 sqlda.sqlvar(i).sqldata := data_handler'Address; 
 sqlda.sqlvar(i).sqlind  := indvar'Address' 



Advanced Processing 

Chapter 5: Embedded SQL for Ada    5–63 

Sample Programs 

The programs in this section are examples of how to declare and use user-
defined datahandlers in an ESQL/Ada program. There are examples of a 
handler program, a put handler program, a get handler program and a 
dynamic SQL handler program. 

Handler Program 

This example assumes that the book table was created with the statement: 

exec sql create table book (chapter_num integer, 
     chapter_name char(50), chapter_text long varchar); 

This program inserts a row into the book table using the data handler 
Put_Handler to transmit the value of column chapter_text from a text file to 
the database in segments. Then it selects the column chapter_text from the 
table book using the data handler Get_Handler to retrieve the chapter_text 
column a segment at a time: 

package DataHdlrPkg is 
    type Hdlr_Rec is 
 
    record  
      argstr:   String(1..100); 
      argint:   Integer;  -- 4-byte integers 
    end record; 
 
    function Put_Handler(info: Hdlr_Rec) return Integer; 
    function Get_Handler(Info: Hdlr_Rec) return Integer; 
    pragma export_function(Put_Handler); 
    pragma export_function(Get_Handler); 
 
end DataHdlrPkg; 
 
with DataHdlrPkg;      use DataHdlrPkg; 
 
procedure handler is 
 
    exec sql include sqlca; 
 
-- Do not declare the datahandlers nor the datahandler  
-- argument to the ESQL preprocessor 
 
    hdlr_arg: Hdlr_Rec; 
 
-- Null indicator for datahandler must be declared to  
-- ESQL 
 
-- 
 
    exec sql begin declare section; 
      indvar:     Short_integer; 
      chapter_num: Integer; 
    exec sql end declare section; 
 
-- Insert a long varchar value chapter_text into the  
-- table book using the datahandler Put_Handler  
-- The argument passed to the datahandler is the  
-- address of the record hdlr_arg 



Advanced Processing 

5–64     Embedded SQL Companion Guide 

    ... 
 
    exec sql insert into book (chapter_num, chapter_name, 
                     chapter_text) 
         values (5, 'One Dark and Stormy Night', 
            Datahandler(Put_handler(hdlr_arg))); 
 
-- Select the column chapter_num and the long varchar 
-- column chapter_text from the table book. 
-- The datahandler (Get_Handler) will be invoked  
-- for each non-null value of the column chapter_text 
-- retrieved. For null values the indicator 
-- variable will be set to "-1" and the datahandler  
-- will not be called. 
    ... 
    exec sql select chapter_text into 
        :chapter_num, 
        datahandler (Get_Handler(hdlr_arg)) :indvar  
        from book; 
 
    exec sql begin; 
        process row ... 
    exec sql end; 
    ... 
 
end handler; 

Put Handler 

This example shows how to read the long varchar chapter_text from a text file 
and insert it into the database a segment at a time: 

function Put_Handler(info: Hdlr_Rec) return Integer is 
 exec sql begin declare section; 
   seg_buf:   String(1..1000); 
   seg_len:   Integer; 
   data_end:  Integer; 
 exec sql end declare section; 
 
 process information passed in via the info  
   record... 
 open file ... 
 
 data_end := 0; 
 
 while (not end-of-file) loop 
 
   read segment of less than 1000 chars from 
           file into seg_buf... 
 
   if (end-of-file) then 
    data_end := 1; 
   end if; 
 
  exec sql put data (segment = :seg_buf, 
        segmentlength = :seg_len,  
                          dataend = :data_end); 
 
 end loop; 
 
 ... 
 close file ... 
 set info record to return appropriate values... 
 ... 



Advanced Processing 

Chapter 5: Embedded SQL for Ada    5–65 

 return 0; 
end Put_Handler; 

Get Handler 

This example shows how to get the long varchar chapter_text from the 
database and write it to a text file: 

function Get_Handler(info: Hdlr_Rec) return Integer is 
 exec sql begin declare section; 
   seg_buf:      String(1..100); 
   seg_len:      Integer; 
   data_end:     Integer; 
   max_len:      Integer; 
 exec sql end declare section; 
 
 ... 
 process information passed in via the  
    info record.... 
 open file... 
 
  -- Set a maximum segment length of 2000 bytes  
  data_end := 0; 
 
 while (data_end = 0) loop 
   exec sql get data (:seg_buf = segment,  
                               :seg_len =segmentlength, 
                              :data_end = dataend)  
                         with maxlength = :max_len; 
 
  write segment to file ... 
 end loop; 
 
   . . . 
   set info record to return appropriate values... 
 
   . . . 
 
   return 0; 
end Get_Handler; 

Dynamic SQL Handler Program 

The following is an example of a dynamic SQL handler program. This program 
fragment shows the declaration and usage of a datahandler in a dynamic SQL 
program, using the SQLDA. It uses the datahandler Get_Handler and the 
HDLR_PARAM structure described in the previous example: 

with DataHdlrPkg;      use DataHdlrPkg; 
 
procedure Dynamic_hdlr 
 
  exec sql include sqlca; 
  exec sql include sqlda; 
 
-- Do not declare the datahandlers nor the datahandler 
-- argument to the ESQL preprocessor. 
 
-- Declare argument to be passed to datahandler 
 



Advanced Processing 

5–66     Embedded SQL Companion Guide 

  hdlr_arg:     Hdlr_Rec; 
 
-- Declare SQLDA and IISQLHDLR 
  
  sqlda:   IISQLDA(IISQ_MAX_COLS); 
  data_handler: IISQLHDLR; 
 
  col_num:      Integer; 
  base_type:    Integer; 
 
-- Declare null indicator to ESQL 
 
  exec sql begin declare section; 
     indvar:   Short_Integer; 
    stmt_buf: String(100); 
  exec sql end declare section; 
 
  ... 
 
--  Set the IISQLHDLR structure with the appropriate  
-- datahandler and datahandler argument. 
 
  data_handler.sqlhdlr = Get_Handler'Address; 
  data_handler.sqlarg  = hdlr_arg'Address; 
 
-- Describe the statement into the SQLDA. 
  stmt_buf := "select * from book"; 
  exec sql prepare stmt from :stmt_buf; 
  exec sql describe stmt into sqlda; 
  . . . 
 
-- Determine the base_type of the SQLDATA variables. 
  for col_num in 1..sqlda.sqld loop 
 
   if (sqlda.sqlvar(col_num).sqltype > 0) then 
    base_type := sqlda.sqlvar(col_num).sqltype; 
 
   else 
    base_type := -sqlda.sqlvar(col_num).sqltype; 
   end if; 
 
-- Set the sqltype, sqldata and sqlind for each column 
-- The long varchar column chapter_text will be set 
-- to use a datahandler. 
 
   if (base_type = IISQ_LVCH_TYPE) then 
     sqlda.sqlvar(col_num).sqltype := IISQ_HDLR_TYPE; 
     sqlda.sqlvar(col_num).sqldata := 
                            data_handler'Address; 
     sqlda.sqlvar(col_num).sqlind  := indvar'Address' 
   else 
   . . . 
 
   end if; 
 
  end loop; 
 
-- The Datahandler (Get_Handler) will be invoked for 
-- each non-null value of column chapter_text  
-- retrieved. For null values the indicator variable 
-- will be set to "-1" and the datahandler will not 
-- be called. 
 
 . . . 
 



Preprocessor Operation 

Chapter 5: Embedded SQL for Ada    5–67 

 exec sql execute immediate :stmt_buf using :sqlda; 
 exec sql begin; 
 
  process row.... 
  exec sql end; 
  . . . 
 
end Dynamic_hdlr; 

Preprocessor Operation 
This section describes the operation of the Embedded SQL preprocessor for 
Ada and the steps required to create, compile, and link an Embedded SQL 
program. 

Include File Processing 

The Embedded SQL include statement provides a means to include external 
packages and source files in your program’s source code. Its syntax is: 

 exec sql include filename; 

where filename is a quoted string constant specifying a file name or a logical 
name that points to the file name. If you do not specify an extension to the file 
name (or to the file name pointed at by the logical name), the default Ada 
input file extension “.sa” is assumed.  

This statement is used to include variable declarations or package 
specifications. For more details on the include statement, see the SQL 
Reference Guide. 

Including and Processing Variable Declarations 

If issued in a declaration section, the include statement can only be used to 
include variable declarations. The included file is preprocessed, and Ada output 
is generated into the parent file. 

For example, a file called “employee.dcl” containing a record declaration 
generated by DCLGEN can be included into the source code as follows: 

exec sql begin declare section; 
       exec sql include 'employee.dcl'; 
    -- more declarations 
exec sql end declare section; 

The employee.dcl file is preprocessed into the parent output file. 



Preprocessor Operation 

5–68     Embedded SQL Companion Guide 

Including and Processing Package Specifications 

If issued outside a declaration section, the include statement can only be 
used to include package specifications. The preprocessor reads the specified 
file, processing all variables declared in the package, and generates the Ada 
with and use clauses using the last component of the file name (excluding the 
file extension) as the package name. If the last component of the file name 
has a trailing underscore, as is standard in VAX/VMS Ada package specification 
files, then the preprocessor removes that trailing underscore in the generated 
context clauses. The preprocessor does not generate an output file, because it 
is assumed that the package specification has already been compiled. 

Note: 

 Each package must be in a separate source file. 

 Nothing but the package should be in that source file (no other variable 
declarations, etc). 

 There are no limitations on what can be in a package (you may define 
types, etc). 

The following example demonstrates the include statement. Assume that the 
specification of package “employee” is in a employee_.sa file and that a 
procedure “empentry” is in the empentry.sa file: 

Contents of employee_.sa: 

package employee is 
 exec sql begin declare section; 
    ename:   String(1..20); 
    eage:    Integer; 
    esalary: Float; 
 exec sql end declare section; 
end employee; 

Contents of empentry.sa: 

exec sql include '[joe.neil.empfiles]employee_.sa'; 
procedure empentry is 
begin 
 -- Statements using variables in package 
 -- "employee" 
end empentry; 

The Embedded SQL/Ada preprocessor modifies the include line to the Ada 
with and use clauses by extracting the last component of the file name: 

with employee;    use employee; 

The above two clauses appear in the empentry.ada output file. The 
preprocessor does not generate an output file for “employee_.sa,” and the 
employee package must have already been compiled in order to compile the 
empentry.ada file. 



Preprocessor Operation 

Chapter 5: Embedded SQL for Ada    5–69 

Assuming that the employee_.sa and empentry.sa files appear as shown 
above, you should execute the following sequence of VMS commands in order 
to compile “empentry.ada”: 

esqla employee_.sa 
esqla empentry.sa 
ada employee_.ada 
ada empentry.ada 

You must still follow the Ada rules specifying the order of compilation. The 
Embedded SQL preprocessor does not affect these compilation rules. 

Coding Requirements for Writing Embedded SQL Programs 

The following sections describe coding requirements for writing Embedded SQL 
Programs. 

Comments Embedded in Ada Output 

Each Embedded SQL statement generates one comment and a few lines of Ada 
code. You may find that the preprocessor translates 50 lines of Embedded SQL 
into 200 lines of Ada. This can confuse the program developer trying to debug 
the original source code. To facilitate debugging, each group of Ada 
statements associated with a particular Embedded SQL statement is delimited 
by a comment corresponding to the original Embedded SQL source. Each 
comment is one line in length and informs the reader of the file name, line 
number, and type of statement in the original source file. 

Embedded SQL Statements that Do Not Generate Code 

The following Embedded SQL declarative statements do not generate any Ada 
code: 

declare cursor 
declare statement 
declare table 
whenever 

These statements must not contain labels. Also, they must not be coded as the 
only statements in Ada constructs that do not allow empty statements. For 
example, coding a declare cursor statement as the only statement in an Ada 
if statement causes compiler errors: 

if (using_database) then 
  exec sql declare empcsr cursor for 
    select ename from employee; 
else 
  put_line("You have not accessed the database."); 
end if; 



Preprocessor Operation 

5–70     Embedded SQL Companion Guide 

The preprocessor generates the code: 

if (using_database) then 
else 
  put_line("You have not accessed the database."); 
end if; 

This is an illegal use of the Ada if-then-else statement. 

Command Line Operations 

The following sections describe how to turn an embedded SQL/Ada source 
program into an executable program. The commands that preprocess, 
compile, and link a program are also described. 

The Embedded SQL Preprocessor Command 

The Embedded SQL/Ada preprocessor is invoked by the following command 
line:  

 esqla {flags} {filename} 

where flags are 

 

Flag Description 

-d Adds debugging information to the runtime database 
error messages generated by Embedded SQL. The 
source file name, line number, and statement in error 
are displayed with the error message. 

-f[filename] Writes preprocessor output to the named file. If you do 
not specify a filename, the output is sent to standard 
output, one screen at a time. 

-l Writes preprocessor error messages to the 
preprocessor’s listing file, as well as to the terminal. The 
listing file includes preprocessor error messages and 
your source text in a file named filename.lis, where 
filename is the name of the input file. 

-lo Acts like the -l flag, but the listing file also includes the 
generated Ada code. 

-? Shows what command line options are available for 
Embedded SQL/Ada. 



Preprocessor Operation 

Chapter 5: Embedded SQL for Ada    5–71 

Flag Description 

-s Reads input from standard input and generates Ada code 
to standard output. This is useful for testing unfamiliar 
statements. If you specify the -l option with this flag, the 
listing file is called “stdin.lis.” To terminate the 
interactive session, type Ctrl Z. 

-sqlcode Indicates the file declares an integer variable named 
SQLCODE to receive status information from SQL 
statements. That declaration need not be in an exec sql 
begin/end declare section. This feature is provided for 
ISO Entry SQL92 conformity 

However, the ISO Entry SQL92 specification describes 
SQLCODE as a “deprecated feature” and recommends 
using the SQLSTATE variable. 

-nosqlcode  Tells the preprocessor not to assume the existence of a 
status variable named SQLCODE. The flag -nosqlcode 
is the default. 

-w Prints warning messages. 

-wopen This flag is identical to -wsql=open. However, -wopen 
is supported only for backwards capability. Refer to -
wsql=open below for more information. 

-wsql=entry_ 
SQL92 

Causes the preprocessor to flag any usage of syntax or 
features that do not conform to the ISO Entry SQL92 
entry level standard. (This is also known as the “FIPS 
flagger” option.)  

-wsql=open Use open only with OpenSQL syntax. -wsql = open 
generates a warning if the preprocessor encounters an 
Embedded SQL statement that does not conform to 
OpenSQL syntax. (For OpenSQL syntax, see the 
OpenSQL Reference Guide.) This flag is useful if you 
intend to port an application across different Enterprise 
Access products. The warnings do not affect the 
generated code and the output file may be compiled. 
This flag does not validate the statement syntax for any 
Enterprise Access product whose syntax is more 
restrictive than that of OpenSQL. 

The Embedded SQL/Ada preprocessor assumes that input files are named with 
the extension “.sa”. You can override this default by specifying the file 
extension of the input file(s) on the command line. The output of the 
preprocessor is a file of generated Ada statements with the same name and 
the extension “.ada”. 



Preprocessor Operation 

5–72     Embedded SQL Companion Guide 

If you enter the command without specifying any flags or a filename, a list of 
flags available for the command is displayed. 

The following table presents the options available with Embedded SQL/Ada. 

Esqla Command Examples 
 

Command Comment 

esqla file1 Preprocesses “file1.sa” to “file1.ada” 

esqla file2.xa Preprocesses “file2.xa” to “file2.ada” 

esqla -l file3 Preprocesses “file3.sa” to “file3.ada” and creates the 
listing “file3.lis” 

esqla -s Accepts input from standard input 

esqla -ffile4.out file4 Preprocesses “file4.sa” to “file4.out” 

esqla Displays a list of flags available for this command. 

The ACS Environment and the Ada Compiler 

The preprocessor generates Ada code. You can then use the VMS ada 
command to compile this code into your Ada program library. 

The following sections describe the Ada program library and Embedded SQL 
programs. 

Entering Embedded SQL Package Specifications 

Once you have set up an Ada program library, you must add four Embedded 
SQL units to your library. The units are package specifications that describe to 
the Ada compiler all the calls that the preprocessor generates. The source for 
these units is in the files: 

ii_system:[ingres.files]eqdef.ada 
ii_system:[ingres.files]eqsqlca.ada 
ii_system:[ingres.files]eqsqlda.ada 

Once you have defined your current program library using the acs set library 
command, you should enter the three units into your program library by 
issuing the following commands: 

copy ii_system:[ingres.files]eqdef.ada, eqsqlca.ada,- 
  eqsqlda.ada [] 
ada eqdef.ada,eqsqlca.ada,eqsqlda.ada 
delete eqdef.ada.,eqsqlca.ada.,eqsqlda.ada 



Preprocessor Operation 

Chapter 5: Embedded SQL for Ada    5–73 

You do not have to take the last step if you intend to compile the closure of a 
particular program from the source files at a later date. However, you should 
not modify an Embedded SQL definition file if it is left in your directory. 

You need only enter the four Embedded SQL units once into your program 
library. Of course, if a new release of Embedded SQL/Ada includes 
modifications to the files “eqdef.ada,” “esqlca.ada,” or “eqsqlda.ada,” you 
should copy and recompile the files. 

If you display the new unit information, you will find the four unit names 
“ESQL,” “ESQLDA,” “EQUEL,” and “EQUEL_FORMS” in the library. For example, 
by issuing: 

acs dir esql*,equel* 

the three unit names will be displayed. 

Defining Long Floating-point Storage 

The storage representation format of long floating-point variables must be 
d_float because the Ingres runtime system uses that format for floating-point 
conversions. If your Embedded SQL program has long_float variables that 
interact with the Embedded SQL runtime system, you must make sure they 
are stored in the d_float format. The default Ada format is g_float. A 
convenient way to control the format of all long float variables is to issue the 
acs set pragma program command. For example, by issuing the following 
command, you redefine the program library characteristics for long_float 
from the default to d_float: 

acs set pragma/long_float=d_float 

A second remedy to this particular problem is to issue the statement: 

pragma long_float(d_float) 

in the source file of each compilation unit that uses floating-point variables. 
You can also explicitly declare the Embedded SQL variables with type d_float, 
as defined in package SYSTEM. 

The following example is a typical command file that sets up a new Ada 
program library with the Embedded SQL package specifications and the 
d_float numerical format. The name of the new program library is passed in 
as a parameter: 

acs create library [.'p1'] 
acs set library [.'p1'] 
acs set pragma/long_float=d_float 
copy ii_system:[ingres.files]eqdef.ada,eqsqlca.ada, - 
  eqsqlda.ada [] 
ada eqdef.ada,eqsqlca.ada,eqsqlda.ada 
delete eqdef.ada.,eqsqlca.ada.,eqsqlda.ada 
exit 



Preprocessor Operation 

5–74     Embedded SQL Companion Guide 

The Ada Compiler 

After you enter the Embedded SQL packages into the Ada program library, you 
can compile the Ada file generated by the preprocessor.  

The following example preprocesses and compiles the file “test1.” Note that 
both the Embedded SQL/Ada preprocessor and the Ada compiler assume the 
default extensions. 

esqla test1 
ada/list test1 

Note: Refer to the Readme file for any operating system specific information on 
compiling and linking ESQL/Ada programs. 

VMS
 As of Ingres II 2.0/0011 (axm.vms/00) Ingres uses member alignment and 

IEEE floating-point formats. Embedded programs must be compiled with 
member alignment turned on. In addition, embedded programs accessing 
floating-point data (including the MONEY data type) must be compiled to 
recognize IEEE floating-point formats.  

Linking an Embedded SQL Program 

Embedded SQL/Ada programs require procedures from several VMS shared 
libraries in order to run. After you preprocess and compile an Embedded 
SQL/Ada program, you can link it. For example, if your program unit is called 
“dbentry,” you can use the following link command: 

acs link dbentry – 
 ii_system:[ingres.files]esql.opt/opt 

Note that the Embedded SQL runtime library is not written in Ada, and 
therefore is specified as a foreign object file. 

Assembling and Linking Precompiled Forms 

The technique of declaring a precompiled form to the Forms Runtime System 
is discussed in the SQL Reference Guide. To use such a form in your program, 
you must also follow the steps described here. 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in the VAX MACRO 
language. After you create the file this way, you can assemble it into linkable 
object code with the VMS command: 

 macro filename 



Preprocessor Error Messages 

Chapter 5: Embedded SQL for Ada    5–75 

The output of this command is a file with the extension “.obj”. You can then 
link this object file with your program by specifying it in the link command as 
in the following example for the program unit “formentry,” which includes two 
compiled forms: 

acs link formentry – 
  empform.obj, deptform.obj, - 
  ii_system:[ingres.files]esql.opt/opt 

Linking an Embedded SQL Program without Shared Libraries 

While the use of shared libraries in Embedded SQL programs is recommended 
for optimal performance and ease of maintenance, non-shared versions of the 
Embedded SQL runtime libraries have been included in case you require them. 
Non-shared libraries required by Embedded SQL are listed in the esql.noshare 
options file. The options file must be included in your link command after all 
local modules. Libraries must be specified in the order given in the options file. 

The following example demonstrates the link command of the Embedded SQL 
program unit “dbentry,” which has been preprocessed and compiled: 

acs link dbentry – 
 ii_system:[ingres.files]esql.noshare/opt 

Embedded SQL/Ada Preprocessor Errors 

To correct most errors, you may wish to run the Embedded SQL/Ada 
preprocessor with the listing (-l) option on. The listing should be sufficient for 
locating the source and reason for the error. 

For preprocessor error messages specific to Ada, see Preprocessor Error 
Messages in this chapter.  

Preprocessor Error Messages 
The following is a list of error messages specific to Ada. 

E_DC000A “Table ‘employee’ contains column(s) of unlimited length.” 

Explanation: Character string(s) of zero length have been generated. This 
causes a compile-time error. You must modify the output file to specify an 
appropriate length. 



Preprocessor Error Messages 

5–76     Embedded SQL Companion Guide 

E_E60001 “The Ada variable ’%0c’ is an array and must be subscripted.”  

Explanation:  A variable declared as an array must be subscripted when 
referenced. The preprocessor does not confirm that you use the correct 
number of subscripts. A variable declared as a 1-dimensional array of 
characters must not be subscripted as it refers to a character string. 

E_E60002 “The Ada variable ’%0c’ is not an array and must not be subscripted.”  

Explanation:  A variable not declared as an array cannot be subscripted. You 
cannot subscript string variables in order to refer to a single character or a 
slice of a string (sub-string). 

E_E60003 “The Ada identifier ’%0c’ is not a declared type.”  

Explanation:  The identifier was used as an Ada type name in an object or 
type declaration. This identifier has not yet been declared to the preprocessor 
and is not a preprocessor-predefined type name. 

E_E60004 “The Ada CHARACTER variable ’%0c’ must be a 1-dimensional array.” 

Explanation:  Variables of type CHARACTER can only be declared as 1-
dimensional arrays. You cannot use a single character or a multi-dimensional 
array of characters as an Ingres string. Note that you can use a 
multidimensional array of type STRING. 

E_E60005 “The Ada DIGITS clause ’%0c’ is out of the range 1..16.” 

Explanation:  Embedded Ada supports D_FLOAT floating-point variables. 
Consequently, all DIGITS specifications must be in the specified range. 

E_E60006 “Statement ’%0c’ is embedded in INCLUDE file package specification.” 

Explanation:  Preprocessor INCLUDE files may only be used for Ada package 
specifications. The preprocessor generates an Ada WITH clause for the 
package. No executable statements may be included in the file because the 
code generated will not be accepted by the Ada compiler in a package 
specification. 

E_E60007 “Too many names (%0c) in Ada identifier list. Maximum is %1c.” 

Explanation:  Ada identifier lists cannot have too many names in the comma-
separated name list. The name specified in the error message caused the 
overflow, and the remainder of the list is ignored. Rewrite the declaration so 
that there are fewer names in the list. 



Preprocessor Error Messages 

Chapter 5: Embedded SQL for Ada    5–77 

E_E60008 “The Ada identifier list has come up short.” 

Explanation:  The stack used to store comma separated names in Ada 
declarations has been corrupted. Try rearranging the list of names in the 
declaration. 

E_E60009 “The Ada CONSTANT declaration of ’%0c’ must be initialized.”  

Explanation:  CONSTANT declarations must include an initialization clause. 

E_E6000A “The Ada identifier ’%0c’ is either a constant or an enumerated literal.”  

Explanation:  The named identifier was used to retrieve data from Ingres. A 
constant, an enumerated literal and a formal parameter with the IN mode are 
all considered illegal for the purpose of retrieval. 

E_E6000B “The Ada variable ’%0c’ with ’.ALL’ clause is illegal.”  

Explanation:  The ADA .ALL clause, as specified with access objects, can be 
used only if the variable is an access object pointing at a single scalar-valued 
type. If the type is not scalar valued, or if the access object is pointing at a 
record or array, then the use of .ALL is illegal. 

E_E6000C “The Ada variable ’%0c’ with ’.ALL’ clause is not a scalar type.”  

Explanation:  The ADA .ALL clause, as specified with access objects, can be 
used only if the variable is an access object pointing at a single scalar-valued 
type. If the type is not scalar valued, or if the access object is pointing at a 
record or array, then the use of .ALL is illegal. 

E_E6000D “Last component in Ada record qualification ’%0c’ is illegal.”  

Explanation:  The last component referenced in a record qualification is not a 
member of the record. If this component was supposed to be declared as a 
record, the following components will cause preprocessor syntax errors. 

E_E6000E “In ADA RENAMES statement, ’%0c’ must be a constant or a variable.” 

Explanation:  The target object of a RENAMES statement must be a constant 
or a variable, and the item being declared is used a synonym for the target 
object. 

E_E6000F “In ADA RENAMES statement, object is incompatible with type.”  

Explanation:  The type of the target object in the RENAMES statement must 
be compatible in base type, size and array dimensions with the type name 
specified in the declaration. 



Sample Applications 

5–78     Embedded SQL Companion Guide 

E_E60010 “Only one name may be declared in an ADA RENAMES statement.” 

Explanation: One object can rename only one other object. 

E_E60012 “The Ada variable ’%0c’ has not been declared.”  

Explanation: The named identifier was used where a variable must be used 
to set or retrieve Ingres data. The variable has not yet been declared. 

E_E60013 “The ADA type %0c is not supported.”  

Explanation:  Some Ada types are not supported because they are not 
compatible with the Ingres runtime system. 

E_E60014 “The ADA variable ’%0c’ is a record, not a scalar value.” 

Explanation:  The named variable qualification refers to a record. It was used 
where a variable must be used to set or retrieve Ingres data. This error may 
also cause syntax errors on record component references. 

E_E60016 “The ADA statement %0c is not supported.” 

Explanation:  Statements that modify the internal representation of variables 
that interact with Ingres are not supported. 

Sample Applications 
This section contains sample applications.  

The Department-Employee Master/Detail Application 

This application uses two database tables joined on a specific column. This typical 
example of a department and its employees demonstrates how to process two 
tables as a master and a detail. 

The program scans through all the departments in a database table, in order 
to reduce expenses. Based on certain criteria, the program updates 
department and employee records. The conditions for updating the data are 
the following: 

Departments: 

 If a department has made less than $50,000 in sales, the department is 
dissolved. 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–79 

Employees: 

 If an employee was hired since the start of 1985, the employee is 
terminated. 

 If the employee’s yearly salary is more than the minimum company wage 
of $14,000 and the employee is not nearing retirement (over 58 years of 
age), the employee takes a 5% pay cut. 

 If the employee’s department is dissolved and the employee is not 
terminated, the employee is moved into a state of limbo to be resolved by 
a supervisor. 

This program uses two cursors in a master/detail fashion. The first cursor is for 
the Department table, and the second cursor is for the Employee table. Both 
tables are described in declare table statements at the start of the program. 
The cursors retrieve all the information in the tables, some of which is 
updated. The cursor for the Employee table also retrieves an integer date 
interval whose value is positive if the employee was hired after January 1, 
1985. 

Each row that is scanned from both the Department table and the Employee 
table is recorded into the system output file. This file serves as a log of the 
session and as a simplified report of the updates. 

Each section of code is commented for the purpose of the application and also 
to clarify some of the uses of the Embedded SQL statements. The program 
illustrates table creation, multi-statement transactions, all cursor statements, 
direct updates, and error handling. 

-- Create package for Long_Float I/O so as not to conflict with 
-- the default G_FLOAT format. This example assumes that the ACS  
-- SET PRAGMA command has been issued. 
 
with text_io; 
package long_float_text_io is new text_io.float_io(long_float); 
 
-- I/O utilities 
with text_io;                     use text_io; 
with integer_text_io;             use integer_text_io; 
with short_integer_text_io;       use short_integer_text_io; 
with short_short_integer_text_io; use short_short_integer_text_io; 
with float_text_io;               use float_text_io; 
with long_float_text_io;          use long_float_text_io; 
 
exec sql include sqlca; 
 
-- The department table 
exec sql declare dept table 
      (name         char(12) not null,      -- Department name 
       totsales     money not null,         -- Total sales 
       employees    smallint not null);      -- Number of employees 
 
-- The employee table 
exec sql declare employee table 
      (name         char(20)     not null,    -- Employee name 
       age          integer1 not null,        -- Employee age 
       idno         integer not null,         -- Unique employee id 
       hired        date not null,            -- Date of hire 



Sample Applications 

5–80     Embedded SQL Companion Guide 

       dept         char(12) not null,        -- Department of work 
       salary       money not null);          -- Yearly salary 
 
-- "State-of-Limbo" for employees who lose their department 
exec sql declare toberesolved table 
      (name         char(20) not null,        -- Employee name 
       age          integer1 not null,        -- Employee age 
       idno         integer not null,         -- Unique employee id 
       hired        date   not null,          -- Date of hire 
       dept         char(12) not null,        -- Department of work 
       salary       money not null);          -- Yearly salary 
 
-- Procedure: Process_Expenses -- MAIN 
-- Purpose:   Main body of the application. Initialize the  
--            database, process each department and terminate  
--            the session. 
-- Parameters: 
--            None 
 
procedure Process_Expenses is 
 
      log_file: File_type;            -- Log file to write to. 
      sql_error: exception; 
-- 
-- Procedure:    Init_Db 
-- Purpose:      Initialize the database. 
--               Connect to the database and abort on error. 
--               Before processing departments and employees, 
--               create the table for employees who 
--               lose their departments, "toberesolved". 
-- Parameters: 
--             None 
-- 
 
procedure Init_Db is 
 
begin 
    exec sql whenever sqlerror stop; 
    exec sql connect personnel; 
 
    put_line(log_file, 
      "Creating ""To_Be_Resolved"" table."); 
    exec sql create table toberesolved 
         (name      char(20) not null, 
          age       integer1 not null, 
          idno      integer not null, 
          hired     date not null, 
          dept      char(12) not null, 
          salary    money not null); 
 
end Init_Db; 
 
-- Procedure: End_Db 
-- Purpose:   Commit the multi-statement transaction and 
--            end access to the database. 
-- Parameters: 
--            None 
 
procedure End_Db is 
begin 
    exec sql commit; 
    exec sql disconnect; 
end End_Db; 
 
-- 
-- Procedure: Close_Down 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–81 

-- Purpose: Error handler called any time after Init_Db has been 
--          successfully completed. In all cases, print the cause  
--          of the error and abort the transaction, backing out  
--          changes. Note that disconnecting from the database  
--          will implicitly close any open cursors. 
-- Parameters: None. 
-- 
 
procedure Close_Down is 
 
      exec sql begin declare section; 
             errbuf: String(1..200); 
      exec sql end declare section; 
 
begin 
      -- Turn off error handling here 
      exec sql whenever sqlerror continue; 
      exec sql inquire_sql (:errbuf = ERRORTEXT); 
      put_line( "Closing Down because of database error."); 
      put_line( errbuf ); 
 
      exec sql rollback; 
      exec sql disconnect; 
 
      raise sql_error; -- No return 
end Close_Down; 
 
-- 
-- Procedure: Process_Employees 
-- Purpose:   Scan through all the employees for a particular 
--            department.Based on given conditions, the employee  
--            may be terminated or given a salary reduction: 
--            1. If an employee was hired since 1985, the  
--            employee is terminated. 
--            2. If the employee's yearly salary is more  
--            than the minimum company wage of $14,000 and  
--            the employee is not close to retirement  
--            (over 58 years of age), the employee takes 
--            a 5% salary reduction. 
--            3. If the employee's department is dissolved 
--            and the employee is not terminated, then  
--            the employee is moved into the  
--            "toberesolved" table. 
-- Parameters: 
--            dept_name    - Name of current department. 
--            deleted_dept - Is department dissolved? 
--            emps_term - Set locally to record how many employees  
--                     were terminated for the current department. 
procedure Process_Employees 
        (dept_name:      in String; 
         deleted_dept:   in Boolean; 
         emps_term:      in out Integer) is 
 
    exec sql begin declare section; 
      -- Emp_Rec corresponds to the "employee" table 
      type Emp_Rec is 
          record 
              name:           String(1..20); 
              age:            Short_Short_Integer; 
              idno:           Integer; 
              hired:          String(1..25); 
              salary:         Float; 
              hired_since_85: Integer; 
          end record; 
      erec: Emp_Rec; 
      salary_reduc: constant Float := 0.95; 



Sample Applications 

5–82     Embedded SQL Companion Guide 

      dname: String(1..12) := dept_name; 
    exec sql end declare section; 
 
    min_emp_salary: constant Float := 14000.00; 
    nearly_retired: constant Short_Short_Integer := 58; 
    title:       String(1..12); -- Formatting values  
    descript:    String(1..25); 
 
    -- Note the use of the Ingres function to find out 
    -- who has been hired since the start of 1985. 
 
    exec sql declare empcsr cursor for 
          select name, age, idno, hired, salary, 
          int4(interval('days', hired-date('01-jan-1985'))) 
          from employee 
          where dept = :dname 
          for direct update OF name, salary; 
 
begin                    -- Process Employees 
 
    -- All errors from this point on close down the application 
    exec sql whenever sqlerror call Close_Down; 
    exec sql whenever not found goto Close_Emp_Csr; 
 
    exec sql open empcsr; 
 
    emps_term := 0;             -- Record how many 
    while (sqlca.sqlcode = 0) loop 
           exec sql fetch empcsr into :erec; 
 
           if (erec.hired_since_85 > 0) then 
                exec sql delete from employee 
                        where current of empcsr; 
                title := "Terminated: "; 
                descript := "Reason: Hired since 1985."; 
                emps_term := emps_term + 1; 
 
           -- Reduce salary if not nearly retired  
           elsif (erec.salary > min_emp_salary) then 
                if (erec.age < nearly_retired) then 
                    exec sql update employee 
                        set salary = salary * :salary_reduc 
                        where current of empcsr; 
                    title := "Reduction: "; 
                    descript := "Reason: Salary. "; 
                else 
                    -- Do not reduce salary 
                    title := "No Changes: "; 
                    descript := 
                    "Reason: Retiring. "; 
                end if; 
 
           -- Else leave employee alone 
           else 
                  title := "No Changes: "; 
                  descript := "Reason: Salary. "; 
           end if; 
 
           -- Was employee's department dissolved? 
           if (deleted_dept) then 
                exec sql insert into toberesolved 
                      select * 
                      from employee 
                      where idno = :erec.idno; 
                exec sql delete from employee 
                      where current of empcsr; 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–83 

          end if; 
 
          -- Log the employee's information  
          put(log_file, " " & title & " "); 
          put(log_file, erec.idno, 6); 
          put(log_file, ", " & erec.name & ", "); 
          put(log_file, erec.age, 3); 
          put(log_file, ", "); 
          put(log_file, erec.salary, 8, 2, 0); 
          put_line(log_file, " ; " & descript); 
    end loop; 
 
<<Close_Emp_Csr>> 
    exec sql whenever not found continue; 
    exec sql close empcsr; 
 
end Process_Employees; 
 
-- Procedure:Process_Depts 
-- Purpose: Scan through all the departments, processing each 
--           one. If the department has made less than $50,000 in  
--           sales, dissolve the department. For each department,  
--           process all employees (they may even be moved to 
--           another database table). If an employee wa 
--           terminated, update the department's employee counter. 
-- Parameters: 
--           None 
 
procedure Process_Depts is 
 
    exec sql begin declare section; 
        -- Dept_Rec corresponds to the "dept" table 
        type Dept_Rec is 
              record 
                    name:       String(1..12); 
                    totsales:   Long_Float; 
                    employees:  Short_Integer; 
              end record; 
        dept: Dept_Rec; 
 
        -- Employees terminated  
        emps_term: Integer := 0; 
    exec sql end declare section; 
 
    min_tot_sales: constant := 50000.00; 
    deleted_dept: Boolean; -- Was the dept deleted?  
    dept_format: String(1..20); -- Formatting value 
 
    exec sql declare deptcsr cursor for 
          select name, totsales, employees 
          from dept 
          for direct update of name, employees; 
 
begin 
    -- All errors from this point on close down the application 
    exec sql whenever sqlerror call Close_Down; 
    exec sql whenever not found goto Close_Dept_Csr; 
 
    exec sql open deptcsr; 
 
    while (sqlca.sqlcode = 0) loop 
        exec sql fetch deptcsr into :dept; 
 
        -- Did the department reach minimum sales? 
        if (dept.totsales < min_tot_sales) then 
            exec sql delete from dept 



Sample Applications 

5–84     Embedded SQL Companion Guide 

                where current of deptcsr; 
            deleted_dept := TRUE; 
            dept_format := " -- DISSOLVED --"; 
        else 
            deleted_dept := FALSE; 
            dept_format := (1..20 = > ' '); 
        end if; 
 
        -- Log what we have just done  
        put(log_file, 
            "Department: " & dept.name & 
            ", Total Sales: "); 
        put(log_file, dept.totsales, 12, 3, 0); 
        put_line(log_file, dept_format); 
        -- Now process each employee in the department  
        Process_Employees(dept.name, 
           deleted_dept, emps_term); 
 
        -- If employees were terminated, record the fact 
        if (emps_term > 0 and not deleted_dept) then 
            exec sql update dept 
                set employees = :dept.employee - :emps_term 
                where current of deptcsr; 
        end if; 
    end loop; 
 
<<Close_Dept_Csr>> 
    exec sql whenever not found continue; 
    exec sql close deptcsr; 
end Process_Depts; 
 
begin -- MAIN program 
      put_line("Entering application to process expenses."); 
      create(log_file, out_file, "expenses.log"); 
      Init_Db; 
      Process_Depts; 
      End_Db; 
      close(log_file); 
      put_line("Completion of application."); 
 
      exception 
           when sql_error => 
               null; -- Just go away quietly 
end Process_Expenses; 

The Table Editor Table Field Application 

This application edits the Person table in the Personnel database. It is a forms 
application that allows the user to update a person’s values, remove the 
person, or add new persons. Various table field utilities are provided with the 
application to demonstrate how they work. 

The objects used in this application are: 

 

Object Description 

personnel The program’s database environment. 

person A table in the database, with three columns: 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–85 

Object Description 

name (char(20)) 

age (smallint) 

number (integer) 

Number is unique. 

personfrm The VIFRED form with a single table field. 

persontbl A table field in the form, with two columns: 

name (char(20)) 
age (integer) 

When initialized, the table field includes the hidden column 
number (integer). 

At the beginning of the application, the program opens a database cursor to 
load the table field with data from the Person table. After loading the table 
field, the user can browse and edit the displayed values. The user can add, 
update, or delete entries. When finished, the values are unloaded from the 
table field and, in a multi-statement transaction, the updates are transferred 
back into the Person table. 

-- I/O utilities 
with text_io; use text_io; 
 
exec sql include sqlca; 
 
exec sql declare person table 
   (name     char(20),        -- Person name 
    age      smallint,        -- Age 
    number   integer);        -- Unique id number 
procedure Table_Edit is 
 
      exec sql begin declare section; 
          -- Table field row states 
          type Row_States is ( 
              row_undef,      -- Empty or undefined row 
              row_new,        -- Appended by user 
              row_unchange,  -- Loaded by program, but not updated 
              row_change,     -- Loaded by program and updated 
              row_delete      -- Deleted by program 
          ); 
          not_found: constant := 100; -- SQLCA value for no rows 
          -- Person information corresponds to "person" table 
          pname:   String(1..20);  -- Full name 
          page:    Short_Integer;  -- Age 
          pnumber: Integer;        -- Unique person number 
          pmaxid:  Integer;        -- Maximum person id number 
          -- Table field entry information 
          state: Row_States;       -- State of data set row 
          recnum,                  -- Record number 
          lastrow: Integer;        -- Last row in table field 
          -- Utility buffers 
          search:  String(1..20);  -- Name to find in search loop 
          password: String(1..13); -- Password buffer 
          msgbuf:  String(1..100); -- Message buffer 
          respbuf: String(1..1);   -- Response buffer 



Sample Applications 

5–86     Embedded SQL Companion Guide 

      exec sql end declare section; 
 
      -- Error handling variables for database updates 
      update_error: Boolean; -- Error in updates? 
      update_commit: Boolean; -- Commit updates 
 
      -- Load the information from the "person" table into the 
      -- person variables. Also, save the maximum person id 
      -- number. 
 
      function Load_Table return Integer is 
           exec sql begin declare section; 
                  -- Person information 
                  pname:   String(1..20); -- Full name 
                  page:    Short_Integer; -- Age 
                  pnumber: Integer;        -- Unique person number 
                  maxid:   Integer;    -- Maximum person id number 
            exec sql end declare section; 
            exec sql declare loadtab cursor for 
                  select name, age, number 
                  from person; 
 
            -- Set up error handling for loading procedure 
            exec sql whenever sqlerror goto Load_End; 
            exec sql whenever not found goto Load_End; 
 
      begin                      -- Load_Table 
            exec frs message 'Loading Person Information . . .'; 
 
            -- Fetch the maximum person id number for later use 
            exec sql select max(number) 
                  into :maxid 
                  from person; 
 
            exec sql open loadtab; 
 
            while (sqlca.sqlcode = 0) loop 
                -- Fetch data into record and load table field 
                exec sql fetch loadtab into  
                                :pname, :page, :pnumber; 
 
                exec frs loadtable personfrm persontbl 
                      (name = :pname, age = :page,  
                                   number = :pnumber); 
            end loop; 
 
      <<Load_End>> 
          exec sql whenever sqlerror continue; 
          exec sql close loadtab; 
 
          return maxid; 
      end Load_Table; 
 
begin -- Table_Edit 
      -- Set up error handling for main program 
      exec sql whenever sqlwarning continue; 
      exec sql whenever not found continue; 
      exec sql whenever sqlerror STOP; 
 
      -- Start up Ingres and the FORMS system 
 
      exec sql connect 'personnel'; 
 
      exec frs forms; 
 
      -- Verify that the user can edit the "person" table 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–87 

      exec frs prompt noecho ('Password for table editor: ',   
                               :password); 
      if (password /= "MASTER_OF_ALL") then 
          exec frs message 'No permission for task. 
                                        Exiting . . .'; 
          exec frs endforms; 
          exec sql disconnect; 
          return; 
      end if; 
 
      exec frs message 'Initializing Person Form . . .'; 
      exec frs forminit personfrm; 
 
      -- Initialize "persontbl" table field with a data set 
      -- in FILL mode, so that the runtime user can append rows. 
      -- To keep track of events occurring to original  
      -- rows loaded into the table field, hide the unique  
      -- person number. 
 
      exec frs inittable personfrm persontbl FILL  
                        (number = integer); 
 
      pmaxid := Load_Table; 
 
      -- Display the form and allow runtime editing 
 
      exec frs display personfrm update; 
      exec frs initialize; 
      exec frs begin; 
          -- Provide menu items, as well as the system FRS  
          -- key, to scroll to both extremes of the table field.  
          exec frs scroll personfrm persontbl to 1; 
      exec frs end; 
 
      exec frs activate menuitem 'Top'; 
      exec frs begin; 
          exec frs scroll personfrm persontbl TO 1; -- Backward 
      exec frs end; 
 
      exec frs activate menuitem 'Bottom'; 
          exec frs begin; 
          exec frs scroll personfrm persontbl to end; -- Forward 
      exec frs end; 
 
      exec frs activate menuitem 'Remove'; 
      exec frs begin; 
          -- Remove the person in the row the user's cursor 
          -- is on. If there are no persons, exit operation 
          -- with message. Note that this check cannot 
          -- really happen, as there is always at least one 
          -- UNDEFINED row in FILL mode. 
 
          exec frs inquire_frs table personfrm 
              (:lastrow = lastrow(persontbl)); 
          if (lastrow = 0) then 
              exec frs message 'Nobody to Remove'; 
              exec frs sleep 2; 
              exec frs resume field persontbl; 
          end if; 
 
      exec frs deleterow personfrm persontbl;  -- Recorded for 
                                               -- later 
      exec frs end; 
 
      exec frs activate menuitem 'Find'; 
      exec frs begin; 



Sample Applications 

5–88     Embedded SQL Companion Guide 

          -- Scroll user to the requested table field entry. 
          -- Prompt the user for a name, and if one is typed 
          -- in, loop through the data set searching for it. 
 
          search := (1..20 => ' '); 
              exec frs prompt ('Person''s name : ', :search); 
          if (search(1) = ' ') then 
              exec frs resume field persontbl; 
          end if; 
 
              exec frs unloadtable personfrm persontbl 
                   (:pname = name, :recnum = _record, 
                    :state = _state); 
              exec frs begin; 
                  -- Do not compare with deleted rows 
                 if (state /= ROW_DELETE and pname = search) then 
                   exec frs scroll personfrm persontbl TO :recnum; 
                      exec frs resume field persontbl; 
                  end if; 
           exec frs end; 
 
          -- Fell out of loop without finding name. Issue error. 
          msgbuf := (1..100 => ' '); 
          msgbuf(1..62) := "Person '" & search & 
                "' not found in table [HIT RETURN] "; 
          exec frs prompt noecho (:msgbuf, :respbuf); 
      exec frs end; 
 
      exec frs activate menuitem 'Exit'; 
      exec frs begin; 
          exec frs validate field persontbl; 
          exec frs breakdisplay; 
      exec frs end; 
      exec frs finalize; 
 
    -- Exit person table editor and unload the table field. 
    -- If any updates, deletions or additions were made, 
    -- duplicate these changes in the source table. If the 
    -- user added new people, assign a unique id to each person 
    -- before adding the person to the table. To do this, 
    -- increment the previously-saved maximum id number with  
    -- each insert. 
    -- Do all the updates in a multi-statement transaction 
    exec sql savepoint savept; 
 
    update_commit := TRUE; 
 
    -- Hard code the error handling in the UNLOADTABLE loop,  
    -- so as to cleanly exit the loop. 
 
    exec sql whenever sqlerror continue; 
 
    exec frs message 'Exiting Person Application . . .'; 
 
    exec frs unloadtable personfrm persontbl 
        (:pname = name, :page = age, 
         :pnumber = number, :state = _state); 
    exec frs begin; 
 
        case (state) is 
            when row_new => 
                -- Filled by user. Insert with new unique id. 
                pmaxid := pmaxid + 1; 
                exec sql insert into person (name, age, number) 
                   values (:pname, :page, :pmaxid); 
 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–89 

            when row_change => 
                -- Updated by user. Reflect in table. 
                exec sql update person set 
                    name = :pname, age = :page 
                    where number = :pnumber; 
 
            when row_delete => 
                -- Deleted by user, so delete from table. 
                -- Note that only original rows, not rows 
                -- appended at runtime, are saved by the 
                -- program. 
                exec sql delete from person 
                    where number = :pnumber; 
 
            when others => 
                -- Else UNDEFINED or UNCHANGED - 
                -- No updates required. 
                null; 
        end case; 
 
        -- Handle error conditions - 
        -- If an error occurred, abort the transaction. 
        -- If no rows were updated, inform user and 
        -- prompt for continuation. 
        if (sqlca.sqlcode < 0) then -- Error 
            exec sql inquire_sql (:msgbuf = errortext); 
            exec sql rollback to savept; 
            update_error := TRUE; 
            update_commit := FALSE; 
            exec frs endloop; 
        elsif (sqlca.sqlcode = NOT_FOUND) then 
            msgbuf := (1..100 => ' '); 
            msgbuf(1..62) := 
                "Person '" & pname & 
                "' not updated. Abort all updates? "; 
            exec frs prompt noecho (:msgbuf, :respbuf); 
            if (respbuf = "Y" or respbuf = "y") then 
                update_commit := FALSE; 
                exec sql rollback to savept; 
                exec frs endloop; 
            end if; 
        end if; 
    exec frs end; 
    if (update_commit) then  
        exec sql commit;               -- Commit the updates 
    end if; 
 
    exec frs endforms; -- Terminate FORMS and Ingres 
    exec sql disconnect; 
 
    if (update_error) then 
       put_line( "Your updates were aborted because of error:" ); 
        put_line( msgbuf ); 
    end if; 
 
end Table_Edit; 



Sample Applications 

5–90     Embedded SQL Companion Guide 

The Professor-Student Mixed Form Application 

This application lets the user browse and update information about graduate 
students who report to a specific professor. The program is structured in a 
master/detail fashion, with the professor being the master entry, and the 
students the detail entries. The application uses two forms—one to contain 
general professor information and another for detailed student information. 

The objects used in this application are shown in the following table: 

 

Object Description 

personnel The program’s database environment. 

professor A database table with two columns: 

pname (char(25)) 

pdept (char(10)). 

See its declare table statement in the program for a full 
description. 

student A database table with seven columns: 

sname (char(25)) 

sage (integer1) 

sgpa (char(25)) 

sgpa (float4) 

sidno (integer) 

scomment (varchar(200)) 

sadvisor (char(25)) 

See its declare table statement for a full description. 
The sadvisor column is the join field with the pname 
column in the Professor table. 

masterfrm The main form has the pname and pdept fields. 

studenttbl A table field in “masterfrm” with two columns “sname” 
and “sage.” When initialized, it also has five hidden 
columns corresponding to information in the student 
table. 

studentfrm The detail form, with seven fields, which correspond to 
information in the student table. Only the sgpa, 
scomment, and sadvisor fields are updatable. All other 
fields are display-only. 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–91 

Object Description 

grad A global structure, whose members correspond in name 
and type to the columns of the Student database table, 
the studentfrm form, and the studenttbl table field. 

The program uses the “masterfrm” as the general-level master entry, in which 
data can only be retrieved and browsed, and the studentfrm as the detailed 
screen, in which specific student information can be updated. The user can 
enter a name in the pname field and then select the Students menu 
operation. The operation fills the Studenttbl table field with detailed 
information of the students reporting to the named professor. This is done by 
the studentcsr database cursor in the Load_Students procedure. The 
program assumes that each professor is associated with exactly one 
department.  

The user can then browse the table field (in read mode), which displays only 
the names and ages of the students. More information about a specific student 
can be requested by selecting the Zoom menu operation. This operation 
displays the studentfrm form (in update mode). The fields of studentfrm are 
filled with values stored in the hidden columns of “studenttbl.” The user can 
make changes to three fields (sgpa, scomment, and sadvisor). If validated, 
these changes are written back to the Database table (based on the unique 
student id), and to the table field’s data set. The user can repeat this process 
for different professor names. 

    -- Master and student compiled forms (imported objects) 
    package Compiled_Forms is 
          exec sql begin declare section; 
               masterfrm, studentfrm: Integer; 
          exec sql end declare section; 
          pragma import_object( masterfrm ); 
          pragma import_object( studentfrm ); 
    end Compiled_Forms; 
 
exec sql include sqlca; 
 
exec sql declare student table   -- Graduate student table 
      (sname char(25),            -- Name 
       sage integer1,             -- Age 
       sbdate char(25),           -- Birth date 
       sgpa float4,               -- Grade point average 
       idno integer,              -- Unique student number 
       scomment varchar(200),     -- General comments 
       sadvisor char(25));        -- Advisor's name 
exec sql declare professor table  -- Professor table 
      (pname char(25),            -- Professor's name 
       pdept char(10));           -- Department 
        with Compiled_Forms;      use Compiled_Forms; 
        with Text_Io;             use Text_Io; 
        with Integer_Text_Io;     use Integer_Text_Io; 
-- Procedure: Prof_Student 
-- Purpose:   Main body of "'Professor Student" Master-Detail 
--            application. 
 
procedure Prof_Student is 
 
    exec sql begin declare section; 



Sample Applications 

5–92     Embedded SQL Companion Guide 

      -- Graduate student record maps to "student" database table  
        type Student_Rec is 
          record 
              sname:      String(1..25); 
              sage:       Short_Short_Integer; 
              sbdate:     String(1..25); 
              sgpa:       Float; 
              sidno:      Integer; 
              scomment:   String(1..200); 
              sadvisor:   String(1..25); 
          end record; 
        grad: Student_Rec; 
    exec sql end declare section; 
 
    -- 
    -- Procedure: Load_Students 
    -- Purpose: Given an advisor name, load into the "studenttbl" 
    --          table field all the graduate students who report 
    --          to the professor with that name. 
    -- Parameters: advisor - User-specified professor name. 
    --         Uses the global student record "grad." 
    -- 
 
    procedure Load_Students( adv : in String ) is 
 
        exec sql begin declare section; 
             advisor : String(1..25) := adv; 
        exec sql end declare section; 
 
        exec sql declare studentcsr cursor for 
          select sname, sage, sbdate, sgpa, 
                sidno, scomment, sadvisor 
          from student 
          where sadvisor = :advisor; 
 
    begin 
        -- 
        -- Clear previous contents of table field. Load the table 
        -- field from the database table based on the advisor 
        -- name. Columns "sname" and "sage" will be displayed, 
        -- and all others will be hidden. 
        -- 
 
        exec frs message 'Retrieving Student Information . . .'; 
        exec frs clear field studenttbl; 
        exec frs redisplay; -- Refresh for query 
 
        exec sql whenever sqlerror goto Load_End; 
        exec sql whenever not found goto Load_End; 
 
        exec sql open studentcsr; 
 
        -- 
        -- Before we start the loop, we know that the OPEN 
        -- was successful and that NOT FOUND was not set. 
        -- 
 
        while (sqlca.sqlcode = 0) loop 
            exec sql fetch studentcsr into :grad; 
 
            exec frs loadtable masterfrm studenttbl 
               (sname = :grad.sname, 
                sage = :grad.sage, 
                sbdate = :grad.sbdate, 
                sgpa = :grad.sgpa, 
                sidno = :grad.sidno, 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–93 

                scomment = :grad.scomment, 
                sadvisor = :grad.sadvisor); 
        end loop; 
 
<<Load_End>>         -- Clean up on an error, and close cursors 
        exec sql whenever not found continue; 
        exec sql whenever sqlerror continue; 
        exec sql close studentcsr; 
 
    end Load_Students; 
  
 
    -- 
    -- Function: Student_Info_Changed 
    -- Purpose: Allow the user to zoom in on the details of a 
    --        selected student. Some of the data can be 
    --        updated by the user. If any updates are made, 
    --        incorporate them into the database table. 
    --        The procedure returns TRUE if any changes are 
    --        made. 
    -- Parameters: 
    --        None 
    -- Returns: 
    --       TRUE/FALSE - Changes were made to the database. 
    --       Sets the global "grad" record with the new data. 
    -- 
 
    function Student_Info_Changed return Boolean is 
 
        exec sql begin declare section; 
            changed: Integer;         -- Changes made to the form? 
            valid_advisor: Integer;  -- Is the advisor name valid? 
        exec sql end declare section; 
 
    begin 
 
        -- Local error handler just prints error and continues 
        exec sql whenever sqlerror call sqlprint; 
        exec sql whenever not found continue; 
 
        -- Display the detailed student information 
        exec frs display studentfrm fill; 
        exec frs initialize 
           (sname = :grad.sname, 
            sage = :grad.sage, 
            sbdate = :grad.sbdate, 
            sgpa = :grad.sgpa, 
            sidno = :grad.sidno, 
            scomment = :grad.scomment, 
            sadvisor = :grad.sadvisor); 
 
        exec frs activate menuitem 'Write'; 
        exec frs begin; 
 
            -- 
            -- If changes were made, then update the 
            -- database table. Only bother with the 
            -- fields that are not read-only. 
            -- 
            exec frs inquire_frs form (:changed = change); 
 
            if (changed = 1) then 
             exec frs validate; 
             exec frs message 'Writing changes to database. . .'; 
 
                exec frs getform 



Sample Applications 

5–94     Embedded SQL Companion Guide 

                    (:grad.sgpa = sgpa, 
                     :grad.scomment = scomment, 
                     :grad.sadvisor = sadvisor); 
 
                -- Enforce integrity of professor name 
                valid_advisor := 0; 
                exec sql select 1 into :valid_advisor 
                    from professor 
                    where pname = :grad.sadvisor; 
 
                 if (valid_advisor = 0) then 
                    exec frs message 'Not a valid advisor name'; 
                    exec frs sleep 2; 
                    exec frs resume field sadvisor; 
                 else 
                    exec sql update student set 
                        sgpa = :grad.sgpa, 
                        scomment = :grad.scomment, 
                        sadvisor = :grad.sadvisor 
                        where sidno = :grad.sidno; 
                 end if; 
            end if; 
            exec frs breakdisplay; 
        exec frs end; -- 'Write' 
 
        exec frs activate menuitem 'Quit'; 
        exec frs begin; 
            -- Quit without submitting changes  
            changed := 0; 
            exec frs breakdisplay; 
        exec frs end; -- 'Quit' 
 
        exec frs finalize; 
 
        return (changed = 1); 
 
    end Student_Info_Changed; 
 
    -- 
    -- Procedure: Master 
    -- Purpose:   Drive the application, by running "masterfrm" 
    --         and allowing the user to "zoom" in on a selected  
    -- student. Parameters: None - Uses the global student "grad"  
    -- record. 
 
    procedure Master is 
 
        exec sql begin declare section; 
            -- Professor record maps to "professor" database table  
            type Prof_Rec is 
                  record 
                      pname: String(1..25); 
                      pdept: String(1..10); 
                  end record; 
            prof: Prof_Rec; 
 
            -- Useful forms runtime information  
            lastrow,           -- Lastrow in table field  
            istable: Integer;  -- Is a table field? 
 
            -- Utility buffers  
            msgbuf:      String(1..100);    -- Message buffer  
            respbuf:     String(1..1);      -- Response buffer  
            old_advisor: String(1..25); -- Old advisor before ZOOM 
      exec sql end declare section; 
 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–95 

begin -- Master 
    -- 
    -- Initialize "studenttbl" with a data set in READ mode. 
    -- Declare hidden columns for all the extra fields that 
    -- the program will display when more information is 
    -- requested about a student. Columns "sname" and "sage" 
    -- are displayed. All other columns are hidden, to be 
    -- used in the student information form. 
    -- 
 
    exec frs inittable masterfrm studenttbl read 
          (sbdate = char(25), 
           sgpa = float4, 
           sidno = integer, 
           scomment = char(200), 
           sadvisor = char(20)); 
 
    -- Drive the application, by running "masterfrm" and 
    -- allowing the user to "zoom" in on a selected student. 
    exec frs display masterfrm update; 
 
    exec frs initialize; 
    exec frs begin; 
          exec frs message 'Enter an Advisor name . . .'; 
          exec frs sleep 2; 
    exec frs end; 
 
    exec frs activate menuitem 'Students', field 'pname'; 
    exec frs begin; 
          -- Load the students of the specified professor  
          exec frs getform (:prof.pname = pname); 
 
          -- If no professor name is given, then resume  
          if (prof.pname(1) = ' ') then 
               exec frs resume field pname; 
          end if; 
 
          -- 
          -- Verify that the professor exists. If not, 
          -- print a message and continue. Assume that 
          -- each professor has exactly one department. 
          -- 
 
          exec sql whenever sqlerror call sqlprint; 
          exec sql whenever not found continue; 
 
          prof.pdept := (1..10 => ' '); 
          exec sql select pdept 
              into :prof.pdept 
              from professor 
              where pname = :prof.pname; 
 
          -- If no professor, report error 
          if (prof.pdept(1) = ' ') then 
              msgbuf := (1..100 => ' '); 
              msgbuf(1..59) := 
                 "No professor with name '" & 
                  prof.pname & "' [RETURN]"; 
              exec frs prompt noecho (:msgbuf, :respbuf); 
              exec frs clear field all; 
              exec frs resume field pname; 
          end if; 
 
          -- Fill the department field and load students  
          exec frs putform (pdept = :prof.pdept); 
          Load_Students( prof.pname ); 



Sample Applications 

5–96     Embedded SQL Companion Guide 

 
          exec frs resume field studenttbl; 
      exec frs end;          -- 'Students' 
 
      exec frs activate menuitem 'Zoom'; 
      exec frs begin; 
         -- 
         -- Confirm that user is in "studenttbl" and that 
         -- the table field is not empty. Collect data from 
         -- the row and zoom for browsing and updating. 
         -- 
 
         exec frs inquire_frs field masterfrm 
             (:istable = table); 
         if (istable = 0) then 
               exec frs prompt noecho 
             ('Select from the student table [RETURN]', :respbuf); 
               exec frs resume field studenttbl; 
         end if; 
 
         exec frs inquire_frs table masterfrm 
               (:lastrow = lastrow); 
         if (lastrow = 0) then 
              exec frs prompt noecho 
                  ('There are no students [RETURN]', :respbuf); 
              exec frs resume field pname; 
         end if; 
 
          -- Collect all data on student into graduate record  
          exec frs getrow masterfrm studenttbl 
             (:grad.sname = sname, 
              :grad.sage = sage, 
              :grad.sbdate = sbdate, 
              :grad.sgpa = sgpa, 
              :grad.sidno = sidno, 
              :grad.scomment = scomment, 
              :grad.sadvisor = sadvisor); 
 
          -- 
          -- Display "studentfrm," and, if any changes were made, 
          -- make the updates to the local table field row. 
          -- Only make updates to the columns corresponding to 
          -- writable fields in "studentfrm." If the student 
          -- changed advisors, then delete the row from the 
          -- display. 
          -- 
 
          old_advisor := grad.sadvisor; 
          if (Student_Info_Changed) then 
              if (old_advisor <= grad.sadvisor) then 
                   exec frs deleterow masterfrm studenttbl; 
              else 
                  exec frs putrow masterfrm studenttbl 
                      (sgpa = :grad.sgpa, 
                       scomment = :grad.scomment, 
                       sadvisor = :grad.sadvisor); 
              end if; 
          end if; 
 
      exec frs end;                           -- 'Zoom' ; 
 
      exec frs activate menuitem 'Exit'; 
      exec frs begin; 
           exec frs breakdisplay; 
      exec frs end;                          -- 'Exit' ; 
 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–97 

      exec frs finalize; 
 
   end Master; 
 
begin                              -- Prof_Student 
 
    -- Start up Ingres and the FORMS system  
    exec frs forms; 
 
    exec sql whenever sqlerror stop; 
    exec frs message 'Initializing Student Administrator . . .'; 
    exec sql connect personnel; 
 
    exec frs addform :masterfrm; 
    exec frs addform :studentfrm; 
 
    Master; 
 
    exec frs clear screen; 
    exec frs endforms; 
    exec sql disconnect; 
 
end Prof_Student; 

The SQL Terminal Monitor Application 

This application executes SQL statements that are read in from the terminal. 
The application reads statements from input and writes results to output. 
Dynamic SQL is used to process and execute the statements. 

When the application starts, it prompts the user for the database name. The 
program then prompts for an SQL statement. The preprocessor does not 
accept SQL comments and statement delimiters. The SQL statement is 
processed using dynamic SQL, and results and SQL errors are written to 
output. At the end of the results, the program displays an indicator of the 
number of rows affected. The loop is then continued and the program prompts 
you for another SQL statement. When end-of-file is typed in, the application 
rolls back any pending updates and disconnects from the database. 

The user’s SQL statement is prepared using prepare and describe. If the SQL 
statement is not a select statement, then it is run using execute and the 
number of rows affected is printed. If the SQL statement is a select 
statement, a dynamic SQL cursor is opened, and all the rows are fetched and 
printed. The routines that print the results do not try to tabulate the results. A 
row of column names is printed, followed by each row of the results. 

Keyboard interrupts are not handled. Fatal errors, such as allocation errors, 
and boundary condition violations are handled by rolling back pending updates 
and disconnecting from the database session. 

-- 
-- I/O utilities 
-- This example assumes package Long_Float_Text_IO  
-- has been instantiated to use the D_FLOAT format. 
-- 
with text_io;                 use text_io; 



Sample Applications 

5–98     Embedded SQL Companion Guide 

with integer_text_io;         use integer_text_io; 
with short_integer_text_io;   use short_integer_text_io; 
with long_float_text_io;      use long_float_text_io; 
 
-- Declare the SQLCA and the SQLDA records 
exec sql include sqlca; 
exec sql include sqlda; 
 
-- Dynamic SQL statement and cursor 
exec sql declare stmt statement; 
exec sql declare csr cursor for stmt; 
 
-- 
-- Program: SQL_Monitor 
-- Purpose: Main entry of SQL Monitor application. 
-- 
 
procedure SQL_Monitor is 
 
     exec sql begin declare section; 
        dbname: String(1..50) := (1..50 => ' '); -- Database name 
        dblen:  Natural; 
       dbrun:  Boolean := false;               -- connected to db 
     exec sql end declare section; 
 
     -- Global SQLDA. Discriminant SQLN is implicitly set  
     -- to IISQ_MAX_COLS 
     sqlda: IISQLDA(IISQ_MAX_COLS); 
 
     -- 
     -- Constants and types needed to declare global storage for 
     -- SELECT results. 
     -- 
 
     -- Length of large string pool from which slices will 
     -- be allocated 
     MAX_STRING: constant := 3000; 
 
     -- Different numeric types for result variables 
     type Numerics is 
         record 
             n_int: Integer;       -- 4-byte integers 
             n_flt: Long_Float;    -- 8-byte floating-points 
             n_ind: Short_Integer; -- 2-byte null indicators 
         end record; 
 
     type Numerics_Array is array(Short_Integer range <>)  
                        of Numerics; 
 
     -- Large string pool from which to allocate slices 
     type Strings is 
             record 
                s_len: Integer;                 -- Length used 
                s_data: String(1..MAX_STRING);  -- and data area 
           end record; 
 
      -- Record of numerics and strings 
      type Results is 
              record 
                    nums: Numerics_Array(1..IISQ_MAX_COLS); 
                    str:  Strings; 
              end record; 
 
      -- 
      -- Global result storage area - set up by Print_Header,  
      -- filled when executing the FETCH statement, and  



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–99 

      --  displayed by Print_Row. 
      -- 
      res: Results; 
 
      -- Forward defined procedures and functions 
 
      -- Main body of monitor 
      procedure Run_Monitor; 
 
      -- Execute dynamic SELECT statements 
      function Execute_Select return Integer; 
 
      -- Print the column headers for a dynamic SELECT 
      function Print_Header return Boolean; 
 
      -- Print a result row for a dynamic SELECT 
      procedure Print_Row; 
 
      -- Print an error message 
      procedure Print_Error; 
 
      -- Read a statement from input 
      procedure Read_Stmt(stmt_num: in Integer; stmt_buf:  
                            in out String); 
 
      -- 
      -- Procedure: Run_Monitor 
      -- Purpose: Run the SQL monitor. Initialize the global  
      --          SQLDA with the number of SQLVAR elements.  
      --          Loop while prompting 
      --          the user for input and processing the SQL 
      --          statement; if end-of-file is typed then control  
      --          is returned to the main program exception  
      --          handler from Read_Stmt. 
      -- 
      --          If the statement is not a SELECT statement  
      --          then execute it, otherwise open a cursor and  
      --          process a dynamic select statement  
      --          (using Execute_Select). 
      -- 
 
      procedure Run_Monitor is 
 
      exec sql begin declare section; 
 
        stmt_buf: String(1..1000); -- SQL statement input buffer 
        stmt_num: Integer;         -- SQL statement number 
        rows: Integer;             -- # of rows affected 
 
      exec sql end declare section; 
 
begin                               -- Run_Monitor 
 
      -- Now we are set for input 
      stmt_num := 0; 
 
      -- Loop till end-of-file is detected. 
      loop 
 
            -- 
            -- Prompt and read the next statement. If Read_Stmt 
            -- end-of-file was detected then end_error is signaled 
            -- and control is returned to the main program. 
            -- 
            stmt_num := stmt_num + 1; 
            Read_Stmt(stmt_num, stmt_buf); 



Sample Applications 

5–100     Embedded SQL Companion Guide 

 
            -- Handle database errors 
            exec sql whenever sqlerror goto Stmt_Err; 
 
            -- 
            -- PREPARE and DESCRIBE the statement. If the  
            -- statement is not a SELECT then EXECUTE it,  
            -- otherwise inspect the 
            -- contents of the SQLDA and call Execute_Select. 
            -- 
            exec sql prepare stmt from :stmt_buf; 
            exec sql describe stmt into :sqlda; 
 
            -- 
            -- If SQLD = 0 then this is not a SELECT  
            -- statement. Otherwise call Execute_Select to process 
            -- a dynamic cursor. 
            if (sqlda.sqld = 0) then 
 
                exec sql execute stmt; 
                rows := sqlca.sqlerrd(3); 
 
            else 
 
                rows := Execute_Select; 
 
            end if;                      -- If SELECT or not 
 
            exec sql whenever sqlerror continue; 
 
   <<Stmt_Err>> 
            -- 
            -- Only display error message if we arrived here 
            -- because of the SQLERROR condition. Otherwise print  
            -- the rows processed and continue with the loop. 
            if (sqlca.sqlcode < 0) then 
                    Print_Error; 
            else 
                  put("["); 
                  put(rows, 1); 
                  put_line(" row(s)]"); 
            end if; 
 
            end loop; -- While reading statements 
 
end Run_Monitor; 
-- 
-- Function: Execute_Select 
-- Purpose:  Run a dynamic SELECT statement. The SQLDA has 
--           already been described. This routine calls  
--           Print_Header to print column headers 
--           and set up result storage information.  
--           A Dynamic SQL cursor is then opened 
--           and each row is fetched and printed by Print_Row. 
--           Any error causes the cursor to be closed. 
-- Returns: 
--           Number of rows fetched from the cursor. 
-- 
 
function Execute_Select return Integer is 
 
   rows: Integer := 0;             -- Counter of rows fetched 
 
begin                       -- Execute_Select 
 
    -- 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–101 

    -- Print result column names and set up the result data types 
    -- and variables. Print_Header returns FALSE if the dynamic 
    -- set-up fails. 
    -- 
    if (Print_Header) then 
 
          exec sql whenever sqlerror goto Select_Error; 
          -- Open the dynamic cursor 
          exec sql open csr for readonly; 
 
          -- Fetch and print each row 
          rows := 0; 
          while (sqlca.sqlcode = 0) loop 
 
              exec sql fetch csr using descriptor :sqlda; 
              if (sqlca.sqlcode = 0) then 
                  rows := rows + 1; -- Count the rows 
                  Print_Row; 
              end if; 
 
          end loop;                  -- While there are more rows 
  <<Select_Error>> 
          -- Display error message if SQLERROR condition is set. 
          if (sqlca.sqlcode < 0) then 
                     Print_Error; 
          end if; 
 
     exec sql whenever sqlerror continue; 
      exec sql close csr; 
 
  end if; -- If Print_Header 
 
  return rows; 
 
end Execute_Select; 
 
-- 
-- Function: Print_Header 
-- Purpose: A statement has just been described so set up the 
--          SQLDA for result processing. Print all the column 
--          names and allocate result variables for retrieving 
--          data. The result variables are allocated out of 
--          a pool of numeric variables (integers, floats and 
--          2-byte indicators) and a large character buffer. 
--          The SQLDATA and SQLIND fields are pointed at the 
--          addresses of the result variables. 
-- Returns: 
--          TRUE if successfully set up the SQLDA for result 
--          variables, FALSE if an error occurred. 
-- 
 
function Print_Header return Boolean is 
 
      nullable: Boolean;     -- Null indicator required 
      chlen: Short_Integer;  -- Current string length 
 
begin                        -- Print_Header 
 
    --  
    -- Verify that there are enough result variables. 
    -- If not print an error and return. 
    -- 
    if (sqlda.sqld >= sqlda.sqln) then 
        put("SQL Error: SQLDA requires "); 
        put(sqlda.sqld, 1); 
        put(" variables, but has only "); 



Sample Applications 

5–102     Embedded SQL Companion Guide 

        put(sqlda.sqln, 1); 
        put_line(".); 
        return FALSE; 
    end if; -- If enough result variables 
 
    -- 
    -- For each column print the number and title. For example: 
    --    [1] name [2] age [3] salary 
    -- While processing each column determine the column type 
    -- and to where SQLDATA and SQLIND must point in order to 
    -- retrieve type-compatible results. 
    -- 
 
    res.str.s_len := 1;               -- No string space used yet 
 
    for col in 1 .. sqlda.sqld loop    -- For each column 
 
        declare 
 
     sqv: IISQL_VAR renames sqlda.sqlvar(col); -- Shorthand 
 
        begin 
 
            -- Print column name and number 
            put("["); 
            put(col, 1); 
            put("] "); 
            put(sqv.sqlname.sqlnamec(1..Integer 
                        (sqv.sqlname.sqlnamel))); 
            if (col < sqlda.sqld) then 
                 put(" ");      -- Separator space 
            end if; 
 
            -- 
            -- Process the column for type and length 
            -- information. Use 
            -- result storage area from which variables can  
            -- be allocated. 
 
            if (sqv.sqltype < 0) then  
                          -- Null indicator handled later 
                nullable := TRUE; 
            else 
                nullable := FALSE; 
            end if; 
 
            case (abs(sqv.sqltype)) is 
 
                - Integers - use 4-byte integer 
                when IISQ_INT_TYPE => 
                      sqv.sqltype := IISQ_INT_TYPE; 
                      sqv.sqllen := 4; 
                      sqv.sqldata := res.nums(col).n_int'Address; 
                -- Floating points - use 8-byte float 
                when IISQ_MNY_TYPE | IISQ_FLT_TYPE => 
 
                      sqv.sqltype := IISQ_FLT_TYPE; 
                      sqv.sqllen := 8; 
                      sqv.sqldata := res.nums(col).n_flt'Address; 
 
                -- Character strings 
           when IISQ_DTE_TYPE | IISQ_CHA_TYPE | IISQ_VCH_TYPE => 
 
                  -- 
                  -- Determine the length of the slice required 
                  -- from the large character buffer. If we have 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–103 

                  -- enough space left then point at the start of 
                  -- the corresponding slice, otherwise print an 
                  -- error and return. 
                      -- 
                      -- Note that for DATE types we must set the 
                      -- length. 
                      --  
                      if (abs(sqv.sqltype) = IISQ_DTE_TYPE) then 
                          chlen := IISQ_DTE_LEN; 
                      else 
                          chlen := sqv.sqllen; 
                      end if; 
 
                      -- Enough room in large string buffer ? 
                  if (res.str.s_len + Integer(chlen) > MAX_STRING) 
                          then 
                          new_line; 
                        put_line("SQL Error: Character result data " 
                                   & "overflow."); 
                          return FALSE; 
                      end if; 
 
                  -- 
                  -- Allocate space out of the large character 
                  -- buffer and keep track of the amount of space 
                  -- used so far. 
                  -- 
                      sqv.sqltype := IISQ_CHA_TYPE; 
                      sqv.sqllen  := chlen; 
                      sqv.sqldata := 
                           res.str.s_data(res.str.s_len)'Address; 
                  res.str.s_len := res.str.s_len + Integer(chlen); 
                -- Bad data type 
                when others => 
 
                      new_line; 
                  put("SQL Error: Unknown data type returned: "); 
                      put(sqv.sqltype, 1); 
                      put_line(".); 
                      return FALSE; 
 
            end case;                 -- Of data types 
 
            -- If nullable then point at null indicator and  
            -- toggle type id 
            if (nullable) then 
                  sqv.sqltype := -sqv.sqltype; 
                  sqv.sqlind := res.nums(col).n_ind'Address; 
            else 
                  sqv.sqlind := IISQ_ADR_ZERO; 
            end if; 
 
        end;                             -- Declare (rename) block 
 
    end loop;                            -- For processing columns 
 
    new_line;                            -- Print separating line 
    put_line("---------------------------------------"); 
 
    return TRUE; 
 
end Print_Header; 
 
-- 
--  Procedure: Print_Row 
--  Purpose:  For each element inside the SQLDA, print the value. 



Sample Applications 

5–104     Embedded SQL Companion Guide 

--            Print its column number too in order to identify it 
--            with the column name printed earlier. If the value 
--            is NULL print "N/A". This routine prints the values 
--            using very basic formats and does not try to 
--             tabulate the results. 
-- 
 
procedure Print_Row is 
 
    chlen: Short_Integer; -- Index into string slices 
 
begin                   -- Print_Row 
 
    -- 
    -- For each column, print the column number and the data. The 
    -- number identifies the column with the column name printed  
    -- in Print_Header. NULL columns are printed as "N/A". 
    -- 
    res.str.s_len := 1;       -- No characters printed yet 
 
    for col in 1 .. sqlda.sqld loop 
 
        declare 
 
            sqv: IISQL_VAR renames sqlda.sqlvar(col); -- Shorthand 
 
        begin 
 
            put("[");              -- Print column number 
            put(col, 1); 
            put("] "); 
 
            -- If nullable and is NULL then print "N/A" 
            if (sqv.sqltype < 0) and (res.nums(col).n_ind = -1) then 
                put("N/A"); 
 
            else 
 
                -- 
                -- Using the base type set up in Print_Header 
                -- determine how to print the results. All types  
                -- are printed using 
                -- very basic formats. 
                -- 
 
                case (abs(sqv.sqltype)) is 
       when IISQ_INT_TYPE => 
 
       put(res.nums(col).n_int, 1); 
 
       when IISQ_FLT_TYPE => 
 
       put(res.nums(col).n_flt, 1, 4, 0); 
 
       when IISQ_CHA_TYPE => 
 
                        -- Use a current-length slice from the 
                        -- large character buffer, as allocated  
                        -- in Print_Header. 
                        -- Track number of characters printed. 
                        chlen := sqv.sqllen; 
                        put(res.str.s_data(res.str.s_len .. 
                             res.str.s_len + Integer(chlen) - 1)); 
                        res.str.s_len :=  
                               res.str.s_len + Integer(chlen); 
 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–105 

       when others => -- Bad data type 
                        put("<type = "); 
                        put(sqv.sqltype, 1); 
                        put(">"); 
 
                end case;                 -- Of data types 
 
            end if;                       -- If null or not 
 
        end;                              -- Declare (rename) block 
 
        if (col < sqlda.sqld) then       -- Add trailing space 
             put(" "); 
        end if; 
 
    end loop;                             -- For processing columns 
 
    new_line;                             -- Print end of line 
end Print_Row; 
-- 
-- Procedure:  Print_Error 
-- Purpose:    SQLCA error detected. Retrieve the error message 
--             and print it. 
-- 
 
procedure Print_Error is 
 
      exec sql begin declare section; 
            error_buf: String(1..200); -- SQL error text retrieval 
      exec sql end declare section; 
 
begin 
 
      exec sql inquire_sql (:error_buf = ERRORTEXT); 
      put_line("SQL Error:"); 
      put_line(error_buf); 
 
end Print_Error; 
 
-- 
-- Procedure: Read_Stmt 
-- Purpose:   Reads a statement from standard input. This routine 
--          issues a prompt with the current statement number, 
--          and reads the response into the parameter "stmt_buf". 
--          No special scanning is done to look for terminators, 
--          string delimiters or line continuations. 
-- 
--          On eof-of-file end_error is raised and processed in 
--          the main program. 
-- 
--       The routine can be extended to allow line continuations, 
--       SQL-style comments and a semicolon terminator. 
-- Parameters: 
--            stmt_num - Statement number for prompt. 
--            stmt_buf - Buffer to fill from input. 
-- 
 
procedure Read_Stmt (stmt_num: in Integer; stmt_buf: in out String) is 
 
        slen: Natural; 
 
begin                     -- Read_Stmt 
 
      stmt_buf := (1..stmt_buf'length => ' '); 
      slen := 0; 
 



Sample Applications 

5–106     Embedded SQL Companion Guide 

      while (slen = 0) loop          -- Ignore empty lines 
             put(stmt_num, 3); 
             put("> "); 
             get_line(stmt_buf, slen); 
      end loop; 
 
end Read_Stmt; 
 
-- 
-- Program: SQL_Monitor Main 
-- Purpose: Main entry of SQL Monitor application. Prompt for  
--           database name and connect to the database. Run the 
--           monitor and disconnect from the database. Before 
--           disconnecting roll  
--           back any pending updates. 
-- 
 
begin                                 -- Main Program 
 
      put("SQL Database: ");           -- Prompt for database name 
      get_line(dbname, dblen); 
      if (dblen = 0) then 
           return; 
      end if; 
 
      put_line("-- SQL Terminal Monitor --"); 
 
      -- Treat connection errors as fatal errors 
      exec sql whenever sqlerror stop; 
      exec sql connect :dbname; 
 
      dbrun := TRUE; 
 
      Run_Monitor; 
 
      exec sql whenever sqlerror continue; 
 
      exception 
          when others =>       -- exit on EOF and other errors 
              if (dbrun) then 
                    put_line("SQL: Exiting monitor program."); 
                    exec sql rollback; 
                    exec sql disconnect; 
              end if; 
 
end SQL_Monitor; 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–107 

A Dynamic SQL/Forms Database Browser 

This program lets the user browse data from and insert data into any table in 
any database, using a dynamically defined form. The program uses Dynamic 
SQL and Dynamic FRS statements to process the interactive data. You should 
already have used VIFRED to create a Default Form based on the database 
table that you want to browse. VIFRED will build a form with fields that have 
the same names and data types as the columns of the specified database 
table. 

When run, the program prompts the user for the name of the database, the 
table, and the form. The form is profiled using the describe form statement, 
and the field name, data type, and length information is processed. From this 
information, the program fills in the SQLDA data and null indicator areas and 
builds two Dynamic SQL statement strings to select data from and insert 
data into the database. 

The Browse menu item retrieves the data from the database using an SQL 
cursor associated with the dynamic select statement, and displays that data 
using the dynamic putform statement. A submenu allows the user to 
continue with the next row or return to the main menu. The Insert menu item 
retrieves the data from the form using the dynamic getform statement, and 
adds the data to the database table using a prepared insert statement. The 
Save menu item commits the changes and, because prepared statements are 
discarded, reprepares the select and insert statements. When the Quit menu 
item is selected, all pending changes are rolled back and the program is 
terminated. 

-- Declare the SQLCA and SQLDA records 
exec sql include sqlca; 
exec sql include sqlda; 
 
-- 
-- Program: 
--              Dynamic_FRS 
-- Purpose: 
--              Main entry of Dynamic SQL forms application 
-- 
 
procedure Dynamic_FRS is 
 
    -- Global SQLDA. Discriminant SQLN is implicitly 
    -- set to IISQ_MAX_COLS 
    sqlda: IISQLDA(IISQ_MAX_COLS); 
 
    -- String object maximums 
    MAX_NAME: constant := 40;      -- Input name size 
    MAX_STRING: constant := 3000;  -- Large string buffer size 
    MAX_STMT: constant := 1000;    -- SQL statement string size 
 
    -- 
    -- Result storage pool for Dynamic SQL and FRS statements. 
    -- This result pool consists of arrays of 4-byte integers, 
    -- 8-byte floating-points, 2-byte indicators, and a large 
    -- string buffer from which slices will be allocated. Each 
    -- SQLDA SQLVAR sets its SQLDATA and SQLIND address pointers 
    -- to variables from this pool. 



Sample Applications 

5–108     Embedded SQL Companion Guide 

    -- 
    integers:array(1..IISQ_MAX_COLS) of Integer; -- 4-byte integer 
    floats: array(1..IISQ_MAX_COLS) of Long_Float; -- 8-byte float 
    indicators:array(1..IISQ_MAX_COLS) of Short_Integer; -- 2-byte 
                                                       -- indicator 
    characters: String(1..MAX_STRING);              -- String pool 
 
    exec sql begin declare section; 
        dbname:   String(1..MAX_NAME); -- Database name 
        formname: String(1..MAX_NAME); -- Form name 
        tabname:  String(1..MAX_NAME); -- Database table name 
        sel_buf:  String(1..MAX_STMT); -- Prepared SELECT and 
        ins_buf:  String(1..MAX_STMT); -- INSERT statements 
        err:      Integer;             -- Error status 
        ret:      String(1..1);        -- Prompt error buffer 
    exec sql end declare section; 
 
    -- 
    -- Function: 
    --         Describe_Form 
    -- Purpose: 
    --        Profile the specified form for name and data type 
    --        information.Using the DESCRIBE FORM statement, the  
    --        SQLDA is loaded with field information from the 
    --        form. This procedure processes this information to 
    --        allocate result storage, point at storage for 
    --        dynamic FRS data 
    --        retrieval and assignment, and build SQL statements   
    --        strings for subsequent dynamic SELECT and 
    --        INSERT statements. For example, assume the form 
    --        (and table) ’emp’ has the following fields: 
    --  
    --           Field Name Type        Nullable? 
    --           ---------- ----        --------- 
    --            name      char(10)      No 
    --            age       integer4      Yes 
    --            salary    money       Yes 
    -- 
    --   Based on ’emp’, this procedure will construct the SQLDA. 
    --   The procedure allocates variables from a result variable 
    --   pool (integers, floats and a large character  
    --   string space). The SQLDATA and SQLIND fields are pointed  
    --   at the addresses of the result variables in the pool. 
    --   The following SQLDA is built: 
    -- 
    --               sqlvar(1) 
    --                    sqltype = IISQ_CHA_TYPE 
    --                    sqllen  = 10 
    --                    sqldata = pointer into characters array 
    --                    sqlind  = null 
    --                    sqlname = ’name’ 
    --               sqlvar(2) 
    --                    sqltype = -IISQ_INT_TYPE 
    --                    sqllen  = 4 
    --                    sqldata = address of integers(2) 
    --                    sqlind  = address of indicators(2) 
    --                    sqlname = ’age’ 
    --               sqlvar(3) 
    --                    sqltype = -IISQ_FLT_TYPE 
    --                    sqllen  = 8 
    --                    sqldata = address of floats(3) 
    --                    sqlind  = address of indicators(3) 
    --                    sqlname = ’salary’ 
    -- 
    -- This procedure also builds two dynamic SQL statements 
    -- strings. Note that the procedure should be extended to  



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–109 

    -- verify that the statement strings do fit into the  
    -- statement buffers (this was not done in this example). 
    -- The above example would construct the following 
    -- statement strings: 
    -- 
    --     ’SELECT name, age, salary FROM emp ORDER BY name’ 
    --     ’INSERT INTO emp (name, age, salary) VALUES (?, ?, ?)’ 
    -- 
    -- Parameters (globals): 
    --   formname - (in)  Name of form to profile. 
    --   tabname  - (in)  Name of database table. 
    --   sel_buf  - (out) Buffer to hold SELECT statement string. 
    --   ins_buf  - (out) Buffer to hold INSERT statement string. 
    -- Returns: 
    --       TRUE/FALSE - Success/failure - will fail on error 
    --                    or upon finding a table field. 
    -- 
 
    function Describe_Form return Boolean is 
 
        names:    String(1..MAX_STMT); -- Names for SQL statements 
        name_cur: Integer;             -- Current name length 
        name_cnt: Integer;             -- Bytes used in ’names’ 
        marks:    String(1..MAX_STMT); -- Place holders for INSERT 
        mark_cnt: Integer;             -- Bytes used in ’marks 
        nullable: Boolean;            -- Is nullable (SQLTYPE < 0) 
        char_cnt: Integer;            -- Total string length 
        char_cur: Integer;             -- Current string length 
 
    begin                 -- Describe_Form 
 
        -- 
        -- DESCRIBE the form - if we cannot fully describe the 
        -- form (our SQLDA is too small) then report an error and  
        -- return. 
        exec frs describe form :formname all into :sqlda; 
        exec frs inquire_frs frs (:err = ERRORNO); 
        if (err > 0) then 
              return FALSE;             -- Error already displayed 
        elsif (sqlda.sqld > sqlda.sqln) then 
            exec frs prompt noecho  
              (’SQLDA is too small for form :’, :ret); 
            return FALSE; 
        elsif (sqlda.sqld = 0) then 
            exec frs prompt noecho 
               (’There are no fields in the form :’, :ret); 
            return FALSE; 
        end if; 
 
        -- 
        -- For each field determine the size and type of the 
        -- result data area. This data area will be allocated out  
        -- of the result variable pool (integers, floats and  
        -- characters) and will be pointed at by SQLDATA and  
        -- SQLIND. 
        --  
        -- If a table field type is returned then issue an error. 
        -- 
        -- Also, for each field add the field name to the ’names’ 
        -- buffer and the SQL place holders ’?’ to the ’marks’ 
        -- buffer, which will be used to build the final SELECT 
        -- and INSERT statements. 
        -- 
        char_cnt := 1;             -- No strings used yet 
 
        for i in 1 .. sqlda.sqld loop 



Sample Applications 

5–110     Embedded SQL Companion Guide 

 
            declare 
 
              sqv: IISQL_VAR renames sqlda.sqlvar(i); -- Shorthand 
              col: Integer := Integer(i); 
 
            begin 
 
             -- 
             -- Collapse all different types into Integers, Floats 
             -- or Characters. 
             -- 
          if (sqv.sqltype < 0) then --Null indicator handled later 
                   nullable := TRUE; 
              else 
                  nullable := FALSE; 
              end if; 
 
              case (abs(sqv.sqltype)) is 
 
                  -- Integers - use 4-byte integer 
                  when IISQ_INT_TYPE => 
                       sqv.sqltype := IISQ_INT_TYPE; 
                       sqv.sqllen := 4; 
                       sqv.sqldata := integers(col)’Address; 
 
                  -- Floating points - use 8-byte floats 
                  when IISQ_MNY_TYPE | IISQ_FLT_TYPE => 
                      sqv.sqltype := IISQ_FLT_TYPE; 
                      sqv.sqllen := 8; 
                      sqv.sqldata := floats(col)'Address; 
 
                  -- Character strings 
                  when 
                  IISQ_DTE_TYPE | IISQ_CHA_TYPE | IISQ_VCH_TYPE => 
                      -- 
                      -- Determine the length of the slic 
                      -- required from the large character buffer.  
                      -- If we have enough space left then point  
                      -- at the start of  
                      -- the corresponding slice, otherwise print 
                      -- an error and return. 
                      -- 
                      -- Note that for DATE types we must set  
                      -- the length. 
                      --  
                      if (abs(sqv.sqltype) = IISQ_DTE_TYPE) then 
                          char_cur := IISQ_DTE_LEN; 
                      else 
                          char_cur := Integer(sqv.sqllen); 
                      end if; 
 
                      -- Enough room in large string buffer ? 
                      if (char_cnt + char_cur >  
                       characters'length) then 
                          exec frs prompt noecho 
                       ('Character pool buffer overflow :', :ret); 
                          return FALSE; 
                      end if; 
 
                      -- Allocate slice out of buffer 
                      sqv.sqltype = IISQ_CHA_TYPE; 
                      sqv.sqllen  = Short_Integer(char_cur); 
                      sqv.sqldata = characters(char_cnt)'Address; 
                      char_cnt    = char_cnt + char_cur; 
 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–111 

                  when IISQ_TBL_TYPE => 
                      exec frs prompt noecho 
                          ('Table field found in form :', :ret); 
                      return FALSE; 
 
                  when others => 
                      exec frs prompt noecho  
                           ('Invalid field type :', :ret); 
                      return FALSE; 
 
              end case;                    -- Of data types 
 
            -- Assign pointers to null indicators and toggle type 
              if (nullable) then 
                   sqv.sqltype := -sqv.sqltype; 
                   sqv.sqlind := indicators(col)'Address; 
              else 
                   sqv.sqlind := IISQ_ADR_ZERO; 
              end if; 
 
             -- 
             -- Store field names and place holders (separated by 
             -- commas) for the SQL statements. 
             -- 
              if (col = 1) then 
                  name_cnt = 1; 
                  mark_cnt := 1; 
              else 
                  names(name_cnt) = ','; 
                  name_cnt := name_cnt + 1; 
                  marks(mark_cnt) = ','; 
                  mark_cnt := mark_cnt + 1; 
              end if; 
              name_cur := Integer(sqv.sqlname.sqlnamel); 
              names(name_cnt..name_cnt+name_cur-1) := 
                     sqv.sqlname.sqlnamec(1..name_cur); 
              name_cnt := name_cnt + name_cur; 
              marks(mark_cnt) := '?'; 
              mark_cnt := mark_cnt + 1; 
 
          end;            -- Declare (renames) block 
 
      end loop;           -- While processing columns 
 
      -- 
      -- Create final SELECT and INSERT statements. For the 
      -- SELECT statement ORDER BY the first field. 
      -- 
      sel_buf := (1..sel_buf'length => ' '); 
      ins_buf := (1..ins_buf'length => ' '); 
      name_cur := Integer(sqlda.sqlvar(1).sqlname.sqlnamel); 
      sel_buf(1..7 + name_cnt-1 + 6 + tabname'length +  
                      10 + name_cur) 
                  := "SELECT " & names(1..name_cnt-1) & 
                    " FROM " & tabname & 
                    " ORDER BY " & 
                    sqlda.sqlvar(1).sqlname.sqlnamec(1..name_cur); 
      ins_buf(1..12 + tabname'length + 2 + name_cnt-1 + 10 +  
              mark_cnt-1 + 1) 
                := "INSERT INTO " & tabname & " (" & 
                     names(1..name_cnt-1) & ") VALUES (" & 
                     marks(1..mark_cnt-1) & ")"; 
 
   return TRUE; 
 
  end Describe_Form; 



Sample Applications 

5–112     Embedded SQL Companion Guide 

 
-- 
-- Program: 
--            Dynamic_FRS Main 
-- Purpose: 
--         Main body of Dynamic SQL forms application. Prompt for 
--         database, form and table name. Call Describe_Form  
--         to obtain a profile of the form and set up the SQL 
--        statements. Then allow the user to interactively browse 
--        the database table and append new data. 
-- 
 
begin                          -- Dynamic_FRS Main 
 
    exec sql declare sel_stmt statement;        -- Dynamic SQL  
                                                -- SELECT statement 
    exec sql declare ins_stmt statement;        -- Dynamic SQL  
                                                -- INSERT statement 
    exec sql declare csr cursor for sel_stmt;   -- Cursor for  
                                                -- SELECT statement 
 
    exec frs forms; 
 
    -- Prompt for database name - will abort on errors 
    exec sql whenever sqlerror stop; 
    exec frs prompt ('Database name: ', :dbname); 
    exec sql connect :dbname; 
 
    exec sql whenever sqlerror call sqlprint; 
 
    -- 
    -- Prompt for table name - later a Dynamic SQL SELECT 
    -- statement will be built from it. 
    -- 
    exec frs prompt ('Table name: ', :tabname); 
 
    -- 
    -- Prompt for form name. Check forms errors reported 
    -- through INQUIRE_FRS. 
    -- 
    exec frs prompt ('Form name: ', :formname); 
    exec frs message 'Loading form ...'; 
    exec frs forminit :formname; 
    exec frs inquire_frs frs (:err = ERRORNO); 
    if (err > 0) then 
          exec frs message 'Could not load form. Exiting.'; 
          exec frs endforms; 
          exec sql disconnect; 
          return; 
    end if; 
 
    -- Commit any work done so far - access of forms catalogs 
    exec sql commit; 
 
    -- Describe the form and build the SQL statement strings 
    if (not Describe_Form) then 
        exec frs message 'Could not describe form. Exiting.'; 
        exec frs endforms; 
        exec sql disconnect; 
        return; 
    end if; 
 
    -- 
    -- PREPARE the SELECT and INSERT statements that correspond  
    -- to the menu items Browse and Insert. If the Save menu item  
    -- is chosen the statements are reprepared. 



Sample Applications 

Chapter 5: Embedded SQL for Ada    5–113 

    -- 
    exec sql prepare sel_stmt from :sel_buf; 
    err := sqlca.sqlcode; 
    exec sql prepare ins_stmt from :ins_buf; 
    if ((err < 0) or (sqlca.sqlcode < 0)) then 
        exec frs message 'Could not prepare SQL statements. Exiting.'; 
        exec frs endforms; 
        exec sql disconnect; 
        return; 
    end if; 
 
    -- 
    -- Display the form and interact with user, allowing browsing 
    -- and the inserting of new data. 
    -- 
    exec frs display :formname fill; 
    exec frs initialize; 
    exec frs activate menuitem 'Browse'; 
    exec frs begin; 
        --  
        -- Retrieve data and display the first row on the form, 
        -- allowing the user to browse through successive rows.  
        -- If data types from the database table are not 
        -- consistent with data descriptions obtained from the  
        -- form, a retrieval error 
        -- will occur. Inform the user of this or other errors. 
        --  
        -- Note that the data will return sorted by the first 
        -- field that was described, as the SELECT statement,  
        -- sel_stmt, included an ORDER BY clause. 
        -- 
        exec sql open csr; 
 
        -- Fetch and display each row 
        while (sqlca.sqlcode = 0) loop 
 
            exec sql fetch csr using descriptor :sqlda; 
            if (sqlca.sqlcode <= 0) then 
                exec sql close csr; 
                exec frs prompt noecho ('No more rows :', :ret); 
                exec frs clear field all; 
                exec frs resume; 
            end if; 
 
            exec frs putform :formname using descriptor :sqlda; 
            exec frs inquire_frs frs (:err = ERRORNO); 
            if (err > 0) then 
               exec sql close csr; 
               exec frs resume; 
            end if; 
 
            -- Display data before prompting user with submenu 
            exec frs redisplay; 
 
            exec frs submenu; 
            exec frs activate menuitem 'Next', frskey4; 
            exec frs begin; 
                -- Continue with cursor loop 
                exec frs message 'Next row ...'; 
                exec frs clear field all; 
            exec frs end; 
            exec frs activate menuitem 'End', frskey3; 
            exec frs begin; 
                exec sql close csr; 
                exec frs clear field all; 
                exec frs resume; 



Sample Applications 

5–114     Embedded SQL Companion Guide 

            exec frs end; 
 
       end loop;                  -- While there are more rows 
    exec frs end; 
 
    exec frs activate menuitem 'Insert'; 
    exec frs begin; 
        exec frs getform :formname using descriptor :sqlda; 
        exec frs inquire_frs frs (:err = ERRORNO); 
        if (err > 0) then 
              exec frs clear field all; 
              exec frs resume; 
        end if; 
        exec sql execute ins_stmt using descriptor :sqlda; 
        if ((sqlca.sqlcode < 0) or (sqlca.sqlerrd(3) = 0)) then 
             exec frs prompt noecho ('No rows inserted :', :ret); 
        else 
             exec frs prompt noecho ('One row inserted :', :ret); 
        end if; 
    exec frs end; 
 
    exec frs activate menuitem 'Save'; 
    exec frs begin; 
        -- 
        -- COMMIT any changes and then re-PREPARE the SELECT and 
        -- INSERT statements as the COMMIT statements discards  
        -- them. 
        -- 
        exec sql commit; 
        exec sql prepare sel_stmt FROM :sel_buf; 
        err := sqlca.sqlcode; 
        exec sql prepare ins_stmt FROM :ins_buf; 
        if ((err < 0) or (sqlca.sqlcode < 0)) then 
            exec frs prompt noecho  
                ('Could not reprepare SQL statements :', :ret); 
            exec frs breakdisplay; 
        end if; 
    exec frs end; 
 
    exec frs activate menuitem 'Clear'; 
    exec frs begin; 
         exec frs clear field all; 
    exec frs end; 
 
    exec frs activate menuitem 'Quit', frskey2; 
    exec frs begin; 
        exec sql rollback; 
        exec frs breakdisplay; 
    exec frs end; 
    exec frs finalize; 
 
    exec frs endforms; 
    exec sql disconnect; 
 
    exception 
        when others => 
            exec frs prompt noecho  
                 ('Unexpected exception encountered :', :ret); 
            raise; 
 
end Dynamic_FRS; 

 



  

 

Chapter 6: Embedded SQL for BASIC    6–1 

Chapter 6: Embedded SQL for BASIC 
 

This chapter describes the use of Embedded SQL with the BASIC programming 
language. 

Embedded SQL Statement Syntax for BASIC 
This section describes the language-specific issues inherent in embedding SQL 
database and forms statements in a BASIC program. An Embedded SQL 
database statement has the following general syntax: 

 [margin] exec sql SQL_statement 

The syntax of an Embedded SQL/FORMS statement is almost identical: 

 [margin] exec frs SQL/FORMS_statement 

For information on SQL statements, see the SQL Reference Guide. For 
information on SQL/FORMS statements, see the Forms-based Application 
Development Tools User Guide. 

The sections below describe the various syntactical elements of these 
statements as implemented in BASIC. 

Margin 

In general, Embedded SQL statements in BASIC require no special margins. 
The exec keyword can begin anywhere on the source line. Host declarations 
can also begin on any column. 

BASIC Line Numbers 

The BASIC line number, while not required, can occur at the beginning of any 
Embedded SQL statement. For example: 

100  EXEC SQL DROP TABLE emp 



Embedded SQL Statement Syntax for BASIC 

6–2     Embedded SQL Companion Guide 

In most instances, the preprocessor outputs any BASIC line number that 
precedes an Embedded SQL statement. However, in a few cases the 
preprocessor ignores a BASIC line number and does not include it in the code 
it generates. For example, line numbers occurring on Embedded SQL 
statements that produce no BASIC code are ignored by the preprocessor. It is 
an error to put a line number on a continuation line for an Embedded SQL 
statement or declaration. 

The preprocessor never generates line numbers of its own. Thus, if you prefix 
an Embedded SQL statement with a line number and the preprocessor 
translates that statement into several BASIC statements, the line number will 
appear before the first BASIC statement only. Subsequent BASIC statements 
will be unnumbered. The BASIC line number, if present, must be the first item 
on the line. It can be preceded only by spaces or tabs. 

Note that the BASIC language does require a line number on the first line of a 
program or subprogram. The Embedded SQL preprocessor does not verify that 
this line number exists. 

Terminator 

There is no terminator for Embedded SQL/BASIC. Following the end of an 
Embedded SQL statement in BASIC, only comments and white space (blanks 
and tabs) are allowed to the end of the line. 

The preprocessor allows, but does not require, a semicolon as a statement 
terminator for Embedded SQL statements. It does not write the semicolon to 
the output file of BASIC code. The terminating colon can be convenient when 
entering source code directly from the terminal, using the -s flag on the 
preprocessor command line to test the syntax of a particular statement (see 
Advanced Processing in this chapter). 

Labels 

Like BASIC statements, Embedded SQL statements can have a label prefix. 
The label must begin with an alphabetic character and the remaining 
characters, if present, can be any combination of alphabetic and numeric 
characters and underscores. Note that dollar signs ($) and periods (.) are not 
permitted in labels preceding Embedded SQL statements, even though the 
BASIC compiler accepts these characters. The label must be separated from 
the statement it labels with a colon. For example: 

Close_Csr: exec sql close cursor1 



Embedded SQL Statement Syntax for BASIC 

Chapter 6: Embedded SQL for BASIC    6–3 

The label can appear before any Embedded SQL statement. As with line 
numbers, in most instances the preprocessor outputs any BASIC label that 
precedes an Embedded SQL statement. However, in a few cases the 
preprocessor ignores a BASIC label and does not include it in the code it 
generates. For example, the preprocessor ignores labels occurring on 
Embedded SQL statements that do not produce BASIC code. It is an error to 
put a label on a continuation line for an Embedded SQL statement. 

A label can be preceded by a BASIC line number. For example: 

100  Close_down: exec sql disconnect 

Line Continuation 

Embedded SQL statements and variable declarations can be continued over 
multiple lines. The line continuation rules are the same as those for BASIC 
statements. The ampersand (&) character followed immediately by a newline 
character indicates to the preprocessor that the current statement or 
declaration is to be continued. For example, the following select statement is 
continued over four lines: 

exec sql select ename  & 
  into :namevar  & 
  from employee  & 
  where eno = :numvar 

Blank lines can be included between Embedded SQL statement lines and do 
not require a continuation indicator. If a line continuation character is missing 
from the end of a line containing an Embedded SQL statement to be 
continued, the preprocessor generates the error message: 

"Syntax error on terminator or missing BASIC continuation indicator." 

The preprocessor does not enforce strict line continuation rules in declaration 
sections. 

Comments 

You can include a comment field or line in an Embedded SQL statement by 
typing the exclamation point (!) at the beginning of the comment field. The 
following example shows the use of a comment field on the same line as an 
Embedded SQL statement: 

exec sql open empcsr  ! Process employees 



Embedded SQL Statement Syntax for BASIC 

6–4     Embedded SQL Companion Guide 

The next example shows the use of a comment field embedded in an SQL 
statement: 

exec sql select ename   & 
   into :namevar  & 
   from employee  & 
! Confirm that "eno" is the same as 
! the current value chosen 
   where eno = :currentval 

In both cases, the preprocessor ignores the comment field. Note that a 
comment field terminates with the newline. A comment field cannot be 
continued over multiple lines. 

A comment line can appear anywhere in an Embedded SQL program that a 
blank line is allowed, with the following exceptions: 

 In string constants. Such a comment would be interpreted as part of the 
string constant. 

 In parts of statements that are dynamically defined. For example, a 
comment in a string variable specifying a form name is interpreted as part 
of the form name. 

 Between component lines of Embedded SQL block-type statements. All 
block-type statements (such as activate and unloadtable) are compound 
statements that include a statement section delimited by begin and end. 
Comment lines must not appear between the statement and its section. 
The preprocessor would interpret such comments as BASIC host code, 
causing preprocessor syntax errors. (Note, however, that the comment 
begun by the exclamation point can appear on the same line as the 
statement.) For example, the following statement would cause a syntax 
error on the first comment: 

exec frs unloadtable empform employee (:namevar = ename) 
 ! Illegal comment before statement body. 
  exec frs begin 
 ! Comment legal here 
   exec frs message :namevar ! And legal here too 
  exec frs end 

 Statements that are made up of more than one compound statement, such 
as the display statement, which typically consists of the display clause, 
an initialize section, activate sections, and a finalize section, cannot 
have comments between any of the components. These comments would 
be translated as host code and would cause syntax errors on subsequent 
statement components. 

A comment line can also begin with the BASIC rem keyword. 

The SQL comment delimiter “--” acts just like the “!” delimiter; it indicates 
that the rest of the line is a comment. 



Embedded SQL Statement Syntax for BASIC 

Chapter 6: Embedded SQL for BASIC    6–5 

String Literals 

Embedded SQL string literals are delimited by single quotes. For example: 

exec sql update employee  & 
  set salary = 30000.00 & 
  where name = ’Newman’ 

Quotes cannot be embedded in a string literal. If you want to use a quote in a 
character string in an Embedded SQL statement, assign the string into a string 
variable or a BASIC string constant and use the string variable or constant in 
the SQL statement. For example: 

comm_str = "Doesn’t seem to relax" 
exec sql update employee   & 
  set comments = :comm_str  & 
  where eno = :numvar 

You can also declare a BASIC string constant. Following BASIC rules, you 
cannot continue string literals over more than one line. 

Integer Literals 

You can use the optional trailing percent sign (%) with Embedded SQL integer 
literals. The preprocessor always adds the percent sign to the integer literals 
that it generates. 

The Create Procedure Statement 

As mentioned in the SQL Reference Guide, the create procedure statement 
has language-specific syntax rules for line continuation, string literal 
continuation, comments, and the final terminator. These syntax rules follow 
the rules discussed in this section—for example, the ampersand is used to 
continue lines. Regardless of the number of statements inside the procedure 
body, the preprocessor treats the create procedure statement as a single 
statement and, as an Embedded SQL/BASIC statement, it has no final 
terminator. However, you must terminate all statements in the body of the 
procedure with a semicolon. 

The following example shows a create procedure statement that follows the 
Embedded SQL/BASIC syntax rules: 

exec sql       & 
 create procedure proc (parm integer) as  & 
 declare  & 
  var integer; 
 begin & 
  ! Use BASIC comment field (no need to continue here) 
  if parm  10 then & 
   message ’BASIC strings cannot continue over lines’;& 
   insert into tab VALUES (:parm); & 
  endif; & 
end ! No terminator in BASIC 



BASIC Variables and Data Types 

6–6     Embedded SQL Companion Guide 

Decimal Literals 

The preprocessor distinguishes between decimal and floating-point literals in 
SQL and Forms Runtime System (FRS) statements according to the following 
rules: 

 A literal containing a decimal point with no E notation is a decimal literal. 

 A literal with E notation is a floating-point literal. 

For example: 

exec sql insert  
   into mytable (salary) values (23000.12)  
exec sql insert  
   into mytable (number) values (1.4E4)  

In addition, the preprocessor treats integer literals greater than MAXINT as 
decimals. This allows host programs to input large integer values. 

Ingres will treat “23000.00” as a decimal literal and “1.4E2” as a float literal.  

However, applications will continue to use host language rules for interpreting 
literals appearing in host declarations. For example: 

exec sql begin declare section 
  integer2 i (1.234) 
 exec sql end declare section  

The literal ‘1.234’ is interpreted according to the BASIC compiler rules. 

This is consistent with the Ingres convention of interpreting SQL statements 
according to SQL rules and host statements according to host language 
compiler rules. 

BASIC Variables and Data Types 
This section describes how to declare and use BASIC program variables in 
Embedded SQL.  



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–7 

Variable Declarations 

The following sections describe variable declarations. 

Embedded SQL Variable Declaration Sections 

Embedded SQL statements use BASIC variables to transfer data to and from 
the database or a form into the program. BASIC constants can also be used in 
those SQL statements transferring data from the program into the database. 
You must declare BASIC variables, constants, and structure definitions to SQL 
before using them in any Embedded SQL statements. The preprocessor does 
not allow implicit variable declarations. For this reason, the “%” and “$” 
suffixes cannot be used with variable names. BASIC variables are declared to 
SQL in a declaration section. This section has the following syntax: 

 exec sql begin declare section 
    BASIC variable declarations 
 exec sql end declare section 

Embedded SQL variable declarations are global to the program file from the 
point of declaration onwards. Multiple declaration sections can be incorporated 
into a single file, as would be the case when a few different BASIC 
subprograms issue embedded statements using local variables. Each 
subprogram can have its own declaration section. For a discussion of the 
declaration of variables and types that are local to BASIC subprograms, see 
The Scope of Variables in this chapter. 

Reserved Words in Declarations 

All Embedded SQL keywords are reserved.  Therefore, you cannot declare 
variables with the same name as ESQL keywords. You can only use them in 
quoted string literals. These words are: 

 

byte 
case 
com 
common 
constant  

decimal 
dim 
dimension 
double 
dynamic  

external 
integer 
long 
map 
real  

record 
single 
string 
variant 
word 

The Embedded SQL preprocessor does not distinguish between uppercase and 
lowercase in keywords. In generating BASIC code, it converts any uppercase 
letters in keywords to lowercase.  



BASIC Variables and Data Types 

6–8     Embedded SQL Companion Guide 

Data Types 

The Embedded SQL preprocessor accepts the following elementary BASIC data 
types. The table below maps these types to their corresponding Ingres type 
categories. For a description of exact type mapping, see Data Type Conversion 
in this chapter. 

BASIC Data Types and Corresponding Ingres Types 
 

BASIC Type Ingres Type 

string character 

integer  integer 

long  integer 

word  integer 

byte  integer 

real  float 

single  float 

double  float 

double  decimal  

Because BASIC supports the packed decimal datatype, the Ingres decimal type 
is mapped to it.  For example, the BASIC packed decmial declarations: 

declare decimal pack1 
declare decimal (p,s) pack2 

correspond to the Ingres decimal types: 

 decimal (15, 2) 
 decimal (p,s) 

In addition, the preprocessor accepts the BASIC record type in variable 
declarations, providing the record has been predefined in an Embedded SQL 
declaration section. 

The data types gfloat and hfloat are illegal and will cause declaration errors. 

Neither the preprocessor nor the runtime support routines support  gfloat or 
hfloat floating-point arithmetic. Consequently, the precision of floating-point 
data is less than that which is available in VMS BASIC programs. You should 
not compile the BASIC source code with the command line qualifiers gfloat or 
hfloat if you intend to pass those floating-point values to or from Ingres 
objects. 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–9 

The following sections discuss the variable declarations and the use of 
variables in Embedded SQL statements. 

The String Data Type 

The Embedded SQL preprocessor accepts both fixed-length and dynamic string 
declarations. Strings can be declared using any of the declarations listed later. 
Note that you can indicate string length only for non-dynamic strings, that is, 
for string declarations appearing in common, map, or record declarations. For 
example, 

common (globals) string ename = 30 

is acceptable, but 

declare string bad_str_var = 30 ! length is illegal 

will generate an error. 

The reference to an uninitialized BASIC dynamic string variable in an 
embedded statement that assigns the value of that string to Ingres will result 
in a runtime error because that restriction does not apply to the retrieval of 
data into an uninitialized dynamic string variable. 

The Integer Data Type 

Embedded SQL/BASIC accepts all BASIC integer data type sizes. It is 
important that the preprocessor know about integer size because  it 
generates code to load data in and out of program variables. The preprocessor 
assumes that integer size is four bytes by default. However, you can inform 
the preprocessor of a non-default integer size by using the -i flag on the 
preprocessor command line. For detailed information on this flag, see 
Advanced Processing in this chapter. 

You can explicitly override the default size or the preprocessor -i command-
line flag by using the BASIC subtype words byte, word, or long in the 
variable declaration, as these examples illustrate: 

declare byte one_byte_int 
common (globals) word two_byte_int 
external long four_byte_int 

These declarations instruct the preprocessor to create integer variables of one, 
two, and four bytes respectively, regardless of the default setting. 

You can use an integer variable with any numeric-valued object to assign or 
receive numeric data. For example, you can use such a variable to set a field 
in a form or to select a column from a database table. It can also specify 
simple numeric objects, such as table field row numbers. 



BASIC Variables and Data Types 

6–10     Embedded SQL Companion Guide 

The Real Data Type 

As with the integer data type, the preprocessor must know the size of  real 
data variables so that these variables can interact with Ingres correctly at 
runtime. The preprocessor accepts two sizes of real data: 4-byte variables (the 
default) and 8-byte variables. Again, you can change the default size with a 
flag on the preprocessor command line—in this case, the -r flag. For detailed 
information on this flag, see Advanced Processing in this chapter. 

You can explicitly override the default size by using the BASIC subtype words 
single or double in a variable declaration. For example, the following two 
declarations: 

declare single four_byte_real 
map (myarea) double eight_byte_real 

create real variables of four and eight bytes, respectively, regardless of the 
default setting. 

A real variable can be used in Embedded SQL statements to assign or receive 
numeric data (both real and integer) to and from database columns, form 
fields, and table field columns. It cannot be used to specify numeric objects, 
such as table field row numbers. 

The Decimal Data Type 

The preprocessor accepts variable declarations of the decimal data type.  
Note that because the current implementation of Ingres does not store data in 
packed decimal format, Ingres converts the contents of a decimal variable to 
and from a double at runtime. Therefore, although decimal variables can 
interact with Ingres, the movement of data at runtime, both before and after 
database manipulation, can lead to some loss of precision. 

Decimal variables can be used in Embedded SQL statements to transmit 
numeric values to and from database columns, form fields, and table field 
columns. You cannot, however, use decimal variables with Ingres integer 
objects, such as table field row numbers. 

The default scale and precision for both decimal variables and decimal 
symbolic constants in EQUEL/BASIC is the BASIC default of (15,2). The 
preprocessor does not support the BASIC compile flag /decimal_size. 
Compiling with the flag will not change the default precision and scale of 
decimal variables as far as the preprocessor is concerned. You should always 
specify the precision and scale when declaring a decimal variable or constant. 
For example: 

declare decimal (10.4) constant = 1.2345 – Preferred declaration 

declare decimal constant = 1.234         – Will use default (15,2) thus 
                                           scale is truncated to two places. 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–11 

The Record Data Type 

The Embedded SQL preprocessor supports the declaration and use of  user-
defined record variables. You can declare a variable of type record if you have 
already defined the record in an Embedded SQL declaration section. Later 
sections discuss the syntax of record declarations and their use in Embedded 
SQL statements. 

Variable and Constant Declaration Syntax 

Embedded SQL/BASIC variables and constants can be declared in a  variety of 
ways when those declarations are in a declare section. The following sections 
enumerate these declaration statements and describe their syntax. 

The Declare Statement 

The declare statement for an Embedded SQL/BASIC variable has the following 
syntax: 

 declare type identifier [(dimensions)] {, [type] identifier 
[(dimensions)]} 

The declare statement for an Embedded SQL/BASIC constant has the syntax: 

 declare type constant identifier = literal {, identifier = literal} 

Syntax Notes: 

 If you specify the word constant, the declared constants cannot be 
targets of Ingres assignments. 

 The type must be a BASIC type acceptable to the preprocessor (see 
previous section) or, in the case of variables only, a record type already 
defined in the Embedded SQL declaration section. Note that the type is 
mandatory for Embedded SQL/BASIC declarations, because the 
preprocessor has no notion of a default type. You need only specify the 
type once when declaring a list of variables of the same type. 

 The dimensions of an array specification are not parsed by the 
preprocessor. Consequently, the preprocessor does not check bounds. 
Note also that the preprocessor will accept an illegal dimension, such as a 
non-numeric value, but this will later cause BASIC compiler errors. 

The following example illustrates the use of the declare statement: 

exec sql begin declare section 
  declare integer enum, eage, string ename 
  declare single constant minsal = 12496.62 
  declare real esal(100) 
  declare word null_ind        ! Null indicator 
exec sql end declare section 



BASIC Variables and Data Types 

6–12     Embedded SQL Companion Guide 

The Dimension Statement 

The dimension statement can be used to declare arrays to the preprocessor. 
Its syntax is: 

dimension | dim type identifier(dimensions) {, [type] identifier 
(dimensions)} 

Syntax Notes: 

 The type must be a BASIC type acceptable to the preprocessor (see 
previous section) or a record already defined in the Embedded SQL 
declaration section. Note that the type is mandatory for Embedded 
SQL/BASIC declarations because the preprocessor has no notion of a 
default type. You need only specify the type once when declaring a list of 
variables of the same type. 

 The dimensions of an array specification are not parsed by the 
preprocessor. Consequently, the preprocessor does not check bounds. 
Note also that the preprocessor will accept an illegal dimension, such as a 
non-numeric value, but it will later cause BASIC compiler errors. 
Furthermore, the preprocessor does not distinguish between executable 
and declarative dimension statements. If you have used the dimension 
statement to declare an executable array to Embedded SQL/BASIC, 
subsequent executable dimension statements of the same array in a 
declaration section will cause a redeclaration error. 

The following example illustrates the use of the dimension statement: 

exec sql begin declare section 
 dim string employee_names(100,20) 
    ! declarative DIM statement 
 dimension long emp_id(100,2,2) 
 dimension double expenses(numdepts) 
    ! executable DIM statement 
 
exec sql end declare section 

Static Storage Variable Declarations 

Embedded ESQL/BASIC supports the BASIC common and map variable 
declarations. The syntax for a common variable declaration is as follows: 

              common | com [(com_name)]  
                            type identifier [(dimensions)] [= str_length] 
                            {, [type] identifier [(dimensions)] [= str_length]} 

The syntax for a map variable declaration is as follows: 

              map | map dynamic (map_name)  
                            type identifier [(dimensions)] [= str_length] 
                            {, [type] identifier [(dimensions)] [= str_length]} 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–13 

Syntax Notes: 

 The type must be a BASIC type acceptable to the preprocessor (see 
previous section) or a record type already defined to Embedded 
SQL/BASIC. Note that the type is mandatory for Embedded SQL/BASIC 
declarations because the preprocessor has no notion of a default type. You 
need only specify the type once when declaring a list of variables of the 
same type. 

 The dimensions of an array specification are not parsed by the 
preprocessor. Consequently, the preprocessor does not check bounds. 
Note also that the preprocessor will accept an illegal dimension, such as a 
non-numeric value, but it will later cause BASIC compiler errors. 

 The string length, if present, must be a simple integer literal. 

 The com_name or map_name clause is not parsed by the preprocessor. 
Consequently, the preprocessor will accept common and map areas of the 
same name in a single declaration section. It will also accept a map 
dynamic statement whose com_name has not appeared in another map 
statement. Either of these situations will later cause BASIC compiler 
errors. 

The following example uses the common and map variable declarations: 

exec sql begin declare section 
 common (globals) string address = 30, integer zip 
 map (ebuf) byte eage, string 
    ename = 20, single emp_num 
 common (globals) integer empid (200) 
  
exec sql end declare section 

The External Statement 

You can inform Embedded SQL/BASIC of variables and constants declared in 
an external module. The syntax for a variable is as follows: 

 external type identifier {, identifier} 

The syntax for a constant is as follows: 

 external type constant identifier {, identifier} 

Syntax Note: 

Embedded SQL/BASIC applies the same restrictions on type as VAX-11 
BASIC. 

exec sql begin declare section 
 external integer empform, infoform 
 external single constant emp_minsal 
 
exec sql end declare section 



BASIC Variables and Data Types 

6–14     Embedded SQL Companion Guide 

Record Type Definitions 

Embedded SQL/BASIC accepts BASIC record definitions. The syntax of a 
record definition is: 

              record identifier 
                             record_component 
                            {record_component} 
              end record [identifier] 

where record_component can be any of the following: 

              type identifier [(dimensions)] [= str_length]  
                            {, [type] identifier [(dimensions)] [= str_length]} 

              group_clause 

              variant_clause 

In turn, the syntax of a group_clause is: 

              group identifier [(dimensions)] 
                             record_component 
                            {record_component} 
              end group [identifier] 

The syntax of a variant_clause is: 

              variant 
                             case_clause 
                            {case_clause} 
              end variant 

where case_clause consists of: 

              case 
                            record_component 

Syntax Notes: 

 The type must be a BASIC type acceptable to the preprocessor (see 
previous section) or a record type already defined in the declaration 
section. Note that the type is mandatory for Embedded SQL/BASIC 
declarations because the preprocessor has no notion of a default type. You 
need only specify the type once when declaring a list of variables of the 
same type. 

 Use the str_length clause only with record components of type string. 

 Record definitions must appear before declarations using that record type. 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–15 

The following example contains record type definitions: 

exec sql begin declare section 
 record emp_history 
   string ename = 30 
   group prev_employers(10) 
    string comp_name = 30 
    real salary 
    integer num_years 
   end group prev_employers 
 end record emp_history 
 record emp_sports 
   string ename = 30 
   variant 
    case 
     group golf 
      integer handicap 
      string club_name 
     end group golf 
    case 
     group baseball 
      integer batting_avg 
      string team_name 
     end group baseball 
    case 
     group tennis 
      integer seed 
      string club_name 
     end group tennis 
   end variant 
 end record emp_sports 
 
exec sql end declare section 

Indicator Variables 

An indicator variable is a 2-byte integer variable. There are three possible 
ways to use them in an application: 

 In a statement that retrieves data from Ingres, you can use an indicator 
variable to determine if its associated host variable was assigned a null 
value. 

 In a statement that sets data to Ingres, you can use an indicator variable 
to assign a null to the database column. 

 In a statement that retrieves character data from Ingres, you can use the 
indicator variable as a check that the associated host variable was large 
enough to hold the full length of the returned character string. You can use 
SQLSTATE to do this. Although you can use SQLCODE as well, it is 
preferable to use SQLSTATE because SQLCODE is a deprecated feature. 

You can declare an indicator using the integer word subtype or, if you used 
the -i2 preprocessor command line flag, you can declare an indicator as an 
integer. The following example declares two indicator variables, one a single 
variable and the other an array of indicators: 

declare word ind, ind_arr(10) 



BASIC Variables and Data Types 

6–16     Embedded SQL Companion Guide 

When using an indicator variable with a BASIC record, you must declare the 
indicator variable as an array of 2-byte integers. In the above example, you 
can use the variable “ind_arr” as an indicator array with a record assignment. 

The DCLGEN Utility 

DCLGEN (Declaration Generator) is a record-generating utility that maps the 
columns of a database table into a record that can be included in a declaration 
section. 

Use the following command to invoke DCLGEN from the operating system 
level: 

 dclgen language dbname tablename filename recordname 

where 

 language is the Embedded SQL host language, in this case, “basic.” 

 dbname is the name of the database containing the table. 

 tablename is the name of the database table. 

 filename is the output file into which the record declaration is placed. 

 recordname is the name of the BASIC record variable that the command 
generates. The command generates a record definition named recordname 
followed by an underscore character (_) and a declaration for a record 
variable of recordname. 

This command creates the declaration file filename, containing a record 
corresponding to the database table. The file also includes a record statement 
for the record variable, as well as a declare table statement that serves as a 
comment and identifies the database table and columns from which the record 
was generated. 

Once the file has been generated, you can use an Embedded SQL include 
statement to incorporate it into the variable declaration section. The following 
example demonstrates how to use DCLGEN in a BASIC program. 

Assume the Employee table was created in the Personnel database as: 

exec sql create table employee 
  (eno  smallint not null, 
   ename char(20) not null, 
   age  integer1, 
   job  smallint, 
   sal  decimal not null, 
   dept smallint) 

and the DCLGEN system-level command is: 

dclgen basic personnel employee employee.dcl emprec 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–17 

The employee.dcl file created by this command contains a comment and three 
statements. The first statement is the declare table description of “employee” 
which serves as a comment. The second statement is a definition of the BASIC 
record “emprec_”. The last statement is a declare statement for the record 
“emprec”. The contents of the employee.dcl file are: 

! Description of table employee from database personnel 
 exec sql declare employee table 
     (eno  smallint not null,   & 
   ename  char(20) not null,  & 
   age   integer1,   & 
   job   smallint,   & 
   sal   decimal not null,  & 
   dept  smallint) 
  
 record emprec_ 
   word  eno 
   string ename = 20 
   byte  age 
   word  job 
   double  sal 
   word  dept 
 end record 
 declare emprec_ emprec 

This file should be included, by means of the Embedded SQL include 
statement, in an Embedded SQL declaration section: 

exec sql begin declare section 
  exec sql include ’employee.dcl’ 
exec sql end declare section 

You can then use the emprec record in a select, fetch, or insert statement.  

DCLGEN and Large Objects 

You can use DCLGEN to generate an appropriate declare table statement 
with Ada variables for tables that contain long varchar columns. For columns 
that have a limited length, the variables generated will be identical to the 
variables generated for the Ingres varchar datatype. For columns with 
unlimited length, such as: 

 create table long_obj_table(blob_col long varchar); 

DCLGEN will issue an error message and generate a character string variable 
with zero length. You can modify the length of the generated variable before 
attempting to use the variable in an application. 

For example the following table definition: 

create tablelongobj_table 
 (long_column    long varchar));  



BASIC Variables and Data Types 

6–18     Embedded SQL Companion Guide 

results in the following DCLGEN generated output for BASIC compilers that 
support structures: 

exec sql declare long_obj_table table     & 
 (long_column    long varchar) 
 
record blobs_rec_ 
 string long column = 0 
end record blobs_rec_ 
declare blobs_rec_ blobs_rec 

Assembling and Declaring External Compiled Forms 

You can pre-compile your forms in the Visual Forms Editor (VIFRED). This 
saves the time that would be otherwise required at runtime to extract the 
form’s definition from the database forms catalogs. When you compile a form 
in VIFRED, VIFRED creates a file in your directory describing the form in the 
VAX-11 MACRO language. VIFRED prompts you for the name of the file with 
the MACRO description. After you have created the file, you can use the 
following VMS command to assemble it into a linkable object module: 

 macro filename 

This command produces an object file containing a global symbol with the 
same name as your form. Before the Embedded SQL/FORMS statement 
addform can refer to this global object, the object must be declared in an 
Embedded SQL declaration section with the following syntax: 

 external integer formname 

Syntax Notes: 

 The formname is the actual name of the form. VIFRED gives this name to 
the address of the global object. The formname is also used as the title of 
the form in other Embedded SQL/FORMS statements. 

 The external statement associates the object with the external form 
definition. 

The example below shows a typical form declaration and illustrates the 
difference between using the form’s object definition and the form’s name. 

exec sql begin declare section 
 external integer empform 
 ... 
  
exec sql end declare section 
 ... 
 exec frs addform :empform ! The global object 
exec frs display empform  ! The name of the form 
 ... 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–19 

Concluding Example 

The following example demonstrates some simple Embedded SQL/BASIC 
declarations: 

exec sql include sqlca 
exec sql begin declare section 
 declare byte   d_byte ! variables of each data type 
 declare word   d_integer2 
 declare long   d_integer4 
 declare integer  d_integer_def 
 declare single   d_real4 
 declare double   d_real8 
 declare real   d_real_def 
 declare decimal(6,2)  d_decimal 
 declare string   d_string 
 declare integer constant num_depts = 10 ! constant 
 common(globs) real e_raise ! static storage variables 
 map (ebuf) string ename = 20 
 dim string    emp_names(100,30) ! array declarations 
 declare integer  dept_id(10) 
 common(globs) string e_address(40) = 30 
 record person ! Variant record 
  byte age 
  long flags 
  variant 
   case 
    group emp_list 
     string full_name = 30 
    end group 
   case 
    group emp_directory 
     string firstname = 12 
     string lastname = 8 
    end group 
  end variant 
 end record 
 
declare person p_table(100)   ! Array of records 
 
exec sql include ’employee.dcl’   ! From DCLGEN 
 
external integer empform, deptform  ! Compiled forms 
dim word indicators(10)    ! Array of null indicators 
 
exec sql end declare section 

The Scope of Variables 

All variables declared in an Embedded SQL declaration section can be 
referenced, and are accepted by the preprocessor, from the point of 
declaration to the end of the file. This may not be true for the BASIC compiler, 
which only allows variables to be referred to in the scope of the program unit 
in which they were declared. If you have two unrelated subprograms in the 
same file, each of which contains a variable with the same name to be used by 
Embedded SQL, you should not redeclare the variable to Embedded SQL. The 
preprocessor will use the data type information supplied the first time you 
declared the variable. 



BASIC Variables and Data Types 

6–20     Embedded SQL Companion Guide 

In the following program fragment, the variable “dbname” is passed as a 
parameter between two subroutines. In the first subroutine, the variable is a 
local variable. In the second subroutine, the variable is a formal parameter 
passed as a string to be used with the connect statement. In both 
subroutines, the preprocessor uses the data attributes from the variable’s 
declaration in the first subroutine. 

100 sub Scopes 
 exec sql include sqlca 
 exec sql begin declare section 
  declare string dbname 
 exec sql end declare section 
 ! Prompt for and read database name 
 print ’Database: ’ 
 input dbname 
 call open_db(dbname) 
 ... 
  
 end sub 
 
200 sub Open_Db(string dbname) 
  
 exec sql include sqlca 
 exec sql whenever sqlerror stop 
 exec sql connect :dbname  
   ! Declared to SQL in first subroutine 
 ... 
 end sub 

Special care should be taken when using variables in a declare cursor 
statement. The variables used in such a statement must also be valid in the 
scope of the open statement for that same cursor. The preprocessor actually 
generates the code for the declare at the point that the open is issued and, 
at that time, evaluates any associated variables. For example, in the following 
program fragment, even though the variable “number” is valid to the 
preprocessor at the point of both the declare cursor and open statements, it 
is not an explicitly declared variable name for the BASIC compiler at the point 
that the open is issued, possibly resulting in a runtime error. Because BASIC 
allows implicit variable declarations (although Embedded SQL does not), the 
compiler itself will not, however, generate an error message. 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–21 

100 sub Init_Csr ! This example contains an error 
 exec sql include sqlca 
 exec sql begin declare section 
  declare integer number ! a local variable 
 exec sql end declare section 
 exec sql declare cursor1 cursor for & 
  select ename, age & 
  from employee & 
  where eno = :number 
    ! initialize "number" to a particular value 
  ... 
 end sub 
 
200   sub process_csr 
 exec sql include sqlca 
 exec sql begin declare section 
  declare string ename 
  declare integer eage 
 exec sql end declare section 
 exec sql open cursor1 
    ! illegal evaluation of "number" 
 exec sql fetch cursor1 into :ename, :eage 
 
end sub 

Note that you must issue include sqlca statement in each subprogram 
containing Embedded SQL statements. 

Variable Usage 

BASIC variables declared in an Embedded SQL declaration section can 
substitute for most non key-word elements of Embedded SQL statements. Of 
course, the variable and its data type must make sense in the context of the 
element. When you use a BASIC variable in an Embedded SQL statement, you 
must precede the variable with a colon.  You must further verify that the 
statement using the variable is in the scope of the variable’s declaration. As an 
example, the following select statement uses the variables “namevar” and 
“numvar” to receive data, and the variable “idno” as an expression in the 
where clause: 

exec sql select ename, eno  & 
 into :namevar, :numvar  & 
 from employee    & 
 where eno = :idno 

Various rules and restrictions apply to the use of BASIC variables in Embedded 
SQL statements. The sections below describe the usage syntax of different 
categories of variables and provide examples of such use. 

Simple Variables 

A simple scalar-valued variable (integer, real or character string) is referred to 
by the syntax: 

 :simplename 



BASIC Variables and Data Types 

6–22     Embedded SQL Companion Guide 

Syntax Notes: 

 If you use the variable to send values to Ingres, it can be any scalar-
valued variable or constant. 

 If you use the variable to receive values from Ingres, it can only be 
a scalar-valued variable. 

 The reference to an uninitialized BASIC dynamic string variable in an 
embedded statement that assigns the value of that string to Ingres results 
in a runtime error because an uninitialized dynamic string points at a zero 
address. This restriction does not apply to the retrieval of data into an 
uninitialized dynamic string variable. 

The following program fragment demonstrates a typical message-handling 
routine that has two scalar valued variables, “buffer” and “seconds.” 

100  sub message_handle 
  exec sql include sqlca 
  exec sql begin declare section 
   declare string buffer = 50 
   declare integer seconds 
  exec sql end declare section 
   ... 
  exec frs message :buffer 
  exec frs sleep :seconds 
   ... 
  end sub 

Array Variables 

An array variable is referred to by the syntax: 

 :arrayname (subscripts) 

Syntax Notes: 

 You must subscript the variable, because only scalar-valued 
elements (integers, reals, and character strings) are legal SQL values. 

 When you declare the array, the Embedded SQL preprocessor does not 
parse the array bounds specification. Consequently, the Embedded SQL 
preprocessor will accept illegal bounds values. Also, when an array is 
referenced, the subscript is not parsed. The preprocessor confirms only the 
use of an array subscript with an array variable. You must ensure that the 
subscript is legal and that the correct number of indices is used. 

 Arrays of null indicator variables used with structure assignments should 
not include subscripts when referenced. 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–23 

In the following example, a variable is used as a subscript and need not be 
declared in the declaration section, as it is not parsed. 

exec sql begin declare section 
 declare string formnames(3) 
 exec sql end declare section 
 
data ’empform’, ’deptform’, ’helpform’ 
 declare integer i 
 
for i = 1 to 3 
 read formnames(i) 
 exec frs forminit :formnames(i) 
 next i 

Record Variables 

You can use a record variable in two different ways. First, you can use the 
record as a simple variable, implying that all its members are used. This would 
be appropriate in the Embedded SQL select, fetch, and insert statements. 
Second, you can use a member of a record to refer to a single element. Of 
course, this member must be a scalar value (integer, real or character string). 

Using a Record as a Collection of Variables 

The syntax for referring to a complete record is the same as referring to a 
simple variable: 

 :recordname 

Syntax Notes: 

 The recordname can refer to a main or nested record. It can be an 
element of an array of records. Any variable reference that denotes a 
record is acceptable. For example: 

:emprec     ! A simple record 
:rec_array(i)   ! An element of an array of records 
:rec::minor2::minor3  ! A nested record at level 3 

 To be used as a collection of variables, the final record in the reference 
must have no nested records, groups, or arrays. The preprocessor will 
enumerate all the members of the record. The members must have scalar 
values. The preprocessor generates code as though the program had listed 
each record member in the order in which it was declared. 

The following example uses the employee.dcl file generated by DCLGEN to 
retrieve values into a record. 



BASIC Variables and Data Types 

6–24     Embedded SQL Companion Guide 

exec sql begin declare section 
 exec sql include ’employee.dcl’ 
 ! see above for description  
exec sql end declare section 
 
exec sql select *     & 
 into :emprec     & 
 from employee    & 
 where eno = 123 

The example above generates code as though the following statement had 
been issued instead: 

exec sql select * & 
  into :emprec::eno, :emprec::ename, :emprec::age, & 
    :emprec::job, :emprec::sal, :emprec::dept & 
  from employee & 
  where eno = 123 

The example below fetches the values associated with all the columns of a 
cursor into a record. 

exec sql begin declare section 
 exec sql include ’employee.dcl’ 
 ! see above for description 
exec sql end declare section 
 
exec sql declare empcsr cursor for & 
 select *      & 
 from employee    & 
 order by ename 
   ...  
 
exec sql fetch empcsr into :emprec 

The following example inserts values by looping through a locally declared 
array of records whose elements have been initialized: 

exec sql begin declare section 
 exec sql declare person table & 
 (pname char(30),   & 
  page integer1,    & 
  paddr varchar(50)) 
 record person_ 
 string name = 30 
  word  age 
  string addr = 50 
end record 
 
declare person_ person(10) 
 declare word i 
 
exec sql end declare section 
... 
  
for i=1 to 10 
  exec sql insert into person & 
  values (:person(i)) 
 next i 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–25 

The insert statement in the above example generates code as though the 
following statement had been issued instead: 

exec sql insert into person & 
 values (:person(i)::name, :person(i)::age, 
   :person(i)::addr) 

Using a Record Member 

The syntax Embedded SQL uses to refer to a record member is the same as in 
BASIC: 

 :record::member{::member} 

Syntax Notes: 

 The record member denoted by the above reference must be a scalar 
value (integer, real or character string). There can be any combination of 
arrays and records, but the last object referenced must be a scalar value. 
Thus, the following references are all legal: 

:employee::sal   ! Member of a record 
:person(3)::name   ! Member of an element of an array 
:rec1::mem2::mem3::age  ! Deeply nested member 

 All record components must be fully qualified when referenced. Elliptical 
references, such as references that omit group names, are not allowed. 

The following example uses the record “emprec”, similar to the record 
generated by DCLGEN, to put values into the form “empform”. 

exec sql begin declare section 
 record emprec_ 
  long   idno 
  string  ename = 20 
  word   age 
  string  hired = 25 
  double  salary 
  string  dept = 10 
 end record 
 declare emprec_ emprec 
 
exec sql end declare section 
 ... 
  
exec frs putform empform & 
 (eno = :emprec::idno, ename = :emprec::ename, & 
   age = :emprec::age, hired = :emprec::hired, & 
   sal = :emprec::salary, dept = :emprec::dept) 



BASIC Variables and Data Types 

6–26     Embedded SQL Companion Guide 

Using Indicator Variables 

The syntax for referring to an indicator variable is the same as for a simple 
variable, except that an indicator variable is always associated with a host 
variable: 

 :host_variable:indicator_variable 
or 
 :host_variable indicator :indicator_variable 

Syntax Notes: 

 The indicator variable can be a simple variable, an array element or 
a record member that yields a 2-byte integer (the word subtype). For 
example: 

dcl word ind_var, ind_arr(5) 
 :var_1:ind_var 
 :var_2:ind_arr(2) 

 If the host variable associated with the indicator variable is a record, the 
indicator variable should be an array of 2-byte integers. In this case the 
array should not be dereferenced with a subscript. 

 When you use an indicator array, the first element of the array 
corresponds to the first member of the record, the second element with 
the second member, and so on. Indicator array elements generated by the 
preprocessor begin at subscript 1 and not at subscript 0. 

The following example uses the employee.dcl file generated by DCLGEN, to 
retrieve values into a record and null values into the array “empind”. 

exec sql include sqlca 
 
exec sql begin declare section 
 exec sql include ’employee.dcl’ 
  ! see above for description 
  declare word empind(10) 
  
exec sql end declare section 
 
exec sql select *    & 
  into :emprec:empind    & 
  from employee 

The above example generates code as though the following statement had 
been issued: 

exec sql select *      & 
into :emprec::eno:empind(1), :emprec::ename:empind(2),  & 
  :emprec::age:empind(3), :emprec::job:empind(4),  & 
  :emprec::sal:empind(5), :emprec::dept:empind(6),  & 
from employee 

Note that there are three different types of colon qualifiers. The first colon 
indicates that a host variable is used. The second double-colon indicates that a 
structure member is used. The third colon is the indicator variable colon. 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–27 

Data Type Conversion 

A BASIC variable declaration must be compatible with the Ingres value it 
represents. Numeric Ingres values can be set by and retrieved into numeric 
variables, and Ingres character values can be set by and retrieved into string 
variables. 

Data type conversion occurs automatically for different numeric types,  as 
follows: 

 From floating-point Ingres database column values into integer BASIC 
variables 

 From integer to decimal 

 From decimal to integer 

 For different length character strings, such as from varying-length Ingres 
character fields, into static BASIC string variables 

Ingres does not automatically convert between numeric and character types. 
You must use the Ingres type conversion functions, the Ingres ascii function, 
or a BASIC conversion procedure for this purpose. 

The following table shows the default type compatibility for each Ingres data 
type. Note that some BASIC types do not match exactly and, consequently, 
can go through some runtime conversion. 

Ingres and BASIC Data Type Compatibility 
 

Ingres Type BASIC Type 

char(N) string  (dynamic) 

char(N) string  (static with length clause of N) 

varchar(N) string  (dynamic) 

varchar(N) string  (static with length clause of N) 

integer1 integer byte 

smallint integer word 

integer integer long 

float4 real single 

float real double 

date string  (dynamic) 

date string  (static with length clause of 25) 

money real double 



BASIC Variables and Data Types 

6–28     Embedded SQL Companion Guide 

Ingres Type BASIC Type 

table_key string (dynamic) 

table_key string (static with length clause of 8)  

object_key string (dynamic) 

object_key string (static with length clause of 16) 

decimal real double 

long varchar string  (dynamic) 

Runtime Numeric Type Conversion 

The Ingres runtime system provides automatic data type conversion between 
numeric-type values in the database and forms system and numeric BASIC 
variables. The standard type conversion rules (according to standard VAX 
rules) are followed. For example, if you assign a real variable to an integer-
valued field, the digits after the decimal point of the variable’s value are 
truncated.  Runtime errors are generated for overflow on conversion when 
assigning Ingres numeric values into BASIC variables. Overflow caused by 
assigning BASIC numeric variables into Ingres numeric objects is likely to 
result in inconsistent data, but does not by default generate a runtime error. 
Using the -x flag on the Ingres statement changes this behavior by generating 
errors at runtime. 

The BASIC decimal data type is converted to real double using BASIC 
assignment statements generated by the preprocessor. Variables of decimal 
data type can be converted twice at runtime, depending on the final Ingres 
type being set or retrieved from. The standard BASIC arithmetic conversion 
rules hold for all these generated assignment statements, with a potential loss 
of precision. For further information, see The Decimal Data Type in this 
chapter. 

The Ingres money type is represented as real double, an 8-byte floating-
point value. 

Runtime Character and Varchar Type Conversion 

Automatic conversion occurs between Ingres character string values and 
BASIC string variables. There are four string-valued Ingres objects that can 
interact with string variables. These are: 

 Ingres names, such as form and column names 

 Database columns of type character 

 Database columns of type varchar 



BASIC Variables and Data Types 

Chapter 6: Embedded SQL for BASIC    6–29 

 Form fields of type character 

 Database columns of type long varchar 

Several considerations apply when dealing with string conversions, both to and 
from Ingres. 

The conversion of BASIC string variables used to represent Ingres names is 
simple: trailing blanks are truncated from the variables because the blanks 
make no sense in that context. For example, the string literals “empform ” and 
“empform” refer to the same form. 

The conversion of other Ingres objects is a bit more complicated. First, the 
storage of character data in Ingres differs according to whether the medium of 
storage is a database column of type character, a database column of type 
varchar, or a character form field. Ingres pads columns of type character 
with blanks to their declared length. Conversely, it does not add blanks to the 
data in columns of type varchar or long varchar in form fields. 

Second, the BASIC convention is to blank-pad static character strings. For 
example, the character string “abc” can be stored in a BASIC static string 
variable of length 5 as the string “abc  ” followed by two blanks. 

When retrieving character data from an Ingres database column or form field 
into a BASIC variable, take note of the following conventions: 

 When character data is retrieved from Ingres into a BASIC static string 
variable and the variable is longer than the value being retrieved, the 
variable is padded with blanks. If the variable is shorter than the value 
being retrieved, the value is truncated. You should always ensure that the 
variable is at least as long as the column or field, in order to avoid 
truncation of data. 

 When character data is retrieved into a BASIC dynamic string variable, the 
variable’s new length will exactly match the length of the data retrieved. 
Ingres manipulates dynamic strings in exactly the same way as BASIC 
does, creating and modifying storage requirements as necessary. For 
example, when zero-length varchar data is retrieved into a BASIC 
dynamic string variable, storage will not be created for the string. 

When inserting character data into an Ingres database column or form field 
from a BASIC variable, note the following conventions: 



BASIC Variables and Data Types 

6–30     Embedded SQL Companion Guide 

 When you insert data from a BASIC variable into a database column 
of type character and the column is longer than the variable, the column 
is padded with blanks. If the column is shorter than the variable, the data 
is truncated to the length of the column. When you insert data from a 
BASIC variable into a database column of type varchar or long varchar 
and the column is longer than the variable, no padding of the column 
takes place. Furthermore, by default, all trailing blanks in the data are 
truncated before the data is inserted into the varchar column. For 
example, when a string “abc” stored in a BASIC static string variable of 
length 5 as “abc  ” (see above) is inserted into the varchar column, the 
two trailing blanks are removed and only the string “abc” is stored in the 
database column. To retain such trailing blanks, use the Ingres notrim 
function. It has the following syntax: 

notrim(:stringvar) 

where stringvar is a character string variable. An example demonstrating 
this feature follows later. If the varchar column is shorter than the 
variable, the data is truncated to the length of the column When you insert 
data from a BASIC variable into a character form field and the field is 
longer than the variable, no padding of the field takes place. In addition, 
all trailing blanks in the data are truncated before the data is inserted into 
the field. If the field is shorter than the data (even after all trailing blanks 
have been truncated), the data is truncated to the length of the field. 

You cannot use zero-length or uninitialized BASIC dynamic strings in 
insert or update statements. This is because an uninitialized dynamic 
string has no storage allocated for it and Ingres treats it as a non-existent 
variable. 

When comparing character data in an Ingres database column with 
character data in a BASIC variable, note the following convention: 

 When comparing data in character or varchar database columns with 
data in a character variable, all trailing blanks are ignored. Initial and 
embedded blanks are significant. 

Note: As described above, the conversion of character string data between 
Ingres objects and BASIC variables often involves the trimming or padding of 
trailing blanks, with resultant change to the data. If trailing blanks have 
significance in your application, give careful consideration to the effect of any 
data conversion. For a complete description of the significance of blanks in 
string comparisons, see the SQL Reference Guide. 

The Ingres date data type is represented as a 25-byte string. 

The program fragment in the example demonstrates the notrim function and 
the truncation rules explained above. 



The SQL Communications Area 

Chapter 6: Embedded SQL for BASIC    6–31 

exec sql include sqlca 
 
exec sql begin declare section 
 exec sql declare textchar table   & 
   (row integer,     & 
    data varchar(10)) ! Note the varchar type 
 declare word   row 
 common string   sdata = 7  ! static string 
 declare string   ddata   ! dynamic string 
exec sql end declare section 
 
sdata = ’abc  ’  ! Holds "abc " (with 4 blanks) 
 ddata = ’abc’   ! Holds "abc" 
! This insert adds string "abc" (blanks truncated) 
 exec sql insert into textchar values (1, :sdata) 
  
! This insert adds string "abc" (never had blanks) 
 exec sql insert into textchar values (2, :ddata) 
  
! This insert adds string "abc ", with tailing blanks 
! left intact by using the notrim function. 
 exec sql insert into textchar values (3, notrim(:sdata)) 
  
! This select retrieves rows #1 and #2, because trailing 
! blanks were suppressed when those rows were inserted. 
 exec sql select row into :row from textchar 
  where length(data) = 3 
exec sql begin 
  print ’Row found =’, row 
exec sql end 
! This select retrieves row #3, because the notrim 
! function left trailing blanks in the "sdata" 
! variable in the last insert statement. 
 exec sql select row into :row from textchar 
  where length(data) = 7 
exec sql begin 
  print ’row found =’, row 
exec sql end 

The SQL Communications Area 
This section describes the SQL Communications Area (SQLCA) as implemented 
in BASIC. 

The Include SQLCA Statement 

You should issue the include sqlca statement in your main program module 
as well as in each subprogram of your BASIC file that includes Embedded SQL 
statements. If the file is made up of one main program and a few 
subprograms, include sqlca should be the first Embedded SQL statement in 
each of the program units. For example: 



The SQL Communications Area 

6–32     Embedded SQL Companion Guide 

10  ! main program 
  exec sql include sqlca 
 . . . 
  end ! main 
 
100  sub emp_sub 
  exec sql include sqlca 
  . . . 
  end sub ! Emp_sub 
 
200 function integer emp_func 
  exec sql include sqlca 
  . . . 
  end func ! Emp_Func 

The include sqlca statement instructs the preprocessor to generate code to 
call Ingres runtime libraries. It generates a BASIC %include statement to 
make all the calls generated by the preprocessor acceptable to the compiler. 
The include sqlca statement also generates a BASIC %include directive to 
define the SQLCA (SQL Communications Area) common block, which is used 
for error handling. 

Whether or not you intend to use the SQLCA for error handling, you must 
issue an include sqlca statement in each program unit containing Embedded 
SQL statements. If you do not, the BASIC compiler may complain about 
undeclared functions. Furthermore, the program will abort at runtime because 
program memory will be overwritten. This occurs because, with no explicit 
declaration of the SQLCA using the include sqlca statement, the BASIC 
compiler implicitly declares all references (including preprocessor-generated 
references) to the SQLCA as the default data type (the default set by the 
BASIC environment or by the system). Therefore, to help detect runtime 
errors due to missing include sqlca statements, you may want to use the 
qualifier type_default=explicit with the BASIC compiler command. By doing 
so, you can ensure that the compiler generates a warning upon encountering a 
reference to an undeclared SQLCA. 

Contents of the SQLCA 

One of the results of issuing the include sqlca statement is the declaration of 
the SQLCA (SQL Communications Area), which you can use for error handling 
in the context of database statements. As mentioned above, you should issue 
the statement in your main program and in each subprogram that contains 
Embedded SQL statements. The declaration for the SQLCA is: 



The SQL Communications Area 

Chapter 6: Embedded SQL for BASIC    6–33 

common (sqlca) string sqlcaid = 8,  & 
               long   sqlcabc,       & 
               long   sqlcode,       & 
               word   sqlerrml,      & 
               string sqlerrmc = 70, & 
               string sqlerrp = 8,   & 
               long   sqlerrd(5),     & 
               string sqlwarn0 = 1,  & 
               string sqlwarn1 = 1,  & 
               string sqlwarn2 = 1,  & 
               string sqlwarn3 = 1,  & 
               string sqlwarn4 = 1,  & 
               string sqlwarn5 = 1,  & 
               string sqlwarn6 = 1,  & 
               string sqlwarn7 = 1,  & 
               string sqlext = 8 

Note that the error diagnostic array, sqlerrd, is declared with 5 elements. This 
is because the BASIC compiler implicitly inserts element number zero before 
the declared array, so that there are really 6 array elements, as described in 
the SQL Reference Guide. A later section discusses the significance of sqlerrd 
for determining the number of rows affected by the last SQL statement. 

The SQLCA is initialized at load-time. The fields sqlcaid and sqlabc are 
initialized to the string “SQLCA “ and the constant 136, respectively. 

Note that the preprocessor is not aware of the SQLCA declaration. Therefore, 
you cannot use SQLCA fields in an Embedded SQL statement. For example, 
the following statement, attempting to insert the error code sqlcode into a 
table, would generate an error: 

! This statement is illegal 
exec sql insert into employee (eno) & 
 values (:sqlcode) 

All modules written in BASIC and other Embedded SQL languages share the 
same SQLCA. 

Using the SQLCA for Error Handling 

Error handling with the SQLCA can be done implicitly by using whenever  
statements or explicitly by checking the contents of the SQLCA fields sqlcode, 
sqlerrd(2), and sqlwarn0. 

Error Handling with the Whenever Statement 

The syntax of the whenever statement is as follows: 

exec sql whenever condition action 



The SQL Communications Area 

6–34     Embedded SQL Companion Guide 

condition is dbevent, sqlwarning, sqlerror, sqlmessage, or not found. 
action is continue, stop, goto a label or a line number, or call a BASIC 
subroutine. For a detailed description of this statement, see the SQL Reference 
Guide.  

The subroutine names qualifying the call action must be legal BASIC identifiers 
beginning with an alphabetic character or an underscore. If the subroutine 
name is an Embedded SQL reserved word, specify it in quotes. Note that the 
label or line number targeted by the goto action must be in the scope of all 
subsequent Embedded SQL statements until another whenever statement is 
encountered for the same action. This is necessary because the preprocessor 
may generate the BASIC statement:  

if (condition) then 
 goto label 
end if 

after an Embedded SQL statement. If the label is outside the scope of the 
current Embedded SQL statement, the BASIC compiler will generate an error. 

The same scope rules apply to subroutine names used with the call action. 
However, the reserved subroutine name sqlprint, which prints errors or 
database procedure messages and then continues, is always in the scope of 
the program. 

When a whenever statement specifies a call as the action, the target 
subroutine is called and, after its execution, control returns to the statement 
following the statement that caused the subroutine to be called. Consequently, 
after handling the whenever condition in the called subroutine, you may want 
to take some action, instead of merely returning from the BASIC subroutine. 

The following example demonstrates use of the whenever statements in the 
context of printing some values from the Employee table. The comments do 
not relate to the program but to the use of error handling. 



The SQL Communications Area 

Chapter 6: Embedded SQL for BASIC    6–35 

10 ! Main error handling program 
  exec sql include sqlca 
  exec sql begin declare section 
      declare integer eno 
      declare string ename 
      declare byte eage 
  exec sql end declare section 
  exec sql declare empcsr cursor for   & 
     select idno, name, age   & 
     from employee 
! An error when opening the personnel database will 
! cause the error to be printed and the program to abort 
 exec sql whenever sqlerror stop 
 exec sql connect personnel 
! Errors from here on will cause the program to clean up 
 exec sql whenever sqlerror call clean_up 
 exec sql open empcsr 
 print ’Some values from the "employee" table’ 
! When no more rows are fetched, close the csr 
 exec sql whenever not found goto Close_Csr 
! The last executable Embedded SQL statement was an 
! OPEN, so we know that the value of "sqlcode" cannot 
! be SQLERROR or NOT FOUND. 
  
 while (sqlcode = 0) 
   exec sql fetch empcsr & 
    into :eno, :ename, :eage 
! This "print" does not execute after the previous 
! FETCH returns the NOT FOUND condition. 
  
  print eno, ename, eage 
 next 
! From this point in the file onwards, ignore all 
! errors. Also turn off the NOT FOUND condition, 
! for consistency. 
  
  Close_Csr: EXEC SQL CLOSE empcsr 
  exec sql disconnect 
 
end ! Db_Test 
! Clean_Up: Error handling subroutine (print error and disconnect). 
  
20 sub Clean_Up 
 exec sql include sqlca 
 exec sql begin declare section 
  declare string errmsg 
 exec sql end declare section 
 exec sql inquire_sql(:errmsg = errortext) 
 print ’aborting because of error’ 
 print errmsg 
 exec sql disconnect 
 ! Do not return to Db_Test 
 stop 
 
end sub ! Clean_Up 



The SQL Communications Area 

6–36     Embedded SQL Companion Guide 

The Whenever Goto Action in Embedded SQL Blocks 

An Embedded SQL block-structured statement is a statement delimited by the 
begin and end clauses. For example, the select loop and the unloadtable 
loop are both block-structured statements. These statements can only be 
terminated by the methods specified for the particular statement in the SQL 
Reference Guide. For example, the select loop is terminated either when all 
the rows in the database result table have been processed or by an endselect 
statement, and the unloadtable loop is terminated either when all the rows in 
the forms table field have been processed or by an endloop statement. 

Therefore, if you use a whenever statement with the goto action in an SQL 
block, you must avoid going to a label outside the block. Such a goto would 
cause the block to be terminated without issuing the runtime calls necessary 
to clean up the information that controls the loop. (For the same reason, you 
must not issue a BASIC exit or goto statement that causes control to leave or 
enter an SQL block.) The target label of the whenever goto statement should 
be a label in the block. If, however, it is a label for a block of code that cleanly 
exits the program, the above precautions need not be taken. 

The above information does not apply to error handling for database 
statements issued outside an SQL block nor to explicit hard-coded error 
handling. For an example of hard-coded error handling, see The Table Editor 
Table Field Application in this chapter. 

Explicit Error Handling 

The program can also handle errors by inspecting values of the SQLCA at 
various points. For further details, see the SQL Reference Guide. 

The following example is functionally the same as the previous example, 
except that the error handling is hard-coded in BASIC statements. 



The SQL Communications Area 

Chapter 6: Embedded SQL for BASIC    6–37 

10 ! Main error handling program 
  exec sql include sqlca 
  exec sql begin declare section 
    declare integer eno 
    declare string ename 
    declare byte eage 
  exec sql end declare section 
  exec sql declare empcsr cursor for & 
    select idno, name, age from employee 
  ! Exit if database cannot be opened 
  exec sql connect personnel 
  if (sqlcode < 0) then 
    print ’Cannot access database’ 
    stop 
  end if 
! Error if cannot open cursor 
  exec sql open empcsr 
  if (sqlcode < 0) then 
    call Clean_Up(’OPEN "empcsr"’) 
  end if 
  print ’Some values from the "employee" table’ 
! The last executable Embedded SQL statement was an OPEN, so we know 
! that the value of "sqlcode" cannot be SQLERROR or NOT FOUND 
! The following loop is broken by NOT FOUND condition 100) or an error 
  while (sqlcode = 0) 
    exec sql fetch empcsr & 
    into :eno, :ename, :eage 
  if (sqlcode < 0) then 
   call Clean_Up(’FETCH "empcsr"’) 
  
! Do not print the last values twice 
  else 
   if (sqlcode <> 100) then 
    print eno, ename, eage 
   end if 
  end if 
 next 
 exec sql close empcsr 
 exec sql disconnect 
 
end 
! Clean_Up: Error handling subroutine (print error and disconnect). 
  
20 sub Clean_Up(string reason) 
  
  exec sql include sqlca 
  exec sql begin declare section 
   declare string errmsg 
  exec sql end declare section 
  print ’aborting because of error in’, reason 
  exec sql inquire_sql (:errmsg = errortext) 
  print errmsg 
  
  exec sql disconnect 
! Do not return to main program 
  stop 
 
end sub ! clean_up 



Dynamic Programming for BASIC 

6–38     Embedded SQL Companion Guide 

Determining the Number of Affected Rows 

The SQLCA variable sqlerrd(2) indicates how many rows were affected by the 
last row-affecting statement. Note that this variable is referenced by 
sqlerrd(2) rather than sqlerrd(3) as in other languages, because BASIC 
allocates sqlerrd elements 0 through 5. The following program fragment, 
which deletes all employees whose employee numbers are greater than a 
given number, demonstrates how to use sqlerrd: 

sub delete_rows(integer lower_bound_num) 
  
 exec sql include sqlca 
 exec sql begin declare section 
  declare integer low_eno 
 exec sql end declare section 
! Use Embedded SQL variable in DELETE statement 
 low_eno = lower_bound_num 
 exec sql delete from employee & 
  where eno :low_eno 
! Print the number of employees deleted 
 print sqlerrd(2), ’row(s) were deleted.’ 
 end sub ! Delete_Rows 

Using the SQLSTATE Variable 

You can use the SQLSTATE variable in an ESQL/BASIC program to return 
status information about the last SQL statement that was executed. 
SQLSTATE must be declared in a declaration section. Also, it is valid across all 
sessions, so you only need to declare one SQLSTATE per application. 

To declare this variable, use: 

character5 SQLSTATE 

or : 

character5 SQLSTA 

Dynamic Programming for BASIC 
Ingres provides Dynamic SQL and Dynamic FRS to allow you to write generic 
programs. Dynamic SQL allows a program to build and execute SQL 
statements at runtime.  For example, an application can include an expert 
mode in which the runtime user can type in select queries and browse the 
results at the terminal. Dynamic FRS allows a program to interact with any 
form at runtime. For example, an application can load in any form, allowing 
the runtime user to retrieve new data from the form and insert it into the 
database. 



Dynamic Programming for BASIC 

Chapter 6: Embedded SQL for BASIC    6–39 

The Dynamic SQL and Dynamic FRS statements are described in the SQL 
Reference Guide and the Forms-based Application Development Tools User 
Guide, respectively. This section discusses the BASIC-dependent issues of 
Dynamic programming. For a complete example of using Dynamic SQL to write 
an SQL Terminal Monitor application, see The SQL Terminal Monitor 
Application in this chapter. For an example of using both Dynamic SQL and 
Dynamic FRS to browse and update a database using any form, see A Dynamic 
SQL/Forms Database Browser in this chapter. 

The SQLDA Record 

The SQLDA (SQL Descriptor Area) passes type and size information about an 
SQL statement, an Ingres form, or a table field between Ingres and your 
program. 

In order to use the SQLDA, you should issue the include sqlda statement  at 
the proper scope of the source file, from where the SQLDA will be referenced. 
The include sqlda statement generates a BASIC include directive to a file 
that defines the SQLDA record type. The file does not declare an SQLDA record 
variable; your program must declare a variable of the specified type. You can 
also code this record declaration directly instead of using the include sqlda 
statement. When coding the declaration yourself, you can choose any name 
for the record type. 



Dynamic Programming for BASIC 

6–40     Embedded SQL Companion Guide 

The definition of the SQLDA (as specified in the include file) is: 

! 
! IISQ_MAX_COLS - Maximum number of columns returned from Ingres 
! 
  declare word constant IISQ_MAX_COLS = 300 
! 
! IISQLDA - SQLDA with maximum number of entries for 
! variables. 
! 
  record IISQLDA 
   string sqldaid = 8 
    long sqldabc 
    word sqln 
    word sqld 
    group sqlvar(IISQ_MAX_COLS) 
      word sqltype 
      word sqllen 
      long sqldata ! Address of any type 
      long sqlind  ! Address of 2-byte integer 
      group sqlname 
       word  sqlnamel 
       string  sqlnamec = 34 
      end group sqlname 
    end group sqlvar 
  end record IISQLDA 
! 
! Type Codes 
! 
  declare integer constant IISQ_DTE_TYPE = 3 
! Date - Out 
  declare integer constant IISQ_MNY_TYPE = 5 
! Money - Out 
  declare integer constant IISQ_DEC_TYPE =10 
! Decimal - Out 
 declare integer constant IISQ_CHA_TYPE = 20 
! Char - In/Out 
  declare integer constant IISQ_VCH_TYPE = 21  
! Varchar - In/Out 
  declare integer constant IISQ_INT_TYPE = 30  
! Integer - In/Out 
  declare integer constant IISQ_FLT_TYPE = 31  
! Float - In/Out 
  declare integer constant IISQ_TBL_TYPE = 52 
! Table field - Out 
  declare integer constant IISQ_DTE_LEN = 25  
! Date length 
! 
! Dynamic allocation sizes - When allocating an 
! SQLDA for N results use: 
! IISQDA_HEAD_SIZE + (N * IISQDA_VAR_SIZE) 
! 
  declare integer constant IISQDA_HEAD_SIZE = 16 
  declare integer constant IISQDA_VAR_SIZE = 48 

Record Definition and Usage Notes: 

 The record type definition of the SQLDA is called IISQLDA. This is done so 
that an SQLDA variable can be called “SQLDA” without causing a compile-
time BASIC conflict. You are not required to call your SQLDA record 
variable “SQLDA”. 



Dynamic Programming for BASIC 

Chapter 6: Embedded SQL for BASIC    6–41 

 The sqlvar array is an array of IISQ_MAX_COLS (300) elements. If you 
declare a record variable of type IISQLDA, then the program will have a 
variable with IISQ_MAX_COLS sqlvar elements. 

 Note that the sqlvar array begins at subscript 0 because of the BASIC 
default of arrays being zero-based. Because this array begins at subscript 
zero, it implies that relevant result variables are described by the elements 
0 through sqld-1, rather than 1 through sqld. 

 The sqldata and sqlind group members are declared as long integers. 
These must be set to the addresses of other result variables before using 
the SQLDA to retrieve or set Ingres data in the database or form. You can 
use the BASIC loc function to assign addresses. 

 If you declare your own SQLDA record type and variable, you must 
confirm that the record layout is identical to that of the IISQLDA record 
type, although you can allocate a different number of sqlvar array 
elements. 

 The nested group sqlname is a varying length character string  consisting 
of a length and data area. The sqlnamec member contains the name of a 
result field or column after a describe (or prepare into) statement. The 
length of the name is specified by sqlnamel. The characters in the 
sqlnamec field are blank padded. You can also set the sqlname group by 
a program using Dynamic FRS. The program is not required to pad 
sqlnamec with blanks. For more information, see Setting SQLNAME for 
Dynamic FRS in this chapter. 

 The list of type codes represents the types that will be returned by 
the describe statement, and the types used by the program when 
retrieving or setting data with an SQLDA. The type code IISQ_TBL_TYPE 
indicates a table field and is set by the FRS when describing a form that 
contains a table field. 

Declaring an SQLDA Variable 

Once the SQLDA record definition has been included (or hard coded) the 
program can declare an SQLDA variable. This record variable must be declared 
outside of an Embedded SQL declare section, as the preprocessor does not 
understand the special meaning of the SQLDA record or the IISQLDA record 
type. When you use the variable in the context of a Dynamic SQL or Dynamic 
FRS statement, the preprocessor accepts any object name, and assumes that 
the variable refers to a legally declared SQLDA record variable. If a program 
requires an SQLDA record variable with the same number of sqlvar variables 
as in the IISQLDA record type, then it can accomplish this as in: 

exec sql include sqlda ! Defines record type 
 declare iisqlda sqlda ! Declares sqlda record variable 
 sqlda::sqln = iisq_max_cols ! set the size 
 ... 
  
 exec sql describe s1 into :sqlda 



Dynamic Programming for BASIC 

6–42     Embedded SQL Companion Guide 

Normally the same SQLDA can be used across various BASIC subroutines and 
external procedures. In these cases you can declare the SQLDA using any one 
of the BASIC storage classes, such as common or external. For example the 
above declaration could also have been: 

exec sql include sqlda 
 common (sqlda_area) iisqlda sqlda 
 ! declares global sqlda 

At other times you may want to dynamically allocate your SQLDA record 
variable out of another storage area. In that case you can use various BASIC 
map statements to define the position of the SQLDA in the storage area. 
However, you must confirm that the SQLDA record variable being used is a 
valid SQLDA, with storage allocated to it. 

If a program requires an SQLDA variable with a different number of sqlvar 
variables (not IISQ_MAX_COLS), the program can then define its own record 
type and declare its own variable. For example: 

record MY_SQLDA ! Record type with 50 elements 
  string  myid = 8 
  long  mybc 
  word  myvars 
  word  mycols 
  group vararray(50) 
   word  vartype 
   word varlen 
   long vardata 
   long varind 
   group varname 
    word varnamel 
    string varnamec = 34 
   end group varname 
  end group vararray 
 end record MY_SQLDA 
 
declare MY_SQLDA myda  ! SQLDA variable 
... 
  
myda::myvars = 50   ! Set the size 
... 
  
exec sql describe s1 into :myda 

In the above record type definition, the names of the record members are not 
the same as those of the IISQLDA record, but their layout is identical. 

Using the SQLVAR 

The SQL Reference Guide discusses the legal values of the sqlvar array. The 
describe and prepare into statements set the type, length, and name 
information of the SQLDA. This information refers to the result columns of a 
prepared select statement, the fields of a form, or the columns of a table 
field. When the program uses the SQLDA to retrieve or set Ingres data, it must 
assign type and length information, which now refers to the variables being 
pointed at by the SQLDA. 



Dynamic Programming for BASIC 

Chapter 6: Embedded SQL for BASIC    6–43 

BASIC Variable Type Codes 

The type codes listed above are the types that describe Ingres result fields or 
columns. For example, the SQL types date, decimal, and money do not 
describe a program variable, but rather result data types that are compatible 
with BASIC character string and numeric types. IISQ_LVCH_TYPE is SQL only 
character compatible too. When these types are returned by the describe 
statement, the type code must be a change to a compatible BASIC or 
ESQL/BASIC type. 

The following table describes the type codes to use with BASIC variables that 
will be pointed at by the sqldata pointers: 

The SQLDA Type Codes 
 

BASIC Type SQLType Code (sqltype) SQL Length (sqllen) 

byte IISQ_INT_TYPE 1 

word IISQ_INT_TYPE 2 

long IISQ_INT_TYPE 4 

real IISQ_FLT_TYPE 4 

double IISQ_FLT_TYPE 8 

string = LEN IISQ_CHA_TYPE LEN 

string IISQ_DEC_TYPE 10 

As described in the section BASIC Variables and Data Types, all other types 
are compatible with the above BASIC data types. For example, you can 
retrieve an SQL date into a string variable, while you can retrieve money 
into a double variable. 

Nullable data types (those variables that are associated with a null indicator) 
are specified by assigning the negative of the type code to sqltype. If the type 
is negative, you must point at a null indicator by the sqlind variable. The type 
of the null indicator must be a 2-byte integer, a word variable. For 
information on how to declare and use a null indicator in BASIC, see BASIC 
Variables and Data Types in this chapter. 

Character data and the SQLDA have the exact same rules as character data in 
regular Embedded SQL statements. Because string lengths must be assigned 
to sqllen before using the SQLDA, you cannot point at BASIC dynamic string 
variables (those declared without a length) if they have not yet been assigned 
any storage. For more details on character string processing in SQL, see 
BASIC Variables and Data Types in this chapter. 



Dynamic Programming for BASIC 

6–44     Embedded SQL Companion Guide 

Pointing at BASIC Variables 

In order to fill an element of the sqlvar array, you must set the type 
information and assign a valid address to sqldata. The address must be that 
of a legally declared variable. If the element is nullable then the corresponding 
sqlind member must point at a legally declared null indicator variable. 

Because both the sqldata and sqlind members of the sqlvar group are 
declared as long integers, you must assign integer values to them. This 
requires the use of the BASIC loc function. 

For example, the following program fragment sets the type information of and 
points at a 4-byte integer variable, an 8-byte nullable floating-point variable, 
and an sqllen-specified character sub-string. This example demonstrates how 
a program can maintain a pool of available variables, such as large arrays of a 
few different typed variables and a large string space. When a variable is 
chosen from the pool the next available spot is incremented: 

 exec sql include sqlda 
 declare iisqlda sqlda 
... 
  
! Numeric and string ’pool’ declarations 
 declare word   constant MAX_POOL = 50 
 declare word   ind_store(MAX_POOL)  ! Indicators 
 declare word   current_ind 
 declare long   int4_store(MAX_POOL) ! Integers 
 declare word   current_int 
 declare double flt8_store(MAX_POOL)  ! Floats  
 declare word   current_flt 
 declare string char_store(3000) = 1   ! String buffer 
 declare word   current_chr 
 declare word   need_len 
... 
  
! 
! Note that if SQLD is set to 3 we use SQLVAR elements ! 0 through 2 
! 
 sqlda::sqlvar(0)::sqltype = IISQ_INT_TYPE  ! 4-byte integer 
sqlda::sqlvar(0)::sqllen = 4 
sqlda::sqlvar(0)::sqldata = loc(int4_store(current_int)) 
 sqlda::sqlvar(0)::sqlind = 0 
current_int = current_int + 1 ! Update integer pool 
sqlda::sqlvar(1)::sqltype = -IISQ_FLT_TYPE  ! 8-byte null float 
sqlda::sqlvar(1)::sqllen = 8 
sqlda::sqlvar(1)::sqldata = loc(float8_store(current_flt)) 
 sqlda::sqlvar(1)::sqlind = loc(ind_store(current_ind)) 
 current_flt = current_flt + 1 ! Update float and 
current_ind = current_ind + 1 ! indicator pool 
! 
! SQLLEN has been assigned by DESCRIBE to be the length ! of a specific 
! result column. This length is used to pick off a sub-string out of 
! a large string space. 
! 
  
need_len = sqlda::sqlvar(2)::sqllen 
sqlda::sqlvar(2)::sqltype = IISQ_CHA_TYPE 
sqlda::sqlvar(2)::sqldata = loc(char_store(current_chr)) 
 sqlda::sqlvar(2)::sqlind = 0 
current_chr = current_chr + need_len ! Update char pool 
... 



Dynamic Programming for BASIC 

Chapter 6: Embedded SQL for BASIC    6–45 

Of course, in the above example, verification of enough pool storage must be 
made before each cell of the different arrays is referenced in order to prevent 
sqldata and sqlind from pointing at undefined storage. For demonstrations of 
this method, see The SQL Terminal Monitor Application and A Dynamic 
SQL/Forms Database Browser in this chapter. 

The IISQ_HDLR_TYPE is a host language type that is used for transmitting 
data to and from Ingres. Because it is not an Ingres data type, it will never be 
returned as a data type from the describe statement. 

Setting SQLNAME for Dynamic FRS 

Using the sqlvar with Dynamic FRS statements requires a few extra steps that 
relate to differences between Dynamic FRS and Dynamic SQL. These 
differences are described in the SQL Reference Guide. 

When using the SQLDA in a forms input or output using clause, the value of 
sqlname must be set to a valid field or column name. If this name was set by 
a previous describe statement, it must be retained or reset by the program. 
If the name refers to a hidden column or table field, then your program must 
set it directly. If your program sets sqlname directly, it must also set 
sqlnamel and sqlnamec. 

The name portion need not be padded with blanks. For example, a dynamically 
named table field has been described, and the application always initializes 
any table field with a hidden 6-byte character column called “rowid”. The code 
used to retrieve a row from the table field including the hidden column and 
_state variable would have to construct the two named columns: 

declare string rowid = 6 
declare long rowstate 
... 
 exec frs describe table :formname :tablename INTO :sqlda 
... 
  
! BASIC is zero-based so save before incrementing 
col_num = sqlda::sqld 
sqlda::sqld = sqlda::sqld + 1 
! Set up to retrieve rowid 
sqlda::sqlvar(col_num)::sqltype = IISQ_CHA_TYPE 
sqlda::sqlvar(col_num)::sqllen = 6 
sqlda::sqlvar(col_num)::sqldata = loc(rowid) 
 sqlda::sqlvar(col_num)::sqlind = 0 
sqlda::sqlvar(col_num)::sqlname::sqlnamel = 5 
sqlda::sqlvar(col_num)::sqlname::sqlnamec = ’rowid’ 
  
col_num = sqlda::sqld 
sqlda::sqld = sqlda::sqld + 1 
! Set up to retrieve _STATE 
sqlda::sqlvar(col_num)::sqltype = IISQ_INT_TYPE 
sqlda::sqlvar(col_num)::sqllen = 4 
sqlda::sqlvar(col_num)::sqldata = loc(rowstate) 
 sqlda::sqlvar(col_num)::sqlind = 0 
sqlda::sqlvar(col_num)::sqlname::sqlnamel = 6 
sqlda::sqlvar(col_num)::sqlname::sqlnamec = ’_state’ 
... 



Advanced Processing 

6–46     Embedded SQL Companion Guide 

 exec frs getrow :formname :tablename using descriptor :sqlda 

Advanced Processing 
This section describes user-defined handlers. It includes information about 
user-defined error, dbevent, and message handlers as well as data handlers 
for large objects. 

User-Defined Error, DBevent, and Message Handlers 

You can use user-defined handlers to capture errors, messages, or events 
during the processing of a database statement. Use these handlers instead of 
the sql whenever statements with the SQLCA when you want to do the 
following: 

 Capture more than one error message on a single database statement. 

 Capture more than one message from database procedures fired by rules. 

 Trap errors, events, and messages as the DBMS raises them. If an event is 
raised when an error occurs during query execution, the WHENEVER 
mechanism detects only the error and defers acting on the event until the 
next database statement is executed. 

User-defined handlers offer you flexibility. If, for example, you want to trap an 
error, you can code a user-defined handler to issue an inquire_sql to get the 
error number and error text of the current error. You can then switch sessions 
and log the error to a table in another session; however, you must switch back 
to the session from which the handler was called before returning from the 
handler. When the user handler returns, the original statement continues 
executing. User code in the handler cannot issue database statements for the 
session from which the handler was called. 

The handler must be declared to return an integer. However, the preprocessor 
ignores the return value. 

Syntax Notes: 

The following syntax describes the three types of handlers: 

exec sql set_sql (errorhandler = error_routine|0) 
 exec sql set_sql (dbeventhandler = event_routine|0) 
 exec sql set_sql (messagehandler = message_routine|0) 

 Errorhandler, dbeventhandler, and messagehandler denote a user-defined 
handler to capture errors, events, and database messages respectively, as 
follows: 

– error_routine is the name of the function the Ingres runtime system 
calls when an error occurs. 



Advanced Processing 

Chapter 6: Embedded SQL for BASIC    6–47 

– event_routine is the name of the function the Ingres runtime system 
calls when an event is raised. message_routine is the name of the 
function the Ingres runtime system calls whenever a database 
procedure generates a message. 

Errors that occur in the error handler itself do not cause the error handler 
to be re-invoked. You must use inquire_sql to handle or trap any errors 
that may occur in the handler. 

 Unlike regular variables, the handler must not be declared in an ESQL 
declare section; therefore, do not use a colon before the handler 
argument. (However, you must declare the handler to the compiler.) 

 If you specify a zero (0) instead of a name, the zero will unset the handler. 

User-defined handlers are also described in the SQL Reference Guide. 

Declaring and Defining User-Defined Handlers 

The following example shows how to declare a handler for use in the set_sql 
errorhandler statement for ESQL/BASIC: 

! Main program 
 
program error_trap 
 exec sql include sqlca 
 external integer error_func   ! declare error handler 
 exec sql connect dbname 
 exec sql set_sql (errorhandler = error_func) 
! 
! esql will generate 
! call iilqshsethandler (1, error_func) 
! 
 . . . 
 end program 
 
function integer error_func() 
exec sql include sqlca 
 
exec sql begin declare section 
  declare integer errnum 
exec sql end declare section 
  exec sql inquire_sql (:errnum = errorno) 
  print ’error number is ’ + str$(errnum) 
 end function 

Sample Programs 

The programs in this section are examples of how to declare and use user-
defined data handlers in an ESQL/BASIC program. There are examples of a 
handler program, a Put Handler program, a Get Handler program, and a 
dynamic SQL handler program. 



Advanced Processing 

6–48     Embedded SQL Companion Guide 

Handler Program 

This program inserts a row into the book table using the data handler 
Put_Handler to transmit the value of column chapter_text from a text file to 
the database. Then it selects the column chapter_text from the table book 
using the data handler Get_Handler to process each row returned. 

!main program 
!***************** 
  
 program handler 
  exec sql include sqlca 
! Do not declare the data handlers nor the data handler 
! argument to the ESQL preprocessor 
  external integer Put_Handler 
  external integer Get_Handler 
  record hdlr_arg 
    string  argstr  
    integer argint 
  end record hdlr_arg 
  declare hdlr_arg hdlarg 
! Null indicator for data handler must be declared to ESQL 
  exec sql begin declare section 
    word indvar 
  exec sql end declare section 
! INSERT a long varchar value chapter_text into the 
! table book using the data handler put_handler. The 
! argument passed to the data handler the record hdlarg. 
  
 . . . 
  
  exec sql insert into book (chapter_name, chapter_text) & 
    values (5, ‘One Dark and Stormy Night’,  
               data handler(Put_Handler(hdlarg))) 
  
! SELECT the long varchar column chapter_text from 
! The data handler (get_handler) will be invoked for 
! each non-null value of column chapter_text retrieved. 
! For null values the indicator variable will be set 
! to “-1” and the data handler will not be called. 
  
 ... 
 exec sql select chapter)text into           & 
    data handler(get_handler(hdlarg)):indvar from book 
 exec sql begin 
   process row... 
 exec sql end 
 ... 
  
 end program 



Advanced Processing 

Chapter 6: Embedded SQL for BASIC    6–49 

Put Handler 

This user-defined handler shows how an application can use the put data 
handler to enter a chapter of a book from a text file into a database. 

! Put_handler 
! ************ 
 
100 function integer Put_handler(hdlr_arg info) 
  
 record  hdlr_arg 
  string argstr 
  integer argint 
 end record hdlr_arg 
 exec sql begin declare section; 
  declare sting    segbuf 
  declare integer  seglen 
  declare integer  datend 
 exec sql end declare sections 
 process information passed in via the info record 
 open file..... 
  
 datend = 0 
  while not end-of-file 
   read segment from file into segbuf... 
    
   if (end-of-file) then 
    datend = 1 
   end if 
  exec sql put data (segment = :segbuf,           & 
 segmentlength = :seglen, dataend = :datend) 
  
 next 
 ... 
 close file... 
 set info record to return appropriate values... 
 .. 
 Put_handler = 0 
end function 



Advanced Processing 

6–50     Embedded SQL Companion Guide 

Get Handler 

This user-defined data handler shows how an application can use the get data 
handler to enter a chapter of a book from a text file into a database. 

! Get_Handler 
! ************* 
200 integer function Get_Handler(hdlr_arg info) 
  record hdlr_arg 
   string     argstr 
   integer    argint 
  end record hdlr_arg 
  exec sql begin declare section 
   declare string   segbuf 
   declare integer seglen 
   declare integer datend 
   declare integer  maxlen 
  exec sql end declare section 
    
  ... 
  process information passed in via the 
    info record... 
  open file.... 
  
  datend = 0 
   
  while (datend = 0) 
   exec sql get data (:segbuf = segment,& 
    :seglen = segmentlenght, & :datend = dataend) & 
   with maxlength = :maxlen 
  write segment to file  
 
  next 
  ... 
  set info record to return appropriate values... 
  ... 
  
  Get_Handler = 0 
 
end function 

User-Defined Data Handlers for Large Objects 

Use the following definitions when you code user-defined data handlers for 
large objects in Dynamic SQL programs that use the exec sql include sqlda 
statement: 

 declare integer constant IISQ_LVCH_TYPE = 22 
 declare integer constant IISQ_HDLR_TYPE = 22 
record IISQLHDLR 
  long  sqlarg 
  long  sqlhdlr 
end record IISQLHDLR  



Advanced Processing 

Chapter 6: Embedded SQL for BASIC    6–51 

Dynamic SQL Handler Program 

The following is an example of a dynamic SQL handler program: 

! main program using SQLDA 
! *************************** 
 
  program dynamic_hdlr 
  
 exec sql include sqlca 
 exec sql include sqlda 
! Do not declare the data handlers nor the data handler 
! argument to the ESQL preprocessor 
 
  external  integerPut_Handler 
  external  integerGet_Handler 
! Declare argument to be passed to data handler 
 
  record  hdlr_arg 
   string  argstr 
   integer argint 
  end record  hdlr_arg 
! Declare SQLDA and IISQLHDLR 
 
  common (sqlda_area) IISQLDA sqlda 
  common (result_area) num_store  nums(IISQ_MAX_COLS), & 
       char_store chars 
 
  declare IISQLHDLR    data_handler 
  declare hdlr_arg  hdlarg 
  declare   integer  base_type 
! Declare null indicator to ESQL 
 
  exec sql begin declare section 
   word    indvar 
   string (100) stmt_buf 
   integer  i 
  exec sql end declare section 
 ... 
! Set the IISQLHDLR structure with the appropriate 
! data handler and data handler argument. 
  
  data_handler::sqlhdlr = loc(Get_Handler) 
  data_handler::sqlarg  = loc(hdlarg) 
  
! Describe the statment into the SQLDA 
  stmt_buf = ‘select * from book’. 
  exec sql prepare stmt from :stmt_buf 
  exec sql describe stmt into sqlda 
  ... 
  
! Determine the base_type of the SQLDATA variables 
 while ( i < sqlda::sqld) 
  i = i + 1 
  if (sqlda::sqlvar(i)::sqltype > 0) then 
   base_type = sqlda::sqlvar(I)::sqltype 
  else 
    base_type = -sqlda::sqlvar(i)::sqltype 
  end if 
! Set the sqltype, sqldata and sqlind for each column 
! The long varchar column chapter_text will be set to 
! use a data handler 
   if (base_type = IISQ_LVCH_TYPE) then 
   sqlda::sqlvar(i)::sqltype = IISQ_HDLR_TYPE 
   sqlda::sqlvar(i)::sqldata = loc(data_handler) 
   sqlda::sqlvar(i)::sqlind = loc(indvar) 



Preprocessor Operation 

6–52     Embedded SQL Companion Guide 

   else 
 . . . 
   end if 
 next 
! The Data handler (Get_Handler) will be invoked for 
! each non-null value of column chapter_text retrieved. 
! For null values the indicator variable will be 
! set to “-1” and the data handler will not be called 
 
  ... 
  
 exec sql execute immediate :stmt_buf using :SQLDA 
 exec sql begin 
   process row... 
 exec sql end 
 ... 
  
end program 

Preprocessor Operation 
This section describes the operation of the Embedded SQL preprocessor for 
BASIC and the steps required to create, compile, and link an Embedded SQL 
program. 

Command Line Operations 

The following sections describe how to turn an embedded ESQL/BASIC source 
program into an executable program. These sections include commands that 
preprocess, compile, and link a program. 

The Embedded SQL Preprocessor Command 

The BASIC preprocessor is invoked by the following command line:  

 esqlb {flags} {filename} 

where flags are 

 

Flag Description 

-d Adds debugging information to the runtime database 
error messages generated by Embedded SQL. The 
source file name, line number, and statement in error 
will be displayed with the error message. 

-f[filename] Writes preprocessor output to the named file. If no 
filename is specified, the output is sent to standard 
output, one screen at a time. 



Preprocessor Operation 

Chapter 6: Embedded SQL for BASIC    6–53 

Flag Description 

-iN Sets the default size of integers to N bytes. N must be 1, 
2, or 4. The default setting is 4. 

-l Writes preprocessor error messages to the 
preprocessor’s listing file as well as to the terminal. The 
listing file includes preprocessor error messages and 
your source text in a file named filename.lis, where 
filename is the name of the input file. 

-lo Like -l, but the generated BASIC code also appears in 
the listing file. 

-o Directs the preprocessor not to generate output files for 
include files. 

This flag does not affect the translated include 
statements in the main program. The preprocessor will 
generate a default extension for the translated include 
file statements unless you use the -o.ext flag. 

-o.ext Specifies the extension given by the preprocessor to 
both the translated include statements in the main 
program and the generated output files. If this flag is not 
provided, the default extension is “.bas”. 

If you use this flag in combination with the -o flag, then 
the preprocessor generates the specified extension for 
the translated include statements, but does not generate 
new output files for the include statements. 

-? Shows which command line options are available for 
esqlb. 

-rN Sets the default size of reals to n bytes. N must be 4 or 
8. The default setting is 4. 

-s Reads input from standard input and generates BASIC 
code to standard output. This is useful for testing 
unfamiliar statements. If you specify the -l option with 
this flag, the listing file is called “stdin.lis”. To terminate 
the interactive session, type Ctrl Z. 

-sqlcode Indicates the file declares ANSI SQL code. 

The ANSI-92 specification describes SQLCODE as a 
“deprecated feature” and recommends using the 
SQLSTATE variable. 

-[no]sqlcode  Tells the preprocessor not to assume a declared 
SQLCODE is for ANSI status information. 

-w Prints warning messages. 

-wopen This flag is identical to -wsql=open. However, -wopen is 



Preprocessor Operation 

6–54     Embedded SQL Companion Guide 

Flag Description 
supported only for backwards capability. See -
wsql=open for more information. 

-wsql=entry_ 
SQL92|open 

Prints warning messages that indicate all non-entry 
SQL92 compliant syntax.  

Use open only with OpenSQL syntax. -wsql = open 
generates a warning if the preprocessor encounters an 
Embedded SQL statement that does not conform to 
OpenSQL syntax. (OpenSQL syntax is described in the 
OpenSQL Reference Guide.) This flag is useful if you 
intend to port an application across different Ingres 
Gateways. The warnings do not affect the generated 
code and the output file may be compiled. This flag does 
not validate the statement syntax for any SQL Gateway 
whose syntax is more restrictive than that of OpenSQL. 

The Embedded SQL BASIC preprocessor assumes that input files are named 
with the extension “.sb”.  This default can be overridden by specifying the file 
extension of the input file(s) on the command line. The output of the 
preprocessor is a file of generated BASIC statements in tab format with the 
same name and the extension “.bas”. 

If you enter the command without specifying any flags or a filename, Ingres 
displays a list of flags available for the command. 

The following examples present a range of the options available with esqlb: 

Esqlb Command Examples 
 

Command Comment 

esqlb file1 Preprocesses “file1.sb” to “file1.bas” 

esqlb file2.xb Preprocesses “file2.xb” to “file2.bas” 

esqlb -l file3 Preprocesses “file3.sb” to “file3.bas” and creates 
listing “file3.lis” 

esqlb -s Accepts input from standard input 

esqlb -ffile4.out file4 Preprocesses “file4.sb” to “file4.out” 

esqlb Displays a list of flags available for this command 



Preprocessor Operation 

Chapter 6: Embedded SQL for BASIC    6–55 

The BASIC Compiler 

As mentioned above, the preprocessor generates BASIC code. You should use 
the VMS basic command to compile this code. Most of the basic command line 
options can be used. You should not use the g_float or h_float qualifiers if 
floating-point values in the program are interacting with Ingres floating-point 
objects. If you use the byte or word compiler qualifiers, you must run the 
Embedded SQL preprocessor with the -i1 or -i2 flag. Similarly, use of the 
BASIC double qualifier requires that you have preprocessed your Embedded 
SQL file using the -r8 flag. Note, too, that many of the statements that the 
Embedded SQL preprocessor generates are BASIC language extensions 
provided by VAX/VMS. Consequently, you should not attempt to compile with 
the ansi_standard qualifier. 

The following example preprocesses and compiles the file “test1”. Note that 
both the Embedded SQL preprocessor and the BASIC compiler assume the 
default extensions. 

$ esqlb test1 
$ basic/list test1 

VMS
 As of Ingres II 2.0/0011 (axm.vms/00) Ingres uses member alignment and 

IEEE floating-point formats. Embedded programs must be compiled with 
member alignment turned on. In addition, embedded programs accessing 
floating-point data (including the MONEY data type) must be compiled to 
recognize IEEE floating-point formats.  

Note: Check your Release Notes for any operating system specific information 
on compiling and linking ESQL/BASIC programs. 

Linking an Embedded SQL Program 

Embedded SQL programs require procedures from several VMS shared 
libraries in order to run properly. Once you have preprocessed and compiled 
an Embedded SQL program, you can link it. Assuming the object file for your 
program is called “dbentry,” use the following link command: 

$ link dbentry.obj,- 
  ii_system:[ingres.files]esql.opt/opt 

Assembling and Linking Pre-Compiled Forms 

The technique of declaring a pre-compiled form to the FRS is discussed in the 
SQL Reference Guide and in the BASIC Variables and Data Types in this 
chapter. To use such a form in your program, you must also follow the steps 
described here. 



Preprocessor Operation 

6–56     Embedded SQL Companion Guide 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in the VAX-11 
MACRO language. VIFRED lets you select the name for the file. Once you have 
created the MACRO file this way, you can assemble it into linkable object code 
with the following VMS command: 

 macro filename 

The output of this command is a file with the extension “.obj”. You then link 
this object file with your program by listing it in the link command, as in the 
following example: 

$ link formentry,- 
  empform.obj,- 
  ii_system:[ingres.files]esql.opt/opt 

Linking an Embedded SQL Program without Shared Libraries 

While the use of shared libraries in linking Embedded SQL programs is 
recommended for optimal performance and ease of maintenance, non-shared 
versions of the libraries have been included in case you require them. Non-
shared libraries required by Embedded SQL are listed in the esql.noshare 
options file. The options file must be included in your link command after all 
user modules. Libraries must be specified in the order given in the options file. 

The following example demonstrates the link command for an Embedded SQL 
program called “dbentry” that has been preprocessed and compiled: 

$ link dbentry,- 
  ii_system:[ingres.files]esql.noshare/opt 

Placing User-written Embedded SQL Routines in Shareable Images 

When you plan to place your code in a shareable image, note the following 
about the psect attributes of your global or external variables. 

 As a default, some compilers mark global variables as shared (SHR: every 
user who runs a program linked to the shareable image sees the same 
variable) and others mark them as not shared (NOSHR: every user who 
runs a program linked to the shareable image gets their own private copy 
of the variable). 

 Some compilers support modifiers you can place in your source code 
variable declaration statements to explicitly state which attributes to 
assign a variable. 

 The attributes that a compiler assigns to a variable can be overridden at 
link time with the psect_attr link option. This option overrides attributes 
of all variables in the psect. 

For further details, consult your compiler reference manual. 



Preprocessor Operation 

Chapter 6: Embedded SQL for BASIC    6–57 

Include File Processing 

The Embedded SQL include statement provides a means to include external 
files in your program’s source code. The syntax of the statement is: 

 exec sql include filename 

where filename is a quoted string constant specifying a file name or a logical 
name that points to the file name. If the file is in the local directory, you can 
also specify the filename without the surrounding quotes. If no extension is 
given to the file name (or to the file name pointed at by the logical name), the 
program assumes the default BASIC input file extension “.sb”.  

This statement is normally used to include variable declarations, although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 

The included file is preprocessed and an output file with the same name but 
with the default output extension “.bas” is generated. You can override this 
default output extension with the -o.ext flag on the command line. The 
preprocessed output of the include statement is the BASIC %include 
directive. If the -o flag is used without an extension, then the output file is not 
generated for the include statement. This is useful for program libraries that 
use VMS MMS dependencies. 

If you use both the -o.ext and the -o flags, then the preprocessor will 
generate the specified extension for the include statements in the program 
but will not generate new output files for the statements. 

In the following example, assume that no overriding output extension was 
explicitly given on the command line. The Embedded SQL statement: 

exec sql include ’employee.sb’ 

is preprocessed to the BASIC statement: 

%include "employee.bas" 

and the employee.sb file is translated into the BASIC employee.bas file. 

In the next example, the system logical name “mydecls” points at the file 
“dra1:[headers]myvars.sb”. If the following commands are invoked on the 
system level: 

$ define mydecls dra1:[headers]myvars.sb 
$ esqlb -o.hdr inputfile 

the Embedded SQL statement: 

exec sql include ’mydecls’ 



Preprocessor Operation 

6–58     Embedded SQL Companion Guide 

is preprocessed to the BASIC statement: 

%include "dra1:[headers]myvars.hdr" 

and the BASIC file ’dra1:[headers]myvars.hdr’ is generated. 

You can also specify include files with a relative path. For example, if you 
preprocess the file “dra1:[mysource]myfile.sb,” the Embedded SQL statement: 

exec sql include ’[-.headers]myvars.sb’ 

is preprocessed to the BASIC statement: 

%include "[-.headers]myvars.bas" 

and the BASIC file “dra1:[headers]myvars.bas,” is generated as output for the 
original include file, “dra1:[headers]myvars.sb.” 

Including Source Code with Labels 

Some Embedded SQL statements generate labels. If you include files 
containing such statements, you must be careful to include the file only once 
in a given BASIC scope. Otherwise, you may find that the compiler later 
complains that the generated labels are defined more than once in that scope. 

The statements that generate labels are the Embedded SQL block-type 
statements, such as display, unloadtable, and the select-loop. 

Coding Requirements for Writing Embedded SQL Programs 

The following sections describe coding requirements for Embedded SQL 
programs. 

Comments Embedded in BASIC Output 

Each Embedded SQL statement generates one comment and a few lines of 
BASIC code. You may find that the preprocessor translates 50 lines of 
Embedded SQL into 200 lines of BASIC. This can confuse the program 
developer who is trying to debug the original source code. To facilitate 
debugging, each group of BASIC statements associated with a particular 
statement is delimited by a comment corresponding to the original Embedded 
SQL source. Each comment is one line long and informs the reader of the file 
name, line number, and type of statement in the original source file. 



Preprocessor Error Messages 

Chapter 6: Embedded SQL for BASIC    6–59 

Embedding Statements Inside BASIC If Blocks 

As mentioned above, the preprocessor never generates line numbers on its 
own. Therefore, you can enclose Embedded SQL statements in the then or 
else clause of a BASIC if statement without changing program control. For 
example: 

if (error = 1) then 
  exec sql message ’Error on update’ 
  exec sql sleep 2 
end if 

Embedded SQL Statements that Do Not Generate Code 

The following Embedded SQL declarative statements do not generate any 
BASIC code: 

 declare cursor 
 declare statement 
 declare table 
 whenever 

These statements must not contain labels. Also, they must not be coded as the 
only statements in BASIC constructs that do not allow empty statements.  

Embedded SQL/BASIC Preprocessor Errors 

To correct most errors, you may wish to run the Embedded SQL preprocessor 
with the listing (-l) option on. The listing will be sufficient for locating the 
source and reason for the error. 

For preprocessor error messages specific to BASIC, see Preprocessor Error 
Messages in this chapter.  

Preprocessor Error Messages 
The following is a list of error messages specific to BASIC. 

E_DC000A “Table ‘employee’ contains column(s) of unlimited length.” 

Explanation: Character strings(s) of zero length have been generated. This 
causes a compile-time error. You must modify the output file to specify an 
appropriate length. 



Preprocessor Error Messages 

6–60     Embedded SQL Companion Guide 

E_E30001 “BASIC array ’%0c’ should be subscripted.” 

Explanation: A variable declared as an array must be subscripted when 
used.” 

E_E30002 “Value assigned does not match BASIC constant type.” 

Explanation: The type of the literal assigned to the constant name does not 
match the type of the CONSTANT declaration. Numerics and strings cannot be 
mixed. 

E_E30005 “BASIC identifier ’%0c’ expected on END RECORD/END GROUP statement.” 

Explanation: If you name the RECORD or GROUP declaration on the END 
RECORD or END GROUP statement, then the name must be the same with 
which the RECORD or GROUP was declared. 

E_E30006 “RECORD or GROUP subscripts are required in ’%0c’.”  

Explanation: In the specified variable reference, the record component lacks 
subscripts at the group or record level. 

E_E30007 “RECORD or GROUP subscripts should not be used in ’%0c’.”  

Explanation: In the specified variable reference, the record component has 
extra subscripts at the group or record level. 

E_E3000A “Incorrect type used on EXTERNAL variable or constant.” 

Explanation: EXTERNAL variables can be declared with a limited subset of 
data types. The declaration refers to an unknown or non-EXTERNAL data type. 

E_E3000B “EXTERNAL identifiers may not have subscripts or an assignment clause.”  

Explanation: The preprocessor does not support EXTERNAL arrays, or size-
initialized variables. Use DIMENSION or COMMON for global non-scalar 
declarations. 

E_E3000C “CONSTANT declaration may not refer to program-defined RECORD type.” 

Explanation: CONSTANT declarations may not refer to RECORD data types, 
even if they have been previously defined. 

E_E3000D “CONSTANT declaration may not be subscripted.” 

Explanation: CONSTANT declarations may not refer to arrays. 



Preprocessor Error Messages 

Chapter 6: Embedded SQL for BASIC    6–61 

E_E3000E “Assignment clause missing from BASIC CONSTANT declaration.” 

Explanation: A CONSTANT declaration must include an assignment to a 
numeric or string literal. 

E_E3000F “Array subscripts missing from BASIC DIMENSION declaration.” 

Explanation: DIMENSION declarations must include array subscripts. 

E_E30010 “String length is not allowed on BASIC DIMENSION declaration.” 

Explanation: DIMENSION declarations may not include string lengths nor an 
assignment clause. 

E_E30011 “String length may only qualify a variable of STRING type.” 

Explanation: An assignment clause (string length) is only allowed with 
STRING declarations. 

E_E30012 “String length is not allowed on dynamic string variable.” 

Explanation: A dynamic STRING type may not specify a length. A length may 
only be specified with static STRING declarations. 

E_E30013 “BASIC variables must have an explicit type.” 

Explanation: All variable declarations must have an explicit type. Default 
types are not accepted by the preprocessor. 

E_E30014 “Found identifier ’%0c’ where literal expected.” 

Explanation: You must use numeric or string literals to initialize constants. 
You must use a numeric literal when declaring the length of a static string 
variable. 

E_E30017 “Quotes may not be embedded in string literals.”  

Explanation: In order to embed a quote in a string literal, you must use the 
BASIC rules to assign the string literal to a string variable, and use the 
variable in the embedded statement. 

E_E3001A “Field ’%0c’ in record ’%1c’ is not elementary.” 

Explanation: The specified field was used as a variable. However, the field is 
not a scalar-valued variable (numeric or string). You cannot use arrays or 
records to set or retrieve data in this context. 



Sample Applications 

6–62     Embedded SQL Companion Guide 

Sample Applications 
This section contains sample applications.  

The Department-Employee Master/Detail Application 

This application uses two database tables joined on a specific column. This typical 
example of a department and its employees demonstrates how to process two 
tables as a master and a detail. 

The program scans through all the departments in a database table, in order 
to reduce expenses. Based on certain criteria, the program updates 
department and employee records. The conditions for updating the data are 
the following: 

Departments: 

 If a department has made less than $50,000 in sales, the department is 
dissolved. 

Employees: 

 If an employee was hired since the start of 1985, the employee is 
terminated. 

 If the employee’s yearly salary is more than the minimum company wage 
of $14,000 and the employee is not nearing retirement (over 58 years of 
age), the employee takes a 5% pay cut. 

 If the employee’s department is dissolved and the employee is not 
terminated, the employee is moved into a state of limbo to be resolved by 
a supervisor. 

This program uses two cursors in a master/detail fashion. The first cursor is for 
the Department table, and the second cursor is for the Employee table. Both 
tables are described in declare table statements at the start of the program. 
The cursors retrieve all the information in the tables, some of which are 
updated. The cursor for the Employee table also retrieves an integer date 
interval whose value is positive if the employee was hired after January 1, 
1985. 

Each row that is scanned from both the Department table and the Employee 
table is recorded in an output file. This file serves both as a log of the session 
and as a simplified report of the updates that were made. 

Each section of code is commented for the purpose of the application and also 
to clarify some of the uses of the Embedded SQL statements. The program 
illustrates table creation, multi-statement transactions, all cursor statements, 
direct updates, and error handling. 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–63 

For readability, the BASIC exclamation point (!) is used as an end-of-line 
comment indicator. 

10  ! 
    ! Program: Process_Expenses  
    ! Purpose: Main entry point to process department and employee expenses. 
    ! 
  
  exec sql include sqlca 
  ! The department table 
  exec sql declare dept table  & 
    (name     char(12) not null,   & 
     totsales     money not null,   & 
     employees    smallint not null) 
  
  ! The employee table 
   exec sql declare employee table & 
       (name          char(20) not null,   & 
     age           integer1 not null,   & 
     idno          integer not null,   & 
     hired         date not null,   & 
     dept          char(12) not null,   & 
     salary        money not null) 
  
  ! "State-of-Limbo" for employees who lose their department 
   exec sql declare toberesolved table & 
    (name          char(20) not null,   & 
     age           integer1 not null,    & 
     idno          integer not null,    & 
     hired         date not null,    & 
     dept          char(12) not null,   & 
     salary        money not null) 
  
       print ’Entering application to process expenses.’ 
       open "expenses.log" for output as file #1 
       call Init_Db 
       call Process_Depts 
       call End_Db 
       close #1 
       print ’Successful completion of application.’ 
  
end        ! of Process_Expenses 
 
    ! 
    ! Subroutine: Init_Db 
    ! Purpose: Initialize the database. Connect to the database, 
    ! and abort if an error. Before processing employees create the table for  
    ! employees who lose their department,"toberesolved". 
    ! Parameters: None. 
    ! 
  
100 sub Init_Db 
 exec sql include sqlca 
 exec sql whenever sqlerror stop 
 exec sql connect personnel 
  print #1, ’Creating "To_Be_Resolved" table.’ 
  exec sql create table toberesolved    & 
    (name  char(20) not null,    & 
     age  integer1 not null,   & 
     idno  integer not null,    & 
     hired  date not null,    & 
     dept char(12) not null,   & 
     salary money not null) 
  
 end sub ! of Init_Db 



Sample Applications 

6–64     Embedded SQL Companion Guide 

 
    ! 
    ! Subroutine: End_Db 
    ! Purpose: Commit the multi-statement transaction and disconnect  
    ! from the database. 
    ! Parameters: None. 
    ! 
 200 sub End_Db 
  exec sql include sqlca 
  exec sql commit 
  exec sql disconnect 
 end sub           ! of End_Db 
 
    ! 
    ! Subroutine: Process_Depts 
    ! Purpose: Scan through all the departments, processing each one. 
    ! If the department has made less than $50,000 in sales  
    ! then the department is dissolved. For each department, 
    ! process all the employees (they may even be moved to another table). 
    1 If an employee was terminated, then update the department’s employee 
    ! counter. 
    ! Parameters: None 
    ! 
  
300 sub Process_Depts 
  exec sql include sqlca 
  exec sql begin declare section 
  record department 
    string  dname = 12 
    real  totsales 
    word  employees 
   end record 
   declare department  dept 
   declare word   emps_term  ! Employees terminated 
   declare string   loc_dname  ! For parameter passing 
 exec sql end declare section 
 
    ! Minimum sales of department  
    declare real constant MIN_DEPT_SALES = 50000.00  
    ! Was the dept deleted? 
    declare byte deleted_dept    ! Was the dept declared? 
    declare string dept_format    ! Formatting value 
 exec sql declare deptcsr cursor for     & 
   select name, totsales, employees    & 
   from dept       & 
   for direct update of name, employees 
 ! All errors from this point on close down the application 
  exec sql whenever sqlerror call Close_Down 
  exec sql whenever not found goto CloseDCsr     
 ! Close deptcsr 
 exec sql open deptcsr 
 while (sqlcode = 0) 
  
  exec sql fetch deptcsr into :dept 
  ! Did the department reach minimum sales? 
   if (dept::totsales \ MIN_DEPT_SALES) then 
    exec sql delete from dept     & 
     where current of deptcsr 
      deleted_dept = 1 
      dept_format = ’ -- DISSOLVED --’ 
    else 
      deleted_dept = 0 
      dept_format = ’ ’ 
    end if 
  ! Log what we have just done 
   print #1, ’Department: ’ + (dept::dname)   & 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–65 

    + ’, Total Sales: ’; 
   print #1 using ’$$####.##’, dept::totsales; 
   print #1, dept_format 
  ! Now process each employee in the department 
   loc_dname = dept::dname 
   call Process_Employees(loc_dname, deleted_dept, emps_term) 
  
  ! If some employees were terminated, record this fact 
   if (emps_term > 0 and deleted_dept = 0) then 
     exec sql update dept & 
      set employees = :dept::employees - :emps_term & 
      where current of deptcsr 
   end if 
  next 
  exec sql whenever not found continue 
  CloseDCsr: EXEC SQL CLOSE deptcsr 
  end sub ! of Process_Depts 
  ! 
   ! Subroutine: Process_Employees 
   ! Purpose: Scan through all the employees for a particular  
   ! department. Based on given conditions the employee 
   ! may be terminated, or given a salary reduction. 
   ! 1. If an employee was hired since 1985 then the 
   ! employee is terminated. 
   ! 2. If the employee’s yearly salary is more than the 
   ! minimum company wage of $14,000 and the employee 
   ! is not close to retirement (over 58 years of 
  !age), then the employee takes a 5% salary reduction. 
   ! 3. If the employee’s department is dissolved and the 
   ! employee is not terminated, then the employee is 
   ! moved into the "toberesolved" table. 
   ! 
   ! Parameters: loc_dname  -  Name of current department 
   !    deleted_dept - Is current department being dissolved? 
   !    emps_term  - Set locally to record how many employees 
   !      were terminated for the current department. 
   ! 
  
400 sub Process_Employees(string loc_dname, byte deleted_dept, & 
        integer emps_term) 
  
  exec sql include sqlca 
  exec sql begin declare section 
   record employee ! Corresponds to "employee" table 
     string   ename = 20 
     word   age 
     long   idno 
     string   hired = 25 
     real   salary 
     long   hired_since_85 
    end record 
    declare employee emp 
   declare real constant SALARY_REDUC = 0.95 
  exec sql end declare section 
  ! Minimum employee salary 
   declare real constant   MIN_EMP_SALARY = 14000.00  
   declare integer constant  NEARLY_RETIRED = 58 
   declare string title     ! Formatting values 
   declare string description 
  ! Note the use of the INGRES function to find out who was hired 
  ! since 1985. 
  
  exec sql declare empcsr cursor for     & 
    select name, age, idno, hired, salary,   & 
     int4(interval(’days’, hired-date(’01-jan-1985’))) & 
    from employee & 



Sample Applications 

6–66     Embedded SQL Companion Guide 

    where dept = :loc_dname & 
    for direct update of name, salary 
  ! All errors from this point on close down the application 
   exec sql whenever sqlerror call Close_Down 
   exec sql whenever not found goto CloseECsr ! Close empcsr 
  exec sql open empcsr 
  emps_term = 0 
    while (sqlcode = 0) 
  
    exec sql fetch empcsr into :emp 
    if (emp::hired_since_85 > 0) then 
      exec sql delete from employee    & 
         where current of empcsr 
      title = ’Terminated: ’ 
      description = ’Reason: Hired since 85.’ 
      emps_term = emps_term +1 
   else  
     if (emp::salary > MIN_EMP_SALARY) then 
     ! Reduce salary if not nearly retired 
      if (emp::age < NEARLY_RETIRED) then 
       exec sql update employee   & 
       set salary = salary * :SALARY_REDUC  & 
       where current of empcsr 
       title = ’Reduction: ’ 
       description = ’Reason: Salary.’ 
      else 
      ! Do not reduce salary 
      title = ’No Changes: ’ 
      description = ’Reason: Retiring.’ 
     end if 
  
    else  
     ! Leave employee alone 
     title = ’No Changes: ’ 
     description = ’Reason: Salary.’ 
    end if 
   end if 
  ! Was employee’s department dissolved? 
   if (deleted_dept = 1) then 
    exec sql insert into toberesolved     & 
     select *       & 
     from employee       & 
     where idno = :emp::idno 
  
    exec sql delete from employee     & 
     where current of empcsr 
   end if 
  ! Log the employee’s information 
  print #1, ’ ’ + title; 
   print #1, str$(emp::idno); 
   print #1, ’, ’ + (emp::ename) + ’, ’; 
   print #1, str$(emp::age) + ’, ’; 
   print #1 using ’$$####.##’, emp::salary; 
   print #1, ’; ’ + description 
 next 
   exec sql whenever not found continue 
   CloseEcsr:  exec sql close empcsr 
 end sub ! of Process_Employees 
 ! 
 ! Subroutine: Close_Down 
 ! Purpose: Error handler called any time after Init_Db was successfully 
 ! completed. In all cases print the cause of the error, and abort the 
 ! transaction, backing out changes. Note that disconnecting from the database 
 ! will implicitly close any open cursors too. 
 ! Parameters: None 
 ! 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–67 

  
500 sub Close_Down 
  exec sql include sqlca 
  exec sql begin declare section 
   declare string errbuf 
  exec sql end declare section 
  exec sql whenever sqlerror continue ! Turn off error handling 
  exec sql inquire_sql(:errbuf = errortext) 
  print ’Closed down because of database error:’ 
  print errbuf 
  close #1 
  exec sql rollback 
  exec sql disconnect 
  stop 
 end sub      ! of Close_Down 

The Table Editor Table Field Application 

This application edits the Person table in the Personnel database. It is a forms 
application that allows the user to update a person’s values, remove the 
person, or add new persons. Various table field utilities are provided with the 
application to demonstrate how they work. 

The objects used in this application are: 

 

Object Description 

personnel The program’s database environment. 

person A table in the database, with three columns: 

name (char(20)) 
age (smallint) 
number (integer) 

Number is unique. 

personfrm The VIFRED form with a single table field. 

persontbl A table field in the form, with two columns: 

name (char(20)) 
age (integer) 

When initialized, the table field includes the hidden 
column, number (integer). 

At the start of the application, a database cursor is opened to load the table 
field with data from the Person table. After loading the table field, you can 
browse and edit the displayed values. You can add, update, or delete entries. 
When finished, the values are unloaded from the table field and, in a multi-
statement transaction, your updates are transferred back into the Person 
table. 



Sample Applications 

6–68     Embedded SQL Companion Guide 

Also for readability, the BASIC exclamation point (!) is used as an end-of-line 
comment indicator. 

10  ! 
 
 ! Program:  Table_Edit 
 ! Purpose:  Main entry point to edit the "person" table in the 
 !    database, using a table field. 
 ! 
  
 exec sql include sqlca 
 exec sql declare person table    & 
   (name  char(20),     & 
    age  smallint,     & 
    number  integer) 
  
 exec sql begin declare section 
 ! Person information 
  declare string p_name    ! Full name 
  declare integer p_age    ! Age of person 
  declare integer p_number    ! Unique person number 
 declare integer maxid    ! Max person id number 
 ! Table field entry information 
 declare integer state    ! State of data set entry 
 declare integer recnum    ! Record number 
 declare integer lastrow    ! Last row in table field 
 ! Utility buffers 
 declare string msgbuf    ! Message buffer 
 declare string respbuf    ! Response buffer for prompts 
 exec sql end declare section 
 declare byte update_error    ! Update error from database 
 declare byte xact_aborted    ! Transaction aborted 
 external integer function Load_Table  ! Function to fill table field 
 ! Table field row states 
 declare byte constant ROWUNDEF  = 0 ! Empty or undefined row 
 declare byte constant ROWNEW  = 1 ! Appended by user 
 declare byte constant ROWUNCHANGD  = 2 ! Loaded by program, same 
 declare byte constant ROWCHANGD  = 3 ! Loaded by program, changed 
 declare byte constant ROWDELETE  = 4 ! Deleted by program 
 declare byte constant NOTFOUND  = 100 ! SQL value for no rows 
 ! Set up error handling for main program 
 exec sql whenever sqlwarning continue 
 exec sql whenever not found continue 
 exec sql whenever sqlerror stop 
 ! Start up Ingres and the Ingres/Forms system 
 exec sql connect ’personnel’ 
  
 exec frs forms 
 ! Verify that the user can edit the "person" table 
 exec frs prompt noecho (’Password for table editor: ’, :respbuf) 
  
 if (respbuf <> ’MASTER_OF_ALL’) then 
  exec frs endforms 
  exec sql disconnect 
  print ’No permission for task. Exiting . . .’ 
  stop 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–69 

 end if 
 ! We assume no SQL errors can happen during screen updating 
 exec sql whenever sqlerror continue 
 exec frs message ’Initializing Person Form . . .’ 
 exec frs forminit personfrm 
 ! 
 ! Initialize "persontbl" table field with a data set in FILL mode 
 ! so that the runtime user can append rows. To keep track of 
 ! events occurring to original rows that will be loaded into 
 ! the table field, hide the unique person number. 
 ! 
 exec frs inittable personfrm persontbl fill (number = integer) 
  
 maxid = Load_Table 
 exec frs display personfrm update 
  exec frs initialize 
 exec frs activate menuitem ’Top’ 
   exec frs begin 
   ! 
   ! Provide menu, as well as system FRS keys to scroll 
   ! to both extremes of the table field. 
   ! 
   exec frs scroll personfrm persontbl to 1 
 exec frs end ! ’Top’ 
  
 exec frs activate menuitem ’Bottom’ 
 exec frs begin 
  exec frs scroll personfrm persontbl to end ! Forward 
 exec frs end ! ’Bottom’ 
  
 exec frs activate menuitem ’Remove’ 
   exec frs begin 
   ! 
   ! Remove the person in the row the user’s cursor is on. 
   ! If there are no persons, exit operation with message. 
   ! Note that this check cannot really happen as there is 
   ! always an undefined row in fill mode. 
   ! 
   exec frs inquire_frs table personfrm & 
   (:lastrow = lastrow(persontbl)) 
   if (lastrow = 0) then 
    exec frs message ’Nobody to Remove’ 
    exec frs sleep 2 
    exec frs resume field persontbl 
   end if 
 exec frs deleterow personfrm persontbl ! Record it later 
 exec frs end ! ’Remove’ 
  
 exec frs activate menuitem ’Find’ 
  exec frs begin 
   !    
  ! Scroll user to the requested table field entry. 
   ! Prompt the user for a name, and if one is typed in 
   ! loop through the data set searching for it. 
   ! 
   exec frs prompt (’Name of person: ’, :respbuf) 
   if (respbuf = ’’) then 
    exec frs resume field persontbl 
   end if 
  exec frs unloadtable personfrm persontbl    & 
   (:p_name = name,       & 
     :recnum = _record,       & 
     :state = _state) 
   exec frs begin 
  ! Do not compare with deleted rows 
   if ((p_name = respbuf) and (state <> ROWDELETE)) then 



Sample Applications 

6–70     Embedded SQL Companion Guide 

    exec frs scroll personfrm persontbl to :recnum 
    exec frs resume field persontbl 
   end if 
  exec frs end 
  ! Fell out of loop without finding name 
   msgbuf = 
   ’Person "’+respbuf+’" not found in table [HIT RETURN] ’ 
   exec frs prompt noecho (:msgbuf, :respbuf) 
  
 exec frs end ! ’Find’ 
  
 exec frs activate menuitem ’Exit’ 
 exec frs begin 
  exec frs validate field persontbl 
  exec frs breakdisplay 
 exec frs end ! ’Exit’ 
  
 exec frs finalize 
 
 ! 
 ! Exit person table editor and unload the table field. If any 
 ! updates, deletions or additions were made, duplicate these 
 ! changes in the source table. If the user added new people we 
 ! must assign a unique person id before returning it to the table. 
 ! To do this, increment the previously saved maximum id number 
 ! with each insert. 
 ! 
  
 ! Do all the updates in a transaction 
 exec sql savepoint savept 
 
 ! 
 ! Hard code the error handling in the UNLOADTABLE loop, as 
 ! we want to cleanly exit the loop. 
 ! 
 exec sql whenever sqlerror continue 
 
 update_error = 0 
 xact_aborted = 0 
 
 exec frs message ’Exiting Person Application . . .’ 
 exec frs unloadtable personfrm persontbl    & 
  (:p_name = name, :p_age = age,     & 
   :p_number = number, :state = _state) 
 exec frs begin 
 ! Appended by user. Insert with new unique id 
  if (state = ROWNEW) then 
  maxid = maxid + 1 
   exec sql insert into person (name, age, number)   & 
    values (:p_name, :p_age, :maxid) 
  
 ! Updated by user. Reflect in table 
  else 
  if (state = ROWCHANGD) then 
  exec sql update person set     & 
    name = :p_name, age = :p_age    & 
    where number = :p_number 
 ! 
 ! Deleted by user, so delete from table. Note that only 
 ! original rows are saved by the program, and not rows 
 ! appended at runtime by the user. 
 ! 
   else 
    if (state = rowdelete) then 
    exec sql delete from person    & 
      where number = :p_number 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–71 

    end if 
   end if 
   end if    ! ignore undefined or unchanged - No updates 
  ! 
   ! Handle error conditions - 
   ! If an error occurred, then abort the transaction. 
   ! If a no rows were updated then inform user, and 
   ! prompt for continuation. 
   ! 
   if (sqlcode < 0) then 
 ! SQL error 
   exec sql inquire_sql (:msgbuf = errortext) 
    exec sql rollback to savept 
    update_error = 1 
    xact_aborted = 1 
    exec frs endloop 
   else 
    if (sqlcode = NOTFOUND) then 
     msgbuf = ’Person "’ + p_name + & 
      ’" not updated. Abort all updates?’ 
     exec frs prompt (:msgbuf, :respbuf) 
     if (respbuf = ’Y’ or respbuf = ’y’) then 
      exec sql rollback to savept 
      xact_aborted = 1 
      exec frs endloop 
     end if 
    end if 
   end if 
 exec frs end     ! ’Unloadtable’ 
 if (xact_aborted = 0) then 
   exec sql commit     ! Commit the updates 
  end if 
 exec frs endforms    ! Terminate the Forms and Ingres 
  exec sql disconnect 
 if (update_error = 1) then 
   print ’Your updates were aborted because of error:’; 
   print msgbuf 
  end if 
 
  end ! of Table_Edit - Main Program 
 ! 
 ! Function:  Load_Table 
 ! Purpose:  Load the table field from the ’person’ table.  
!     The columns ’name’ and ’age’ will be displayed, and ‘number’  
 !     will be hidden. 
 ! Parameters: None 
 ! Returns: Maximum employee number 
 ! 
  
20 function integer Load_Table 
 exec sql include sqlca 
 ! 
  ! Declare person information: 
  ! The preprocessor already knows that these variables have been 
  ! declared from their declarations in the main program. 
  ! 
  declare string p_name    ! Full name 
 declare integer p_age    ! Age of person 
 declare integer p_number    ! Unique person number 
 declare integer maxid    ! Max person id number to return 
 exec sql declare loadtab cursor for      & 
  select name, age, number      & 
  from person 
 ! Set up error handling for loading procedure 
  exec sql whenever sqlerror goto Closeld ! Close loadtab 
  exec sql whenever not found goto Closeld ! Close loadtab 



Sample Applications 

6–72     Embedded SQL Companion Guide 

 exec frs message ’Loading Person Information . . .’ 
  
 maxid = 0 
 ! Fetch the maximum person id number for later use 
  exec sql select max(number) & 
   into :maxid & 
   from person 
 exec sql open loadtab 
  while (sqlcode = 0) 
    ! Fetch data into record, and load table field 
    exec sql fetch loadtab into :p_name, :p_age, :p_number 
    exec frs loadtable personfrm persontbl & 
     (name = :p_name, age = :p_age, number = :p_number) 
   next 
  exec sql whenever sqlerror continue 
  Closeld: exec sql close loadtab 
  Load_Table = maxid 
 
end function      ! of Load_Table  

The Professor-Student Mixed Form Application 

This application lets the user browse and update information about graduate 
students who report to a specific professor. The program is structured in a 
master/detail fashion, with the professor being the master entry, and the 
students the detail entries. The application uses two forms—one to contain 
general professor information and another for detailed student information. 

The objects used in this application are:  

 

Obejct Description 

personnel The program’s database environment. 

professor A database table with two columns: 

pname (char(25)) 
pdept (char(10) 

See its declare table statement in the program for a full 
description. 

student A database table with seven columns: 

sname (char(25)) 
sage (integer1) 
sbdate (char(25)) 
sgpa (float4) 
sidno (integer) 
scomment (varchar(200)) 
sadvisor (char(25)) 

See its declare table statement for a full description. The 
sadvisor column is the join field with the pname column in the 
Professor table. 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–73 

Obejct Description 

masterfrm The main form has the pname and pdept fields, which 
correspond to the information in the Professor table, and the 
studenttbl table field. The pdept field is display only. 

studenttbl A table field in “masterfrm” with two columns, “sname” and 
“sage”. When initialized, it also has five hidden columns 
corresponding to information in the student table. 

studentfrm The detail form, with seven fields, which correspond to 
information in the Student table. Only the sgpa, scomment, 
and sadvisor fields are updatable. All other fields are display-
only. 

grad A global BASIC record, whose fields correspond in name and 
type to the columns of the student database table, the 
studentfrm form, and the studenttbl table field. 

The program uses “masterfrm” as the general-level master entry, in which 
data can only be retrieved and browsed. It uses “studentfrm” as the detailed 
screen, in which specific student information can be updated. 

The user can enter a name in the pname field and then select the Students 
menu operation. The operation fills the studenttbl table field with detailed 
information of the students reporting to the named professor. This is done by 
the studentcsr database cursor in the Load_Students procedure. The program 
assumes that each professor is associated with exactly one department.  

The user can then browse the table field (in read mode), which displays only 
the names and ages of the students. More information about a specific student 
can be requested by selecting the Zoom menu operation. This operation 
displays the form “studentfrm” (in update mode). The fields of studentfrm are 
filled with values stored in the hidden columns of studenttbl. The user can 
make changes to three fields (sgpa, scomment, and sadvisor). If validated, 
these changes will be written back to the database table (based on the unique 
student id), and to the table field’s data set. This process can be repeated for 
different professor names. 

Also for readability, the BASIC exclamation point (!) is used as an end-of-line 
comment indicator. 



Sample Applications 

6–74     Embedded SQL Companion Guide 

10  ! 
  ! Program: Professor_Student 
  ! Purpose: Main entry point into "Professor-Student" 
 !     mixed-form master detail application. 
  ! 
  
  exec sql include sqlca 
  exec sql declare student table     & 
   (sname       char(25),    & 
    sage        integer1,     & 
    sbdate      char(25),     & 
    sgp a        float4,     & 
    sidno       integer,     & 
    scomment    varchar(200),    & 
    sadvisor    char(25)) 
  
  exec sql declare professor table    & 
   (pname       char(25),     & 
    pdept       char(10)) 
  exec sql begin declare section 
   ! Externally compiled master and student form 
   external integer masterfrm, studentfrm 
  exec sql end declare section 
  ! Start up Ingres and the Forms system 
  exec frs forms 
  exec sql whenever sqlerror stop 
  exec frs message ’Initializing Student Administrator . . .’ 
  exec sql connect personnel 
  exec frs addform :masterfrm 
  exec frs addform :studentfrm 
  call Master 
  exec frs clear screen 
  exec frs endforms 
  exec sql disconnect 
 end ! of Professor_Student 
 
 ! 
 ! Subroutine: Master 
 ! Purpose:   Drive the application, by running ’masterfrm’, and 
 !     allowing the user to ’zoom’ into a selected student. 
 ! Parameters: None - Uses the global student ’grad’ record. 
 ! 
 100 sub Master 
  exec sql include sqlca 
  exec sql begin declare section 
   ! Global grad student record maps to database table 
   record grad_student 
    string  sname = 25 
    word  sage 
    string  sbdate = 25 
    real  sgpa 
    integer  sidno 
    string  scomment = 200 
    string  sadvisor = 25 
   end record 
   common (grad_area) grad_student grad 
   ! Professor info maps to database table 
   record professor 
    string pname = 25 
    string pdept = 10 
   end record 
   declare professor prof 
   ! Useful forms system information 
  declare integer lastrow    ! Lastrow in table field 
   declare integer istable    ! Is a table field? 
  



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–75 

   ! Local utility buffers 
   declare string msgbuf    ! Message buffer 
   declare string respbuf    ! Response buffer 
   declare string old_advisor    ! Old advisor before Zoom 
   exec sql end declare section 
   external byte function Student_Info_changed 
        ! Function defined below 
    declare string tmp_pname   ! Temporary string param 
   ! 
   ! Initialize "studenttbl" with a data set in READ mode. 
   ! Declare hidden columns for all the extra fields that 
   ! the program will display when more information is 
   ! requested about a student. Columns "sname" and "sage" 
   ! are displayed, all other columns are hidden, to be 
   ! used in the student information form. 
   ! 
   exec frs inittable masterfrm studenttbl read   & 
    (sbdate  = char(25),      & 
     sgpa = float4,       & 
     sidno = integer,      & 
     scomment = char(200),     & 
     sadvisor = char(20)) 
  
   exec frs display masterfrm update 
   exec frs initialize 
   exec frs begin 
    exec frs message ’Enter an Advisor name . . .’ 
    exec frs sleep 2 
    exec frs end 
   exec frs activate menuitem ’Students’, FIELD ’pname’ 
   exec frs begin 
    ! Load the students of the specified professor 
    exec frs getform (:prof::pname = pname) 
  
    ! If no professor name is given then resume 
    if (prof::pname = ’’) then 
     exec frs resume field pname 
    end if 
    ! 
    ! Verify that the professor exists. Local error 
    ! handling just prints the message, and continues. 
    ! We assume that each professor has exactly one 
    ! department. 
    ! 
    exec sql whenever sqlerror call sqlprint 
    exec sql whenever not found continue 
    prof::pdept = ’ ’ 
    exec sql select pdept      & 
     into :prof::pdept     & 
     from professor      & 
     where pname = :prof::pname 
    if (prof::pdept = ’’) then 
     msgbuf = ’No professor with name "’ +   & 
     prof::pname + ’" [RETURN]’ 
     exec frs prompt noecho (:msgbuf, :respbuf) 
     exec frs clear field all 
     exec frs resume field pname 
    end if 
    ! Fill the department field and load students 
    exec frs putform (pdept = :prof::pdept) 
    exec frs redisplay  ! Refresh for query 
    tmp_pname = prof::pname 
    call Load_Students(tmp_pname) 
  
    exec frs resume field studenttbl 
   exec frs end ! ’Students’ 



Sample Applications 

6–76     Embedded SQL Companion Guide 

  
   exec frs activate menuitem ’Zoom’ 
   exec frs begin 
    ! 
    ! Confirm that user is on "studenttbl", and that 
    ! the table field is not empty. Collect data from 
    ! the row and zoom for browsing and updating. 
    ! 
    exec frs inquire_frs field masterfrm    & 
     (:istable = table) 
    if (istable = 0) then 
     exec frs prompt noecho     & 
     (’Select from the student table [RETURN]’, & 
     :respbuf) 
     exec frs resume field studenttbl 
    end if 
    exec frs inquire_frs table masterfrm    & 
     (:lastrow = lastrow) 
  
    if (lastrow = 0) then 
     exec frs prompt noecho     & 
     (’There are no students [RETURN]’, :respbuf) 
     exec frs resume field pname 
    end if 
    ! Collect all data on student into global record 
    exec frs getrow masterfrm studenttbl    & 
     (:grad::sname = sname,     & 
     :grad::sage = sage,     & 
     :grad::sbdate = sbdate,    & 
     :grad::sgpa = sgpa,     & 
     :grad::sidno = sidno,     & 
     :grad::scomment = scomment,    & 
     :grad::sadvisor = sadvisor) 
  
    ! 
    ! Display "studentfrm", and if any changes were made 
    ! make the updates to the local table field row. 
    ! Only make updates to the columns corresponding to 
    ! writable fields in "studentfrm". If the student 
    ! changed advisors, then delete this row from the 
    ! display. 
    ! 
    old_advisor = grad::sadvisor 
    if (Student_Info_Changed = 1) then 
    if (old_advisor <> grad::sadvisor) then 
     exec frs deleterow masterfrm studenttbl 
    else 
     exec frs putrow masterfrm studenttbl   & 
      (sgpa = :grad::sgpa,    & 
      scomment = :grad::scomment,   & 
      sadvisor = :grad::sadvisor) 
     end if 
     end if 
    exec frs end     ! ’Zoom’ 
  
    exec frs activate menuitem ’Exit’ 
    exec frs begin 
     exec frs breakdisplay 
    exec frs end     ! ’Exit’ 
  
    exec frs finalize 
  end sub       ! Master 
  ! 
  ! Subroutine: Load_Students 
  ! Purpose:    Given an advisor name, load into the ’studenttbl’ 
   !         table field all the students who report to the 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–77 

   !         professor with that name. 
   ! Parameters: 
   !         advisor - User specified professor name. 
   !         Uses the global student record. 
   ! 
  
200 sub Load_Students(string tmp_advisor) 
  
   exec sql include sqlca 
   exec sql begin declare section 
    declare string advisor 
   exec sql end declare section 
  ! 
  ! Global grad student - do not redeclare the structure as it 
  ! was declared in subroutine "Master" 
  ! 
  record grad_student 
    string  sname = 25 
    word   sage 
    string   sbdate = 25 
    real   sgpa 
    integer   sidno 
    string   scomment = 200 
    string   sadvisor = 25 
   end record 
   common (grad_area) grad_student grad 
  exec sql declare studentcsr cursor for     & 
   select sname, sage, sbdate, sgpa,     & 
    sidno, scomment, sadvisor     & 
   from student       & 
   where sadvisor = :advisor 
  ! Move string parameter into variable known by preprocessor 
   advisor = tmp_advisor 
   ! 
   ! Clear previous contents of table field. Load the table 
   ! field from the database table based on the advisor name. 
   ! Columns "sname" and "sage" will be displayed, and all 
   ! others will be hidden. 
   ! 
   exec frs message ’Retrieving Student Information . . .’ 
  
  exec frs clear field studenttbl 
  exec sql whenever sqlerror goto EndLoad ! End loading 
   exec sql whenever not found goto EndLoad 
  exec sql open studentcsr 
  ! 
   ! Before we start the loop we know that the OPEN was 
   ! successful and that NOT FOUND was not set. 
   ! 
   while (sqlcode = 0) 
  
   exec sql fetch studentcsr into :grad 
   exec frs loadtable masterfrm studenttbl    & 
    (sname = :grad::sname,      & 
     sage = :grad::sage,      & 
     sbdate = :grad::sbdate,     & 
     sgpa = :grad::sgpa,      & 
     sidno = :grad::sidno,      & 
     scomment = :grad::scomment,     & 
    sadvisor = :grad::sadvisor) 
  
  next 
  ! Clean up on an error, and close cursors 
  exec sql whenever not found continue 
  exec sql whenever sqlerror continue 
  EndLoad: exec sql close studentcsr 



Sample Applications 

6–78     Embedded SQL Companion Guide 

 
 end sub        ! Load_Students 
  ! 
  ! Function:  Student_Info_Changed 
  ! Purpose:  Allow the user to zoom into the details of 
  !   a selected student. Some of the data can be 
  !   updated by the user.If any updates were made, 
  !   then reflect these back into the database table. 
  !   The procedure returns TRUE if any changes were made. 
   ! Parameters: None - Uses with data in the global "grad" record. 
   ! Returns: TRUE/FALSE - Changes were made to the database. 
   !    Sets the global "grad" record with the new data. 
   ! 
  
300 function byte Student_Info_Changed 
  exec sql include sqlca 
  exec sql begin declare section 
   declare integer changed   ! Changes made to data in form 
   declare integer valid_advisor  ! Valid advisor name ? 
  exec sql end declare section 
  ! 
  ! Global grad student - do not redeclare the structure as it 
  ! was declared in subroutine "Master" 
  ! 
  record grad_student 
   string  sname = 25 
   word  sage 
   string  sbdate = 25 
   real  sgpa 
   integer  sidno 
   string  scomment = 200 
   string  sadvisor = 25 
  end record 
  common (grad_area) grad_student grad 
  ! Local error handle just prints error, and continues 
  exec sql whenever sqlerror call sqlprint 
  exec sql whenever not found continue 
  exec frs display studentfrm fill 
  exec frs initialize & 
      (sname = :grad::sname,      & 
    sage = :grad::sage,      & 
    sbdate = :grad::sbdate,      & 
    sgpa = :grad::sgpa,      & 
    sidno = :grad::sidno,      & 
    scomment = :grad::scomment,    & 
    sadvisor = :grad::sadvisor) 
  exec frs activate menuitem ’Write’ 
  exec frs begin 
   ! 
   ! If changes were made then update the database table. 
   ! Only bother with the fields that are not read-only. 
   ! 
   exec frs inquire_frs form (:changed = change) 
   if (changed = 1) then 
    exec frs validate 
    exec frs getform      & 
           (:grad::sgpa = sgpa,     & 
      grad::scomment = scomment,    & 
     :grad::sadvisor = sadvisor) 
  
    ! Enforce integrity of professor name 
    valid_advisor = 0 
    exec sql select 1 into :valid_advisor    & 
     from professor      & 
     where pname = :grad::sadvisor 
    if (valid_advisor = 0) then 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–79 

     exec frs message ’Not a valid advisor name’ 
     exec frs sleep 2 
     exec frs resume field sadvisor 
    end if 
    exec frs message ’Writing changes to database. . .’ 
    exec sql update student set     & 
     sgpa = :grad::sgpa,     & 
     scomment = :grad::scomment,    & 
     sadvisor = :grad::sadvisor    & 
     where sidno = :grad::sidno 
    end if 
    exec frs breakdisplay 
   exec frs end     ! ’Write’ 
  
   exec frs activate menuitem ’Quit’ 
    exec frs begin 
    ! Quit without submitting changes 
    changed = 0 
    exec frs breakdisplay 
    exec frs end     ! ’Quit’ 
  
   exec frs finalize 
   Student_Info_Changed = changed 
 
 end function       ! Student_Info_Changed  

The SQL Terminal Monitor Application 

This application executes SQL statements that are read in from the terminal. 
The application reads statements from input and writes results to output. 
Dynamic SQL is used to process and execute the statements. 

When the program starts, it prompts the user for the database name. The 
program then prompts for an SQL statement. SQL comments and statement 
delimiters are not accepted. The SQL statement is processed using dynamic 
SQL, and results and SQL errors are written to output. At the end of the 
results, the program displays an indicator of the number of rows affected. The 
loop is then continued and the program prompts you for another SQL 
statement. When end-of-file is typed in, the application rolls back any pending 
updates and disconnects from the database. 

The user’s SQL statement is prepared using prepare and describe. If the SQL 
statement is not a select statement, then it is run using execute and the 
number of rows affected is printed. If the SQL statement is a select 
statement, a dynamic SQL cursor is opened, and all the rows are fetched and 
printed. The routines that print the results do not try to tabulate the results. A 
row of column names is printed, followed by each row of the results. 

Keyboard interrupts are not handled. Fatal errors, such as allocation errors, 
and boundary condition violations are handled by rolling back pending updates 
and disconnecting from the database session. 



Sample Applications 

6–80     Embedded SQL Companion Guide 

100  ! 
  ! Program: SQL_Monitor 
  ! Purpose: Main entry of SQL Monitor application. Prompt 
  !      for database name and connect to the database. 
  !     Run the monitor and disconnect from the database. 
  !     Before disconnecting roll back any pending updates. 
  ! 
  
  program SQL_Monitor 
   exec sql include sqlca 
   exec sql begin declare section 
    declare string dbname   ! Database name 
    exec sql end declare section 
   linput ’SQL Database’; dbname  ! Prompt for database name 
   if (dbname = ’’) then 
    exit program 
   end if 
   print ’-- SQL Terminal Monitor --’ 
  
   exec sql whenever sqlerror stop  ! Connection errors are fatal 
   exec sql connect :dbname 
   call Run_Monitor 
   exec sql whenever sqlerror continue 
   print ’SQL: Exiting monitor program.’ 
  
   exec sql rollback 
   exec sql disconnect 
  end program ! SQL_Monitor 
  ! 
  ! Subroutine: Run_Monitor 
  ! Purpose:  Run the SQL monitor. Initialize the global 
  !   SQLDA with the number of SQLVAR elements. Loop 
  !   while prompting the user for input and processing 
  !   the SQL statement;if end-of-file is typed then 
  !   return to the main program. 
   ! 
   !    If the statement is not a SELECT statement 
  !   then EXECUTE it, otherwise open a cursor a process 
  !   a dynamic SELECT statement (using Execute_Select). 
  ! 
  
200  sub Run_Monitor 
  ! Declare the global SQLCA and the SQLDA records 
  exec sql include sqlca 
  exec sql include sqlda 
  common (sqlda_area) IISQLDA sqlda 
  exec sql begin declare section 
  declare string stmt_buf   ! SQL statement input buffer 
  exec sql end declare section 
  declare integer stmt_num   ! SQL statement number 
   declare integer rows    ! Rows affected 
   external byte function Read_Stmt  ! Function to read input 
   external integer function Execute_Select  ! and to execute SELECTs 
  exec sql declare stmt statement   ! Dynamic SQL statement 
  sqlda::sqln = IISQ_MAX_COLS ! Initialize the SQLDA 
  stmt_num = 1 
  ! 
   ! Now we are set for input. Call Read_Stmt each time through 
   ! the loop. Read_Stmt prompts the user for input (into 
   ! stmt_buf) and returns 0 if end-of-file was typed. 
   ! 
   while (Read_Stmt(stmt_num, stmt_buf)) 
  
   stmt_num = stmt_num + 1 
   ! SQL errors cause current statement to be aborted. 
   exec sql whenever sqlerror goto Stmt_Err 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–81 

   ! 
   ! PREPARE and DESCRIBE the statement. If the statement 
   ! is not a SELECT then EXECUTE it, otherwise inspect the 
   ! contents of the SQLDA and call Execute_Select. 
   ! 
   exec sql prepare stmt from :stmt_buf 
   exec sql describe stmt into :sqlda 
   ! 
   ! If SQLD = 0 then this is not a SELECT statement. Otherwise 
   ! call Execute_Select to process a dynamic cursor. 
   ! 
   if (sqlda::sqld = 0) then 
    exec sql execute stmt 
    rows = sqlerrd(2) 
  
   else 
    rows = Execute_Select 
   end if     ! If SELECT or not 
   exec sql whenever sqlerror continue 
  Stmt_Err: 
   ! 
   ! Only display error message if we arrived here because 
   ! of the SQLERROR condition. Otherwise print the rows 
   ! processed and continue with the loop. 
   ! 
   if (sqlcode < 0) then 
    call Print_Error 
   else 
    print ’[’ + str$(rows) + ’ row(s)]’ 
   end if 
  next      ! While reading statements 
 end sub ! Run_Monitor 
 ! 
 ! Function:  Execute_Select 
 ! Purpose:  Run a dynamic SELECT statement. The SQLDA has 
 !   already been described. This routine calls Print_Header 
 !    to print column headers and set up result storage 
 !    information. A Dynamic SQL cursor is then opened, and 
 !    each row is fetched and printed by Print_Row. 
  !   Any error causes the cursor to be closed. 
  ! Returns: Number of rows fetched from cursor. 
  ! 
  
300 function integer execute_select 
 ! Declare the global SQLCA and the SQLDA records 
 exec sql include sqlca 
 exec sql include sqlda 
 common (sqlda_area) IISQLDA sqlda 
 declare integer rows    ! Counter for rows fetched 
 external byte function Print_Header   ! Function to set up header 
 exec sql declare csr cursor for stmt  ! Cursor for dynamic statement 
 ! 
 ! Print the result column names and set up the result data 
 ! types and variables. Print_Header returns 0 if it fails. 
 ! 
 if (not Print_Header) then 
  Execute_Select = 0 
  exit function 
 end if 
 exec sql whenever sqlerror goto Close_Csr 
 rows = 0 
 ! Open the dynamic cursor. 
 exec sql open csr 
 ! Fetch and print each row. 
 while (sqlcode = 0) 
  



Sample Applications 

6–82     Embedded SQL Companion Guide 

  exec sql fetch csr using descriptor :sqlda 
  if (sqlcode = 0) then 
   rows = rows + 1     ! Count the rows 
   call Print_Row 
  end if 
 next       ! While there are more rows 
 Close_Csr: 
  ! Display error message if the SQLERROR condition was set. 
  if (sqlcode < 0) then 
   call Print_Error 
  end if 
  exec sql whenever sqlerror continue 
  exec sql close csr for readonly 
  Execute_Select = rows 
 end function ! Execute_Select 
  ! 
  ! Function: Print_Header 
  ! Purpose:  A statement has just been described so set up 
  !   the SQLDA for result processing. Print all the 
  !   column names and allocate result variables for 
  !   retrieving data. The result variables are chosen out 
  !   of a global pool of numeric variables (integers, 
   !    floats and 2-byte indicators) and a large character 
  !   buffer. The SQLDATA and SQLIND fields are pointed 
  !   at the addresses of the result variables. 
   ! Returns: TRUE (-1) if successfully set up the SQLDA for 
  !   result variables, 
  !    FALSE (0) if an error occurred. 
   ! 
  
400  function byte Print_Header 
   ! Declare global SQLDA record 
   exec sql include sqlda 
   common (sqlda_area) IISQLDA sqlda 
   ! 
   ! Global result data storage. This area includes an array 
   ! of numerics (integers, floats and indicator variables), as 
   ! well as a large character buffer from which sub-strings are 
   ! chosen for string retrieval. 
   ! 
   declare word constant CHAR_MAX = 2500 
   record num_store    ! Pool of numeric variables 
    long  int4 
    double  flt8 
    word  indicator 
   end record num_store 
   record char_store    ! Pool of string data 
    word buf_used 
    string charbuf(CHAR_MAX) = 1 
    end record char_store 
   common (result_area) num_store nums(IISQ_MAX_COLS), & 
     char_store chars 
   declare integer i    ! Index into SQLVAR 
   declare integer base_type   ! Base type w/o nullability 
   declare byte nullable  ! Is column nullable 
   declare integer ch_len   ! Required character length 
   ! 
   ! Verify that there are enough result variables. 
   ! If not print error and return. 
   ! 
   if (sqlda::sqld > sqlda::sqln) then 
    print ’SQL Error: SQLDA requires ’ +    & 
     str$(sqlda::sqld) +     & 
     ’ variables, but has only ’ +    & 
     str$(sqlda::sqln) + ’.’ 
     Print_Header = 0    ! FALSE 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–83 

     exit function 
   end if 
   ! 
   ! For each column print the number and title. For example: 
   !   [1] name [2] age [3] salary 
   ! While processing each column determine the type of the 
   ! column and to where SQLDATA and SQLIND must point in 
   ! order to retrieve type-compatible results. Note that the 
   ! index into SQLVAR begins at 0 and not 1 because the 
   ! array is zero-based. 
   ! 
   chars::buf_used = 1     ! Nothing used yet 
   for i = 0 to sqlda::sqld - 1   ! For each column 
    ! Print column name and number 
    print ’[’ + str$(i+1) + ’] ’ + & 
     left$(sqlda::sqlvar(i)::sqlnamec, & 
      sqlda::sqlvar(i)::sqlnamel) + ’ ’; 
  
   ! 
   ! Process the column for type and length information. Use 
   ! global result area from which variables can be allocated. 
   ! 
  
   ! Find the base-type of the result (non-nullable). 
   if (sqlda::sqlvar(i)::sqltype > 0) then 
    base_type = sqlda::sqlvar(i)::sqltype 
    nullable = 0      ! FALSE 
   else 
    base_type = -sqlda::sqlvar(i)::sqltype 
    nullable = -1 ! TRUE 
   end if 
   ! 
   !  Collapse all different types into one of 4-byte integer, 
   ! 8-byte floating-point, or fixed length character. Figure 
   ! out where to point SQLDATA and SQLIND - which member of 
   ! the global result storage area will retrieve the data. 
   ! 
   select base_type 
    case IISQ_INT_TYPE    ! Use 4-byte integer 
     sqlda::sqlvar(i)::sqltype = IISQ_INT_TYPE 
     sqlda::sqlvar(i)::sqllen = 4 
     sqlda::sqlvar(i)::sqldata = loc(nums(i)::int4) 
  
    case IISQ_FLT_TYPE, IISQ_MNY_TYPE ! Use 8-byte float 
     sqlda::sqlvar(i)::sqltype = IISQ_FLT_TYPE 
      sqlda::sqlvar(i)::sqllen = 8 
      sqlda::sqlvar(i)::sqldata = loc(nums(i)::flt8) 
  
    case IISQ_CHA_TYPE, IISQ_VCH_TYPE, IISQ_DTE_TYPE 
    ! 
    ! Determine the length of the sub-string required 
    ! from the large character buffer. If we have enough 
    ! space left then point at the start of the 
    ! corresponding sub-string, otherwise print an 
    ! error and return. 
    ! 
    ! Note that for DATE types we must set the length. 
    ! 
    if (base_type = IISQ_DTE_TYPE) then 
     ch_len = IISQ_DTE_LEN 
    else 
     ch_len = sqlda::sqlvar(i)::sqllen 
    end if 
    if ((chars::buf_used + ch_len) > CHAR_MAX) then 
     print ’SQL Error: Character data overflow.’ + & 
      ’ Need more than ’      + & 



Sample Applications 

6–84     Embedded SQL Companion Guide 

       str$(CHAR_MAX) + ’ bytes.’ 
      Print_Header = 0    ! FALSE 
      exit function 
     end if     ! If too many characters 
    ! 
    ! Grab space out of the large character buffer and 
    ! keep track of the amount of space used so far. 
    ! 
    sqlda::sqlvar(i)::sqltype = IISQ_CHA_TYPE 
    sqlda::sqlvar(i)::sqllen = ch_len 
    sqlda::sqlvar(i)::sqldata =     & 
     loc(chars::charbuf(chars::buf_used)) 
     chars::buf_used = chars::buf_used + ch_len 
   case else       ! Bad data type 
    print ’SQL Error: Unknown data type returned: ’ + & 
     str$(sqlda::sqlvar(i)::sqltype) 
    Print_Header = 0     ! FALSE 
    exit function 
   end select      ! Of checking types 
   ! If nullable then point at a null indicator and negate type id 
   if (nullable) then 
    sqlda::sqlvar(i)::sqltype = -sqlda::sqlvar(i)::sqltype 
    sqlda::sqlvar(i)::sqlind = loc(nums(i)::indicator) 
   else 
    sqlda::sqlvar(i)::sqlind = 0 
   end if 
  next i      ! End of processing each column 
  print ’’     ! Add separator line 
  print ’--------------------------------------’ 
  
  Print_header = -1    ! TRUE 
 end function ! Print_Header 
 ! 
 ! Subroutine: Print_Row 
 ! Purpose:  For each element inside the SQLDA, print the value. 
 !    Print its column number too in order to identify it with 
 !    the column name printed earlier. If the value is NULL 
 !    print ’N/A’. This routine prints the values using very 
 !    basic formats and does not try to tabulate the results. 
 ! 
  
500 sub Print_Row 
   ! Declare global SQLDA record 
   exec sql include sqlda 
   common (sqlda_area) IISQLDA sqlda 
   ! 
   ! Global result data storage. Variables from these 
   ! pools were pointed at by the Print_Header routine. 
   ! 
   declare word constant char_max = 2500 
   record num_store    ! Pool of numeric variables 
    long  int4 
    double  flt8 
    word  indicator 
   end record num_store 
   record char_store    ! Pool of string data 
    word buf_used 
    string charbuf(char_max) = 1 
   end record char_store 
   common (result_area) num_store nums(IISQ_MAX_COLS), & 
     char_store chars 
   declare integer i    ! Index into SQLVAR 
   declare integer ch    ! Index for print characters 
   declare integer ch_len   ! Required character length 
   ! 
   ! For each column, print the column number and the data. The 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–85 

   ! number identifies the column with the column name 
   ! printed in Print_Header. NULL columns are 
   ! printed as ’N/A’. 
    ! 
    chars::buf_used = 1    ! No characters printed yet 
   for i = 0 to sqlda::sqld - 1  ! For each column 
    print ’[’ + str$(i+1) + ’] ’; ! Print column number 
    ! If nullable and is NULL then print ’N/A’ 
    if (sqlda::sqlvar(i)::sqltype > 0) and   & 
      (nums(i)::indicator = -1) then 
     print ’N/A’; 
  
    else 
     ! 
     ! The type is either not nullable, or nullable 
     ! but not NULL. Print the result using very basic 
     ! output formats. 
     ! 
     select abs(sqlda::sqlvar(i)::sqltype) 
  
     case IISQ_INT_TYPE 
      print str$(nums(i)::int4); 
  
     case IISQ_FLT_TYPE 
      ! This format may lose precision 
      print str$(nums(i)::flt8); 
  
     case IISQ_CHA_TYPE 
      ! 
      ! Use a current-length sub-string from the large 
      ! character buffer, as allocated in Print_Header. 
      ! 
      ch_len = sqlda::sqlvar(i)::sqllen 
      for ch = 0 to ch_len - 1 
      print chars::charbuf(chars::buf_used + ch); 
     next ch 
     chars::buf_used = chars::buf_used + ch_len 
    end select    ! Of different types 
  end if      ! If null or not 
   if (i < sqlda::sqld - 1) then  ! Add trailing space 
    print ’ ’; 
   end if 
   next i     ! End of each column 
   print ’’     ! Print new line 
  end sub      ! Print_Row 
  ! 
   ! Subroutine: Print_Error 
   ! Purpose:    SQLCA error detected. Retrieve the error message 
   !         and print it. 
   ! 
  
600 sub Print_Error 
   exec sql include sqlca 
   exec sql begin declare section 
    declare string error_buf  ! For error text retrieval 
   exec sql end declare section 
   exec sql inquire_sql (:error_buf = errortext) 
   print ’SQL Error:’ 
   print error_buf 
  end sub      ! Print_Error 
  ! 
  ! Function: Read_Stmt 
  ! Purpose:  Read a statement from standard input. This 
  !   routine issues a prompt with the current statement 
  !    number, and reads the statement from the screen into 
  !    the parameter ’stmt_buf’. No special scanning is done 



Sample Applications 

6–86     Embedded SQL Companion Guide 

  !   to look for terminators, string delimiters or line 
  !   continuations. 
   ! 
   !    This routine can be extended to allow line 
  !    continuation, SQL-style comments, and a semicolon 
  !   terminator. 
   ! Parameters: 
   !    stmt_num - Statement number for prompt. 
   !    stmt_buf - Input statement buffer. 
   ! Returns:  
  !    TRUE (-1) - If a statement is typed in. 
   !    FALSE (0) - If end-of-file is typed in, 
  !    or an error occurred. 
   ! 
  
700 function byte Read_Stmt(integer stmt_num, string stmt_buf) 
  
  declare byte was_input     ! Return value 
  stmt_buf = ’’ 
  was_input = -1      ! TRUE 
  ! Ignore empty lines and stop on error 
  while (stmt_buf = ’’) and (was_input = -1) 
   when error in 
   print ’ ’ + str$(stmt_num); 
   linput ’ ’; stmt_buf 
   use 
   was_input = 0     ! FALSE 
  end when 
  next 
 Read_Stmt = was_input 
 
  end function      ! Read_Stmt 

A Dynamic SQL/Forms Database Browser 

This program lets the user browse data from and insert data into any table in 
any database, using a dynamically defined form. The program uses Dynamic 
SQL and Dynamic FRS statements to process the interactive data. You should 
already have used VIFRED to create a Default Form based on the database 
table that you want to browse. VIFRED will build a form with fields that have 
the same names and data types as the columns of the specified database 
table. 

When run, the program prompts the user for the name of the database, the 
table and the form. The form is profiled using the describe form statement, 
and the field name, data type and length information is processed. From this 
information the program fills in the SQLDA data and null indicator areas, and 
builds two Dynamic SQL statement strings to select data from and insert 
data into the database. 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–87 

The Browse menu item retrieves the data from the database using an SQL 
cursor associated with the dynamic select statement, and displays that data 
using the dynamic putform statement. A submenu allows you to continue 
with the next row or return to the main menu. The Insert menu item retrieves 
the data from the form using the dynamic getform statement, and adds the 
data to the database table using a prepared insert statement. The Save menu 
item commits your changes and, because prepared statements are discarded, 
re-prepares the select and insert statements. When the Quit menu item is 
selected, all pending changes are rolled back and the program is terminated. 



Sample Applications 

6–88     Embedded SQL Companion Guide 

100  ! 
   ! Program: Dynamic_FRS 
   ! Purpose: Main body of Dynamic SQL forms application. Prompt for 
   !      database, form and table name. Call Describe_Form  
   !      to obtain a profile of the form and set up the SQL 
   !      statements. Then allow the user to interactively browse 
   !      the database table and append new data. 
   ! 
  
  program Dynamic_FRS 
   ! Declare the global SQLCA and SQLDA records 
   exec sql include sqlca 
   exec sql include sqlda 
   common (sqlda_area) IISQLDA sqlda 
   exec sql declare sel_stmt statement ! Dynamic SQL SELECT and 
   exec sql declare ins_stmt statement ! INSERT statements 
   exec sql declare csr cursor 
    for sel_stmt    ! Cursor for dynamic SELECT 
   external byte function 
    Describe_Form    ! DESCRIBE form/SQL statements 
   exec sql begin declare section 
    declare string  dbname   ! Database name 
    declare string  formname  ! Form name 
    declare string  tabname   ! Database table name 
    declare string  sel_buf  ! Prepared SELECT statement 
    declare string  ins_buf  ! Prepared INSERT statement 
    declare integer er   ! Error status 
    declare string  ret   ! Prompt error buffer 
   exec sql end declare section 
   exec frs forms 
   ! Prompt for database name - will abort on errors 
   exec sql whenever sqlerror stop 
   exec frs prompt (’Database name: ’, :dbname) 
   exec sql connect :dbname 
   exec sql whenever sqlerror call sqlprint 
   ! 
   ! Prompt for table name - later a Dynamic SQL SELECT statement 
   ! will be built from it. 
   ! 
   exec frs prompt (’Table name: ’, :tabname) 
  
   ! 
   ! Prompt for form name. Check forms errors reported 
   ! through INQUIRE_FRS. 
   ! 
   exec frs prompt (’Form name: ’, :formname) 
   exec frs message ’Loading form ...’ 
   exec frs forminit :formname 
   exec frs inquire_frs frs (:er = ERRORNO) 
   if (er > 0) then 
    exec frs message ’Could not load form. Exiting.’ 
    exec frs endforms 
    exec sql disconnect 
    exit program 
   end if 
   ! Commit any work done so far - access of forms catalogs 
   exec sql commit 
   ! Describe the form and build the SQL statement strings 
   if (not Describe_Form 
    (formname, tabname, sel_buf, ins_buf)) then 
    exec frs message ’Could not describe form. Exiting.’ 
    exec frs endforms 
    exec sql disconnect 
    exit program 
   end if 
   ! 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–89 

   ! PREPARE the SELECT and INSERT statements that correspond 
   ! to the menu items Browse and Insert. If the Save menu item 
   ! is chose the statements are reprepared. 
   ! 
   exec sql prepare sel_stmt from :sel_buf 
   er = sqlcode 
   exec sql prepare ins_stmt from :ins_buf 
   if ((er < 0) or (sqlcode < 0)) then 
    exec frs message 
     ’Could not prepare SQL statements. Exiting.’ 
    exec frs endforms 
    exec sql disconnect 
    exit program 
   end if 
   ! 
   ! Display the form and interact with user, allowing browsing 
   ! and the inserting of new data. 
   ! 
  
   exec frs display :formname fill 
   exec frs initialize 
   exec frs activate menuitem ’Browse’ 
   exec frs begin 
    ! 
    ! Retrieve data and display the first row on the form, 
    ! allowing the user to browse through successive rows. If 
    ! data types from the database table are not consistent 
    ! with data descriptions obtained from the form, a 
    ! retrieval error will occur. Inform the user of this or 
    ! other errors. 
    ! 
    ! Note that the data will return sorted by the first 
    ! field that was described, as the SELECT statement, 
    ! sel_stmt, included an 
    ! order by clause. 
    ! 
    exec sql open csr 
    ! Fetch and display each row 
    while (sqlcode = 0) 
  
     exec sql fetch csr using descriptor :sqlda 
     if (sqlcode <> 0) then 
      exec sql close csr 
      exec frs prompt noecho (’No more rows :’, :ret) 
       exec frs clear field all 
       exec frs resume 
      end if 
     exec frs putform :formname using descriptor :sqlda 
     exec frs inquire_frs frs (:er = ERRORNO) 
     if (er > 0) then 
      exec sql close csr 
      exec frs resume 
     end if 
     ! Display data before prompting user with submenu 
     exec frs redisplay 
     exec frs submenu 
     exec frs activate menuitem ’Next’, FRSKEY4 
     exec frs begin 
      ! Continue with cursor loop 
      exec frs message ’Next row ...’ 
      exec frs clear field all 
     exec frs end 
     exec frs activate menuitem ’End’, FRSKEY3 
     exec frs begin 
      exec sql close csr 
      exec frs clear field all 



Sample Applications 

6–90     Embedded SQL Companion Guide 

      exec frs resume 
     exec frs end 
    next    ! While there are more rows 
   exec frs end 
   exec frs activate menuitem ’Insert’ 
   exec frs begin 
    exec frs getform :formname using descriptor :sqlda 
    exec frs inquire_frs frs (:er = errorno) 
    if (er > 0) then 
     exec frs clear field all 
     exec frs resume 
    end if 
    exec sql execute ins_stmt using descriptor :sqlda 
    if ((sqlcode < 0) or (sqlerrd(2) = 0)) then 
     exec frs prompt noecho (’No rows inserted :’, :ret) 
    else 
     exec frs prompt noecho (’One row inserted :’, :ret) 
    end if 
   exec frs end 
   exec frs activate menuitem ’Save’ 
   exec frs begin 
    ! 
    ! COMMIT any changes and then re-PREPARE the SELECT 
    ! and INSERT statements as the COMMIT statements 
    ! discards them. 
    ! 
    exec sql commit 
    exec sql prepare sel_stmt from :sel_buf 
    er = sqlcode 
    exec sql prepare ins_stmt from :ins_buf 
    if ((er < 0) or (sqlcode < 0)) then 
     exec frs prompt noecho    & 
      (’Could not reprepare SQL statements :’, :ret) 
     exec frs breakdisplay 
    end if 
   exec frs end 
   exec frs activate menuitem ’Clear’ 
    exec frs begin 
       exec frs clear field all 
    exec frs end 
    exec frs activate menuitem ’Quit’, FRSKEY2 
    exec frs begin 
     exec sql rollback 
     exec frs breakdisplay 
     exec frs end 
    exec frs finalize 
    exec frs endforms 
     exec sql disconnect 
  end program      ! Dynamic_FRS 
  ! 
  ! Function: Describe_Form 
  ! Purpose:  Profile the specified form for name and data 
  !      type information. 
  !       Using the DESCRIBE FORM statement, the SQLDA is 
  !      loaded with field information from the form. This 
  !      procedure processes this information to allocate 
  !      result storage, point at storage for dynamic FRS 
  !      data retrieval and assignment, and build SQL 
  !       statements strings for subsequent dynamic SELECT and 
  !       INSERT statements. For example, assume the form 
  !      (and table) ’emp’ has the following fields: 
  ! 
  !    Field Name  Type   Nullable? 
  !    ----------  ----   --------- 
  !    name   char(10)  No 
  !    age   integer4  Yes 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–91 

  !    salary   money  Yes 
  ! 
  !   Based on ’emp’, this procedure will construct the 
  !   SQLDA. The procedure allocates variables from a 
  !   result variable pool (integers, floats and a large 
  !    character string buffer). 
   !    The SQLDATA and SQLIND fields are pointed at 
  !   the addresses of the result variables in the pool. 
  !    The following SQLDA is built: 
  ! 
  !    sqlvar(0) 
  !     sqltype   = IISQ_CHA_TYPE 
  !     sqllen  = 10 
  !     sqldata   = pointer into characters array 
  !     sqlind   = null 
  !     sqlname   = ’name’ 
  !    sqlvar(1) 
  !     sqltype   = -IISQ_INT_TYPE 
  !     sqllen   = 4 
  !     sqldata   = address of integers(1) 
  !     sqlind   = address of indicators(1) 
  !     sqlname   = ’age’ 
  !    sqlvar(2) 
  !     sqltype   = -IISQ_FLT_TYPE 
  !     sqllen   = 8 
  !     sqldata   = address of floats(2) 
  !     sqlind   = address of indicators(2) 
  !     sqlname   = ’salary’ 
  ! 
  !    This procedure also builds two dynamic SQL statements 
  !   strings. Note that the procedure should be extended 
  !    to verify that the statement strings do fit into the 
  !   statement buffers (this was not done in this 
  !    example). The above example would construct the 
  !    following statement strings: 
  ! 
  !    ’SELECT name, age, salary FROM emp ORDER BY name’ 
  !    ’INSERT INTO emp (name, age, salary) VALUES (?, ?, ?)’ 
  ! 
  ! Parameters: 
  !    formname - Name of form to profile. 
  !    tabname - Name of database table. 
  !    sel_buf - Buffer to hold SELECT statement string. 
  !    ins_buf - Buffer to hold INSERT statement string. 
  ! Returns: 
  !    TRUE (-1) - Success/failure - will fail on error 
  !    FALSE (0) or upon finding a table field. 
  ! 
  
200  function byte Describe_Form 
    (string formname, tabname, sel_buf, ins_buf) 
  
  ! Declare the global SQLCA and SQLDA records 
  exec sql include sqlca 
  exec sql include sqlda 
  common (sqlda_area) IISQLDA sqlda 
  ! 
  ! Global result data storage pool for integer data, floating-point 
  ! data, indicator variables, and character data. The character 
  ! data is a large buffer from which sub-strings are chosen. 
  ! 
  declare word constant CHAR_MAX = 2500 
  common (result_area) integer integers(IISQ_MAX_COLS),   & 
     double floats(IISQ_MAX_COLS),    & 
     word indicators(IISQ_MAX_COLS),    & 
     string characters(CHAR_MAX) = 1 



Sample Applications 

6–92     Embedded SQL Companion Guide 

  declare integer char_cnt   ! Character counter 
  declare integer char_cur   ! Current character length 
  declare integer i    ! Index into SQLVAR 
  declare integer base_type  ! Base type w/o nullability 
  declare byte nullable   ! Is nullable (SQLTYPE < 0) 
  
  declare string names   ! Names for SQL statements 
  declare string name_cur   ! Current column name 
  declare string marks    ! Place holders for INSERT 
  declare integer er    ! Error status 
  declare string ret    ! Prompt error buffer 
  ! 
  ! Initialize the SQLDA and DESCRIBE the form. If we cannot fully 
  ! describe the form (our SQLDA is too small) then report an error 
  ! and return. 
  ! 
  sqlda::sqln = IISQ_MAX_COLS 
  exec frs describe form :formname all into :sqlda 
  exec frs inquire_frs frs (:er = errorno) 
  if (er > 0) then 
   Describe_Form = 0   ! Error already displayed 
   exit function 
  end if 
  if (sqlda::sqld > sqlda::sqln) then 
   exec frs prompt noecho (’SQLDA is too small for form :’, :ret) 
   Describe_Form = 0 
   exit function 
  end if 
  if (sqlda::sqld = 0) then  ! No fields 
    exec frs prompt noecho 
     (’There are no fields in the form :’, :ret) 
     Describe_Form = 0 
     exit function 
  end if 
  ! 
  ! For each field determine the size and type of the result data 
  ! area. This data area will be allocated out of the result 
  ! variable pool (integers, floats and characters) and will be 
  ! pointed at by SQLDATA and SQLIND. Note that the index into 
  ! SQLVAR begins at 0 and not 1 because the array is zero-based. 
  ! 
  ! If a table field type is returned then issue an error. 
  ! 
  ! Also, for each field add the field name to the ’names’ buffer 
  ! and the SQL place holders ’?’ to the ’marks’ buffer, which 
  ! will be used to build the final SELECT and INSERT statements. 
  ! 
  
  char_cnt = 1 
  for i = 0 to sqlda::sqld - 1   ! For each column 
   ! Find the base-type of the result (non-nullable). 
   if (sqlda::sqlvar(i)::sqltype > 0) then 
    base_type = sqlda::sqlvar(i)::sqltype 
    nullable = 0    ! False 
   else 
    base_type = -sqlda::sqlvar(i)::sqltype 
    nullable = -1 ! True 
   end if 
   ! 
   ! Collapse all different types into one of 4-byte integer, 
   ! 8-byte floating-point, or fixed length character. Figure 
   ! out where to point SQLDATA and SQLIND - which member 
   ! of the result variable pool is compatible with the data. 
   ! 
   select base_type 
    case IISQ_INT_TYPE   ! Use 4-byte integer 



Sample Applications 

Chapter 6: Embedded SQL for BASIC    6–93 

     sqlda::sqlvar(i)::sqltype = IISQ_INT_TYPE 
     sqlda::sqlvar(i)::sqllen = 4 
     sqlda::sqlvar(i)::sqldata = loc(integers(i)) 
  
    case IISQ_FLT_TYPE, IISQ_MNY_TYPE ! Use 8-byte float 
     sqlda::sqlvar(i)::sqltype = IISQ_FLT_TYPE 
      sqlda::sqlvar(i)::sqllen = 8 
      sqlda::sqlvar(i)::sqldata = loc(floats(i)) 
  
    case IISQ_CHA_TYPE, IISQ_VCH_TYPE, IISQ_DTE_TYPE 
    ! 
    ! Determine the length of the sub-string required 
    ! from the large character buffer. If we have enough 
    ! space left then point at the start of the corresponding 
    ! sub-string, otherwise print an error and return. 
    ! 
    ! Note that for DATE types we must set the length. 
    ! 
    if (base_type = IISQ_DTE_TYPE) then 
     char_cur = IISQ_DTE_LEN 
    else 
     char_cur = sqlda::sqlvar(i)::sqllen 
    end if 
    if ((char_cnt + char_cur) > CHAR_MAX) then 
     exec frs prompt noecho     & 
      (’Character pool buffer overflow :’, :ret) 
     Describe_Form = 0 
    exit function 
    end if     ! If too many characters 
    ! 
    ! Grab space out of the large character buffer and 
    ! keep track of the amount of space used so far. 
    ! 
    sqlda::sqlvar(i)::sqltype = IISQ_CHA_TYPE 
    sqlda::sqlvar(i)::sqllen  = char_cur 
    sqlda::sqlvar(i)::sqldata = loc(characters(char_cnt)) 
    char_cnt     = char_cnt + char_cur 
   case IISQ_TBL_TYPE     ! Table field 
    exec frs prompt noecho      & 
     (’Table field found in form :’, :ret) 
    Describe_Form = 0 
    exit function 
   case else      ! Bad data type 
    exec frs prompt noecho (’Invalid field type :’, :ret) 
    Describe_Form = 0 
    exit function 
  end select      ! Of checking types 
  ! If nullable then point at a null indicator and negate type id 
  if (nullable) then 
   sqlda::sqlvar(i)::sqlind  = loc(indicators(i)) 
   sqlda::sqlvar(i)::sqltype = -sqlda::sqlvar(i)::sqltype 
  else 
   sqlda::sqlvar(i)::sqlind  = 0 
  end if 
  ! 
  ! Store field names and place holders (separated by commas) 
  ! for the SQL statements. 
  ! 
  name_cur =       & 
   left$(sqlda::sqlvar(i)::sqlnamec, sqlda::sqlvar(i)::sqlnamel) 
  if (i = 0) then 
   names = name_cur 
   marks = ’?’ 
  else 
   names = names + ’,’ + name_cur 
   marks = marks + ’,?’ 



Sample Applications 

6–94     Embedded SQL Companion Guide 

  end if 
  next i      ! End of column processing 
  ! 
  ! Create final SELECT and INSERT statements. For the SELECT 
  ! statement ORDER BY the first field. 
  ! 
  name_cur =        & 
   left$(sqlda::sqlvar(0)::sqlnamec, sqlda::sqlvar(0)::sqlnamel) 
  sel_buf = ’select ’ + names + ’ from ’ + tabname & 
     + ’ order by ’ + name_cur 
  ins_buf = ’insert into ’ + tabname + ’ (’ + names & 
     + ’) values (’ + marks + ’)’ 
  
  Describe_Form = -1     ! True 
 

 end function      ! Describe_Form 

 

 
 



  

 

Chapter 7: Embedded SQL for Pascal    7–1 

Chapter 7: Embedded SQL for Pascal 
 

This chapter describes the use of Embedded SQL with the Pascal programming 
language. 

Embedded SQL Statement Syntax for Pascal 
This section describes the language-specific issues inherent in embedding SQL 
database and forms statements in a Pascal program. An Embedded SQL 
database statement has the following general syntax: 

 [margin] exec sql SQL_statement terminator 

The syntax of an Embedded SQL/FORMS statement is almost identical: 

 [margin] exec frs SQL/FORMS_statement terminator 

For information on SQL statements, see the SQL Reference Guide. For 
information on SQL/FORMS statements, see the Forms-based Application 
Development Tools User Guide. 

The sections below describe the various syntactical elements of these 
statements as implemented in Pascal. 

Margin 

There are no specified margins for Embedded SQL statements in Pascal. The 
exec keyword can begin anywhere on the source line. It can be preceded only 
by white space (blanks and tabs) and/or a label. 

Terminator 

The terminator for Pascal is the semicolon (;).  For example, a select 
statement embedded in a Pascal program would look like: 

exec sql select ename  
   into :namevar 
   from employee 
   where eno = :numvar; 

An embedded statement cannot be followed on the same line by another 
embedded statement or a Pascal statement. Doing so will cause preprocessor 
syntax errors on the second statement. Following the Pascal terminator, only 
comments and white space are allowed to the end of the line. 



Embedded SQL Statement Syntax for Pascal 

7–2     Embedded SQL Companion Guide 

Even though some Pascal statements, such as the last statement before a 
Pascal else clause, do not allow a semicolon, Embedded SQL requires the 
semicolon. For more details on this and other coding requirements, see 
Advanced Processing in this chapter. 

Labels 

Like Pascal statements, Embedded SQL statements can have a label prefix. 
The label must begin with a digit, an alphabetic character, or an underscore, 
must be the first word on the line (optionally preceded by white space), and 
must be terminated with a colon. For example: 

close_cursor: exec sql close cursor1; 

The label can appear anywhere a Pascal label can appear. As in standard 
Pascal, the label must be declared before it is used. This declaration must 
occur outside any Embedded SQL declaration section. Even though the 
preprocessor will accept a label in front of any exec sql or exec frs prefix, it 
may not be appropriate to code a label on some lines. For example, the 
following, although acceptable to the preprocessor, causes a compiler error 
because labels are not allowed before declarations: 

include_sqlca: exec sql include sqlca; 

As a general rule, use labels only with executable statements. 

Line Continuation 

There are no line continuation rules for Embedded SQL statements in Pascal. 
Statements can continue across multiple lines, extending to the Pascal 
terminator. Blank lines can be included in a statement. 

Comments 

Embedded SQL/Pascal comments can be either of the two standard Pascal 
comments,  delimited by “(*” and “*)” or by “{” and “}”. For example: 

exec frs message ’No permission ...’;(*No user access *) 
exec frs sleep 2; { Let the user read it } 

Note that you cannot mix delimiters: a comment starting with “{” must end 
with “}” and not with “*)”. You cannot nest comments, but you can extend 
them over multiple lines. As a convention, comments in this document will 
normally be delimited by “{” and “}”. 

You can include an Embedded SQL/Pascal comment anywhere in an Embedded 
SQL statement that a blank is allowed, with the following exceptions: 



Embedded SQL Statement Syntax for Pascal 

Chapter 7: Embedded SQL for Pascal    7–3 

 Between the margin and the word exec (whether or not you have a Pascal 
label prefix). 

 Between the word exec and the word sql or frs. In the following example, 
comments cause both statements to be interpreted as Pascal host code: 

{ Initial comment } exec sql include sqlca; 
 exec { Between } sql help employee; 

 Between words that are reserved when they appear together. For a list of 
these double reserved words, see the list of Embedded SQL keywords in 
the SQL Reference Guide. 

 In string constants. 

 In parts of statements that are dynamically defined. For example, a 
comment in a string variable specifying a form name is interpreted as part 
of the form name. 

 Between component lines of Embedded SQL/FORMS block-type 
statements. All block-type statements (such as activate and 
unloadtable) are compound statements that include a statement section 
delimited by begin and end. Comment lines must not appear between the 
statement and its section. The preprocessor would interpret such 
comments as Pascal host code and generate preprocessor syntax errors. 
(Note, however, that comments can appear on the same line as the 
statement.) For example, the following statement would cause a syntax 
error on the Pascal comment: 

exec frs unloadtable empform  
   employee (:namevar = ename); 
{Illegal comment before statement body} 
exec frs begin; {Comment legal here} 
   msgbug := namevar; 
exec frs end; 

 Statements made up of more than one compound statement, such as the 
display statement, which typically consists of the display clause, an 
initialize section, activate sections and a finalize section, cannot have 
Pascal comments between any of the components. These comments would 
be translated as host code and would cause syntax errors on subsequent 
statement components. 

You can also use the SQL comment delimiter “--”. Everything between this 
delimiter and the end of the line is considered a comment. For example: 

exec sql delete -- Delete all employees 
  from employee; 

Note: Because Pascal assumes that “(*” is the beginning of a comment, when 
you want to use the aggregate function, count, to count the number of rows in 
a table, that is count (*), you must put a space between the left parenthesis 
and the asterisk, count ( *). 



Embedded SQL Statement Syntax for Pascal 

7–4     Embedded SQL Companion Guide 

String Literals 

Embedded SQL string literals are delimited by single quotes. To embed a 
single quote in a string literal you should double it, as in: 

exec sql insert  
  into people (age, surname) 
  values (15, ’O’’Hara’); 

String literals cannot be continued over multiple lines. 

String Literals and Statement Strings 

The Dynamic SQL statements prepare and execute immediate both use 
statement strings, which specify an SQL statement. The statement string can 
be specified by a string literal or character string variable, as in: 

exec sql execute immediate ’drop employee’; 
str = ’drop employee’; 
exec sql execute immediate :str; 

As with regular Embedded SQL string literals, the statement string delimiter is 
the single quote. However, quotes embedded in statement strings must 
conform to the runtime rules of SQL when the statement is executed. Notice 
the doubling of the single quote in the following Dynamic insert statement. 

exec sql prepare s1 from 
   ’Insert into t1 values (’’single’’’’double" ’’)’; 

The runtime evaluation of the above statement string is: 

Insert into t1 values (’single’’double" ’)  

The Create Procedure Statement 

As mentioned in the SQL Reference Guide, the create procedure statement 
has language-specific syntax rules for line continuation, string literal 
continuation, comments, and the final terminator. These syntax rules follow 
the rules discussed in this section. For example, the final terminator is a 
semicolon. Although the preprocessor treats the create procedure statement 
as a single statement, all statements in the body of the procedure are 
terminated with a semicolon as is an Embedded SQL/Pascal statement. 

The following example shows a create procedure statement that follows the 
Embedded SQL/Pascal syntax rules: 

exec sql 
   create procedure proc (parm integer) as 
   declare 
    var integer; 
   begin 
    if parm > 10  
    then { use pascal comment delimiters } 
      message ’pascal strings cannot  



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–5 

     continue over lines’; 
     insert into tab values (:parm); 
    endif; 
   end; 

Decimal Literals 

The preprocessor distinguishes between decimal and floating-point literals in 
SQL and Forms Runtime System (FRS) statements according to the following 
rules: 

 A literal containing a decimal point with no E notation is a decimal literal. 

 A literal with E notation is a floating-point literal. 

For example: 

exec sql insert  
  into mytable (salary) values (23000.12)  
exec sql insert  
  into mytable (number) values (1.4E4)  

A numeric literal with or without the E notation is treated as a float if it is in 
the host declaration section. 

In addition, the preprocessor treats integer literals greater than MAXINT as 
decimals. This allows host programs to input large integer values. 

Ingres will treat ‘23000.00’ as a decimal literal and ‘1.4E2’ as a float literal.  

However, applications will continue to use host language rules for interpreting 
literals appearing in host declarations. For example: 

exec sql begin declare section  
 integer 2 i (1.234) 
exec sql end declare section  

The literal ‘1.234’ is interpreted according to the Pascal compiler rules. 

This is consistent with the Ingres convention of interpreting SQL statements 
according to SQL rules and host statements according to host language 
compiler rules.  

Pascal Variables and Data Types 
This section describes how to declare and use Pascal program variables in 
Embedded SQL.  



Pascal Variables and Data Types 

7–6     Embedded SQL Companion Guide 

Embedded SQL/Pascal Declarations 

The following sections describe SQL/Pascal declarations. 

Embedded SQL Variable Declaration Sections 

Embedded SQL statements use Pascal variables to transfer data from the  
database or a form into the program and vice versa. You must declare Pascal 
variables and constants to Embedded SQL before using them in any Embedded 
SQL statements. Pascal variables, types, and constants are declared to 
Embedded SQL in a declaration section. This section has the following syntax: 

              exec sql begin declare section; 
                            Pascal constant, type and variable declarations 
              exec sql end declare section; 

Note that placing a label in front of the exec sql end declare section 
statement causes a preprocessor syntax error. 

Embedded SQL variable declarations are global to the program file from the 
point of declaration onwards. Multiple declaration sections can be incorporated 
into a single program, as would be the case when a few different Pascal 
procedures issue embedded statements using local variables. Each procedure 
can have its own declaration section. For more information on the declaration 
of variables that are local to Pascal procedures, see The Scope of Objects in 
this chapter. 

Reserved Words in Declarations 

All Embedded SQL keywords are reserved. Therefore, you cannot declare 
variables with the same names as ESQL keywords. You can only use them in 
quoted string literals. These words are: 

 

array 
case 
const 
def 

file 
function 
label 
otherwise 

packed 
procedure 
range 
record 

ref 
static 
type 
var 

varying 

 

Note that not all Pascal compilers reserve every keyword listed. However, the 
Embedded SQL/Pascal preprocessor does reserve all these words. 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–7 

Data Types and Constants 

The Embedded SQL/Pascal preprocessor accepts the data types that are shown 
in the following table. The table maps these types to their corresponding 
Ingres type categories. For a description of the exact type mapping, see Data 
Type Conversion in this chapter. 

Pascal Data Types and Corresponding Ingres Types 
 

Pascal Type Ingres Type 

boolean integer 

integer integer 

unsigned integer 

real float 

single float 

double float 

char character 

indicator indicator 

real decimal 

Your program should not redefine any of the above types. 

The table below maps the Pascal constants to their corresponding Ingres type 
categories. 

Constants and Corresponding Ingres Types 
 

Pascal Constant Ingres Type 

maxint integer 

true integer 

false integer 

The Integer Data Types 

Several Pascal types are considered as integer type by the preprocessor as 
shown in the following table. 



Pascal Variables and Data Types 

7–8     Embedded SQL Companion Guide 

The Integer Data Types 
 

Description Example 

integer Integer 

4-byte subrange of integer 1..127 

2-byte subrange of integer [word] 0..32767 

1-byte subrange of integer [byte] 0..63 

enumeration (red, blue, green) 

boolean Boolean 

The preprocessor can accept all integer types. Even though some integer 
types have Pascal constraints, such as the subranges and enumerations, 
Embedded SQL does not check these constraints, either during preprocessing 
or at runtime. 

The type boolean is handled as a special type of integer. Embedded SQL 
treats the boolean type as an enumerated type and generates the correct 
code in order to use this type to interact with an Ingres integer. Enumerated 
types are described in more detail later. 

The Indicator Type 

An indicator type is a 2-byte integer type. There are three ways to use 
indicator types in an application: 

 In a statement that retrieves data from Ingres, you can use an indicator 
type to determine if its associated host variable was assigned a null. 

 In a statement that sets data to Ingres, you can use an indicator type to 
assign a null to the database column, form field, or table field column. 

 In a statement that retrieves character data from Ingres, you can use the 
indicator type as a check that the associated host variable was large 
enough to hold the full length of the returned character string. 

Embedded SQL/Pascal predefines the 2-byte integer type indicator. As with 
other types, you should not redefine the indicator type. This type definition is 
in the file that is included when preprocessing the Embedded SQL statement 
include sqlca. The type declaration syntax is: 

type 
  Indicator = [word] -32768..32767; 

Because the type definition is in the referenced include file, you can only 
declare variables of type indicator after you have issued include sqlca. This 
declaration does not preclude you from declaring indicator variables of other 
2-byte integer types. 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–9 

The Floating-Point Data Types 

The preprocessor accepts three floating-point types. These are single and 
real, which are 4-byte floating-point types, and double, which is the 8-byte 
floating-point type. Note that, although the preprocessor accepts quadruple 
data type declarations, it does not accept references to variables of type 
quadruple. For more information, see Record Type Definition in this chapter. 

The Double Storage Format 

Embedded SQL requires that the storage representation for double variables 
be d_floating, because the Embedded SQL runtime system uses that format 
for floating-point conversions. If your Embedded SQL program has double 
variables that interact with the Embedded SQL runtime system, you must 
make sure they are stored in the d_floating format. Because the default Pascal 
format is d_floating, your program will automatically use the correct storage 
representation unless you use the g_floating compiler option. Any module 
compiled with this option must not use double variables or float literals to 
interact with Ingres. Float literals are treated as double precision numbers by 
Ingres. Note that Embedded SQL recognizes only single, and not double or 
quadruple, exponential notation for real constants. Thus, any real constants 
passed to Ingres are always single precision and are unaffected by the 
g_floating compiler option. 

The Character Data Types 

Three Pascal data types are compatible with Ingres string objects: char, 
packed array of char, and varying of char.  Note that literal string 
constants are of type packed array of char. Embedded SQL allows only 
regular Pascal string literals: sequences of printing characters enclosed in 
single quotes. The VMS Pascal extensions of parenthesized string constructors 
and of nonprinting characters represented by their ASCII values in 
parentheses are not allowed. 

The char data type does have some restrictions. Because of the mechanism 
used to pass string-valued arguments to the Embedded SQL runtime library, 
you cannot use a member of a packed array of char or varying of char to 
interact with Ingres. Also, a plain array of char (that is, not packed or 
varying) is not compatible with Ingres string objects; an element of such an 
array, however, is a char and as such is compatible. 

For example, given the following legal declarations: 

exec sql begin declare section; 
type 
 Alpha = ’a’..’z’;               {1 character} 
 Packed_6 = packed array[1..6]  
               of Char;            {6-char string} 
 Vary_6 = varying[6] of Alpha;  {6-char string} 
 Array_6 = array[1..6]  



Pascal Variables and Data Types 

7–10     Embedded SQL Companion Guide 

               of Char;            {1-dimensional array} 
 
 
var 
 letter: Alpha; {1 character} 
 p_str_arr: array[1..5]  
               of Packed_6;       {Array of strings} 
 chr_arr: array[1..6]  
               of Char;           {1-dimensional array} 
 two_arr: array[1..5]  
               of Array_6;        {2-dimensional array of char} 
 v_string : Vary_6;            {String} 
exec sql end declare section; 

these usages are legal: 

exec frs message letter;          {A char is a string} 
exec frs message chr_arr[3];      {A char is a string} 
exec frs message two_arr[2][5];   {A char is a string} 
exec frs message v_string;        {A varying array is a string} 
exec frs message p_str_arr[2];  
       {A packed array is a string} 

but these usages are illegal: 

exec frs message  
   chr_arr;          {An array of chars is not a string} 
exec frs message  
   v_string[2];      {Cannot index a varying array} 
exec frs message 
   p_str_arr[2][3]; {Cannot index a packed array} 

Declaration Syntax 

This section describes the syntax for variable, type, and constant declarations. 
It also describes how to declare labels. 

Attributes 

In type definitions, Embedded SQL allows VMS Pascal attributes both at the 
beginning of the definition and just before the type name. The only attributes 
the preprocessor recognizes in type definitions are byte, word, and long. The 
preprocessor ignores any optional storage unit constant “(n)” appearing with 
the attribute. The preprocessor also ignores all other attributes, although it 
allows them. 

The following example shows how to use the byte attribute in order to convert 
a 4-byte integer subrange into a 1-byte variable. 

exec sql begin declare section; 
var 
   v_i1 : [byte] -128..127; 
exec sql end declare section; 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–11 

Note that Pascal requires that a size attribute be at least as large as the size of 
its type. Therefore, the following declaration would be illegal, because 400 will 
not fit into one byte: 

exec sql begin declare section; 
var 
   v_i1 : [byte] 0..400; 
exec sql end declare section; 

Embedded SQL/Pascal does not allow explicit attribute size conflicts, as, for 
example: 

exec sql begin declare section; 
type 
  i1 = [byte] -128..127; {i1 is a 1-byte integer type} 
var 
  v_i2 : [word] i1; {i1 cannot be extended to 2 bytes} 
exec sql end declare section; 

Label Declarations 

An Embedded SQL block-structured statement is a statement delimited by the 
begin and end clauses. The select loop and the forms statements display, 
unloadtable, submenu, formdata, and tabledata are examples of these 
block-structured statements. All these statements generate Pascal labels in 
order to handle the complex control flow implicit in the statement. Because 
Pascal requires that all labels be declared before their use, Embedded 
SQL/Pascal requires that you issue an exec sql label statement in the Pascal 
declaration section of every routine (program, procedure, or function) that 
issues one of these statements. You must also end the routine with the 
Embedded SQL exec sql end statement, rather than the Pascal end 
statement, so that the preprocessor will know the scope of the label 
declaration. 

The syntax for a label declaration is: 

 exec sql label [label_name {, label_name}]; 
 ... 

 exec sql end ; | . 

Syntax Notes: 

1. You can use exec frs and exec sql interchangeably with the Embedded 
SQL label and end statements. 

2. The preprocessor ignores label_names, except that they will appear in the 
generated Pascal label statement. 

3. The terminating semicolon of the Embedded SQL label statement is 
required, even if there are no label_names. 

4. Only one Embedded SQL label statement can occur in each routine. 



Pascal Variables and Data Types 

7–12     Embedded SQL Companion Guide 

5. Each Embedded SQL label statement must have a matching Embedded 
SQL end statement. This exec sql end statement replaces the Pascal end 
statement and can be terminated with a semicolon or a period. 

6. The label statement must appear in a Pascal declaration section, and not 
in an Embedded SQL declare section. 

The following example illustrates the use of label declarations: 

procedure Unload_Table; 
exec frs label; {Must include this statement or exec sql 
                  label,because unloadtable uses labels} 
exec sql begin declare section; 
var 
  age : integer; 
exec sql end declare section; 
begin {unload_table} 
 exec frs unloadtable ’form’ ’table’ (:age = emp_age); 
 exec frs begin; 
      ... 
 exec frs end; 
exec frs end; {Unload_Table} 

Constant Declarations 

The syntax for a constant declaration is: 

              const constant_name = constant_expr;  
                            {constant_name = constant_expr;} 

where a constant_expr is one of the following: 

              [+|-] constant_number 
              [+|-] constant_name 
              string_constant 

Constants can be used to set Ingres values but cannot be assigned values 
from Ingres. 

Syntax Notes: 

1. A constant_name must be a legal Pascal identifier beginning with an 
underscore or alphabetic character. 

2. A constant_number can be either an integer or real number. 

3. A variable or type name must begin with an alphabetic character, which 
can be followed by alphanumeric characters or underscores. 

4. Embedded SQL/Pascal recognizes only single, and not double or 
quadruple, exponential notation for constants of type real. 

5. The type of a constant_name is determined from the type of its 
constant_expr. 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–13 

6. If a “+” or a “-” precedes a constant_name that is used as a 
constant_expr, the constant_name must be numeric. 

7. Embedded SQL/Pascal does not support the declaration of arbitrary 
constant expressions. 

The following example illustrates the use of constants declarations: 

exec sql begin declare section; 
const 
   min_sal = 15000.00; {Real} 
   pi  = 3.14159; {Real} 
   max_emps = +99;  {Integer} 
   max_credit = 100000.00;  {Real} 
   max_debt = -max_credit; {Real} 
   yes  = ’y’;  {Char} 
exec sql end declare section; 

Type Declarations 

An Embedded SQL/Pascal type declaration has the following syntax: 

              type type_name = type_definition;  
                            {type_name = type_definition;} 

where type_definition is any of the following: 

 

Syntax Category 

type_name renaming 

(enum_identifier 
{,enum_identifier}) 

enumeration 

[+|-] constant .. [+|-] constant numeric or character subrange 

^type_name pointer 

varying [upper_bound] 
ofchar_type_name 

varying length string 

[packed] array [dimensions] of 
type_definition 

array 

record field_list end record 

file of type_definition file 

set of type_definition set 

Each of these type definitions is discussed in its own section below. All type 
names must be legal Pascal identifiers beginning with an alphabetic or 
underscore character. 



Pascal Variables and Data Types 

7–14     Embedded SQL Companion Guide 

Renaming Type Definition 

The declaration for the renaming of a type uses the following syntax: 

 type new_type_name = type_name; 

Syntax Notes: 

1. The type_name must be either an Embedded SQL/Pascal type or a type 
name already declared to Embedded SQL (such as Integer or Real). 

2. The new_type_name cannot be Integer, Real or Char or any other type 
listed at the beginning of this section. 

The following example illustrates how to use this declaration: 

exec sql begin declare section; 
type 
  NaturalInt = Integer;       {A "natural" sized integer} 
exec sql end declare section; 

Enumeration Type Definition 

The declaration for an enumeration type definition has the following syntax: 

 type type_name = ( enum_identifier {, enum_identifier} ); 

Syntax Notes: 

1. An enum_identifier must be a legal Pascal identifier beginning with 
an alphabetic or underscore character. 

2. The enum_identifiers are treated as 4-byte integer constant identifiers. 

3. The type_name maps to a 1-byte integer if there are fewer than 257 
enumerated identifiers. Otherwise, it maps to a 2-byte integer. 

4. When using an enumerated identifier as a value in an Embedded 
SQL statement, only the ordinal position of the identifier in the original 
enumerated list is important. In assigning a value to a variable of 
enumeration type, Embedded SQL passes the variable by address and 
assumes that the value is a legal one for the variable. 

The following example illustrates the use of this declaration: 

exec sql begin declare section; 
type 
  Table_Field_States = 
    (undefined, newrow, unchanged, changed, deleted); 
exec sql end declare section; 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–15 

Subrange Type Definition 

The syntax for declaring a subrange type definition is either: 

 type type_name = [+|-]integer_const .. [+|-]integer_const; 

or 

 type type_name = string_const .. string_const; 

Syntax Notes: 

1. An integer_const can be either an integer literal or a named integer 
constant. 

2. A string_const must be either a string literal or the name of a string 
constant. Although the preprocessor accepts any length string constant, 
the compiler requires the constant to be a single character. 

The following example illustrates the use of this declaration: 

exec sql begin declare section; 
type 
  alpha = ’a’ .. ’z’; 
  months = 1 .. 12; 
  minmax = -value .. value; {"value" is an integer constant} 
  updated_states = changed .. deleted; {from previous example} 
exec sql end declare section; 

Pointer Type Definition 

The declaration for a pointer type definition has the following syntax: 

 type pointer_name = ^type_name; 

Syntax Notes: 

The type_name can be either a previously defined type, or a type not yet 
defined. If the type has not yet been defined, the pointer type definition is a 
forward pointer definition. In that case, Embedded SQL requires that you 
define the type_name before using a variable of type pointer_name in an 
Embedded SQL statement. 

The following example illustrates the use of this declaration: 

exec sql begin declare section; 
type 
  empptr = ^emprecord;  {forward pointer declaration} 
  emprecord = record 
    e_name   : varying[40] of char; 
    e_salary  : real; 
    e_id   : integer; 
    e_next   : empptr; 
  end; 
var 



Pascal Variables and Data Types 

7–16     Embedded SQL Companion Guide 

  empnode = empptr; 
exec sql end declare section; 
  ... 
 
exec sql select name, salary, id 
  into  :empnode^.e_name, 
    :empnode^.e_salary, 
    :empnode^.e_id 
  from emp; 

Varying Length String Type Definition 

The declaration for a varying length string type definition has the following 
syntax: 

              type varying_type_name = varying [upper_bound] of  
                                                                                    char_type_name; 

Syntax Notes: 

1. The upper_bound of a varying array specification is not parsed by the 
Embedded SQL preprocessor. Consequently, an illegal upper bound (such 
as a non-numeric expression) will be accepted by the preprocessor but will 
later cause Pascal compiler errors. For example, both of the following type 
declarations are accepted, even though only the first is legal in Pascal: 

exec sql begin declare section; 
type 
  string20  = varying[20] of char; 
  what  = varying[’upperbound’] of char; 
exec sql end declare section; 

2. Embedded SQL/Pascal treats a variable of type varying of char as a 
string, not an array. 

The following example illustrates the use of this declaration: 

exec sql begin declare section; 
type 
  pname = varying[100] of char; 
var 
  user_name : pname; 
exec sql end declare section; 
  ... 
exec sql insert into person (name)  
  values (:user_name); 

Array Type Definition 

The declaration for an array type definition has the following syntax: 

 type type_name = [packed] array [dimensions] of type_definition; 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–17 

Syntax Notes: 

1. The dimensions of an array specification are not parsed by the Embedded 
SQL preprocessor. Consequently, an illegal dimension (such as a non-
numeric expression) will be accepted by the preprocessor but will later 
cause Pascal compiler errors. For example, both of the type declarations 
shown below are accepted, even though only the first is legal in Pascal. 

exec sql begin declare section; 
type 
  square  = array[1..10, 1..10] of integer; 
  what  = array[’dimensions’] of real; 
exec sql end declare section; 

The preprocessor only verifies that an array variable is followed by 
brackets when used (except packed array of char—see below). 

2. ESQL/Pascal treats a variable of type packed array of char as a string, 
not an array. Thus, it is not followed by brackets when used. 

3. Components of a packed array cannot be passed to the Embedded SQL 
runtime routines. Therefore, you should not declare packed arrays to 
Embedded SQL, except for packed arrays of char, which are passed as a 
whole (for example, as character strings). 

The following example illustrates the use of the array type definition: 

exec sql begin declare section; 
type 
   ssid = packed array [1..9] of char; 
var 
   user_ssid : ssid; 
exec sql end declare section; 
   ... 
 
exec sql insert into person (ssno)  
   values (:user_ssid); 

Record Type Definition 

The declaration for a record type definition has the following syntax: 

              type record_type_name = 
                            record 
                                          field_list [;] 
                            end; 

where field_list is: 

              field_element {; field_element} 
              [case [tag_name :] type_name of 
                            [case_element {; case_element}] 
                            [otherwise ( field_list )]] 



Pascal Variables and Data Types 

7–18     Embedded SQL Companion Guide 

where field_element is: 

              field_name {, field_name} : type_definition 

and case_element is: 

              case_label {, case_label} : ( field_list ) 

Syntax Notes: 

1. All clauses of a record component have the same rules and restrictions as 
they do in a regular type declaration. For example, as with regular 
declarations, the preprocessor does not check dimensions for correctness. 

2. In the case list, the case_labels can be numbers or names. Embedded 
SQL need not know the names. 

3. ESQL/Pascal record declarations must be entirely contained in a 
declaration section; consequently all of the record components will be 
declared to the preprocessor. To minimize the effect of this restriction, the 
types quadruple and set of are allowed as legal types in an Embedded 
SQL record declaration. It is, however, an error to use variables of those 
types in Embedded SQL statements. 

4. Components of a packed record cannot be passed to the runtime ESQL 
routines. Thus, do not declare packed records to ESQL. 

The following example illustrates the use of the record type definition: 

exec sql begin declare section; 
type 
   addressrec = record 
     street: packed array[1..30] of char; 
     town: packed array[1..10] of char; 
     zip: 1 .. 9999; 
   end; 
 
   employeerec = record 
     name:    packed array[1..20] of char; 
     age:    [byte] 0 .. 128; 
     salary:    real; 
     address:   addressrec; 
     checked:   boolean; 
     scale:     Quadruple;  {Cannot be used  
          by Embedded SQL}  
  end; 
exec sql end declare section; 

File Type Definition 

The declaration for a file type definition, has the following syntax: 

              type type_name = file of type_definition; 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–19 

Syntax Notes: 

1. A variable of type file can only be used with Embedded SQL through the 
file buffer. A file buffer for a given type_definition is referenced in the 
same manner as a pointer to the same type. 

2. Components of a packed file cannot be passed to the Embedded SQL 
runtime routines. Do not declare packed files to ESQL. 

The following example illustrates the use of the file type definition: 

exec sql begin declare section; 
var 
  myfile : file of integer; 
 exec sql end declare section; 
  ... 
 
get (myfile); 
exec sql insert into emp (floor)  
  values (:myfile^); 
  ... 
 
exec sql select floor  
  into :myfile^; 
  from emp; 
put (myfile); 

Set Type Definition 

The declaration for a set type definition has the following syntax: 

              type type_name = set of type_definition; 

Syntax Note: 

Although the preprocessor accepts set definitions, no set variables can be used 
in Embedded SQL statements. As stated in the section on record declarations, 
set declarations are accepted only because all record components must be 
declared to Embedded SQL. 

Variable Declarations 

An Embedded SQL/Pascal variable declaration has the following syntax: 

              var var_name {, var_name} : type_definition [:= initial_value]; 
                            {var_name {, var_name} : type_definition [:= 
initial_value];} 

Syntax Notes: 

1. See the previous sections for information on the type_definition. 



Pascal Variables and Data Types 

7–20     Embedded SQL Companion Guide 

2. The initial_value is not parsed by the preprocessor. Consequently, any 
initial value is accepted, even if it may later cause a Pascal compiler error. 
Furthermore, the preprocessor accepts an initial value with any variable 
declaration, even where not allowed by the compiler. For example, both of 
the following initializations are accepted, even though only the first is legal 
in Pascal: 

exec sql begin declare section; 
var 
   rowcount: integer := 1; 
   msgbuf: packed array[1..100] of char := 2; 
exec sql end declare section; 

The following example illustrates the use of variable declarations: 

exec sql begin declare section; 
var 
   rows, records:  0..500 := 0; 
   was_error:  boolean; 
   msgbuf:   varying[100] of char := ’ ’; 
   operators:   array[1..6] of packed array[1..2] := 
      (’= ’, ’!=’, ’< ’, ’> ’, ’<=’, ’>=’); 
   employees:   array[1..100] of employeerec; 
 
   emp_ptr:  ^employeerec; 
   work_days:   (mon, tue, wed, thu, fri); 
   day_name:   varying[8] of char; 
   random_ints:   file of integer; 
   ind_set:   array[1...10] of indicator; 
exec sql end declare section; 

Formal Parameter Declarations 

Most VAX/VMS Pascal formal parameter declarations are acceptable to 
Embedded SQL. 

An Embedded SQL/Pascal formal parameter declaration has the following 
syntax: 

              formal_param_section {; formal_param_section} 

where formal_param_section is: 

              formal_var | formal_routine [:= [%mechanism] default_value] 

A formal_var has the syntax: 

[var | %mechanism] identifier {, identifier} : typename_or_schema 

where typename_or_schema is one of the following: 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–21 

              type_name 
              varying [upper_bound_identifier] of type_name 
              packed array [schema_dimensions] of typename_or_schema 
              array [schema_dimensions {; schema_dimensions}] of 
                                                                                                   
typename_or_schema 

where schema_dimensions is: 

              lower_bound_identifier .. upper_bound_identifier : 
scalar_type_name 

A formal_routine has the syntax: 

[%mechanism] routine_header 

where routine_header is one of the following: 

              procedure proc_name ( [formal_parameter_declaration] ) 
              function func_name ( [formal_parameter_declaration] ) 
                                                                       :return_type_name 

In a subprogram declaration, the syntax of a formal parameter declaration is: 

              procedure proc_name 
              exec sql begin declare section; 
                            ( formal_parameter_declaration ) 
              exec sql end declare section; 
                                          ; 
                            ... 

or: 

              function func_name 
              exec sql begin declare section; 
                            ( formal_parameter_declaration ) 
              exec sql end declare section; 
                                          : return_type_name; 
                            ... 

Syntax Notes: 

1. The Embedded SQL preprocessor ignores the names of procedures and 
functions used as formal parameters, but checks their formal parameters 
for legality. 

2. The default_value is not parsed by the preprocessor. Consequently, any 
default value is accepted, even if it may later cause a Pascal compiler 
error. For example, both of the parameter default values shown below are 
accepted, even though only the first is legal in Pascal: 



Pascal Variables and Data Types 

7–22     Embedded SQL Companion Guide 

procedure Load_table 
exec sql begin declare section; 
  (clear_it: boolean := true; 
  var is_error: boolean := ’false’) 
exec sql end declare section; 
   ; 
   ... 

3. Any mechanism specification is ignored. 

The following example illustrates the use of these declarations: 

 function Getesqlerror 
exec sql begin declare section; 
    ( buf : varying[ub] of char ) 
exec sql end declare section; 
     : boolean; 
 
procedure Handleerror 
exec sql begin declare section; 
    ( procedure errorhandle(err : integer); var  
     errnum : integer ) 
exec sql end declare section; 
     ; 
 
function Doappend 
exec sql begin declare section; 
    ( emp_id, floor : integer; 
     name : varying[ub] of char; 
     salary : real ) 
exec sql end declare section; 
      : integer; 

The DCLGEN Utility 

DCLGEN (Declaration Generator) is a record-generating utility that maps the 
columns of a database table into a record that can be included in a variable 
declaration. You invoke DCLGEN from the operating system level with the 
following command: 

              dclgen language dbname tablename filename recordname 

where 

n language is the Embedded SQL host language, in this case, “pascal.” 

n dbname is the name of the database containing the table. 

n tablename is the name of the database table. 

n filename is the output file into which the record declaration is placed. 

n recordname is the name of the Pascal record variable that the command 
creates. The command generates a record type definition named 
recordname, followed by “_rec.” The command also generates a variable 
declaration for recordname. 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–23 

This command creates the declaration file filename. The file contains a record 
type definition corresponding to the database table and a variable declaration 
of that record type. The file also includes a declare table statement that 
serves as a comment and identifies the database table and columns from 
which the record was generated. 

After generating the file, you can use an Embedded SQL include statement to 
incorporate it into the variable declaration section. The following example 
demonstrates how to use DCLGEN in a Pascal program. 

Assume the Employee table was created in the Personnel database as: 

exec sql create table employee  
   (eno  smallint not null, 
      ename char(20) not null, 
    age  integer1, 
    job  smallint, 
    sal  decimal   not null, 
    dept smallint); 

and the DCLGEN system-level command is: 

dclgen pascal personnel employee employee.dcl emprec 

The employee.dcl file created by this command contains a comment and three 
statements. The first statement is the declare table description of 
“employee,” which serves as a comment. The second statement is a 
declaration of the Pascal record type definition “emprec_rec.” The last 
statement is a declaration, using the “emprec_rec” type, for the record 
variable “emprec.” The contents of the employee.dcl file are shown below. 

{Description of table employee from database personnel} 
exec sql declare employee TABLE 
   (eno   smallint not null, 
    ename   char(20) not null, 
    age   integer1, 
    job   smallint, 
    sal   decimal  not null, 
     dept   smallint); 
 
type emprec_rec = record 
   eno:   [word] -32768 .. 32767; 
   ename:   packed array[1..20] of Char; 
   age:   [byte] -128 .. 127; 
   job:   [word] -32768 .. 32767; 
   sal:   Double; 
   dept:   [word] -32768 .. 32767; 
end; 
var emprec: emprec_rec; 

This file should be included, by means of the Embedded SQL include 
statement, in an Embedded SQL declaration section: 

exec sql begin declare section; 
  exec sql include ’employee.dcl’; 
exec sql end declare section; 

The emprec record can then be used in a select, fetch, or insert statement. 



Pascal Variables and Data Types 

7–24     Embedded SQL Companion Guide 

DCLGEN and Large Objects 

You can use DCLGEN to generate an appropriate declare table statement 
with Ada variables for tables that contain long varchar columns. For columns 
that have a limited length, the variables generated will be identical to the 
variables generated for the Ingres varchar datatype. For columns with 
unlimited length, such as: 

create table long_obj_table(blob_col long varchar); 

DCLGEN will issue an error message and generate a character string variable 
with zero length. You can modify the length of the generated variable before 
attempting to use the variable in an application. 

For example the following table definition: 

create tablelongobj_table 
  (long_column  long varchar));  

results in the following DCLGEN generated output for Pascal compilers that 
support structures: 

exec sql declare long_obj_table table   
  (long_column   long varchar) 
 
type blobs_rec_rec = record 
  long_column : varying[0] of char; 
end; 
var blobs_rec : blobs_rec_rec; 

Predeclared Identifiers 

Embedded SQL predeclares all the standard Pascal types and constants in a 
scope enclosing the entire program (see Data Types and Constants in this 
chapter). You should not redefine any of these identifiers, because the runtime 
library expects the standard definitions. 

Program Syntax 

The syntax for an Embedded SQL/Pascal program definition is: 

              program program_name [(identifier {, identifier})]; 
              [exec sql begin declare section; 
              declarations 
              exec sql end declare section;] 
              [procedures, functions, etc.] 
              begin 
                            [statements] 
              end. 

or: 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–25 

              program program_name [(identifier {, identifier})]; 
              exec sql label [label_declarations]; 
              [exec sql begin declare section; 
                            declarations 
              exec sql end declare section;] 
              [procedures, functions, etc.] 
              begin 
                            [statements] 
              exec sql end. 

where declarations can include any of the following: 

              const constant_declarations 
              type type_declarations 
              var variable_declarations 

See the previous sections for descriptions of the various types of declarations. 

Syntax Notes: 

1. The program_name and the identifiers are not processed by ESQL. 

2. The declaration sections can be in any order and can be repeated. 

The following example illustrates the above points: 

program Test; 
exec sql label; 
exec sql begin declare section; 
var 
 curformname, curfieldname, curcolname : 
  varying[12] of char; 
 curtablerow : integer; 
exec sql end declare section; 
begin 
 {Embedded SQL and Pascal statements} 
exec sql end. 



Pascal Variables and Data Types 

7–26     Embedded SQL Companion Guide 

The Procedure 

The syntax for an Embedded SQL/Pascal procedure is:  

              procedure procedure_name 
              [exec sql begin declare section; 
                            (formal_parameters) 
              exec sql end declare section;] 
                            ; 
              [exec sql begin declare section; 
                            declarations 
              exec sql end declare section;] 
              begin 
                            [statements] 
              end; 
or: 

              procedure procedure_name 
              [exec sql begin declare section; 
                            (formal_parameters) 
              exec sql end declare section;] 
                            ; 
              exec sql label; 
              [exec sql begin declare section; 
                            declarations 
              exec sql end declare section;] 
              begin 
                            [statements] 
              exec sql end; 

Syntax Notes: 

1. The procedure_name is not processed by Embedded SQL. 

2. Formal parameters and variables declared in a procedure are visible 
globally to the end of the source file. 

3. For a description of formal parameters and their syntax, see Formal 
Parameter Declarations in this chapter. 

The following is an example of an Embedded SQL/Pascal procedure: 

procedure AppendRow 
exec sql begin declare section; 
 (  name : varying[20] of Char; 
  age : Integer; 
  salary : Real ) 
exec sql end declare section; 
 ; 
begin 
 exec sql insert into emp (name, age, salary) 
  values (:name, :age, :salary); 
end; 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–27 

The Function 

The syntax for an Embedded SQL/Pascal function is:  

              function function_name 
              [exec sql begin declare section; 
                            (formal_parameters) 
              exec sql end declare section;] 
                            : return_type_name; 
              [exec sql begin declare section; 
                            declarations 
              exec sql end declare section;] 
              begin 
                            [statements] 
              end; 

or: 

              function function_name 
              [exec sql begin declare section; 
                            (formal_parameters) 
              exec sql end declare section;] 
                            : return_type_name; 
              exec sql label; 
              [exec sql begin declare section; 
                            declarations 
              exec sql end declare section;] 
              begin 
                            [statements] 
              exec sql end; 

Syntax Notes: 

1. The function_name is not processed by Embedded SQL. 

2. Formal parameters and variables declared in a function are globally visible 
to the end of the source file. 

3. For a description of formal parameters and their syntax, see Formal 
Parameter Declarations in this chapter. 

The following is an example of an Embedded SQL/Pascal function: 

exec sql begin declare section; 
var 
 errorbuf : varying[100] of char; 
exec sql end declare section; 
 ... 
 
function wasdeadlock : boolean; 
exec sql begin declare section; 
const 
 EsqlDeadlock = -4700; 
var 
 errnum : Integer; 



Pascal Variables and Data Types 

7–28     Embedded SQL Companion Guide 

exec sql end declare section; 
begin 
 errnum := sqlca.sqlcode; 
 if errnum = EsqlDeadLock then 
 begin 
   SetErrorBuf( errnum, errorbuf ); 
   WasDeadlock := TRUE; 
 end else 
 begin 
   errorbuf := ’ ’; 
   WasDeadlock := FALSE; 
 end; 
end; 

Assembling and Declaring External Compiled Forms 

You can pre-compile your forms in the Visual Forms Editor (VIFRED). Doing 
this saves the time otherwise required at runtime to extract the form’s 
definition from the database forms catalogs. When you compile a form in 
VIFRED, VIFRED creates a file in your directory describing the form in the VAX-
11 MACRO language. VIFRED prompts you for the name of the file with the 
MACRO description. After the file is created, you can use the following VMS 
command to assemble it into a linkable object module: 

              macro filename 

This command produces an object file containing a global symbol with the 
same name as your form. Before the Embedded SQL/FORMS statement 
addform can refer to this global object, you must declare it in an Embedded 
SQL declaration section. The Pascal compiler requires that this be an external 
declaration. The syntax for a compiled form declaration is: 

              exec sql begin declare section; 
              var 
                            formname: [external] Integer; 
              exec sql end declare section; 

Syntax Notes: 

1. The formname is the actual name of the form. VIFRED gives this 
name to the address of the external object. The formname is also used as 
the title of the form in other Embedded SQL/FORMS statements. 

2. The external attribute associates the object with the external form 
definition. 

The example below shows a typical form declaration and illustrates the 
difference between using the form’s object definition and the form’s name. 

exec sql begin declare section; 
var 
 empform: [external] integer; 
exec sql end declare section; 
 ... 
exec frs addform :empform; {The global object} 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–29 

exec frs display empform;  {The name of the form} 
 ... 

Concluding Example 

The following example demonstrates some simple Embedded SQL/Pascal 
declarations: 

program Concluding_Example( input, output ); 
exec sql include sqlca;                   {Include error handling} 
exec sql begin declare section; 
const 
   max_persons = 1000; 
type 
   shortshortinteger = [byte] -128 .. 127; 
   shortinteger      = [word] -32768 .. 32767; {same as indicator type} 
   string9           = packed array[1..9] of char; 
   string12          = packed array[1..12] of char; 
   string20          = packed array[1..20] of char; 
   string30          = packed array[1..30] of char; 
   varstring         = varying[40] of char; 
 
record datatypes_rec = {Structure of all types} 
   d_byte :   shortshortinteger; 
   d_word :   shortinteger; 
   d_long :   integer; 
   d_single :   real; 
   d_double :   double; 
   d_string :   string20; 
 end; 
 
record Persontype_rec = {variant record} 
   age :    shortshortinteger; 
   flags :   integer; 
   case married :   boolean of 
   true :   (spouse_name : string30); 
   false :   (dog_name : string12); 
 end; 
var 
 empform, deptform : [external] integer;  
    {compiled forms} 
 dbname : String9; 
 formname, tablename, columnname : String12; 
 salary : Real; 
 
 d_rec : Datatypes_Rec; 
 person : Persontype_Rec; 
 person_store : array[1..MAX_PERSONS] of Persontype_Rec; 
 person_null: array[1..10] of Indicator; 
 
 exec sql include ’employee.dcl’; {From DCLGEN} 
exec sql end declare section; 
 
begin 
  dbname := ’personnel’; 
  ... 
 
end. {Concluding_Example} 



Pascal Variables and Data Types 

7–30     Embedded SQL Companion Guide 

The Scope of Objects 

All constants, types, and variables declared in an Embedded SQL declaration 
section can be referenced, and are accepted by the preprocessor, from the 
point of declaration to the end of the file, regardless of the Pascal scope of the 
declaration. This holds true for local variables and formal parameters. Once an 
object has been declared to Embedded SQL, it should not be redeclared to 
Embedded SQL for use in a different Pascal scope; the preprocessor will use 
the type information supplied by the original declaration. The object must, 
however, be redeclared to Pascal in the second scope to avoid errors from the 
Pascal compiler. 

In the following program fragment, the variable “dbname” is passed as a 
parameter to the second procedure. In the first procedure, “dbname” is a local 
variable. In the second procedure, it is a formal parameter passed as a string 
to be used with the connect statement. The declaration of “dbname” as a 
formal parameter to the second procedure should not occur in an Embedded 
SQL declaration section. In both procedures, the preprocessor uses the type 
information from the variable’s declaration in the first procedure. 

program Decl_Test( input, output ); 
exec sql include sqlca; 
exec sql begin declare section; 
type 
  String15 = packed array[1..15] of Char; 
exec sql end declare section; 
 
  procedure Open_Db( dbname: String15 ); forward; 
 
  procedure Access_Db; 
 exec sql begin declare section; 
 var 
   dbname: String15; 
 exec sql end declare section; 
 begin 
 {"Dbname" is local to this procedure.} 
   exec frs prompt (’Database: ’, :dbname); 
   Open_Db( dbname ); 
   Process_Db; 
 end; 
 
 { procedure Open_Db(dbname: String15); } 
 procedure Open_Db; 
 begin 
   exec sql whenever sqlerror stop; 
   {"Dbname" is known from the local declaration  
    in  " Access_Db".} 
   exec sql connect :dbname; 
     ... 
 
 end; 
 
 begin {Decl_Test} 
    ... 
 
    Access_Db; 
    ... 
 end. {Decl_Test} 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–31 

Note that you can declare record components with the same name if they are 
in different record types. The following example declares two records, each of 
which has the components “firstname” and “lastname”: 

exec sql begin declare section; 
type 
   Child = record 
    firstname: varying[20] of Char; 
    lastname: varying[20] of Char; 
    age: Integer; 
   end; 
   Mother = record 
    firstname: varying[20] of Char; 
    lastname: varying[20] of Char; 
    num_child: 1..10; 
    children: array[1..10] of Child; 
   end; 
exec sql end declare section; 

Special care should be taken when using variables with a declare cursor 
statement. The scope of the variables used in such a statement must also be 
valid in the scope of the open statement for that same cursor. The 
preprocessor actually generates the code for the declare at the point that the 
open is issued, and, at that time evaluates any associated variables. For 
example, in the following program fragment, even though the variable 
“number” is valid to the preprocessor at the point of both the declare cursor 
and open statements, it is not a valid variable name for the Pascal compiler at 
the point that the open is issued. 

program Bad_Cursors( input, output ); 
{This example contains an error} 
  procedure Init_Csr1 (num: Integer); 
  exec sql begin declare section; 
  var 
   number: Integer; 
  exec sql end declare section; 
  begin 
   number := num; 
   exec sql declare cursor1 CURSOR FOR 
      select ename, age 
      from employee 
      where eno = :number; 
 
   {Initialize "number" to a particular value} 
   ... 
 
  end; {Init_Csr1} 
 
  procedure Process_Csr1; 
  exec sql begin declare section; 
  var 
    ename: varying[15] of Char; 
    age: Integer; 
  exec sql end declare section; 
  begin 
    {Illegal evaluation of "number"} 
    exec sql open cursor1; 
 
    exec sql fetch cursor1 INTO :ename, :age; 
    ... 
 
  end; {Process_Csr1} 
begin 



Pascal Variables and Data Types 

7–32     Embedded SQL Companion Guide 

 ... 
 
end. {Bad_Cursors} 

Variable Usage 

Pascal variables declared to Embedded SQL can substitute for most non key-
word elements of Embedded SQL statements. Of course, the variable and its 
data type must make sense in the context of the element. To use a Pascal 
variable (or named constant) in an Embedded SQL statement, you must 
precede it with a colon. You must further verify that the statement using the 
variable is in the scope of the variable’s declaration. As an example, the 
following select statement uses the variables “namevar” and “numvar” to 
receive data, and the variable “idnovar” as an expression in the where clause: 

exec sql select name, num 
  into :namevar, :numvar 
  from employee 
  where idno = :idnovar; 

You should not use the Pascal type-cast operator (::) in Embedded SQL 
statements. The preprocessor ignores it and does not change the type of the 
variable. 

Various rules and restrictions apply to the use of Pascal variables in Embedded 
SQL statements. The sections below describe the usage syntax of different 
categories of variables and provide examples of such use. 

Simple Variables 

A simple scalar-valued variable (integer, floating-point, or character string) is 
referred to by the syntax: 

                            :simplename 

Syntax Notes: 

1. If you use the variable to send data to Ingres, it can be any scalar-valued 
variable, constant, or enumerated literal. 

2. If you use the variable to receive data from Ingres, it can only be a scalar-
valued variable. 

3. Packed or varying arrays of characters (for example, character strings) are 
referenced as simple variables. 

The following program fragment demonstrates a typical message-handling 
routine that uses two scalar-valued variables, “buffer” and “seconds”: 

exec sql begin declare section; 
var 
  buffer : packed array[1..80] of char; 
  seconds : integer; 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–33 

exec sql end declare section; 
begin 
  ... 
 
  exec frs message :buffer; 
  exec frs sleep :seconds; 
end; 

A special case of a scalar type is the enumerated type. As mentioned in the 
section describing declarations, Embedded SQL treats all enumerated literals 
and any variables declared with an enumerated type as integers. When used in 
an Embedded SQL statement, only the ordinal position of the value in relation 
to the original enumerated list is relevant. When assigning into an enumerated 
variable, Embedded SQL will pass the object by address and assume that the 
value being assigned into the variable will not raise a runtime error. For 
example, the following enumerated type declares the states of a table field 
row, and the variable of that type will always receive one of those values: 

exec sql begin declare section; 
type 
   Table_field_states = 
   (undefined, newrow, unchanged, changed, deleted); 
 var 
   tbstate: table_field_states; 
   ename: varying[20] of char; 
exec sql end declare section; 
    ... 
 
tbstate := undefined; 
exec frs getrow empform employee  
   (:ename = name, :tbstate = _state); 
 
case tbstate of 
  undefined: 
   ... 
 
  deleted: 
   ... 
end; 

Another example retrieves the value TRUE (a predefined constant of type 
boolean) into a variable when a database qualification is successful: 

exec sql begin declare section; 
var 
  found: boolean; 
exec sql end declare section; 
  ... 
found := false; 
exec sql select :true  
  into :found  
  from emp  
  where age > 62; 
if not found then  
begin 
 ... 
 
end; 



Pascal Variables and Data Types 

7–34     Embedded SQL Companion Guide 

Note that a colon precedes the Pascal constant “TRUE.” The colon is required 
before all Pascal named objects—constants and enumerated literals, as well as 
variables—used in Embedded SQL statements. 

Array Variables 

An array variable is referred to by the syntax: 

              :arrayname[subscript{,subscript}] {[subscript{,subscript}]} 

Syntax Notes: 

1. The variable must be subscripted because only scalar-valued elements 
(integers, floating-point and character strings) are legal Embedded SQL 
values. 

2. When the array is declared, the array bounds specification is not parsed by 
the Embedded SQL preprocessor. Consequently, illegal bounds values will 
be accepted. Also, when an array is referenced, the subscript is not 
parsed, allowing the use of illegal subscripts. The preprocessor only 
confirms the use of an array subscript for an array variable. You must 
make sure that the subscript is legal and that the correct number of 
indices are used. 

3. An array of characters is not a string unless it is packed or varying. 

4. A packed or varying array of characters is considered a simple variable, 
not an array variable, in its usage. It therefore cannot be subscripted in 
order to reference a single character. For example, assuming the following 
variable declaration and subsequent assignment: 

exec sql begin declare section; 
var 
  abc : packed array[1..3] of char; 
exec sql end declare section; 
  ... 
  abc := ’abc’; 

you could not reference 

 :abc[1] 

to access the character “a.” To perform such a task, you should declare 
the variable as a plain (not packed or varying) array, as, for example: 

exec sql begin declare section; 
var 
  abc : array[1..3] of char; 
exec sql end declare section; 
  ... 
     abc := (’a’, ’b’, ’c’); 

5. Arrays of indicator variables used with structure assignments should not 
include subscripts when referenced. 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–35 

Record Variables 

You can use a record variable in two different ways. First, you can use the 
record as a simple variable, implying the use of all its components. This would 
be appropriate in the Embedded SQL select, fetch and insert statements. 
Second, you can use a component of a record to refer to a single element. Of 
course, this component must be a scalar value (integer, floating-point or 
character string). 

Using a Record as a Collection of Variables 

The syntax for referring to a complete record is the same as referring to a 
simple variable: 

              :recordname 

Syntax Notes: 

1. The recordname can refer to a main or nested record. It can be an 
element of an array of records. Any variable reference that denotes a 
record is acceptable. For example: 

:emprec     {A simple record} 
:record_array[i]  {An element of an array of records} 
:record.minor2.minor3  {A nested record at level 3} 

2. In order to be used as a collection of variables, the final record in the 
reference must have no nested records or arrays. All the components of 
the record will be enumerated by the preprocessor and must have scalar 
values. The preprocessor generates code as though the program had listed 
each record component in the order in which it was declared. 

3. You must not use a record with a variant part as a complete record. The 
preprocessor generates explicit references to each of its components, 
including the components of the variant. Because the preprocessor 
generates references to all variant components, the use of a record with a 
variant part results in either a “wrong number of values” preprocessor 
error or a runtime error. 

The example below uses the employee.dcl file generated by DCLGEN to 
retrieve values into a record. 

exec sql begin declare section; 
  exec sql include ’employee.dcl’;  
   {see above for description} 
exec sql end declare section; 
  ... 
exec sql select * 
  into :emprec 
  from employee 
  where eno = 123; 



Pascal Variables and Data Types 

7–36     Embedded SQL Companion Guide 

The example above generates code as though the following statement had 
been issued instead: 

exec sql select * 
  into  :emprec.eno, :emprec.ename, :emprec.age, 
    :emprec.job, :emprec.sal, :emprec.dept 
  from employee 
  where eno = 123; 

The example below fetches the values associated with all the columns of a 
cursor into a record. 

exec sql begin declare section; 
  exec sql include ’employee.dcl’;  
                 {see above for description} 
exec sql begin declare section; 
 
exec sql declare empcsr cursor for 
  select * 
  from employee 
  order by ename; 
  ... 
 
exec sql fetch empcsr into :emprec; 

The example below inserts values by looping through a locally declared array 
of records whose elements have been initialized: 

exec sql begin declare section; 
exec sql declare person table 
  (pname   char(30), 
   page   integer1, 
   paddr   varchar(50)); 
 
type 
  person_rec = record 
  name:   packed array[1..30] of char; 
  age:   [byte] -128 .. 127; 
  addr:  varying[50] of char; 
 end; 
var 
  person: array[1..10] of person_rec; 
exec sql end declare section; 
  ... 
 
for i := 1 to 10 do 
begin 
  exec sql insert into person 
   values (:person[i]); 
end; 

The insert statement in the example above generates code as though the 
following statement had been issued instead: 

exec sql insert into person 
  values (:person[i].name, :person[i].age, 
   :person[i].addr); 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–37 

Using Record Components 

The syntax Embedded SQL uses to refer to a record component is the same as 
in Pascal: 

  :record_name{^ |[subscript]}.component{^|[subscript]} 
                                                                   {.component{^ | [subscript]}} 

that is, the name of the record, followed by any number of pointer dereference 
operators or array subscripts, followed by one or more field names (with any 
number of pointer dereference operators or array subscripts attached). 

Syntax Notes: 

1. The last record component denoted by the above reference must be a 
scalar value (integer, floating-point or character string). There can be any 
combination of arrays and records, but the last object referenced must be 
a scalar value. Thus, the following references are all legal: 

{Assume correct declarations for "employee", "person" and other records.} 
:employee.sal   {Component of a record} 
:person[3].name   {Component of an element of an array} 
:rec1.mem1.mem2.age  {Deeply nested component} 

2. Any array subscripts or pointer references referred to in the record 
reference, and not at the very end of the reference, are not checked by 
the preprocessor. Consequently, both of the following references are 
accepted, even though one must be wrong, depending on whether 
“person” is an array: 

:person[1].age 
:person.age 

The following example uses the array of records “emprec” to load values into 
the table field “emptable” in form “empform.” 

exec sql begin declare section; 
type 
  EmployeeRec = record 
   ename: packed array[1..20] of Char; 
   eage: [word] -32768 .. 32767; 
   eidno: Integer; 
   ehired: packed array[1..25] of Char; 
   edept: packed array[1..10] of Char; 
   esalary: Real; 
 end; 
var 
 emprec: array[1..100] of EmployeeRec; 
 i: Integer; 
exec sql end declare section; 
  ... 
 
for i := 1 to 100 do 
begin 
  exec frs loadtable empform emptable 
  (name = :emprec[i].ename, age = :emprec[i].eage, 
   idno = :emprec[i].eidno, hired = :emprec[i].ehired, 
   dept = :emprec[i].edept, salary = :emprec[i].esalary); 
end; 



Pascal Variables and Data Types 

7–38     Embedded SQL Companion Guide 

Pointer Variables 

A pointer variable references an object in the same way as in Pascal—the 
name of the pointer is followed by a caret (^): 

              :pointer_name^ 

Any further referencing required to fully qualify an object, such as a member 
of a pointed-to record, follows the usual Pascal syntax. 

Syntax Notes: 

1. The final object denoted by the pointer reference must be a scalar 
value (integer, floating-point or character string) or a record (if this is a 
legal simple record reference). There can be any combination of arrays, 
records or pointer variables, as long as the last object referenced has a 
scalar value or is a legal simple record. 

2. The pointer reference is also used with file type variables (see the 
example under Formal Parameter Declarations in this chapter). 

In the following example, a pointer to an employee record is used to load a 
linked list of values into the database table “employee”: 

exec sql begin declare section; 
type 
  EmpLink = ^EmployeeRec; 
  EmployeeRec = record 
   ename: packed array [1..20] of Char; 
   eage: Integer; 
   eidno: Integer; 
   enext: EmpLink; 
 end; 
var 
 elist: EmpLink; 
exec sql end declare section; 
 ... 
 
while (elist <> nil) do 
begin 
 exec sql insert into employee (name, age, idno) 
   values (:elist^.ename, :elist^.eage, 
     :elist^.eidno); 
 elist := elist^.enext; 
end; 

Indicator Variables 

The syntax for referring to an indicator variable is the same as for a simple 
variable, except that an indicator variable is always associated with a host 
variable: 

              :host_variable:indicator_variable 
or 
              :host_variable indicator :indicator_variable 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–39 

Syntax Notes: 

1. The indicator variable can be a simple variable, an array element or a 
record component that yields a 2-byte integer. The type indicator has 
already been declared by the preprocessor. For example: 

ind_var, ind_arr[5] : Indicator; 
:var_1:ind_var 
:var_2:ind_arr[2] 

2. If the host variable associated with the indicator variable is a record, the 
indicator variable should be an array of 2-byte integers. In this case the 
array should not be dereferenced with a subscript. 

3. When using an indicator array, the first element of the array corresponds 
to the first member of the record, the second element with the second 
member, and so on. Indicator array elements begin at subscript 1, 
regardless of the lower bound with which the array was declared. 

The following example uses the employee.dcl file generated by DCLGEN to 
retrieve values into a structure and null values into the array “empind”. 

exec sql include sqlca; 
exec sql begin declare section 
 
  exec sql include ’employee.dcl’; 
var 
  empind : array[1..10] of Indicator; 
 
exec sql end declare section; 
 
exec sql select * 
  into :emprec:empind 
  from employee; 

The above example generates code as though the following statement had 
been issued: 

exec sql select * 
  into :emprec.eno:empind[1], :emprec.ename:empind[2], 
   :emprec.age:empind[3], :emprec.job:empind[4], 
   :emprec.sal:empind[5], :emprec.dept:empind[6], 
  from employee; 

Data Type Conversion 

A Pascal variable declaration must be compatible with the Ingres value it 
represents. Numeric Ingres values can be set by and retrieved into numeric 
variables, and Ingres character values can be set by and retrieved into 
character string variables. 

Data type conversion occurs automatically for different numeric types, as 
follows: 

 From floating-point Ingres database column values into integer Pascal 
variables 



Pascal Variables and Data Types 

7–40     Embedded SQL Companion Guide 

 From decimal to floating-point 

 From floating-point to decimal 

 For different length character strings, such as from varying-length Ingres 
character fields into fixed-length Pascal character string variables 

Ingres does not automatically convert between numeric and character types. 
You must use the Ingres type conversion functions, the Ingres ascii function, 
or a Pascal conversion procedure for this purpose. 

The following table shows the default type compatibility for each Ingres data 
type. Note that some Pascal types do not match exactly and, consequently, 
can go through some runtime conversion. 

Ingres and Pascal Data Type Correspondence 
 

Ingres Type Pascal Type 

char(N) packed array[1..N ] of char 

char(N) varying[N] of char 

varchar(N) packed array[1..N ] of char 

varchar(N) varying[N ] of char 

integer1 [byte] -128..127 

smallint [word] -32768..32767 

integer integer 

float4 real 

float4 single 

float double 

date packed array[1..25] of char 

money double 

table_key packed array[1..8] of char 

object_key packed array[1..16] of char 

decimal  real 

long varchar packed array 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–41 

Runtime Numeric Type Conversion 

The Ingres runtime system provides automatic data type conversion between 
numeric-type values in the database and forms system and numeric Pascal 
variables. The standard type conversion rules (according to standard VAX 
rules) are followed. For example, if you assign a real variable to an integer-
valued field, the digits after the decimal point of the variable’s value are 
truncated. Runtime errors are generated for overflow on conversion when 
assigning Ingres numeric values into Pascal variables. Overflow caused by 
assigning Pascal numeric variables into Ingres numeric objects is likely to 
result in inconsistent data, but does not by default generate a runtime error. 
Using the -x flag on the Ingres statement changes this default behavior by 
generating errors at runtime. 

The Ingres money type is represented as double, an 8-byte floating-point 
value. 

Runtime Character and Varchar Type Conversion 

Automatic conversion occurs between Ingres character string values and 
Pascal character string variables. There are string-valued Ingres objects that 
can interact with character string variables. These are: 

Ingres names, such as form and column names 

 database columns of type character 

 database columns of type varchar 

 form fields of type character 

 database columns of type long varchar 

Several considerations apply when dealing with character string conversions, 
both to and from Ingres. 

The conversion of Pascal character string variables used to represent Ingres 
names is simple: trailing blanks are truncated from the variables,  because the 
blanks make no sense in that context. For example, the string literals 
“empform ” and “empform” refer to the same form. 

The conversion of other Ingres objects is a bit more complicated. First, the 
storage of character data in Ingres differs according to whether the medium of 
storage is a database column of type character, a database column of type 
varchar or a character form field. Ingres pads columns of type character 
with blanks to their declared length. Conversely, it does not add blanks to the 
data in columns of type varchar or long varchar in form fields. 



Pascal Variables and Data Types 

7–42     Embedded SQL Companion Guide 

Second, the storage of character data in Pascal differs according to whether 
the character variable is of fixed or of varying length. The Pascal convention is 
to blank-pad fixed-length character strings, but not to pad varying-length 
character strings. For example, the character string “abc” coming from an 
Ingres object will be stored in a Pascal packed array[1..5] of char variable 
as the string “abc  ” followed by two blanks. However, the same string would 
be stored in a varying[5] of char variable as “abc” without any trailing 
blanks. 

When retrieving character data from an Ingres database column or form field 
into a Pascal variable, you should always ensure that the variable is at least as 
long as the column or field, in order to avoid truncation of data. Furthermore, 
take note of the following conventions: 

 Data stored in a database column of type character is padded with blanks 
to the length of the column. The variable receiving such data, be it of fixed 
or varying length, will contain those blanks. Following Pascal rules, if a 
fixed-length variable is longer than the database column, the data 
retrieved into it is further padded with blanks to the length of the variable. 
In the case of a varying-length variable, no further padding takes place. If 
the variable is shorter than the database column, truncation of data 
occurs. 

 Data stored in a database column of type varchar is not padded with 
blanks. If a fixed-length variable is longer than the data in the varchar 
column, when retrieved the data is padded with blanks to the length of the 
variable. In the case of a varying-length variable, no padding takes place. 
If the variable is shorter than the database column, truncation of data 
occurs. 

 Data stored in a character form field contains no trailing blanks. If a 
fixed-length variable is longer than the data in the field, when retrieved 
the data is padded with blanks to the length of the variable. In the case of 
a varying-length variable, no padding takes place. If the variable is shorter 
than the field, truncation of data occurs. 

When inserting character data into an Ingres database column or form field 
from a Pascal variable, note the following conventions: 

 When data is inserted from a Pascal variable into a database column of 
type character and the column is longer than the variable, the column is 
padded with blanks. If the column is shorter than the variable, the data is 
truncated to the length of the column. 



Pascal Variables and Data Types 

Chapter 7: Embedded SQL for Pascal    7–43 

 When data is inserted from a Pascal variable into a database column of 
type varchar or long varchar and the column is longer than the variable, 
no padding of the column takes place. Furthermore, by default, all trailing 
blanks in the data are truncated before the data is inserted into the 
varchar column. For example, when a string “abc” stored in a Pascal 
packed array[1..5] of char variable as “abc  ” (see above) is inserted 
into the varchar column, the two trailing blanks are removed and only the 
string “abc” is stored in the database column. To retain such trailing 
blanks, you can use the Embedded SQL notrim function.  

It has the following syntax: 

 notrim(:stringvar) 

where stringvar is a character string variable. An example demonstrating 
this feature follows later. If the varchar column is shorter than the 
variable, the data is truncated to the length of the column. 

 When data is inserted from a Pascal variable into a character form field 
and the field is longer than the variable, no padding of the field takes 
place. In addition, all trailing blanks in the data are truncated before the 
data is inserted into the field. If the field is shorter than the data (even 
after all trailing blanks have been truncated), the data is truncated to the 
length of the field. 

When comparing character data in an Ingres database column with character 
data in a Pascal variable, note the following convention: 

 When comparing data in character or varchar database columns with 
data in a character variable, all trailing blanks are ignored. Initial and 
embedded blanks are significant. 

Note: As described above, the conversion of character string data between 
Ingres objects and Pascal variables often involves the trimming or padding of 
trailing blanks, with resultant change to the data. If trailing blanks have 
significance in your application, give careful consideration to the effect of any 
data conversion. For a complete description of the significance of blanks in 
string comparisons, see the SQL Reference Guide. 

The Ingres date data type is represented as a 25-byte character string. 

The program fragment in the example below demonstrates the notrim 
function and the truncation rules explained above. 

exec sql include sqlca; 
 ... 
exec sql begin declare section; 
 
exec sql declare textchar table  
 (row integer, 
  data varchar(10));   {Note the varchar data type} 
 
var 
 row:  Integer; 
 p_data: packed array[1..7] of Char; 
 v_data: varying[7] of Char; 



Pascal Variables and Data Types 

7–44     Embedded SQL Companion Guide 

 ... 
 
exec sql end declare section; 
 
begin 
 p_data := ’abc  ’;    {Holds "abc "} 
 v_data := ’abc’;    {Holds "abc"} 
 
 {The following insert adds the string "abc" (blanks truncated)} 
 exec sql insert into textchar (row, data)  
   values (1, :p_data); 
 
 {The following insert adds the string "abc" (never had blanks)} 
 exec sql insert into textchar (row, data)  
   values (2, :v_data); 
 
 { 
 | This statement adds the string "abc ", with 4 trailing  
 | blanks left intact by using the NOTRIM function. 
 } 
 
 exec sql insert into textchar (row, data)  
   values (3, notrim(:p_data)); 
 
 { 
 | The following FETCH retrieves rows #1 and #2, because trailing 
 | blanks were suppressed when those rows were inserted. 
 } 
 
 exec sql declare csr cursor for  
   select row 
   from textchar 
   wherE length(data) = 3; 
 
 exec sql open csr; 
 
 while (sqlca.sqlcode = 0) do 
 begin 
  exec sql fetch csr into :row; 
  if (sqlca.sqlcode = 0) then 
   writeln( ’Row found = ’, row ); 
 end; 
 
 exec sql close csr; 
 
 { 
 | The following FETCH retrieves row #3, because the NOTRIM  
 | function left trailing blanks in the "p_data" variable 
 | in the last INSERT statement. 
 } 
 
 exec sql declare csr2 cursor for  
   select row 
   from textchar 
   where length(data) = 7; 
 
   exec sql open csr2; 
 
 while (sqlca.sqlcode = 0) do 
 begin 
  exec sql fetch csr2 into :row; 
  if (sqlca.sqlcode = 0) then 
   writeln( ’Row found = ’, row ); 
 end; 
 



The SQL Communications Area 

Chapter 7: Embedded SQL for Pascal    7–45 

 exec sql close csr2; 
end; 

The SQL Communications Area 
This section describes the SQL Communications Area (SQLCA) as implemented 
in Pascal.  

The Include SQLCA Statement 

You should issue the include sqlca statement in the outermost scope of your 
Pascal program: 

program Emp_Update( input, output ) 
 
exec sql include sqlca; 
 
{Declarations, procedures, etc.} 
begin 
   {Host language and embedded statements} 
 
end. 

The include sqlca statement generates a Pascal include directive to make 
certain calls generated by the preprocessor acceptable to the compiler. The 
include sqlca statement also generates a Pascal include directive to define 
the SQLCA (SQL Communications Area) record, used for error handling and 
defining the indicator type used for null indicators. 

Whether or not you intend to use the SQLCA for error handling, you must 
issue an include sqlca statement. If you do not issue it, the Pascal compiler 
will generate errors about undeclared built-in function and procedure names. 
Note that some error handling mechanism should be included before all 
executable Embedded SQL database statements, as the default action is to 
ignore errors, which is rarely desirable. 

Contents of the SQLCA 

One of the results of issuing the include sqlca statement is the declaration of 
the SQLCA record, which can be used for error handling in the context of 
database statements. You should only issue the statement once in a particular 
Pascal scope, because it generates an external record variable definition. The 
nested record declaration for the SQLCA is: 

type 
 IISQLCA = record 
  sqlcaid: packed array[1..8] of Char; 
  sqlcabc: Integer; 
  sqlcode: Integer; 
  sqlerrm: varying[70] of Char; 



The SQL Communications Area 

7–46     Embedded SQL Companion Guide 

  sqlerrp: packed array[1..8] of Char; 
  sqlerrd: array[1..6] of Integer; 
  sqlwarn: record 
   sqlwarn0: Char; 
   sqlwarn1: Char; 
   sqlwarn2: Char; 
   sqlwarn3: Char; 
   sqlwarn4: Char; 
   sqlwarn5: Char; 
   sqlwarn6: Char; 
   sqlwarn7: Char; 
  end; 
  sqlext: packed array[1..8] of Char; 
 end; 
var 
 sqlca: [common] IISQLCA; 

The record member sqlerrm is a varying length character string  which Pascal 
stores as if it were declared as: 

sqlerrm: record 
 length  : [word] 0..70; 
 body  : packed array[1..70] of Char; 
end; 

Here “length” corresponds to the standard SQLCA variable sqlerrml and 
“body” corresponds to the standard SQLCA variable sqlerrmc. For a full 
description of all the SQLCA record members, see the SQL Reference Guide. 

The SQLCA is initialized at load-time. The fields sqlcaid and sqlcabc are 
initialized to the string “SQLCA ” and the constant 136, respectively. 

Note that the preprocessor is not aware of the record declaration. Therefore, 
you cannot use members of the record in an Embedded SQL statement. For 
example, the following statement, attempting to insert the string “SQLCA” 
into a table, would generate an error: 

exec sql insert into employee (ename)   {This statement is illegal} 
  values (:sqlca.sqlcaid); 

All modules written in Pascal and other embedded languages share the same 
SQLCA. 

Using the SQLCA for Error Handling 

Error handling with the SQLCA can be done implicitly by using whenever 
statements, or explicitly by checking the contents of the SQLCA fields 
sqlcode, sqlerrd, and sqlwarn0. 

Error Handling with the Whenever Statement 

The syntax of the whenever statement is as follows:  

              exec sql whenever condition action; 



The SQL Communications Area 

Chapter 7: Embedded SQL for Pascal    7–47 

condition is dbevent, sqlwarning, sqlerror, sqlmessage, or not found. 
action is continue, stop, goto a label or call a Pascal procedure. For a 
detailed description of this statement, see the SQL Reference Guide. 

In Embedded SQL/Pascal, all labels and procedure names must be legal Pascal 
label identifiers, beginning with a digit, an alphabetic character, or an 
underscore. If the label is an Embedded SQL reserved word, it should be 
specified in quotes. Note that the label targeted by the goto  action must be in 
the scope of all subsequent Embedded SQL statements until another 
whenever statement is encountered for the same action. This is necessary 
because the preprocessor can generate the Pascal statement: 

              if (condition) then goto label; 

after an Embedded SQL statement. If the scope of the label is invalid, the 
Pascal compiler will generate an error. 

The same scope rules apply to procedure names used with the call action. 
Note that the reserved procedure sqlprint, which prints errors or database 
procedure messages and then continues, is always in the scope of the 
program. When a whenever statement specifies a call as the action, the 
target procedure is called, and after its execution, control returns to the 
statement following the statement that caused the procedure to be called. 
Consequently, after handling the whenever condition in the called procedure, 
you may want to take some action, instead of merely returning from the 
Pascal procedure. Returning from the Pascal procedure will cause the program 
to continue execution with the statement following the Embedded SQL 
statement that generated the error. 

The following example demonstrates use of the whenever statements in the 
context of printing some values from the Employee table. The comments do 
not relate to the program but to the use of error handling. 

program Db_Test( input, output ); 
label 
  Close_Csr, 
  Exit_Label; 
 
exec sql begin declare section; 
var 
  eno:   [word] -32768 .. 32767; 
  ename:   varying[20] of Char; 
  age:   [byte] -128 .. 127; 
exec sql end declare section; 
  exec sql include sqlca; 
 
  exec sql declare empcsr cursor for 
  select eno, ename, age 
  from employee; 
 
 { 
 | Clean_Up: Error handling procedure (print error and disconnect). 
 } 
 
 procedure Clean_Up; 
 exec sql begin declare section; 



The SQL Communications Area 

7–48     Embedded SQL Companion Guide 

 var 
    errmsg: varying[200] of Char; 
 exec sql end declare section; 
 begin   {Clean_Up} 
   exec sql whenever sqlerror stop; 
   inquire_sql (:errmsg = errortext) ; 
   writeln( ’Aborting because of error: ’ ); 
   writeln( errmsg ); 
   exec sql disconnect; 
   goto Exit_Label; 
 end; {Clean_Up} 
 
begin    {Db_Test} 
 { 
 | An error when opening the personnel database  
 | will cause the error to be printed and the  
 | program to abort. 
 } 
 
 exec sql whenever sqlerror stop; 
 exec sql connect personnel; 
 
 { 
 | Errors from here on will cause the program to clean up. 
 } 
 exec sql whenever sqlerror call Clean_Up; 
 
 exec sql open empcsr; 
 
 writeln( ’Some values from the "employee" table.’ ); 
 
 {When no more rows are fetched, close the cursor.} 
 exec sql whenever not found goto Close_Csr; 
 
 { 
 | The last executable Embedded SQL statement  
 | was an OPEN,so we know that the value of  
 | "sqlcode" cannot be SQLERROR or NOT FOUND. 
 } 
 
 while (sqlca.sqlcode = 0) do  
 {Loop is broken by NOT FOUND} 
 begin 
  exec sql fetch empcsr 
    into :eno, :ename, :age; 
 
  { 
  | This writeln statement does not execute  
  | after the previous FETCH returns the  
  | NOT FOUND condition. 
  } 
  writeln( eno, ’, ’, ename, ’, ’, age ); 
 end; {while} 
 { 
 | From this point in the file onwards, ignore 
 | all errors. Also turn off the NOT FOUND 
 | condition, for consistency. 
 } 
 
 exec sql whenever sqlerror continue; 
 exec sql whenever not found continue; 
Close_Csr: 
 exec sql close empcsr; 
 exec sql disconnect; 
 



The SQL Communications Area 

Chapter 7: Embedded SQL for Pascal    7–49 

Exit_Label:; 
end; {Db_Test} 

The Whenever Goto Action in Embedded SQL Blocks 

An Embedded SQL block-structured statement is a statement delimited by the 
begin and end clauses. For example, the select loop and the unloadtable 
loops are both block-structured statements. These statements can be 
terminated only by the methods specified for the particular statement in the 
SQL Reference Guide. For example, the select loop is terminated either when 
all the rows in the database result table have been processed or by an 
endselect statement, and the unloadtable loop is terminated either when all 
the rows in the forms table field have been processed or by an endloop 
statement. 

Therefore, if you use a whenever statement with the goto action in an SQL 
block, you must avoid going to a label outside the block. Such a goto would 
cause the block to be terminated without issuing the runtime calls necessary 
to clean up the information that controls the loop. (For the same reason, you 
must not issue a Pascal goto statement that causes control to leave or enter 
the middle of an SQL block.) The target label of the whenever goto 
statement should be a label in the block. If, however, it is a label for a block of 
code that cleanly exits the program, the above precaution need not be taken. 

The above information does not apply to error handling for database 
statements issued outside an SQL block, nor to explicit hard-coded error 
handling. For an example of hard-coded error handling, see The Table Editor 
Table Field Application in this chapter.  

Explicit Error Handling 

The program can also handle errors by inspecting values in the SQLCA record 
at various points. For further details, see the SQL Reference Guide. 

The following example is functionally the same as the previous example, 
except that the error handling is hard-coded in Pascal statements. 

program Db_Test( input, output ); 
label 
 Exit_Label; 
exec sql begin declare section; 
const 
 not_found = 100; 
var 
 eno:  [word] -32768 .. 32767; 
 ename:  varying[20] of Char; 
 age:  [byte] -128 .. 127; 
exec sql end declare section; 
 exec sql include sqlca; 
 
 exec sql declare empcsr cursor for 
   select eno, ename, age 
   from employee; 



The SQL Communications Area 

7–50     Embedded SQL Companion Guide 

 
 { 
 | Clean_Up: Error handling procedure (print error and disconnect). 
 } 
 
 procedure Clean_Up( str : varying[ub] of Char ); 
 exec sql begin declare section; 
 var 
   errmsg: varying[200] of Char; 
  err_stmt: varying[40] of Char; 
 exec sql end declare section; 
 begin {Clean_Up} 
  err_stmt := str; 
  exec sql inquire_sql (:errmsg = ERRORTEXT); 
  writeln(’Aborting because of error in ’, err_stmt, ’: ’); 
  writeln( errmsg ); 
  exec sql disconnect; 
 
  goto Exit_Label; 
 end; {Clean_Up} 
 
begin     {Db_Test} 
  {Exit if the database cannot be opened.} 
  exec sql connect personnel; 
  if (sqlca.sqlcode < 0) then 
  begin 
   writeln( ’Cannot access database.’ ); 
   goto Exit_Label; 
  end; 
 
  {Errors if cannot open cursor.} 
  exec sql open empcsr; 
  if (sqlca.sqlcode < 0) then 
    Clean_Up( ’OPEN "empcsr"’ ); {No return} 
 
  writeln( ’Some values from the "employee" table.’ ); 
 
  { 
  | The last executable Embedded SQL statement was an OPEN, 
  | so we know that the value of "sqlcode" cannot be SQLERROR 
  | or NOT FOUND. 
  } 
 
   while (sqlca.sqlcode = 0) do { 
       | Loop is broken by NOT FOUND 
       } 
   begin 
    exec sql fetch empcsr 
     into :eno, :ename, :age; 
 
   {Do not print the last values twice.} 
   if (sqlca.sqlcode < 0) then 
     Clean_Up( ’FETCH "empcsr"’ ) 
   else if (sqlca.sqlcode <> NOT_FOUND) then 
    writeln( eno, ’, ’, ename, ’, ’, age ); 
  end; {while} 
 
{ 
| From this point in the file onwards, ignore all errors. 
} 
 exec sql close empcsr; 
 exec sql disconnect; 
 
Exit_Label:; 
end; {Db_Test} 



Dynamic Programming for Pascal 

Chapter 7: Embedded SQL for Pascal    7–51 

Determining the Number of Affected Rows 

The third element of the SQLCA array sqlerrd indicates how many rows were 
affected by the last row-affecting statement. The following program fragment, 
which deletes all employees whose employee numbers are greater than a 
given number, demonstrates how to use sqlerrd: 

procedure Delete_Rows( lower_bound: Integer ); 
exec sql begin declare section; 
var 
  lower_bound_num: Integer; 
exec sql end declare section; 
begin 
 lower_bound_num := lower_bound; 
 exec sql delete from employee 
   where eno > :lower_bound_num; 
 
 {Print the number of employees deleted.} 
 writeln( sqlca.sqlerrd[3], ’ (rows) were deleted.’ ); 
end; {Delete_Rows} 

Using the SQLSTATE Variable 

You can use the SQLSTATE variable in an ESQL/Pascal program to return 
status information about the last SQL statement that was executed. 
SQLSTATE must be declared in a declaration section. Also, it is valid across all 
sessions, so you only need to declare one SQLSTATE per application. 

To declare this variable, use: 

character 5 SQLSTATE 

or : 

character 5 SQLSTA 

Dynamic Programming for Pascal 
Ingres provides Dynamic SQL and Dynamic FRS to allow you to write generic 
programs. Dynamic SQL allows a program to build and execute SQL 
statements at runtime.  For example, an application can include an expert 
mode in which the runtime user can type in select queries and browse the 
results at the terminal. Dynamic FRS allows a program to interact with any 
form at runtime. For example, an application can load in any form, allowing 
the runtime user to retrieve new data from the form and insert it into the 
database. 



Dynamic Programming for Pascal 

7–52     Embedded SQL Companion Guide 

The Dynamic SQL and Dynamic FRS statements are described in the SQL 
Reference Guide and the Forms-based Application Development Tools User 
Guide, respectively. This section discusses the Pascal-dependent issues of 
dynamic programming. For a complete example of using Dynamic SQL to write 
an SQL Terminal Monitor application, see The SQL Terminal Monitor 
Application in this chapter. For an example of using both Dynamic SQL and 
Dynamic FRS to browse and update a database using any form, see A Dynamic 
SQL/Forms Database Browser in this chapter. 

This section is written exclusively for VAX/VMS Pascal and makes use of the 
VMS extensions to the Pascal language, in particular the ability to point at any 
object using the built-in address functions. 

The SQLDA Record 

The SQLDA (SQL Descriptor Area) is used to pass type and size information 
about an SQL statement, an Ingres form, or Ingres table field, between Ingres 
and your program. 

In order to use the SQLDA, you should issue the include sqlda statement at 
the proper scope of the source file, from where the SQLDA will be referenced. 
The include sqlda statement generates a Pascal include directive to a file 
that defines the SQLDA record type. The file does not declare an SQLDA 
variable; your program must declare a variable of the specified type. You can 
also code this record variable directly instead of using the include sqlda 
statement. You can choose any name for the record. The definition of the 
SQLDA (as specified in the include file) is: 

const 
       { Sizes } 
 IISQ_MAX_COLS = 1024;   { Maximum number of columns } 
 IISQ_DTE_LEN = 25;    { Date length } 
       { Data type codes } 
 IISQ_DTE_TYPE = 3;    { Date - Output } 
 IISQ_MNY_TYPE = 5;    { Money - Output } 
 IISQ_DEC_TYPE = 10;    { Decimal - Output) 
 IISQ_CHA_TYPE = 20;    { Char - Input, Output } 
 IISQ_VCH_TYPE = 21;    { Varchar - Input, Output } 
 IISQ_INT_TYPE = 30;    { Integer - Input, Output } 
 IISQ_FLT_TYPE = 31;    { Float - Input, Output } 
 IISQ_TBL_TYPE = 52;    { Table field - Output } 
 
type 
 II_int2 = [word] -32768..32767; { 2-byte integer } 
 
 IIsqlvar = record    { Single SQLVAR element } 
  sqltype:  II_int2; 
  sqllen:   II_int2; 
  sqldata:  Integer;  { Address of any type } 
  sqlind:   Integer;  { Address of 2-byte integer } 
  sqlname:  Varying[34] of Char; 
 end; 
 
IIsqlda = record    { Full SQLDA definition } 
  sqldaid: packed array[1..8] of Char; 
  sqldabc: Integer; 



Dynamic Programming for Pascal 

Chapter 7: Embedded SQL for Pascal    7–53 

  sqln:   II_int2; 
  sqld:   II_int2; 
  sqlvar:   array[1..IISQ_MAX_COLS] of IIsqlvar; 
 end; 

Record Definition and Usage Notes: 

 The record type definition of the SQLDA is called IISQLDA. This is done so 
that an SQLDA variable can be called “SQLDA” without causing a Pascal 
compile-time conflict. 

 The sqlvar array is an array of IISQ_MAX_COLS (1024) elements. If an 
SQLDA record variable of type IISQLDA is declared, then the program will 
have a record with IISQ_MAX_COLS elements. 

 Note that the sqlvar array begins at subscript 1. 

 The sqldata and sqlind record components are declared as 4-byte 
integers. These integers actually contain addresses and must be set to 
point at other global or dynamically allocated variables using the address 
or iaddress built-in Pascal functions. 

 If your program defines its own SQLDA type, you must verify that the 
internal record layout is identical to that of the IISQLDA record type, 
although you can declare a different number of sqlvar elements. 

 The sqlname component is a varying length character string  consisting of 
a length and data area. This varying length name contains the name of a 
result field or column after a describe (or prepare into) statement. The 
length of the name is implicit with varying length data type. The varying 
length name can also be set by the program using Dynamic FRS. 

 The list of type codes represents the types that will be returned by the 
describe statement, and the types used by the program when retrieving 
or setting data using an SQLDA. The type code IISQ_TBL_TYPE indicates a 
table field and is set by the FRS when describing a form that contains a 
table field. 

Declaring an SQLDA Record Variable 

Once the SQLDA type definition has been included (or hard-coded), the  
program can declare an SQLDA record variable. This variable must be declared 
outside of a declare section, as the preprocessor does not understand the 
special meaning of the components of the SQLDA. When the variable is used, 
the preprocessor will accept any object name, and assume that the variable 
refers to a legally declared SQLDA record. 

If a program requires a statically declared SQLDA with the same number of 
sqlvar variables as the IISQLDA type, then it can accomplish this as in the 
following example: 

exec sql include sqlda; 
var 
 sqlda: IIsqlda;   { Outside of a DECLARE SECTION } 



Dynamic Programming for Pascal 

7–54     Embedded SQL Companion Guide 

 
... 
 
sqlda.sqln := IISQ_MAX_COLS; { Set the size } 
 
... 
 
exec sql describe s1 into :sqlda; 

Recall that you must confirm that the SQLDA object being used is a valid 
SQLDA record variable. 

If a program requires a statically declared SQLDA with a different number of 
variables (not IISQ_MAX_COLS), it can declare its own type. For example: 

const 
 NUM_COLS = 20; 
 
type 
 My_Sqlda = record 
  my_sqid:  packed array[1..8] of Char; 
  my_sqbc:  Integer; 
  my_vars:  [word] 0..500; 
  res_vars:  [word] 0..500; 
  col_vars:  array[1..NUM_COLS] of IIsqlvar; 
 end; 
 
var 
 my_sq: My_Sqlda; 
 
... 
 
my_sq.my_vars := NUM_COLS; { Set the size } 
 
... 
 
exec sql describe s1 into :my_sq; 

In the above declaration the names of the record components are not the 
same as those of the IISQLDA record, but their layout is identical. 

If the variable in the above example was declared as a pointer to an SQLDA 
record type, then it can be dynamically allocated and used as in the following 
example: 

{ Assume My_Sqlda is declared as above } 
 
var 
 ptr_sq: ^My_Sqlda; 
 
... 
 
new(ptr_sq); 
 
ptr_sq^.my_vars := NUM_COLS; { Set the size } 
 
... 
 
exec sql describe s1 into :ptr_sq^; 



Dynamic Programming for Pascal 

Chapter 7: Embedded SQL for Pascal    7–55 

Using the SQLVAR 

The SQL Reference Guide discusses the legal values of the sqlvar array. The 
describe and prepare into statement assigns type, length, and name 
information to the SQLDA. This information refers to the result columns of a 
prepared select statement, the fields of a form, or the columns of a table 
field. When the program uses the SQLDA to retrieve or set Ingres data, it must 
assign the type and length information that now refers to the variables being 
pointed at by the SQLDA. 

Pascal Variable Type Codes 

The type codes shown in The SQLDA Record in this chapter are the types that 
describe Ingres result fields or columns. For example, the SQL types date and 
money do not describe a program variable, but rather data types that are 
compatible with the Pascal character and numeric types. IISQ_LVCH_TYPE is 
SQL only character compatible too. When these types are returned by the 
describe statement, the type code must be a change to a compatible Pascal 
or ESQL/Pascal type. 

The following table describes the type codes to use with Pascal variables that 
will be pointed at by the sqldata pointers. 

The SQLDA Type Codes 
 

Pascal Type SQL Type Codes 
(sqltype) 

SQL Length  
(sqllen) 

[byte] -128..127 30 (integer) 1 

[word] -32768..32767 30 (integer) 2 

Integer 30 (integer) 4 

Real 31 (float) 4 

Double 31 (float) 8 

Packed array[1..LEN] of Char 20 (char) LEN 

Varying[LEN] of Char 21 (varchar) LEN 

Real 31 (float) 10 



Dynamic Programming for Pascal 

7–56     Embedded SQL Companion Guide 

Nullable data types (those variables that are associated with a null indicator) 
are specified by assigning the negative of the type code to the sqltype 
component. If the type is negative, a null indicator must be pointed at by the 
sqlind component. The type of the null indicator must be a 2-byte integer (or 
the SQL-defined indicator type). For information on how to declare and use a 
null indicator variable in Pascal, see Pascal Variables and Data Types in this 
chapter. 

Character data and the SQLDA have the exact same rules as character data in 
regular Embedded SQL statements. For details of character string processing 
in SQL, see Pascal Variables and Data Types in this chapter. 

Pointing at Pascal Variables 

In order to fill an element of the sqlvar array, you must set the type  
information and assign a valid address to sqldata. The address must be that 
of a legal variable address. If the element is nullable, the corresponding 
sqlind component must point at a legally declared null indicator. 

Because both the sqldata and sqlind components of the IISQLDA record are 
declared as integers, you must assign integer values to them. This requires 
the use of the built-in iaddress function (as shown in Appendices E and F), or 
other pointer and address operations. The Pascal compiler requires you to 
declare the target variables with the volatile attribute in order to use the 
iaddress and address functions. 

For example, the following fragment sets the type information of and points at 
a 4-byte integer variable, an 8-byte nullable floating-point variable, and an 
sqllen-specified character substring. This example demonstrates how a 
program can maintain a pool of available variables, such as large arrays of the 
few different typed variables, and a large string space. The next available spot 
is chosen from the pool, as in the following example: 

 
{ 
| Assume sqlda has been declared, as well as  
| the following VOLATILE numeric arrays and  
| large array of characters: int4_store,  
| float8_store, indicator_store, char_store 
} 
 
sqlda.sqlvar[1].sqltype  := IISQ_INT_TYPE;  { 4-byte integer } 
sqlda.sqlvar[1].sqllen  := 4; 
sqlda.sqlvar[1].sqldata  := iaddress(int4_store[current_int]); 
sqlda.sqlvar[1].sqlind  := 0; 
current_int := current_int + 1; { Update integer pool } 
 
sqlda.sqlvar[2].sqltype  := -IISQ_FLT_TYPE; { 8-byte nullable float } 
sqlda.sqlvar[2].sqllen := 8; 
sqlda.sqlvar[2].sqldata :=iaddress  
      (float8_store[current_float]); 
sqlda.sqlvar[2].sqlind  
     := iaddress(indicator_store[current_ind]); 
current_float   := current_float + 1; { Update float and } 
current_ind := current_ind + 1; { indicator pool } 



Dynamic Programming for Pascal 

Chapter 7: Embedded SQL for Pascal    7–57 

 
{ 
| SQLLEN has been assigned by DESCRIBE to be the length of a specific result  
| column. This length is used to pick off a substring from a large string space. 
} 
needlen      := sqlda.sqlvar[3].sqllen; 
sqlda.sqlvar[3].sqltype := IISQ_CHA_TYPE; 
sqlda.sqlvar[3].sqldata  
     := iaddress(char_store[current_char]); 
sqlda.sqlvar[3].sqlind := 0; 
current_char := current_char + needlen;   { Update char pool } 

Of course, in the above example, verification of enough pool storage must be 
made before referencing each cell of the different arrays in order to prevent 
sqldata and sqlind from pointing at undefined storage. Appendices E and F 
demonstrate this method. 

The IISQ_HDLR_TYPE is a host language type that is used for transmitting 
data to and from Ingres. Because it is not an Ingres data type, it will never be 
returned as a data type from the describe statement. 

If you code your own SQLDA, and, in place of sqldata, you declare a variant 
record of pointers to a subset of different data types, you may find that you 
can use dynamic allocation routines and simple pointer assignments. For 
example, you can declare a type: 

type 
  Data_Pointer = record 
    case Integer of 
    IISQ_INT_TYPE: (int_ptr: ^Integer); 
    IISQ_FLT_TYPE: (flt_ptr: ^Double); 
    IISQ_CHA_TYPE: (str_ptr: ^Char); 
   end; 

and use this type instead of the sqldata component. If you confirm that the 
layout of the variant record of different pointers is the same as that of a 4-
byte integer (sqldata), then you may use this method. This approach is not 
discussed further in this manual. 

Setting SQLNAME for Dynamic FRS 

When using the sqlvar with Dynamic FRS statements there are a few extra 
steps that are required. These extra steps relate to the differences between 
Dynamic FRS and Dynamic SQL and are described in the SQL Reference Guide. 

When using the SQLDA in a forms input or output using clause, the value of 
sqlname must be set to a valid field or column name. If this name was set by 
a previous describe statement, it must be retained or reset by the program. 
If the name refers to a hidden table field column, it must be directly set by the 
program. The varying-length name need not be padded with blanks. 



Advanced Processing 

7–58     Embedded SQL Companion Guide 

For example, a dynamically named table field has been described, and the 
application always initializes any table field with a hidden 6-byte character 
column called “rowid.” The code used to retrieve a row from the table field 
including the hidden column and _state variable would have to construct the 
two named columns: 

... 
 
rowid: [volatile] packed array[1..6] of Char; 
rowstate: [volatile] Integer; 
 
... 
 
exec frs describe table :formname :tablename into :sqlda; 
 
... 
 
sqlda.sqld   := sqlda.sqld + 1; 
col_num    := sqlda.sqld; 
 
{ Set up to retrieve rowid } 
sqlda.sqlvar[col_num].sqltype  := IISQ_CHA_TYPE; 
sqlda.sqlvar[col_num].sqllen  := 6; 
sqlda.sqlvar[col_num].sqldata  := iaddress(rowid); 
sqlda.sqlvar[col_num].sqlind  := 0; 
sqlda.sqlvar[col_num].sqlname  := ’rowid’; 
 
sqlda.sqld := sqlda.sqld + 1; 
 col_num := sqlda.sqld; 
 
{ Set up to retrieve _STATE } 
sqlda.sqlvar[col_num].sqltype  := IISQ_INT_TYPE; 
sqlda.sqlvar[col_num].sqllen  := 4; 
sqlda.sqlvar[col_num].sqldata  := iaddress(rowstate); 
sqlda.sqlvar[col_num].sqlind  := 0; 
sqlda.sqlvar[col_num].sqlname := ’_state’; 
 
... 
 
exec frs getrow :formname :tablename using descriptor :sqlda; 

Advanced Processing 
This section describes user-defined handlers. It includes information about 
user-defined error, dbevent, and message handlers as well as data handlers 
for large objects. 

User-Defined Error, DBevent, and Message Handlers 

You can use user-defined handlers to capture errors, messages, or events 
during the processing of a database statement. Use these handlers instead of 
the sql whenever statements with the SQLCA when you want to do the 
following: 

 Capture more than one error message on a single database statement. 



Advanced Processing 

Chapter 7: Embedded SQL for Pascal    7–59 

 Capture more than one message from database procedures fired by rules. 

Trap errors, events, and messages as the DBMS raises them. If an event is 
raised when an error occurs during query execution, the WHENEVER 
mechanism detects only the error and defers acting on the event until the next 
database statement is executed. 

User-defined handlers offer you flexibility. If, for example, you want to trap an 
error, you can code a user-defined handler to issue an inquire_sql to get the 
error number and error text of the current error. You can then switch sessions 
and log the error to a table in another session; however, you must switch back 
to the session from which the handler was called before returning from the 
handler. When the user handler returns, the original statement continues 
executing. User code in the handler cannot issue database statements for the 
session from which the handler was called. 

The handler must be declared to return an integer. However, the preprocessor 
ignores the return value. 

Syntax Notes: 

The following syntax describes the three types of handlers: 

exec sql set_sql (errorhandler = error_routine|0); 
exec sql set_sql (dbeventhandler = event_routine|0); 
exec sql set_sql (messagehandler = message_routine|0); 

1. Errorhandler, dbeventhandler, and messagehandler denote a user-defined 
handler to capture errors, events, and database messages respectively, as 
follows: 

— error_routine is the name of the function the Ingres runtime system 
calls when an error occurs. 

— event_routine is the name of the function the Ingres runtime system 
calls when an event is raised. 

message_routine is the name of the function the Ingres runtime system 
calls whenever a database procedure generates a message. 

Errors that occur in the error handler itself do not cause the error handler 
to be re-invoked. You must use inquire_sql to handle or trap any errors 
that may occur in the handler. 

2. Unlike regular variables, the handler must not be declared in an ESQL 
declare section; therefore, do not use a colon before the handler 
argument. (However, you must declare the handler to the compiler.) 

3. If you specify a zero (0) instead of a name, the zero will unset the handler. 

User-defined handlers are also described in the SQL Reference Guide. 



Advanced Processing 

7–60     Embedded SQL Companion Guide 

Declaring and Defining User-Defined Handlers 

The following example shows how to declare a handler for use in the set_sql 
errorhandler statement for ESQL/Pascal: 

program TestProg(input, output); 
exec sql include SQLCA; 
 
  function Error_Func: Integer; 
  exec sql begin declare section; 
  var 
  errnum : Integer; 
  exec sql end declare section; 
 
  begin 
  exec sql inquire_sql (:errnum = ERRORNO); 
  write (’Error number is ’); 
  writeln (errnum); 
  Error_Func :=1;  {return value ignored} 
  end; 
 
begin 
  exec sql connect dbname; 
  exec sql set_sql (ERRORHANDLER = Error_Func); 
  {    } 
  { ESQL will generate   } 
  { IILQshSetHandler ( 1, %immed Error_Func);} 
  {       } 
. . . 
end. 

Sample Programs 

The programs in this section are examples of how to declare and use user-
defined data handlers in an ESQL/Pascal program. There are examples of a 
handler program, a Put Handler program, a Get Handler program and a 
dynamic SQL handler program. 

Handler Program 

This program inserts a row into the book table using the data handler 
Put_Handler to transmit the value of column chapter_text from a text file to 
the database. Then it selects the column chapter_text from the table book 
using the data handler Get_Handler to process each row returned. 

program handler(input,output); 
 exec sql include sqlca 
 
-- Do not declare the data handlers nor the data handler argument  
-- to the ESQL preprocessor 
 
type  
 
 String100 = packed array [1..100] of char; 
  hdlr_rec = record 
 
   argstr: String100; 
   argint: Integer; 



Advanced Processing 

Chapter 7: Embedded SQL for Pascal    7–61 

 
  end; 
 
var 
 
  hdlr_rec: hdlr_arg; 
 
  exec sql begin declare section; 
   indvar;   II_int2; 
   seg_buf; packed array [1...1000] of char; 
   seg_len; integer; 
   data_end; integer; 
   max_len; integer; 
  exec sql end declare section; 

Put Handler 

This user defined handler shows how an application can use the put data 
handler to enter a chapter of a book from a text file into a database. 

function Put_Handler(info: hdlr_rec) : Integer; 
 
begin 
 
  process information passed in via the info record... 
  open file ... 
 
data_end := 0; 
 
  while (not end-of-file) do begin  
 
    read segment from file into seg_buf... 
 
   if (end-of-file) then begin 
    data_end := 1; 
   end; 
 
   exec sql put data (segment = :seg_buf, 
     segmentlength = :seg_len, 
      dataend = :data_end); 
 
end; {while} 
 
. . . 
close file... 
set info record to return appropriate values... 
.... 
Put_Handler := 0 {return value ignored} 
 
end {Put Handler }  

Get Handler 

This user defined datahandler shows how an application can use the get data 
handler to enter a chapter of a book from a text file into a database. 

function Get_Handler(info: hdlr_rec) :Integer; 
begin 
 ... 
 process information passed in via the info record... 
 open file .... 



Advanced Processing 

7–62     Embedded SQL Companion Guide 

data_end := 0; 
while (data_end = 0) do 
begin 
 exec sql get data (:seg_buf=segment,  
   :seg_len = segmentlength, 
    :data_end = dataend) 
   with maxlength = :max_len; 
  write segment to file... 
end; 
. . . 
set info record to return appropriate values... 
... 
   Get_Handler := 0; {return value ignored } 
 end; 
begin 
-- INSERT a long varchar value chapter_text into 
-- the table book using the datahandler Put_Handler 
-- The argument passed to the datahandler the record 
-- hdlr_arg. 
-- 
    ... 
  ... 
  exec sql insert into book (chapter_num, chapter_name, chapter_text) 
    values (5, ‘One Dark and Stormy Night’, 
    datahandler(Put_Handler(hdlr_arg))); 
  ... 
 
-- Select the long varchar column chapter_text from the table book.  
-- The Datahandler (Get_handler) will be invoked for each non-null value of  
-- column chapter_text retrieved. For null values the indicator variable  
-- will be set to “-1” and the datahandler will not be called. 
  ... 
   ... 
   exec sql select chapter_text into 
     datahandler(Get_Handler(hdlr)arg)):indvar 
     from book; 
   exec sql begin; 
     process row.... 
   exec sql end; 
   ... 
end. 

User-Defined Data Handlers for Large Objects 

Use the following definitions when you code user-defined data handlers for 
large objects in Dynamic SQLprograms that use the exec sql include sqlda 
statement: 

 constant IISQ_LVCH_TYPE = 22 
 constant IISQ_HDLR_TYPE = 22 
 
   type IIsqlhdlr = record  
   sqlarg: [volatile] Integer; 
   sqlhdlr: [volatile] Integer; 
 
end; 



Advanced Processing 

Chapter 7: Embedded SQL for Pascal    7–63 

Dynamic SQL Handler Program 

The following is an example of a dynamic SQL handler program: 

program dynamic_hdlr(input,output): 
 
  exec sql include sqlca; 
  exec sql include sqlda; 
 
-- Do not declare the data handlers nor the data handler argument  
-- to the ESQL preprocessor 
 
type 
 
   String100 = packed array [1..100] of char; 
   hdlr_rec = record 
    argstr: String100; 
    argint: Integer; 
   endr; 
 
var 
 
   function Put_Handler(hdlr_arg: hdrlr_rec): 
      integer;external; 
   function Get_Handler(hdlr_arg: hdlr_rec): 
     integer;external; 
   hdlr_rec:  hdlr_arg; 
 
-- Declare SQLDA and IISQLHDLR 
 
   sqlda:  IIsqlda; 
   data_handler: IIsqlhdlr; 
   base_type: integer; 
   col_num: integer; 
 
-- Declare null indicator to ESQL 
 
  exec sql begin declare section; 
   ind_var:    integer; 
   stmt_buf: String100; 
  exec sql end declare section; 
 
  . . 
 
begin 
 
-- Set the IISQLHDLR structure with the appropriate datahandler and  
-- datahandler argument. 
 
 data_handler.sqlhdlr = iaddress(Get_Handler) 
 data_handler.sqlarg = iaddress(hdlr)arg) 
 
-- Describe the statment into the SQLDA. 
 
 stmt_buf = ‘select * from book’. 
 exec sql prepare stmt from :stmt_buf; 
 exec sql describe stmt into SQLDA; 
 
 . . . 
 
-- Determine the base_type of the SQLDATA variables. 
 
 col_num := 1; 
 while (col_num <= sqlda.sqld) do begin 
 
  with sqlda.sqlvar[col_num] do begin 



Preprocessor Operation 

7–64     Embedded SQL Companion Guide 

 
    if (sqltype > 0) then  
     base_type := sqltype; 
    else 
     base_type := -sqltype; 
 
-- Set the sqltype, sqldata and sqlind for each column.  
-- The Long Varchar Column chapter_text will be set to use a datahandler. 
 
  if (base_type = IISQ_LVCH_TYPE) the 
   sqltype = IISQ_HDLR_TYPE; 
   sqldata = iaddress(data_handler_; 
   sqlind = iaddress(indvar); 
  else 
 
  . . . 
  end; 
 
 end; 
 
-- The Datahandler (Get_Handler) will be invoked for each non-null value  
-- of column chapter_text retrieved. 
-- For null values the indicator variable will be set to “-1” and  
-- the datahandler will not be called. 
 
 ... 
 
 exec sql execute immediate :stmt_buf using :SQLDA 
 exec sql begin 
   process row... 
 exec sql end; 
 ... 
 
end. 

Preprocessor Operation 
This section describes the operation of the Embedded SQL preprocessor for 
Pascal and the steps required to create, compile, and link an Embedded SQL 
program. 

Command Line Operations 

The following sections describe how to turn an embedded ESQL/Pascal source 
program into an executable program. These sections include commands that 
preprocess, compile, and link a program. 

The Embedded SQL Preprocessor Command 

The Pascal preprocessor is invoked by the following command line:  

 esqlp {flags} {filename} 



Preprocessor Operation 

Chapter 7: Embedded SQL for Pascal    7–65 

where flags are 

 

Flag Description 

-d Adds debugging information to the runtime database error 
messages generated by Embedded SQL. The source file 
name, line number and statement in error will be printed 
with the error message. 

-f[filename] Writes preprocessor output to the named file. If no 
filename is specified, the output is sent to standard 
output, one screen at a time. 

-l Writes preprocessor error messages to the preprocessor’s 
listing file, as well as to the terminal. The listing file 
includes preprocessor error messages and your source 
text in a file named filename.lis, where filename is the 
name of the input file. 

-lo Like -l, but the generated Pascal code also appears in the 
listing file. 

-o.ext Specifies the extension given by the preprocessor to both 
the translated include statements in the main program 
and the generated output files.  

If this flag is not provided, the default extension is 
“.pas.”If you use this flag in combination with the -o flag, 
then the preprocessor generates the specified extension 
for the translated include statements, but does not 
generate new output files for the include statements. 

-o Directs the preprocessor not to generate output files for 
include files. This flag does not affect the translated 
include statements in the main program. The 
preprocessor will generate a default extension for the 
translated include file statements unless you use the -
o.ext flag. 

-? Shows what command line options are available for 
esqlp. 

-s Reads input from standard input and generates Pascal 
code to standard output. This is useful for testing 
statements you are not familiar with. If the -l option is 
specified with this flag, the listing file is called “stdin.lis.” 
To terminate the interactive session, type Ctrl Z. 

-sqlcode Indicates the file declares ANSI SQL code. 

The ANSI-92 specification describes SQLCODE as a 
“deprecated feature” and recommends using the 
SQLSTATE variable. 



Preprocessor Operation 

7–66     Embedded SQL Companion Guide 

Flag Description 

-[no]sqlcod Tells the preprocessor not to assume a declared 
SQLCODE is for ANSI status information. 

-w Prints warning messages. 

-wopen This flag is identical to -wsql=open. However, -wopen 
is supported only for backwards capability. For more 
information, see -wsql=open. 

-wsql= 
entry_SQL92open 

Prints warning messages that indicate all non-entry 
SQL92 compliant syntax.  

Use open only with OpenSQL syntax. -wsql = open 
generates a warning if the preprocessor encounters an 
Embedded SQL statement that does not conform to 
OpenSQL syntax. (OpenSQL syntax is described in the 
OpenSQL Reference Guide.) This flag is useful if you 
intend to port an application across different Ingres 
Gateways. The warnings do not affect the generated code 
and the output file may be compiled. This flag does not 
validate the statement syntax for any SQL Gateway 
whose syntax is more restrictive than that of OpenSQL. 

The Embedded SQL/Pascal preprocessor assumes that input files are named 
with the extension “.sp.” You can override this default by specifying the file 
extension of the input file(s) on the command line. The output of the 
preprocessor is a file of generated Pascal statements with the same name and 
the extension “.pas.”  

If you enter the command without specifying any flags or a filename, Ingres 
displays a list of flags available for the command. 

The following table present examples of the options available with esqlp. 

Esqlp Command Examples 
 

Command Comment 

esqlp file1 Preprocesses “file1.sp” to “file1.pas” 

esqlp file2.xp Preprocesses “file2.xp” to “file2.pas” 

esqlp -l file3 Preprocesses “file3.sp” to “file3.pas” and creates 
listing “file3.lis” 

esqlp -s Accepts input from standard input 



Preprocessor Operation 

Chapter 7: Embedded SQL for Pascal    7–67 

Command Comment 

esqlp -ffile4.out file4 Preprocesses “file4.sp” to “file4.out” 

esqlp Displays a list of flags available for this command 

The Pascal Compiler 

As mentioned above, the preprocessor generates Pascal code. You should use 
the VMS pascal command to compile this code. You can use most of the 
pascal command line options. You must not use the g_floating qualifier if 
real variables in the file are interacting with Ingres floating-point objects. You 
should also not use the old_version qualifier, because the preprocessor 
generates code for Version 3. Note, too, that many of the statements that the 
Embedded SQL/Pascal preprocessor generates are non-standard extensions 
provided by VAX/VMS. Consequently, you should not use the standard 
qualifier. 

The following example preprocesses and compiles the file “test1.” Note that 
both the Embedded SQL preprocessor and the Pascal compiler assume the 
default extensions. 

$ esqlp test1 
$ pascal/list test1 

VMS
 As of Ingres II 2.0/0011 (axm.vms/00) Ingres uses member alignment and 

IEEE floating-point formats. Embedded programs must be compiled with 
member alignment turned on. In addition, embedded programs accessing 
floating-point data (including the MONEY data type) must be compiled to 
recognize IEEE floating-point formats.  

Note: Check the Readme file for any operating system specific information on 
compiling and linking ESQL/Pascal programs. 

Linking an Embedded SQL Program 

Embedded SQL programs require procedures from several VMS shared 
libraries in order to run properly.  Once you have preprocessed and compiled 
an Embedded SQL program, you can link it. Assuming the object file for your 
program is called “dbentry,” use the following link command: 

$ link dbentry,- 
  ii_system:[ingres.files]esql.opt/opt 



Preprocessor Operation 

7–68     Embedded SQL Companion Guide 

Assembling and Linking Pre-Compiled Forms 

The technique of declaring a pre-compiled form to the FRS  is discussed in the 
SQL Reference Guide and in The SQL Communications Area section in this 
chapter. To use such a form in your program, you must also follow the steps 
described here. 

In VIFRED, you can select a menu item to compile a form. When you do this, 
VIFRED creates a file in your directory describing the form in the VAX-11 
MACRO language. VIFRED lets you select the name for the file. Once you have 
created the MACRO file this way, you can assemble it into linkable object code 
with the  VMS command 

              macro filename 

The output of this command is a file with the extension “.obj”.  You then link 
this object file with your program by listing it in the link command, as in the 
following example: 

$ link formentry,- 
  empform.obj,- 
  ii_system:[ingres.files]esql.opt/opt 

Linking an Embedded SQL Program without Shared Libraries 

While the use of shared libraries in linking Embedded SQL programs is 
recommended for optimal performance and ease-of-maintenance, non-shared 
versions of the libraries have been included in case you require them. Non-
shared libraries required by Embedded SQL are listed in the esql.noshare 
options file. The options file must be included in your link command after all 
user modules. Libraries must be specified in the order given in the options file. 

The following example demonstrates the link command of an Embedded SQL 
program called “dbentry” that has been preprocessed and compiled: 

$ link dbentry,- 
  ii_system:[ingres.files]esql.noshare/opt 

Placing User-written Embedded SQL Routines in Shareable Images 

When you plan to place your code in a shareable image, note the following 
about the psect attributes of your global or external variables. 

 As a default, some compilers mark global variables as shared (SHR: every 
user who runs a program linked to the shareable image sees the same 
variable) and others mark them as not shared (NOSHR: every user who 
runs a program linked to the shareable image gets their own private copy 
of the variable). 



Preprocessor Operation 

Chapter 7: Embedded SQL for Pascal    7–69 

 Some compilers support modifiers you can place in your source code 
variable declaration statements to explicitly state which attributes to 
assign a variable. 

 The attributes that a compiler assigns to a variable can be overridden at 
link time with the psect_attr link option. This option overrides attributes 
of all variables in the psect. 

Consult your compiler reference manual for further details. 

Include File Processing 

The Embedded SQL include statement provides a means to include external 
files in your program’s source code. Its syntax is: 

              exec sql include filename; 

filename is a quoted string constant specifying a file name, or a logical name 
that points to the file name. If no extension is given to the filename (or to the 
file name pointed at by the logical name), the default Pascal input file 
extension “.sp” is assumed.  

This statement is normally used to include variable declarations, although it is 
not restricted to such use. For more details on the include statement, see the 
SQL Reference Guide. 

The included file is preprocessed and an output file with the same name but 
with the default output extension “.pas” is generated. You can override this 
default output extension with the -o.ext flag on the command line. The 
preprocessed output of the include statement is the Pascal %include 
directive. If you use the -o flag (without an extension), then the output file is 
not generated for the include statement. This is useful for program libraries 
that use VMS MMS dependencies. 

For example, assume that no overriding output extension was explicitly given 
on the command line. The Embedded SQL statement: 

exec sql include ’employee.dcl’; 

is preprocessed to the Pascal statement: 

%include ’employee.pas’ 

and the file “employee.dcl” is translated into the Pascal file “employee.pas”. 

As another example, assume that a source file called “inputfile” contains the 
following include statement: 

exec sql include ’mydecls’; 



Preprocessor Operation 

7–70     Embedded SQL Companion Guide 

You can define the name “mydecls” as a system logical name pointing to the 
file “dra1:[headers]myvars.sp” by means of the following command at the 
system level: 

$ define mydecls dra1:[headers]myvars 

Because the extension “.sp” is the default input extension for Embedded SQL 
include files, it need not be specified when defining a logical name for the file. 

Assume now that “inputfile” is preprocessed with the command: 

$ esqlp -o.inc inputfile 

The command line specifies “.inc” as the output file extension for include files. 
As the file is preprocessed, the include statement shown earlier is translated 
into the Pascal statement: 

%include ’dra1:[headers]myvars.inc’ 

and the Pascal file “dra1:[headers]myvars.inc” is generated as output for the 
original include file, “dra1:[headers]myvars.sp”. 

You can also specify include files with a relative path. For example, if you 
preprocess the file “dra1:[mysource]myfile.sp,” the Embedded SQL statement: 

exec sql include ’[-.headers]myvars.sp’; 

is preprocessed to the Pascal statement: 

%include ’[-.headers]myvars.pas’ 

and the Pascal file “dra1:[headers]myvars.pas” is generated as output for the 
original include file, “dra1:[headers]myvars.sp.” 

Including Source Code with Labels 

Some Embedded SQL statements generate labels. If you include a file 
containing such statements, you must be careful to include the file only once 
in a given Pascal scope. Otherwise, you may find that the compiler later 
complains that the generated labels are multiply defined in that scope. 

The statements that generate labels are the Embedded SQL block-type 
statements, which are:  

 select-loop  
 display  
 formdata  
 tabledata 
 unloadtable  
 submenu 



Preprocessor Operation 

Chapter 7: Embedded SQL for Pascal    7–71 

You must also issue the exec sql label statement in the same scope as the 
label-generating statement. 

Coding Requirements for Writing Embedded SQL Programs 

The following sections discuss coding requirements for writing Embedded SQL 
statements. 

Comments Embedded in Pascal Output 

Each Embedded SQL statement generates one comment and a few lines of 
Pascal code. You may find that the preprocessor translates 50 lines of 
Embedded SQL into 200 lines of Pascal. This can confuse the program 
developer who is trying to debug the original source code. To facilitate 
debugging, each group of Pascal statements associated with a particular 
statement is preceded by a comment corresponding to the original Embedded 
SQL source. (Note that only executable Embedded SQL statements are 
preceded by a comment.) Each comment is one line long and informs the 
reader of the file name, line number, and type of statement in the original 
source file. 

One consequence of the generated comment is that you cannot comment out 
embedded statements by putting the opening comment delimiter on an earlier 
line. You have to put the delimiter on the same line, before the exec keyword, 
to cause the preprocessor to treat the complete statement as a Pascal 
comment. 

Embedding Statements Inside Pascal If Blocks 

As mentioned above, the preprocessor may produce several Pascal statements 
for a single Embedded SQL statement. However, all the statements generated 
by the preprocessor are enclosed in Pascal begin and end delimiters, 
composing a Pascal block. Thus the statement: 

if (not dba) then 
 exec sql select passwd 
   into :passwd 
   from security 
   where usrname = :userid; 

will produce legal Pascal code, even though the SQL select statement 
produces more than one Pascal statement. However, two or more Embedded 
SQL statements will generate multiple Pascal blocks, so you must delimit them 
yourself, just as you would delimit two Pascal statements in a single if block. 
For example: 

if (not dba) then 
begin 
 exec frs message ’Confirming your user id’; 
 exec sql select passwd 



Preprocessor Operation 

7–72     Embedded SQL Companion Guide 

    into :passwd 
    from security 
    where usrname = :userid; 
end; 

Note that, because the preprocessor generates a Pascal block for every 
Embedded SQL statement, the Pascal compiler may generate the error 
“Internal Table Overflow” when a single procedure has a very large  number of 
Embedded SQL statements and local variables. You can correct this problem 
by splitting the file or procedure into smaller components. 

All Embedded SQL statements must be terminated by a semicolon. Therefore, 
because Pascal does not permit semicolons before the else clause of an if 
statement, you must surround any single Embedded SQL statement that 
precedes an else clause with a Pascal begin-end block. For example, the 
following if statement will cause a Pascal error: 

if error then 
 exec frs message ’Error occurred’; 
   {Semicolon required by Embedded SQL} 
else 
 exec frs message ’No error occurred’; 

By delimiting the then clause with begin-end, you eliminate the error: 

if error then 
begin 
 exec frs message ’Error occurred’; 
  {Semicolon required by Embedded SQL} 
end  { 
 |   ... but that’s okay because  
 |   there’s no semicolon here 
 } 
else 
 exec frs message ’No error occurred’; 

Embedded SQL Statements That Do Not Generate Code 

The following Embedded SQL declarative statements do not generate any 
Pascal code: 

declare cursor 
declare statement 
declare table 
whenever 

These statements must not contain labels. Also, they must not be coded as the 
only statements in Pascal constructs that do not allow null statements. For 
example, coding a declare cursor statement as the only statement in a 
Pascal if statement not bounded by begin and end would cause compiler 
errors: 

if (using_database) then 
 exec sql declare empcsr cursor for 
   select ename from employee; 
else 



Preprocessor Error Messages 

Chapter 7: Embedded SQL for Pascal    7–73 

 writeln(’You have not accessed the database’); 

The code generated by the preprocessor would be: 

if (using_database) then 
else 
 writeln(’You have not accessed the database’); 

This is an illegal use of the Pascal else clause.  

Embedded SQL/Pascal Preprocessor Errors 

To correct most errors, you may wish to run the Embedded SQL preprocessor 
with the listing (-l) option on. The listing will be sufficient for locating the 
source and reason for the error. 

For preprocessor error messages specific to Pascal, see Preprocessor Error 
Messages in this chapter. 

Preprocessor Error Messages 
The following is a list of error messages specific to Pascal. 

E_DC000A “Table ‘employee’ contains column(s) of unlimited length.” 

Explanation: Character strings(s) of zero length have been generated. This 
causes a compile-time error. You must modify the output file to specify an 
appropriate length. 

E_E20001 “PASCAL attribute conflict in declaration of size for ’%0c’.” 

Explanation: The program has specified conflicting size attributes for this 
object. For example, the following declaration is erroneous because of the 
attempt to extend the attribute size of the type: 

’smaller’: typesmaller = [byte] 1..100; 
varbigger : [word] smaller; 

E_E20002 “PASCAL subrange conflict. Upper and lower bounds are not the same type or 
they are not an ordinal type.”  

Explanation: Both bounds of a subrange declaration must be of the same 
ordinal type (single character or integer). If the subrange bounds types are 
different or if they are not ordinal types, the preprocessor will use the type of 
the second bound and accept the usage of variables declared with this 
subrange type. This will cause an error in later PASCAL compilation. 



Preprocessor Error Messages 

7–74     Embedded SQL Companion Guide 

E_E20003 “Mismatching statement at end of PASCAL subprogram. Check balanced 
subprogram headers and END pairs.” 

Explanation: You may have an exec sql end statement that is not balanced 
by a exec sql label statement. These subprogram delimiters provide scoping 
for PASCAL labels generated by the preprocessor. If you had syntax errors on 
the exec sql label statement then correct those errors and preprocess the file 
again. 

E_E20005 “PASCAL character array ’%0c’ must be PACKED or VARYING.” 

Explanation: A string referenced in an embedded statement must be either a 
PACKED ARRAY OF CHAR, a VARYING OF CHAR or a single CHAR. You have 
used a non-packed ARRAY OF CHAR as an embedded string variable. Convert 
the variable declaration to either PACKED or VARYING, or subscript the array 
to reference only one element. 

E_E20006 “Extraneous semicolon in PASCAL declaration ignored.” 

Explanation: Only one semicolon is allowed between components of a record 
declaration. The preprocessor ignores the extra semicolons. You should delete 
the extra semicolon in your source code. 

E_E20007 “PASCAL dimension of ’%0c’ is %1c, but subscripted %2c times.”  

Explanation: You have not referenced the specified variable with the same 
number of subscripts as the number of dimensions with which the variable was 
declared. This error indicates that you have failed to subscript an array, or you 
have subscripted a non-array. The preprocessor does not parse declaration 
dimensions or subscript expressions. 

E_E20008 “Incorrect indirection of PASCAL variable ’%0c’. Variable is declared with 
indirection of %1c, but dereferenced (^) %2c time(s).” 

Explanation: This error occurs when the address or value of a variable is 
incorrectly expressed because of faulty indirection. For example, the name of 
an integer pointer has been given instead of the variable that the pointer was 
pointing at. Either redeclare the variable with the intended indirection (and 
check any implicit indirection in the type), or change its use in the current 
statement. 

E_E20009 “PASCAL Pass 2 failure on INCLUDE file. The maximum INCLUDE nesting 
exceeded %0c.” 

Explanation: The PASCAL preprocessor must take a second pass in order to 
declare implicitly generated labels. If the source file referenced embedded 
INCLUDE files, then the second pass needs to generate labels into those files. 
Consequently there is a maximum nesting limit of INCLUDE files. Try 
reorganizing your files to create a flatter source file structure. 



Preprocessor Error Messages 

Chapter 7: Embedded SQL for Pascal    7–75 

E_E2000B “PASCAL Pass 2 open file failure. Cannot pass information from file ’%0c’ to 
’%1c’.” 

Explanation: The PASCAL preprocessor must take a second pass in order to 
declare implicitly generated labels. Because there is a temporary file involved, 
and this file has a fixed name, you should avoid running the preprocessor 
more than once in the same directory. This error may also occur if the 
intermediate file disappeared, the system protections of the current directory 
are too restrictive or have changed, or if the original input file was moved 
between the first and second pass of the preprocessor. 

E_E2000C “PASCAL Pass 2 file inconsistency. Mismatching number of label markers in 
’%0c’.” 

Explanation: The PASCAL preprocessor must take a second pass in order to 
declare implicitly generated labels. There was a difference between the 
number of label declaration sections the preprocessor expected to generate 
and the number of markers found in the intermediate file. This may be caused 
by an embedded INCLUDE statement that requires its own scope for label 
generation. If there were nested INCLUDE statements whose files required 
labels, try to flatten them out into larger source files. 

E_E2000D “Missing PASCAL keyword ’%0c’ in declaration.” 

Explanation: You did not use the specified keyword, or you did not make the 
word known to the preprocessor. If there are no other errors the preprocessor 
will generate correct PASCAL code. 

E_E2000F “Can not use indirection (^) on an undeclared PASCAL variable ’%0c’.” 

Explanation: You have used pointer indirection on a name that was not 
declared as a PASCAL variable to the preprocessor. If this really is a variable 
you should make its declaration known to the preprocessor. 

E_E20010 “Can not subscript ([]) an undeclared PASCAL variable ’%0c’.” 

Explanation: You have used array subscription on a name that was not 
declared as a PASCAL variable to the preprocessor. If this really is a variable 
you should make its declaration known to the preprocessor. 

E_E20011 “Can not subscript VARYING PASCAL variable ’%0c’.” 

Explanation: Elements of a varying-length character string array cannot be 
passed to the runtime system. If you need to pass a single element then 
declare the array as a plain array (not PACKED nor VARYING). 



Preprocessor Error Messages 

7–76     Embedded SQL Companion Guide 

E_E20012 “Scalar PASCAL type required for conformant schema bounds type.” 

Explanation: PASCAL requires that bounds expressions of conformant arrays 
be of a scalar type. You must choose a scalar type, such as a single character 
or an integer. 

E_E20013 “PASCAL object ’%0c’ is not a variable.” 

Explanation: You have used the specified name as an embedded variable, but 
you have not declared it to the preprocessor. This may also be a scope 
problem. Make sure you have typed the name correctly, declared the variable 
to the preprocessor and have used it in its scope. 

E_E20014 “Too many comma separated names in declaration. Maximum number of 
names is %0c.” 

Explanation: The declaration of a comma-separated list of names in a 
declaration is too long. For example: vara, b, ..... N : Integer;Try breaking up 
the declaration into groups. 

E_E20018 “Last PASCAL record member referenced in ’%0c’ is unknown.” 

Explanation: The last record member referenced is not a member of the 
current record. Make sure you have spelled the member name correctly, and 
that it is a member of the specified record. 

E_E20019 “Unclosed PASCAL block. There are %0c unbalanced subprogram headers.” 

Explanation: The end of the file was reached with some program blocks left 
open. Make sure you have an END statement for each subprogram header or 
embedded LABEL statement. 

E_E2001A “PASCAL %0c ’%1c’ is not yet defined. An INTEGER is assumed.” 

Explanation: The specified TYPE or CONST name has not yet been declared. 
Make sure that all types and constants are defined before use. Forward type 
declarations (such as pointers to undefined types) are an exception. 

E_E2001B “Underflow of comma separated name list in declaration.” 

Explanation: The stack used to store comma-separated names in declarations 
has been corrupted. Try rearranging the list of names in the declaration. 

E_E2001C “PASCAL variable ’%0c’ is of unsupported type SET or QUADRUPLE.” 

Explanation: You may declare variables of type SET And QUADRUPLE, but 
you may not use them in embedded statements. The declarations are only 
allowed so that you can declare records with components of those types. If 
those variables need to interact with INGRES, then declare the SET variable as 
an ARRAY OF BOOLEAN, and the QUADRUPLE variable as a DOUBLE. 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–77 

E_E20022 “PASCAL variable ’%0c’ is a record, not a scalar value.” 

Explanation: The named variable refers to a record. It was used where a 
variable must be used to retrieve data from INGRES. This error may also 
cause a syntax error on any subsequent record components that are 
referenced. 

E_E20023 “No embedded LABEL statement for current scope but labels have been 
generated.” 

Explanation: The PASCAL preprocessor must take a second pass in order to 
declare implicitly generated labels. If labels were implicitly generated then the 
preprocessor needs to know where to declare them on the second pass. That 
is why one must issue the embedded LABEL statement (and corresponding 
END statement) in each subprogram that issues an embedded block-structured 
statement. If you did not issue the EXEC SQL LABEL statement, the generated 
labels will be marked as undeclared by the PASCAL compiler. 

Sample Applications 
This section contains sample applications. 

The Department-Employee Master/Detail Application 

This application uses two database tables joined on a specific column. This typical 
example of a department and its employees demonstrates how to process two 
tables as a master and a detail. 

The program scans through all the departments in a database table, in order 
to reduce expenses. Based on certain criteria, the program updates 
department and employee records. The conditions for updating the data are 
the following: 

Departments: 

 If a department has made less than $50,000 in sales, the department is 
dissolved. 

Employees: 

 If an employee was hired since the start of 1985, the employee is 
terminated. 

 If the employee’s yearly salary is more than the minimum company wage 
of $14,000 and the employee is not nearing retirement (over 58 years of 
age), the employee takes a 5% pay cut. 



Sample Applications 

7–78     Embedded SQL Companion Guide 

 If the employee’s department is dissolved and the employee is not 
terminated, the employee is moved into a state of limbo to be resolved by 
a supervisor. 

This program uses two cursors in a master-detail fashion. The first cursor is for 
the Department table, and the second cursor is for the Employee table. Both 
tables are described in declare table statements at the start of the program. 
The cursors retrieve all the information in the tables, some of which is 
updated. The cursor for the Employee table also retrieves an integer date 
interval whose value is positive if the employee was hired after January 1, 
1985. 

Each row that is scanned, from both the Department table and the Employee 
table, is recorded in an output file. This file serves both as a log of the session 
and as a simplified report of the updates that were made. 

Each section of code is commented for the purpose of the application and also 
to clarify some of the uses of the Embedded SQL statements. The program 
illustrates table creation, multi-statement transactions, all cursor statements, 
direct updates and error handling. 

program Departments( input, output ); 
exec sql include sqlca; 
 
{The department table} 
exec sql declare dept table 
     (name          char(12)   not null,  {Department name} 
      totsales      money      not null,  {Total sales} 
      employees     smallint   not null); {Number of employees} 
 
{The employee table} 
exec sql declare employee table 
     (name          char(20)   not null,  {Employee name} 
      age           integer1   not null,  {Employee age} 
      idno          integer1   not null,  {Unique employee id} 
      hired         date       not null,  {Date of hire} 
      dept          char(12)   not null,  {Department of work} 
      salary        money      not null); {Yearly salary} 
 
{"State-of-Limbo" for employees who lose their department} 
exec sql declare toberesolved table 
     (name          char(20)   not null,  {Employee name} 
      age           integer1   not null,  {Employee age} 
      idno          integer1   not null,  {Unique employee id} 
      hired         date       not null,  {Date of hire} 
      dept          char(12)   not null,  {Department of work} 
      salary        money      not null); {Yearly salary} 
label 
      exit_program; 
exec sql begin declare section; 
type 
     String12 = varying[12] of Char; 
     String20 = varying[20] of Char; 
     String25 = varying[25] of Char; 
     String200 = varying[200] of Char; 
     Short_Short_Integer = [byte] -128 .. 127; 
     Short_Integer = [word] -32768 .. 32767; 
exec sql end declare section; 
 
{ 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–79 

| Procedure: Process_Expenses (MAIN) 
| Purpose:   Main body of the application. Initialize the database, 
|            process each department, and terminate the session. 
| Parameters: 
|            None 
} 
 
procedure Process_Expenses; 
type 
 File_type = Text; 
var 
 log_file: File_type; {Log file to which to write.} 
 
 { 
 | Procedure:  Init_Db 
 | Purpose:    Initialize the database. 
 |             Connect to the database and abort on error. 
 |             Before processing departments and employees, 
 |             create the table for employees who 
 |             lose their department, "toberesolved". 
 | Parameters: None 
 } 
 
procedure Init_Db; 
begin 
 
  exec sql whenever sqlerror stop; 
  exec sql connect personnel; 
 
  {Create the table.} 
   writeln(log_file, 
     ’Creating ’’To_Be_Resolved’’ table.’); 
   exec sql create table toberesolved 
            (name    char(20) not null, 
      age     integer1 not null, 
      idno    integer  not null, 
      hired   date not null, 
      dept    char(12) not null, 
      salary  money not null); 
end; {Init_Db} 
 
{ 
| Procedure:  End_Db 
| Purpose:    Commit the multi-statement transaction and  
|             end access to the database. 
| Parameters: None 
} 
 
procedure End_Db; 
begin 
 exec sql commit; 
 exec sql disconnect; 
end; {End_Db} 
 
{ 
| Procedure:  Close_Down 
| Purpose:    Error handler called any time after Init_Db has been 
|             successfully completed. In all cases, print the 
|             cause of the error and abort the transaction, 
|             backing out changes. Note that disconnecting 
|             from the database will implicitly close any 
|             open cursors. 
| Parameters: None. 
} 
 
procedure Close_Down; 



Sample Applications 

7–80     Embedded SQL Companion Guide 

  exec sql begin declare section; 
  var 
    errbuf: String200; 
  exec sql end declare section; 
begin 
  {Turn off error handling here} 
  exec sql whenever sqlerror continue; 
 
  exec sql inquire_sql (:errbuf = ERRORTEXT); 
  writeln( ’Closing Down because of database error.’ ); 
  writeln( errbuf ); 
 
  exec sql rollback; 
  exec sql disconnect; 
 
  goto exit_program;    {no return} 
end; {Close_Down} 
 
{ 
| Procedure: Process_Employees 
| Purpose:   Scan through all the employees for a 
|            particular department. Based on given 
|            conditions, the employee may be terminated or 
|            take a salary reduction. 
|            1. If an employee was hired since 1985, 
|               the employee is terminated. 
|            2. If the employee’s yearly salary is more 
|               than the minimum company wage of $14,000 
|               and the employee is not close to retirement 
|               (over 58 years of age), the employee 
|               takes a 5% salary reduction. 
|            3. If the employee’s department is dissolved 
|               and the employee is not terminated,  
|               the employee is moved into the 
|               "toberesolved" table. 
| Parameters: 
|            dept_name    - Name of current department. 
|            deleted_dept - Is department dissolved? 
|            emps_term    - Set locally to record how many 
|                            employees were terminated 
|                            for the current department. 
} 
 
procedure Process_Employees 
  (dept_name:  Varying[ub] of Char; 
   deleted_dept:  Boolean; 
   var emps_term: Integer); 
 
 label 
  Close_Emp_Csr; 
 exec sql begin declare section; 
 const 
  salary_reduc = 0.95; 
 type 
  {Emp_Rec corresponds to the "employee" table} 
   Emp_Rec = record 
   name:    String20; 
   age:   Short_Short_Integer; 
   idno:  Integer; 
   hired:  String25; 
   salary:  Real; 
   hired_since_85: Integer; 
  end; 
 var 
  erec:  Emp_Rec; 
   dname: String12; 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–81 

 exec sql end declare section; 
 
 const 
  min_emp_salary = 14000.00; 
  nearly_retired = 58; 
 var 
  title:    String12; {Formatting values} 
  descript: String25; 
 
 { 
 | Note the use of the INGRES function to find out 
 | who has been hired since 1985 
 } 
 
 exec sql declare empcsr cursor for 
  select name, age, idno, hired, salary, 
   int4(interval(’days’, 
    hired-date(’01-jan-1985’))) 
  from employee 
  where dept = :dname 
  for direct update of name, salary; 
 
begin {Process_Employees} 
 dname := dept_name; 
 
 { 
 | All errors from this point on close down 
 | the application 
 } 
 exec sql whenever sqlerror call Close_Down; 
 exec sql whenever not found goto Close_Emp_Csr; 
 
 exec sql open empcsr; 
 
 emps_term := 0; {Record how many} 
 while (sqlca.sqlcode = 0) do 
 begin 
  exec sql fetch empcsr into :erec; 
 
  if (erec.hired_since_85 > 0) then 
   begin 
    exec sql delete from employee 
     where current of empcsr; 
    title := ’Terminated: ’; 
    descript := ’Reason: Hired since 1985.’; 
    emps_term := emps_term + 1; 
  end else if (erec.salary > min_emp_salary) then 
  begin {Will reduce salary if not nearly retired} 
   if (erec.age < nearly_retired) then 
   begin 
    exec sql update employee 
     set salary = 
      salary * :salary_reduc 
     where current of empcsr; 
    title := ’Reduction: ’; 
    descript := ’Reason: Salary. ’; 
   end else 
   begin 
    {Do not reduce salary} 
    title := ’No Changes: ’; 
    descript := ’Reason: Retiring. ’; 
   end; 
  end else {Else leave employee as is} 
  begin 
   title := ’No Changes: ’; 
   descript := ’Reason: Salary. ’; 



Sample Applications 

7–82     Embedded SQL Companion Guide 

  end; 
 
  {Was employee’s department dissolved?} 
  if (deleted_dept) then 
  begin 
   exec sql insert into toberesolved 
    select * 
    from employee 
    where idno = :erec.idno; 
 
   exec sql delete from employee 
    where current OF empcsr; 
  end; 
 
  {Log the employee’s information} 
  write(log_file, ’ ’, title, ’ ’); 
  write(log_file, erec.idno:6); 
  write(log_file, ’, ’, erec.name, ’, ’); 
  write(log_file, erec.age:3); 
  write(log_file, ’, ’); 
  write(log_file, erec.salary:8:2); 
  writeln(log_file, ’ ; ’, descript); 
 end; 
 
Close_Emp_Csr: 
 exec sql whenever not found continue; 
 exec sql close empcsr; 
end; 
 
{ 
| Procedure:  Process_Depts 
| Purpose:    Scan through all the departments, processing each one.  
|             If the department has made less than $50,000 in sales,  
|             then the department is dissolved.  
|             For each department, process all the employees  
|             (they may even be moved to another database table). 
|             If an employee was terminated, then update the department’s  
|             employee counter. 
| Parameters: None 
} 
 
 
procedure Process_Depts; 
 exec sql begin declare section; 
 type 
  {Dept_Rec corresponds to the "dept" table} 
   Dept_Rec = record 
    name:      String12; 
    totsales:  Double; 
    employees: Short_Integer; 
  end; 
 var 
  dept:      Dept_Rec; 
  emps_term: Integer;     {Employees terminated} 
 exec sql end declare section; 
 
 label 
  Close_Dept_Csr; 
 const 
  min_tot_sales = 50000.00; 
 var 
  deleted_dept: Boolean;  {Was the dept deleted?} 
  dept_format:  String20; {Formatting value} 
 
  exec sql declare deptcsr cursor for 
    select name, totsales, employees 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–83 

    from dept 
    for direct update of name, employees; 
 begin {Process_Depts} 
  emps_term := 0; 
 
  {All errors from this point on close down the application} 
  exec sql whenever sqlerror call Close_Down; 
  exec sql whenever not found goto Close_Dept_Csr; 
 
  exec sql open deptcsr; 
 
  while (sqlca.sqlcode = 0) do 
  begin 
   exec sql fetch deptcsr into :dept; 
 
   {Did the department reach minimum sales?} 
   if (dept.totsales \ min_tot_sales) then 
   begin 
    exec sql delete from dept 
     where current of deptcsr; 
    deleted_dept := TRUE; 
    dept_format := ’ -- DISSOLVED --’; 
   end else 
   begin 
    deleted_dept := FALSE; 
    dept_format := ’ ’; 
   end; 
 
   {Log what we have just done} 
   write(log_file, 
    ’Department: ’, dept.name, ’, Total Sales: ’); 
   write(log_file, dept.totsales:12:3); 
   writeln(log_file, dept_format); 
 
   {Now process each employee in the department} 
   Process_Employees(dept.name, 
    deleted_dept, emps_term); 
 
   {If employees were terminated, record this fact} 
   if ((emps_term > 0) and (not deleted_dept)) then 
   begin 
    exec sql update dept 
     set employees = :dept.employees - :emps_term 
     where current of deptcsr; 
    end; 
   end; 
 
Close_Dept_Csr: 
  exec sql whenever not found continue; 
  exec sql close deptcsr; 
end;      {Process_Depts} 
 
begin      {Process_Expenses} 
  writeln(’Entering application to process expenses.’); 
  open(file_variable := log_file, file_name := ’expenses.log’); 
  rewrite( log_file ); 
  Init_Db; 
  Process_Depts; 
  End_Db; 
  close(log_file); 
  writeln(’Completion of application.’); 
end;      {Process_Expenses} 
 



Sample Applications 

7–84     Embedded SQL Companion Guide 

begin      {MAIN program} 
  Process_Expenses; 
exit_program:; 
 end. {MAIN} 

The Table Editor Table Field Application 

This application edits the Person table in the Personnel database. It is a forms 
application that allows the user to update a person’s values, remove the 
person, or add new persons. Various table field utilities are provided with the 
application to demonstrate how they work. 

The objects used in this application are: 

 

Object Description 

personnel The program’s database environment. 

person A table in the database, with three columns: 

name(char(20)) 
age (smallint) 
number (integer) 

Number is unique. 

personfrm The VIFRED form with a single table field. 

persontbl A table field in the form, with two columns:  

name (char(20)) 
age (integer) 

When initialized, the table field includes the hidden 
column: 

number (integer) 

personrec A local structure, whose members correspond in name 
and type to columns in the Person table and the 
persontbl table field. 

When the application starts, a database cursor is opened to load the table field 
with data from the Person table. After the table field has been loaded, the user 
can browse and edit the displayed values. Entries can be added, updated, or 
deleted. When finished, the values are unloaded from the table field, and the 
user’s updates are transferred back into the Person table. 

program Table_Edit( input, output ); 
exec sql include sqlca; 
 
exec sql declare person table 
 (name char(20),  {Person name} 
  age smallint,  {Age} 
  number integer);  {Unique id number} 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–85 

 
exec frs label exit_label; 
exec sql begin declare section; 
const 
  not_found = 100; {SQLCA value for no rows} 
type 
  String1 = packed array [1..1] of Char; 
  String13 = packed array [1..13] of Char; 
  String20 = packed array [1..20] of Char; 
  String100 = packed array [1..100] of Char; 
  Short_Integer = [word] -32768 .. 32767; 
 
  {Table field row states} 
  Row_States = ( 
   row_undef,    {Empty or undefined row} 
   row_new,      {Appended by user} 
   row_unchange, {Loaded by program, not updated} 
   row_change,   {Loaded by program and updated} 
   row_delete    {Deleted by program} 
  ); 
var 
  {Person information corresponds to "person" table} 
  pname:   String20;      {Full name} 
  page:    Short_Integer; {Age} 
  pnumber: Integer;       {Unique person number} 
  pmaxid:  Integer;       {Maximum person id number} 
 
  {Table field entry information} 
  state:   Row_States;    {State of data set row} 
  recnum,                 {Record number} 
  lastrow: Integer;       {Last row in table field} 
 
  {Utility buffers} 
  search:   String20;     {Name to find in search loop} 
  password: String13;     {Password buffer} 
 
  msgbuf:   String100;    {Message buffer} 
  respbuf:  String1;      {Response buffer} 
exec sql end declare section; 
 
var 
  {Error handling variables for database updates} 
  update_error: Boolean;  {Error in updates?} 
  update_commit: Boolean; {Commit updates} 
 
{ 
| Load the information from the "person" table into the person variables. 
| Also save away the maximum person ID number.  
} 
 
function Load_Table : Integer; 
  label 
   Load_End; 
 
  exec sql begin declare section; 
  var 
   {Person information} 
   pname:      String20;       {Full name} 
   page:       Short_Integer;  {Age} 
   pnumber:    Integer;        {Unique person number} 
   maxid:      Integer;        {Maximum person id number} 
  exec sql end declare section; 
 
  exec sql declare loadtab cursor for 
   select name, age, number 
   from person; 



Sample Applications 

7–86     Embedded SQL Companion Guide 

 
  {Set up error handling for loading procedure} 
  exec sql whenever sqlerror goto Load_End; 
  exec sql whenever not found goto Load_End; 
 
begin      {Load_Table} 
  exec frs message ’Loading Person Information . . .’; 
 
  {Fetch the maximum person id number for later use} 
  exec sql select max(number) 
   into :maxid 
   from person; 
 
  exec sql open loadtab; 
 
  while (sqlca.sqlcode = 0) do 
  begin 
   {Fetch data into record and load table field} 
   exec sql fetch loadtab into :pname, :page, :pnumber; 
 
   exec frs loadtable personfrm persontbl 
    (name = :pname, age = :page, number = :pnumber); 
  end; 
 
Load_End: 
  exec sql whenever sqlerror continue; 
  exec sql close loadtab; 
 
  Load_Table := maxid; 
end; {Load_Table} 
 
begin     {Table_Edit} 
  {Set up error handling for main program} 
  exec sql whenever sqlwarning continue; 
  exec sql whenever not found continue; 
  exec sql whenever sqlerror stop; 
 
  {Start up INGRES and the INGRES/FORMS system} 
 
  exec sql connect ’personnel’; 
 
  exec frs forms; 
 
  update_error := FALSE; 
  update_commit := TRUE; 
 
  {Verify that the user can edit the "person" table} 
  exec frs prompt noecho  
   (’Password for table editor: ’, :password); 
  if (password <> ’MASTER_OF_ALL’) then 
  begin 
   exec frs message ’No permission for task. Exiting . . .’; 
   exec frs endforms; 
   exec sql disconnect; 
   goto exit_label; 
  end; 
  exec frs message ’Initializing Person Form . . .’; 
  exec frs forminit personfrm; 
 
  { 
  | Initialize "persontbl" table field with a data set 
  | in FILL mode so that the runtime user can append rows. 
  | To keep track of events occurring to original rows that 
  | will be loaded into the table field, hide the unique 
  | person number. 
  } 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–87 

 
  exec frs inittable personfrm persontbl fill (number = integer); 
 
  pmaxid := Load_Table; 
 
  {Display the form and allow runtime editing} 
 
  exec frs display personfrm update; 
  exec frs initialize; 
  exec frs begin; 
   { 
   | Provide menu items, as well as system FRS keys, 
   | to scroll to both extremes of the table field. 
   } 
   exec frs scroll personfrm persontbl to 1; 
  exec frs end; 
 
exec frs activate menuitem ’Top’; 
exec frs begin; 
  exec frs scroll personfrm persontbl TO 1; {Backward} 
exec frs end; 
 
exec frs activate menuitem ’Bottom’; 
exec frs begin; 
  exec frs scroll personfrm persontbl to end; {Forward} 
exec frs end; 
 
exec frs activate menuitem ’Remove’; 
exec frs begin; 
  { 
  | Remove the person in the row the user’s cursor 
  | is on. If there are no persons, exit operation 
  | with message. Note that this check cannot 
  | really happen, as there is always at least one 
  | UNDEFINED row in FILL mode. 
  } 
  
  exec frs inquire_frs table personfrm 
    (:lastrow = lastrow(persontbl)); 
  if (lastrow = 0) then 
  begin 
   exec frs message ’Nobody to Remove’; 
   exec frs sleep 2; 
   exec frs resume field persontbl; 
  end; 
 
  exec frs deleterow personfrm persontbl; {Recorded for later} 
exec frs end; 
 
exec frs activate menuitem ’Find’; 
exec frs begin; 
  { 
  | Scroll user to the requested table field entry. 
  | Prompt the user for a name, and if one is typed 
  | in, loop through the data set searching for it. 
  } 
  
  search := ’ ’; 
  exec frs prompt (’Person’’s name : ’, :search); 
  if (search[1] = ’ ’) then 
   exec frs resume field persontbl; 
 
   exec frs unloadtable personfrm persontbl 
    (:pname = name, :recnum = _record, :state = _state); 
   exec frs begin; 
    {Do not compare with deleted rows} 



Sample Applications 

7–88     Embedded SQL Companion Guide 

    if ((state <> row_delete) and (pname = search)) then 
      begin 
     exec frs scroll personfrm persontbl to :recnum; 
     exec frs resume field persontbl; 
      end; 
   exec frs end; 
   {Fell out of loop without finding name. Issue error.} 
   msgbuf := ’Person ’’’ + search + 
     ’’’ not found in table [HIT RETURN] ’; 
   exec frs prompt noecho (:msgbuf, :respbuf); 
exec frs end; 
 
exec frs activate menuitem ’Exit’; 
exec frs begin; 
  exec frs validate field persontbl; 
  exec frs breakdisplay; 
exec frs end; 
exec frs finalize; 
 
{ 
| Exit person table editor and unload the table field. 
| If any updates, deletions or additions were made, 
| duplicate these changes in the source table. 
| If the user added new people, assign a unique person ID  
| to each person before adding the person to the table. 
| To do this, increment the previously-saved maximum ID number 
| with each insert. 
} 
 
{Do all the updates in a transaction} 
exec sql savepoint savept; 
 
update_commit := TRUE; 
 
{ 
| Hard code the error handling in the UNLOADTABLE loop,  
| as we want to cleanly exit the loop. 
} 
exec sql whenever sqlerror continue; 
 
exec frs message ’Exiting Person Application . . .’; 
 
exec frs unloadtable personfrm persontbl 
  (:pname = name, :page = age, 
    :pnumber = number, :state = _state); 
exec frs begin; 
  case state of 
   row_new: 
   begin 
    {Filled by user. Insert with new unique id.} 
    pmaxid := pmaxid + 1; 
    exec sql insert into person (name, age, number) 
     values (:pname, :page, :pmaxid); 
   end; 
 
   row_change: 
   begin 
    {Updated by user. Reflect in table.} 
    exec sql update person set 
     name = :pname, age = :page 
     where number = :pnumber; 
   end; 
 
   row_delete: 
   { 
   | Deleted by user, so delete from table. Note that  



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–89 

   | only original rows, not rows appended at runtime, 
   | are saved by the program. 
   } 
   exec sql delete from person 
    where number = :pnumber; 
 
   otherwise 
   { 
   | Else UNDEFINED or UNCHANGED -- 
   | No updates required. 
   } 
   ; 
  end; {case} 
 
  { 
  | Handle error conditions - 
  | If an error occurred, abort the transaction. 
  | If no rows were updated, inform user and 
  | prompt for continuation. 
  } 
 
if (sqlca.sqlcode < 0) then {Error} 
 begin 
  exec sql inquire_sql (:msgbuf = errortext); 
  exec sql rollback to savept; 
  update_error := true; 
  update_commit := false; 
  exec frs endloop; 
 end else if (sqlca.sqlcode = NOT_FOUND) then 
 begin 
  msgbuf := ’Person " + pname + 
    " not updated. Abort all updates? ’; 
  exec frs prompt noecho (:msgbuf, :respbuf); 
  if ((respbuf = ’Y’) or (respbuf = ’y’)) then 
  begin 
   update_commit := false; 
   exec sql rollback to savept; 
   exec frs endloop; 
  end; 
 end; 
 exec frs end; 
 
 if (update_commit) then  
  exec sql commit; {Commit the updates} 
 
 exec frs endforms; {Terminate the FORMS and INGRES} 
 exec sql disconnect; 
 
 if (update_error) then 
 begin 
  writeln( ’Your updates were aborted because of error:’ ); 
  writeln( msgbuf ); 
 end; 
exit_label:; 
exec frs end. {Table_Edit} 



Sample Applications 

7–90     Embedded SQL Companion Guide 

The Professor-Student Mixed Form Application 

This application lets the user browse and update information about graduate 
students who report to a specific professor. The program is structured in a 
master/detail fashion, with the professor being the master entry, and the 
students the detail entries. The application uses two forms—one to contain 
general professor information and another for detailed student information. 

The objects used in this application are: 

 

Object Description 

personnel The program’s database environment. 

professor A database table with two columns: 

pname (char(25)) 
pdept (char(10)) 

See its declare table statement in the program for a full 
description. 

student A database table with seven columns: 

sname (char(25)) 
sage (integer1) 
sbdate (char(25)) 
sgpa (float4) 
sidno (integer) 
scomment (varchar(200) 
sadvisor (char(25)) 

 See its declare table statement for a full description. The 
sadvisor column is the join field with the pname column in the 
Professor table. 

masterfrm The main form has fields pname and pdept, which correspond 
to the information in the Professor table, and table field 
studenttbl. The pdept field is display-only. 

studenttbl A table field in “masterfrm” with two columns, “sname” and 
“sage.” When initialized, it also has five hidden columns 
corresponding to information in the Student table. 

studentfrm The detail form, with seven fields, which correspond to 
information in the Student table. Only the fields sgpa, 
scomment, and sadvisor are updatable. All other fields are 
display-only. 

grad A global structure, whose fields correspond in name and type to 
the columns of the Student database table, the studentfrm 
form and the studenttbl table field. 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–91 

The program uses the “masterfrm” as the general-level master entry, in which 
data can only be retrieved and browsed, and the “studentfrm” as the detailed 
screen, in which specific student information can be updated. 

The runtime user enters a name in the pname field and then selects the 
Students menu operation. The operation fills the table field “studenttbl” with 
detailed information of the students reporting to the named professor. This is 
done by the database cursor “studentcsr” in the procedure “Load_Students.” 
The program assumes that each professor is associated with exactly one 
department.  

The user can then browse the table field (in read mode), which displays only 
the names and ages of the students. More information about a specific student 
can be requested by selecting the Zoom menu operation. This operation 
displays the form “studentfrm” (in update mode). The fields of “studentfrm” 
are filled with values stored in the hidden columns of “studenttbl.” The user 
can make changes to three fields (“sgpa,” “scomment,” and “sadvisor”). If 
validated, these changes will be written back to the database table (based on 
the unique student id), and to the table field’s data set. This process can be 
repeated for different professor names. 

{ 
| Procedure:  Prof_Student 
| Purpose:    Main body of "Professor Student" Master-Detail application. 
} 
 
program Prof_Student( input, output ); 
 
exec sql include sqlca; 
 
exec sql declare student table {Graduate student table} 
 (sname   char(25),  {Name} 
  sage   integer1,  {Age} 
  sbdate   char(25),  {Birth date} 
  sgpa   float4,   {Grade point average} 
  sidno   integer,  {Unique student number} 
  scomment  varchar(200), {General comments} 
  sadvisor  char(25));  {Advisor’s name} 
 
exec sql declare professor table {Professor table} 
  (pname   char(25),  {Professor’s name} 
  pdept   char(10));  {Department} 
 
exec sql begin declare section; 
type 
 Short_Short_Integer = [byte] -128..127; 
 
 String1 = packed array[1..1] of Char; 
 String10 = packed array[1..10] of Char; 
 String25 = packed array[1..25] of Char; 
 String100 = packed array[1..100] of Char; 
 String200 = packed array[1..200] of Char; 
 
 {Graduate student record maps to "student" database table } 
 Student_Rec = record 
  sname:    String25; 
  sage:     Short_Short_Integer; 
  sbdate:   String25; 
  sgpa:     Real; 
  sidno:    Integer; 



Sample Applications 

7–92     Embedded SQL Companion Guide 

  scomment: String200; 
  sadvisor: String25; 
 end; 
var 
 grad: Student_Rec; 
 {Master and student compiled forms (imported objects)} 
 masterfrm, studentfrm: [external] Integer; 
exec sql end declare section; 
 
{ 
| Procedure:  Load_Students 
| Purpose:   Given an advisor name, load into the "studenttbl" 
|     table field all the graduate students who report 
|     to the professor with that name. 
|     Columns "sname" and "sage" will be displayed, and 
|     all other columns will be hidden. 
| Parameters:  advisor - User specified professor name. 
|      Uses the global student record "grad". 
} 
 
procedure Load_Students( var adv : String25 ); 
 label 
  Load_End; 
 exec sql begin declare section; 
 var 
  advisor : String25; 
 exec sql end declare section; 
 
 exec sql declare studentcsr cursor for 
  select sname, sage, sbdate, sgpa, 
   sidno, scomment, sadvisor 
  from student 
  where sadvisor = :advisor; 
 
begin    {Load_Students} 
 advisor := adv; 
 
 { 
 | Clear previous contents of table field. Load the table 
 | field from the database table based on the advisor name. 
 | Columns "sname" and "sage" will be displayed, and all 
 | others will be hidden. 
 } 
  
 exec frs message ’Retrieving Student Information . . .’; 
 exec frs clear field studenttbl; 
 exec frs redisplay; {Refresh for query} 
 
 exec sql whenever sqlerror goto Load_End; 
 exec sql whenever not found goto Load_End; 
 
 exec sql open studentcsr; 
 
 { 
 | Before we start the loop, we know that the OPEN 
 | was successful and that NOT FOUND was not set. 
 } 
 
 while (sqlca.sqlcode = 0) do 
 begin 
  exec sql fetch studentcsr into :grad; 
 
 exec frs loadtable masterfrm studenttbl 
  (sname = :grad.sname, 
   sage = :grad.sage, 
   sbdate = :grad.sbdate, 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–93 

   sgpa = :grad.sgpa, 
   sidno = :grad.sidno, 
   scomment = :grad.scomment, 
   sadvisor = :grad.sadvisor); 
 end; 
 
Load_End:   {Clean up on an error, and close cursors} 
  exec sql whenever not found continue; 
  exec sql whenever sqlerror continue; 
  exec sql close studentcsr; 
 end; {Load_Students} 
  
 
 { 
 | Function:    Student_Info_Changed 
 | Purpose:     Allow the user to zoom into the details of a 
 |              selected student. Some of the data can be 
 |              updated by the user. If any updates were made, 
 |              then reflect these back into the database table. 
 |              The procedure returns TRUE if any changes were made. 
 | Parameters:  None 
 | Returns:     TRUE/FALSE - Changes were made to the database. 
 |              Sets the global "grad" record with the new data. 
 } 
 
function Student_Info_Changed : Boolean; 
 exec frs label; 
 exec sql begin declare section; 
 var 
  changed: Integer; {Changes made to the form?} 
  valid_advisor: Integer; {Is the advisor name valid?} 
 exec sql end declare section; 
 
begin    {Student_Info_Changed} 
 {Local error handler just prints error and continues} 
 exec sql whenever sqlerror call sqlprint; 
 exec sql whenever not found continue; 
 
 {Display the detailed student information} 
 exec frs display studentfrm fill; 
 exec frs initialize 
  (sname = :grad.sname, 
   sage = :grad.sage, 
   sbdate = :grad.sbdate, 
   sgpa = :grad.sgpa, 
   sidno = :grad.sidno, 
   scomment = :grad.scomment, 
   sadvisor = :grad.sadvisor); 
 
 exec frs activate menuitem ’Write’; 
 exec frs begin; 
 
  { 
  | If changes were made, then update the 
  | database table. Only bother with the 
  | fields that are not read-only. 
  } 
  exec frs inquire_frs form (:changed = change); 
 
  if (changed = 1) then 
  begin 
   exec frs validate; 
   exec frs message 
    ’Writing changes to database. . .’; 
 
   exec frs getform 



Sample Applications 

7–94     Embedded SQL Companion Guide 

     (:grad.sgpa = sgpa, 
      :grad.scomment = scomment, 
      :grad.sadvisor = sadvisor); 
 
   {Enforce integrity of professor name} 
   valid_advisor := 0; 
   exec sql select 1 into :valid_advisor 
    from professor 
    where pname = :grad.sadvisor; 
 
   if (valid_advisor = 0) then 
   begin 
    exec frs message 
     ’Not a valid advisor name’; 
    exec frs sleep 2; 
    exec frs resume field sadvisor; 
   end else 
   begin 
    exec sql update student set 
     sgpa = :grad.sgpa, 
     scomment = :grad.scomment, 
     sadvisor = :grad.sadvisor 
     where sidno = :grad.sidno; 
   end; 
  end; 
  exec frs breakdisplay; 
 exec frs end;  {"Write"} 
 
 exec frs activate menuitem ’Quit’; 
 exec frs begin; 
  {Quit without submitting changes } 
  changed := 0; 
  exec frs breakdisplay; 
 exec frs end; {"Quit"} 
 
 exec frs finalize; 
 
 Student_Info_Changed := (changed = 1); 
exec frs end; {Student_Info_Changed} 
 
{ 
| Procedure:  Master 
| Purpose:   Drive the application, by running "masterfrm" and 
|     allowing the user to "zoom" into a selected student. 
| Parameters:  None - Uses the global student "grad" record. 
} 
 
procedure Master; 
 exec frs label; 
 exec sql begin declare section; 
 type 
  {Professor record maps to "professor" database table } 
   Prof_Rec = record 
   pname: String25; 
   pdept: String10; 
   end; 
 var 
    prof: Prof_Rec; 
 
    {Useful forms runtime information } 
   lastrow,   {Lastrow in table field } 
   istable: Integer;  {Is a table field? } 
 
   {Utility buffers } 
   msgbuf: String100;   {Message buffer } 
   respbuf: String1;   {Response buffer } 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–95 

   old_advisor: String25;  {Old advisor before ZOOM} 
 exec sql end declare section; 
 
begin       {Master} 
 { 
 | Initialize "studenttbl" with a data set in READ mode. 
 | Declare hidden columns for all the extra fields that 
 | the program will display when more information is 
 | requested about a student. Columns "sname" and "sage" 
 | are displayed. All other columns are hidden, to be 
 | used in the student information form. 
 } 
 
 exec frs inittable masterfrm studenttbl read 
  (sbdate = char(25), 
   sgpa = float4, 
   sidno = integer, 
    scomment = char(200), 
    sadvisor = char(20)); 
 
 { 
 | Drive the application by running "masterfrm" and 
 | allowing the user to "zoom" into a selected student. 
 } 
 exec frs display masterfrm update; 
 
 exec frs initialize; 
 exec frs begin; 
  exec frs message ’Enter an Advisor name . . .’; 
  exec frs sleep 2; 
 exec frs end; 
 
 exec frs activate menuitem ’Students’, field ’pname’; 
 exec frs begin; 
  {Load the students of the specified professor } 
  exec frs getform (:prof.pname = pname); 
 
  {If no professor name is given, resume } 
  if (prof.pname[1] = ’ ’) then 
   exec frs resume field pname; 
 
  { 
  | Verify that the professor exists. If not print 
  | print a message, and continue. Assume that 
  | each professor has exactly one department. 
  } 
 
  exec sql whenever sqlerror call sqlprint; 
  exec sql whenever not found continue; 
 
  prof.pdept := ’ ’; 
  exec sql select pdept 
   into :prof.pdept 
   from professor 
   where pname = :prof.pname; 
 
  {If no professor, report error} 
  if (prof.pdept[1] = ’ ’) then 
  begin 
   msgbuf := ’No professor with name ’’’ + 
    prof.pname + ’’’ [return]’; 
   exec frs prompt noecho (:msgbuf, :respbuf); 
   exec frs clear field all; 
   exec frs resume field pname; 
  end; 
 



Sample Applications 

7–96     Embedded SQL Companion Guide 

  {Fill the department field and load students } 
  exec frs putform (pdept = :prof.pdept); 
  Load_Students( prof.pname ); 
 
  exec frs resume field studenttbl; 
 exec frs end; {"Students" } 
 
 exec frs activate menuitem ’Zoom’; 
 exec frs begin; 
  { 
  | Confirm that user is in "studenttbl" and that 
  | the table field is not empty. Collect data from 
  | the row and zoom for browsing and updating. 
  } 
 
  exec frs inquire_frs field masterfrm (:istable = table); 
  if (istable = 0) then 
  begin 
   exec frs prompt noecho 
    (’Select from the student table [return]’, 
      :respbuf); 
   exec frs resume field studenttbl; 
  end; 
 
  exec frs inquire_frs table masterfrm 
    (:lastrow = lastrow); 
  if (lastrow = 0) then 
  begin 
   exec frs prompt noecho 
    (’There are no students [RETURN]’, 
     :respbuf); 
   exec frs resume field pname; 
  end; 
 
  {Collect all data on student into graduate record } 
  exec frs getrow masterfrm studenttbl 
   (:grad.sname = sname, 
    :grad.sage = sage, 
    :grad.sbdate = sbdate, 
    :grad.sgpa = sgpa, 
    :grad.sidno = sidno, 
    :grad.scomment = scomment, 
    :grad.sadvisor = sadvisor); 
 
  { 
  | Display "studentfrm", and if any changes were made, 
  | make the updates to the local table field row. 
  | Only make updates to the columns corresponding to 
  | writable fields in "studentfrm." If the student 
  | changed advisors, then delete the row from the 
  | display. 
  } 
 
  old_advisor := grad.sadvisor; 
  if (Student_Info_Changed) then 
  begin 
   if (old_advisor <> grad.sadvisor) then 
   begin 
    exec frs deleterow 
     masterfrm studenttbl; 
   end else 
   begin 
    exec frs putrow masterfrm studenttbl 
     (sgpa = :grad.sgpa, 
      scomment = :grad.scomment, 
      sadvisor = :grad.sadvisor); 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–97 

   end; 
  end; 
 exec frs end;   {"Zoom"} 
 
 exec frs activate menuitem ’Exit’; 
 exec frs begin; 
  exec frs breakdisplay; 
 exec frs end;   {"Exit"} 
 
 exec frs finalize; 
  exec frs end; {Master} 
 
begin      {Prof_Student} 
 {Start up Ingres and the Forms system } 
 exec frs forms; 
 
 exec sql whenever sqlerror stop; 
 exec frs message ’Initializing Student Administrator . . .’; 
 exec sql connect personnel; 
 
 exec frs addform :masterfrm; 
 exec frs addform :studentfrm; 
 
 Master; 
 
 exec frs clear screen; 
 exec frs endforms; 
 exec sql disconnect; 
end. {Prof_Student} 

The SQL Terminal Monitor Application 

This application executes SQL statements that are read in from the terminal. 
The application reads statements from input and writes results to output. 
Dynamic SQL is used to process and execute the statements. 

When application starts, the user is prompted for the database name. The user 
is then prompted for an SQL statement. SQL comments and statement 
delimiters are not accepted. The SQL statement is processed using Dynamic 
SQL, and results and SQL errors are written to output. At the end of the 
results, an indicator of the number of rows affected is displayed. The loop is 
then continued and the user is prompted for another SQL statement. When 
end-of-file is typed in, the application rolls back any pending updates and 
disconnects from the database. 

The user’s SQL statement is prepared using prepare and describe. If the SQL 
statement is not a select statement, it is run using execute and the number 
of rows affected is printed. If the SQL statement is a select statement, a 
Dynamic SQL cursor is opened, and all the rows are fetched and printed. The 
routines that print the results do not try to tabulate the results. A row of 
column names is printed, followed by each row of the results. 

Keyboard interrupts are not handled. Fatal errors, such as allocation errors, 
and boundary condition violations are handled by rolling back pending updates 
and disconnecting from the database session. 



Sample Applications 

7–98     Embedded SQL Companion Guide 

program SQL_Monitor (input, output); 
{ Declare the SQLCA and the SQLDA records } 
exec sql include sqlca; 
exec sql include sqlda; 
 
exec sql begin declare section; 
var 
  dbname: varying [50] of Char;   { Database name } 
exec sql end declare section; 
 
var 
  sqlda: IIsqlda;     { Global SQLDA record } 
 
exec sql declare stmt statement;   { Dynamic SQL statement } 
exec sql declare csr cursor for stmt;  { Cursor for dynamic statement} 
 
{  
|Constants and types needed to declare global storage  
|for SELECT results  
} 
 
const 
 { Length of large string pool from which sub-strings 
 | will be allocated  
 } 
 max_string = 3000; 
 
type 
  { Different numeric types for result variables } 
  Numerics = record 
    n_int: Integer;   { 4-byte integers } 
    n_flt: Double;   { 8-byte floating points } 
    n_ind: Indicator;  { 2-byte null indicators } 
   end; 
 
 { Large string pool from which to allocate sub-strings } 
  Strings = record 
    s_len: Integer; { Length used, and data } 
    s_data: array [1..MAX_STRING] of Char; 
   end; 
 
var 
  { 
  | Global result storage area - set up by Print_Header, filled when 
  | executing the FETCH statement, and displayed by Print_Row. 
  | Record is declared volatile so that the IADDRESS and ADDRESS 
  | functions can correctly point SQLDATA and SQLIND at the various 
  | components. 
  } 
  res:   [volatile] record 
      nums: array [1..IISQ_MAX_COLS] of Numerics; 
      str: Strings; 
     end; 
 
{ Forward defined procedures and functions } 
 
{ Main body of monitor } 
procedure Run_Monitor; forward; 
 
{ Execute dynamic SELECT statements } 
function Execute_Select: Integer; forward; 
 
{ Print the column headers for a dynamic SELECT } 
function Print_Header: Boolean; forward; 
 
{ Print a result row for a dynamic SELECT } 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–99 

procedure Print_Row; forward; 
 
{ Print an error message } 
procedure Print_Error; forward; 
 
{ Read a statement from input } 
function Read_Stmt(stmt_num: Integer; 
   var stmt_buf: varying[len] of char): Boolean; forward; 
 
 { 
 | Procedure: Run_Monitor 
 | Purpose:   Run the SQL monitor. Initialize the global  
 |            SQLDA with the number of SQLVAR elements. 
 |            Loop while prompting the user for input; if 
 |            end-of-file is detected then return to the main program. 
 | 
 |            If the statement is not a SELECT statement  
 |            then EXECUTE it, otherwise open a cursor and  
 |            process a dynamic SELECT statement (using Execute_Select). 
 } 
 
 procedure Run_Monitor; 
 
  label 
    Exec_Error;     { SQL error in statement } 
 
  exec sql begin declare section; 
 
  var 
   stmt_buf: varying[1000] of Char;  { SQL statement input buffer } 
   stmt_num: Integer;    { SQL statement number } 
   rows: Integer;    { # of rows affected } 
  exec sql end declare section; 
 
  var 
    reading: Boolean;    { While reading statements } 
 
 begin      { Run_Monitor } 
 
  sqlda.sqln := IISQ_MAX_COLS; { Initialize the SQLDA } 
 
  { Now we are set for input } 
  stmt_num := 0; 
  reading  := TRUE; 
 
  while (reading) do begin 
 
  stmt_num := stmt_num + 1; 
 
  { 
  | Prompt and read the next statement. If Read_Stmt 
  | returns FALSE then end-of-file was detected. 
  } 
  reading := Read_Stmt(stmt_num, stmt_buf); 
 
  if (reading) then begin 
 
   { Handle database errors } 
   exec sql whenever sqlerror goto Exec_Error; 
 
   { 
   | Prepare and describe the statement. If the statement 
   | is not a SELECT then EXECUTE it, otherwise inspect the 
   | contents of the SQLDA and call Execute_Select. 
   } 
   exec sql prepare stmt from :stmt_buf; 



Sample Applications 

7–100     Embedded SQL Companion Guide 

   exec sql describe stmt into :sqlda; 
 
   { If SQLD = 0 then this is not a SELECT } 
   if (sqlda.sqld = 0) then begin 
 
    exec sql execute stmt; 
    rows := sqlca.sqlerrd[3]; 
 
   end else begin    { This is a SELECT } 
 
    { Are there enough result variables } 
    if (sqlda.sqld < sqlda.sqln) then begin 
     rows := Execute_Select; 
    end else begin    { Too few result variables } 
     writeln(’SQL Error: SQLDA requires ’, 
      sqlda.sqld:1,  
      ’ variables, but has only ’, 
      sqlda.sqln:1, ’.’); 
     rows := 0; 
    end;    { If enough result variables } 
 
   end;    { If SELECT or not } 
 
   { Display number of rows processed } 
    writeln(’[’, rows:1, ’ row(s)]’); 
 
  Exec_Error: 
   exec sql whenever sqlerror continue; 
   { If we have an error then display the error message } 
   if (sqlca.sqlcode < 0) then 
    Print_Error; 
  end;     { If reading a statement } 
 
 end;      { While reading statements } 
 
end;       { Run_Monitor } 
 
{ 
| Function:   Execute_Select 
| Purpose:    Run a dynamic SELECT statement. The SQLDA has 
|             already been described, so print the column header 
|             (names), open a cursor, and retrieve and print the 
|             results. Accumulate the number or rows processed. 
| Returns:    Number of rows processed. 
} 
 
function Execute_Select; 
   { : Integer; } 
 
 label 
  Select_Error;    { SQL error in statement } 
 var 
  rows:  Integer;   { Counter of rows fetched } 
 
begin       { Execute_Select } 
 
 Execute_Select := 0; 
 
 { 
 | Print result column names, set up the result types and 
 | variables.Print_Header returns FALSE if the dynamic  
 | set-up failed. 
 } 
 if (Print_Header) then begin 
 
  exec sql whenever sqlerror goto Select_Error; 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–101 

 
  exec sql open csr for readonly;  { Open the dynamic cursor } 
 
  { Fetch and print each row } 
  rows := 0; 
  while (sqlca.sqlcode = 0) do begin 
 
   exec sql fetch csr using descriptor :sqlda; 
   if (sqlca.sqlcode = 0) then begin 
    rows := rows + 1;  { Count the rows } 
    Print_Row; 
   end; 
 
  end;     { While there are more rows } 
 
 Select_Error: 
  {  
  |If we got here because of an error then print  
  |the error message 
  } 
  if (sqlca.sqlcode < 0) then 
    Print_Error; 
  exec sql whenever sqlerror continue; 
  exec sql close csr; 
 
  Execute_Select := rows; 
 end;      { If Print_Header } 
end;       { Execute_Select } 
 
{ 
| Function:   Print_Header 
| Purpose:    A statement has just been described so set up the 
|             SQLDA for result processing. Print all the column 
|             names and allocate (point at) result variables for 
|             retrieving data. The result variables are chosen 
|             out of a pool of variables (integers, floats and 
|             a large character string space). The SQLDATA and 
|             SQLIND fields are pointed at the addresses of the  
|             result variables. 
| Returns:    TRUE if successfully set up the SQLDA for result 
|             variables, FALSE if an error occurred. 
} 
 
function Print_Header; 
              { : Boolean; } 
 
var 
  col:  Integer;  { Index into SQLVAR } 
  col_err: Boolean;  { Error processing column } 
  col_null: Boolean;  { Null indicator required } 
  cur_len: Integer;  { Current string length } 
 
begin       { Print_Header } 
 
 res.str.s_len := 1;   { No strings used yet } 
 col := 1; 
 col_err := FALSE; 
 
 while (col <= sqlda.sqld) and (not col_err) do begin 
 
  with sqlda.sqlvar[col] do begin 
 
   { 
   | For each column display the number and name, ie: 
   | [1] sal [2] name [3] age 
   } 



Sample Applications 

7–102     Embedded SQL Companion Guide 

   write(’[’, col:1, ’] ’, sqlname); 
   if (col < sqlda.sqld) then 
    write(’ ’);  { Separator space } 
 
   { 
   | Determine the data type of the column and to  
   | where SQLDATA and SQLIND must point in order to  
   | retrieve data-compatible results. Use the global  
   | result storage area to allocate the result variables. 
   | 
   | Collapse all different types into Integers, Floats 
   | or Characters. 
   } 
 
   if (sqltype < 0) then  { Null indicator handled later } 
    col_null := TRUE 
   else 
    col_null := FALSE; 
 
   case (abs(sqltype)) of 
    IISQ_INT_TYPE:   { Integers } 
     begin 
      sqltype := IISQ_INT_TYPE; 
      sqllen := 4; 
      sqldata := iaddress(res.nums[col].n_int); 
     end; 
 
    IISQ_MNY_TYPE,   { Floating points } 
    IISQ_FLT_TYPE: 
     begin 
       sqltype := IISQ_FLT_TYPE; 
      sqllen := 8; 
      sqldata := iaddress(res.nums[col].n_flt); 
     end; 
 
    IISQ_DTE_TYPE, { Characters } 
    IISQ_CHA_TYPE, 
    IISQ_VCH_TYPE: 
     begin 
      { First determine required length } 
      if (abs(sqltype) = IISQ_DTE_TYPE) then 
       cur_len := IISQ_DTE_LEN 
      else 
       cur_len := sqllen; 
 
      { Enough room in large string buffer ? } 
      if ((res.str.s_len + cur_len)  
        <= MAX_STRING) then 
          begin 
          { Point at a sub-string in buffer } 
          sqltype := IISQ_CHA_TYPE; 
          sqllen := cur_len; 
          sqldata := 
            iaddress(res.str.s_data[res.str.s_len]); 
          res.str.s_len := res.str.s_len + cur_len; 
      end else begin 
          writeln; 
          writeln(’SQL Error: Character result 
        data’,’overflow.’); 
          col_err := TRUE; 
     end;    { If room in string } 
    end; 
   end;     { Case of data types } 
 
   { Assign pointers to null indicators and toggle type } 
   if (col_null) then begin 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–103 

    sqltype := -sqltype; 
    sqlind  := iaddress(res.nums[col].n_ind); 
   end else begin 
    sqlind := 0; 
   end; 
 
  end;     { With current column } 
 
  col := col + 1; 
 
 end;      { While processing columns } 
 
 writeln;      { Print separating line } 
 writeln(’---------------------------------------’); 
 
 Print_Header := not col_err; 
end; { Print_Header } 
 
{ 
| Procedure:  Print_Row 
| Purpose:    For each element inside the SQLDA, print the value. 
|             Print its column number too in order to identify it 
|             with a column name printed earlier in Print_Header. 
|             If the value is NULL print "N/A". 
} 
 
procedure Print_Row; 
 
 var 
  col:  Integer;  { Index into SQLVAR } 
  ch:   Integer;  { Index into sub-strings } 
 
begin      { Print_Row } 
 
 res.str.s_len := 1; { Reset string counter } 
 col := 1; 
 for col := 1 to sqlda.sqld do begin 
 
  with sqlda.sqlvar[col] do begin 
 
   { For each column display the number and value } 
   write(’[’, col:1, ’] ’); 
 
   if (sqltype < 0) and (res.nums[col].n_ind = -1) then begin 
 
    write(’N/A’); 
 
   end else begin 
 
    { 
    | Using the base type set up in Print_Header  
    | determine how to print the results. All types  
    | are printed using default formats. 
    } 
 
    case (abs(sqltype)) of 
      IISQ_INT_TYPE: 
       write(res.nums[col].n_int:1); 
 
    IISQ_FLT_TYPE: 
     write(res.nums[col].n_flt); 
 
    IISQ_CHA_TYPE: 
     begin 
      for ch := 0 to sqllen - 1 do begin 
       write(res.str.s_data 



Sample Applications 

7–104     Embedded SQL Companion Guide 

        [res.str.s_len + ch]); 
      end; 
      res.str.s_len := res.str.s_len + sqllen; 
     end; 
    end;    { Case of data types } 
 
   end;    { If null or not } 
 
  end;     { With current column } 
 
  if (col < sqlda.sqld) then  { Add trailing space } 
   write(’ ’); 
 
 end;      { While processing columns } 
 writeln; { Print end of line } 
 
end; { Print_Row } 
 
{ 
| Procedure:  Print_Error 
| Purpose:    SQLCA error detected. Retrieve the error message and print it. 
} 
procedure Print_Error; 
 
  exec sql begin declare section; 
  var 
   error_buf: varying[400] of Char; { SQL error text retrieval } 
  exec sql end declare section; 
 
begin 
 
  exec sql inquire_sql (:error_buf = errortext); 
  writeln(’SQL Error:’); 
  writeln(error_buf); 
 
end;       { Print_Error } 
 
{ 
| Function:   Read_Stmt 
| Purpose:    Reads a statement from standard input. This routine 
|             prompts the user for input (using a statement number) 
|             and returns the response. The routine can be extended 
|             to scan for tokens that delimit the statement, such 
|             as semicolons and quotes, in order to allow the 
|             statement to be continued over multiple lines. 
| Parameters:  
|             stmt_num - Statement number for prompt. 
|             stmt_buf - Buffer to fill for input. 
| Returns:     
|             TRUE if a statement was read, 
|             FALSE if end-of-file typed. 
} 
 
function Read_Stmt; 
   { (stmt_num:Integer; 
      var stmt_buf: Varying of Char) : Boolean; } 
 
begin 
 
  write(stmt_num:1, ’> ’);   { Prompt for SQL statement } 
  if (not eof) then begin 
   readln(stmt_buf); 
   Read_Stmt := TRUE; 
  end else begin 
   stmt_buf := ’’; 
   Read_Stmt := FALSE; 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–105 

  end; 
 
end;        { Read_Stmt } 
 
{ 
| Program: SQL_Monitor Main 
| Purpose: Main entry of SQL Monitor application. Prompt for database 
|          name and connect to the database. Run the monitor and 
|          disconnect from the database. Before disconnecting roll  
|          back any pending updates. 
} 
 
begin        { Main Program } 
 
  open(output, record_length :=  
    MAX_STRING);    { For large result lines } 
 
  write(’SQL Database: ’);   { Prompt for database name } 
  readln(dbname); 
 
  writeln(’ -- SQL Terminal Monitor --’); 
 
  { Treat connection errors as fatal errors } 
  exec sql whenever sqlerror stop; 
  exec sql connect :dbname; 
 
  Run_Monitor; 
 
  exec sql whenever sqlerror continue; 
 
  writeln(’SQL: Exiting monitor program.’); 
  exec sql rollback; 
  exec sql disconnect; 
 
end. { Main Program } 

A Dynamic SQL/Forms Database Browser 

This program lets the user browse data from and insert data into any table in 
any database, using a dynamically defined form. The program uses Dynamic 
SQL and Dynamic FRS statements to process the interactive data. You should 
already have used VIFRED to create a Default Form based on the database 
table that you want to browse. VIFRED will build a form with fields that have 
the same names and data types as the columns of the specified database 
table. 

When run, the program prompts the user for the name of the database, the 
table and the form. The form is profiled using the describe form statement, 
and the field name, data type and length information is processed. From this 
information the program fills in the SQLDA data and null indicator areas, and 
builds two Dynamic SQL statement strings to select data from and insert(b) 
data into the database. 



Sample Applications 

7–106     Embedded SQL Companion Guide 

The Browse menu item retrieves the data from the database using an SQL 
cursor associated with the dynamic select statement, and displays that data 
using the dynamic putform statement. A submenu allows the user to 
continue with the next row or return to the main menu. The Insert menu item 
retrieves the data from the form using the dynamic getform statement, and 
adds the data to the database table using a prepared insert statement. The 
Save menu item commits the user’s changes and, because prepared 
statements are discarded, reprepares the select and insert statements. When 
the Quit menu item is selected, all pending changes are rolled back and the 
program is terminated. 

program Dynamic_FRS; 
 exec sql labeL exit_program;  { Exit on error } 
 
 exec sql include sqlca;   { Declare the SQLCA and } 
 exec sql include sqlda;   { and the SQLDA records } 
 
 var 
  sqlda: IIsqlda;    { Global SQLDA record } 
 
 const 
  MAX_NAME = 50;    { Input name size } 
  MAX_STRING = 3000;   { Large string buffer size } 
  MAX_STMT = 1000;   { SQL statement string size } 
 
 { 
 | Result storage pool for Dynamic SQL and FRS statements.  
 | This result pool consists of arrays of 4-byte integers, 
 | 8-byte floating-points, 2-byte indicators, and a large  
 | string buffer from which sub-strings will be allocated.  
 | Each SQLDA SQLVAR sets its SQLDATA and SQLIND address pointers 
 | to variables from this pool. 
 | 
 | Note that the arrays are declared as volatile so that the 
 | IADDRESS and ADDRESS functions can correctly point SQLDATA  
 | and SQLIND at the various elements. 
 } 
 var 
   integers:     [volatile] array[1..IISQ_MAX_COLS] of Integer; 
   floats:       [volatile] array[1..IISQ_MAX_COLS] of Double; 
   indicators:   [volatile] array[1..IISQ_MAX_COLS] of Indicator; 
   characters:   [volatile] array[1..MAX_STRING] of Char; 
 
 exec sql begin declare section; 
  type 
   Statement_Buf = varying[MAX_STMT]  
    of Char;     { Statement string } 
   Input_Name = varying[MAX_NAME] of Char;  { Input name } 
  var 
   dbname: Input_Name;    { Database name } 
   formname: Input_Name;   { Form name } 
   tabname: Input_Name;   { Database table name } 
   sel_buf: Statement_Buf;   { Prepared SELECT statement } 
   ins_buf: Statement_Buf;   { Prepared INSERT statement } 
   err: Integer;    { Error status } 
   ret: Char;     { Prompt error buffer } 
 exec sql end declare section; 
 
 { 
 | Function: Describe_Form 
 | Purpose:  Profile the specified form for name and data  
 |           type information. Using the DESCRIBE FORM statement, 
 |           the SQLDA is loaded with field information from the 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–107 

 |           form. This procedure processes this information to 
 |           allocate result storage, point at storage for 
 |           dynamic FRS data retrieval and assignment, and build 
 |           SQL statements strings for subsequent dynamic  
 |           SELECT and INSERT statements. For example, assume the 
 |           form (and table) ’emp’ has the following fields: 
 |  
 |   Field Name  Type   Nullable? 
 |    ----------  ----   --------- 
 |    name   char(10)  No 
 |    age   integer4  Yes 
 |    salary   money   Yes 
 | 
 |   Based on ’emp’, this procedure will construct the 
 |   SQLDA. The procedure allocates variables from a  
 |  result variable pool (integers, floats and a large 
 |   character string space). 
 |   The SQLDATA and SQLIND fields are pointed at the 
 |   addresses of the result variables in the pool. The 
 |   following SQLDA is built: 
 | 
 |    sqlvar[1] 
 |    sqltype = IISQ_CHA_TYPE 
 |    sqllen = 10 
 |    sqldata = pointer into characters array 
 |    sqlind = null 
 |    sqlname = ’name’ 
 |    sqlvar[2] 
 |    sqltype = -IISQ_INT_TYPE 
 |    sqllen = 4 
 |    sqldata = address of integers[2] 
 |    sqlind = address of indicators[2] 
 |    sqlname = ’age’ 
 |    sqlvar[3] 
 |    sqltype = -IISQ_FLT_TYPE 
 |    sqllen = 8 
 |   sqldata = address of floats[3] 
 |    sqlind = address of indicators[3] 
 |    sqlname = ’salary’ 
 | 
 |   This procedure also builds two dynamic SQL statements 
 |   strings. Note that the procedure should be extended to 
 |   verify that the statement strings do fit into the 
 |   statement buffers (this was not done in this example). 
 |   The above example would construct the following statement 
 |   strings: 
 | 
 |    ’SELECT name, age, salary FROM emp ORDER BY name’ 
 |    ’INSERT INTO emp (name, age, salary) VALUES (?, ?, ?)’ 
 | 
 | Parameters: 
 |    formname - Name of form to profile. 
 |    tabname - Name of database table. 
 |    sel_buf - Buffer to hold SELECT statement string. 
 |    ins_buf - Buffer to hold INSERT statement string. 
 | Returns: 
 |    TRUE/FALSE - Success/failure - will fail on error 
 |    or upon finding a table field. 
 } 
 function Describe_Form (formname, tabname: Input_Name; 
   var sel_buf, ins_buf: Statement_Buf): Boolean; 
 
 var 
  names:  Statement_Buf;   { Names for SQL statements } 
  marks:  Statement_Buf;   { Place holders for INSERT } 
  col:  Integer;    { Index into SQLVAR } 



Sample Applications 

7–108     Embedded SQL Companion Guide 

  nullable: Boolean;   { Is nullable (SQLTYPE 0) } 
  char_cnt: Integer;   { Total string length } 
  char_cur: Integer;   { Current string length } 
  described:Boolean;   { Return value } 
 
 begin      { Describe_Form } 
 
  { 
  | Initialize the SQLDA and DESCRIBE the form. If we  
  | cannot fully describe the form (our SQLDA is too small)  
  | then report an error and return. 
  } 
  sqlda.sqln := IISQ_MAX_COLS; 
  described := TRUE; 
 
  exec frs describe form :formname all into :sqlda; 
  exec frs inquire_frs frs (:err = ERRORNO); 
  if (err > 0) then begin 
   described := FALSE;  { Error already displayed } 
  end else if (sqlda.sqld > sqlda.sqln) then begin 
   exec frs prompt noecho (’SQLDA is too small for  
     form :’, :ret); 
   described := FALSE; 
  end else if (sqlda.sqld = 0) then begin 
   exec frs prompt noecho  
     (’There are no fields in the form :’, :ret); 
   described := FALSE; 
  end; 
 
  { 
  | For each field determine the size and type of the  
  | result data area. This data area will be allocated out  
  | of the result variable pool (integers, floats and 
  | characters) and will be pointed at by SQLDATA and SQLIND. 
  |  
  | If a table field type is returned then issue an error. 
  | 
  | Also, for each field add the field name to the ’names’ 
  | buffer and the SQL place holders ’?’ to the ’marks’  
  | buffer, which will be used to build the final SELECT  
  | and INSERT statements. 
  } 
  char_cnt := 1;    { No strings used yet } 
  col := 1; 
 
  while (col <= sqlda.sqld) and (described) do begin 
 
   with sqlda.sqlvar[col] do begin 
 
    { 
    | Collapse all different types into Integers, Floats 
    | or Characters. 
    } 
    if (sqltype < 0) then { Null indicator handled later } 
     nullable := TRUE 
    else 
     nullable := FALSE; 
    case (abs(sqltype)) of 
     IISQ_INT_TYPE:   { Integers } 
      begin 
       sqltype := IISQ_INT_TYPE; 
       sqllen := 4; 
       sqldata := iaddress(integers[col]); 
      end; 
 
     IISQ_MNY_TYPE,   { Floating-points } 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–109 

     IISQ_FLT_TYPE: 
      begin 
       sqltype := IISQ_FLT_TYPE; 
       sqllen := 8; 
       sqldata := iaddress(floats[col]); 
      end; 
 
     IISQ_DTE_TYPE,   { Characters } 
     IISQ_CHA_TYPE, 
     IISQ_VCH_TYPE: 
      begin 
       { First determine required length } 
       if (abs(sqltype) = IISQ_DTE_TYPE) then 
        char_cur := IISQ_DTE_LEN 
       else 
         char_cur := sqllen; 
 
       { Enough room in large string buffer ? } 
       if ((char_cnt + char_cur) > MAX_STRING) 
         then begin 
        exec frs prompt noecho 
         (’Character pool buffer  
         overflow :’, :ret); 
         described := FALSE; 
       end else begin 
            { Point at a sub-string in buffer} 
        sqltype := IISQ_CHA_TYPE; 
        sqllen := char_cur; 
        sqldata :=iaddress 
        (characters[char_cnt]); 
        char_cnt := char_cnt + char_cur; 
       end; { If room in string } 
      end; 
 
     IISQ_TBL_TYPE: 
      begin 
       exec frs prompt noecho 
       (’Table field found in form :’, :ret); 
        described := FALSE; 
      end; 
 
     otherwise 
      begin 
       exec frs prompt noecho 
       (’Invalid field type :’, :ret); 
        described := FALSE; 
      end; 
 
    end;    { Case of data types } 
 
    { Assign pointers to null indicators and toggle type } 
    if (nullable) then begin 
     sqltype := -sqltype; 
     sqlind := iaddress(indicators[col]); 
    end else begin 
     sqlind := 0; 
    end; 
 
    { 
    | Store field names and place holders (separated by commas) 
     | for the SQL statements. 
     } 
     if (col = 1) then begin 
      names := sqlname; 
      marks := ’?’; 
     end else begin 



Sample Applications 

7–110     Embedded SQL Companion Guide 

      names := names + ’,’ + sqlname; 
      marks := marks + ’,?’; 
     end; 
 
   end;     { With current column } 
   col := col + 1; 
 
end;        { While processing columns } 
{ 
| Create final SELECT and INSERT statements. For the SELECT  
| statement ORDER BY the first field. 
} 
if (described) then begin 
  sel_buf := ’SELECT ’ + names + ’ FROM ’ + tabname 
     + ’ ORDER BY ’ + sqlda.sqlvar[1].sqlname; 
  ins_buf := ’INSERT INTO ’ + tabname + ’ (’ + names 
    + ’) VALUES (’ + marks + ’)’; 
end; 
 
Describe_Form := described; 
 
end;        { Describe_Form } 
 
{ 
| Program: Dynamic_FRS Main 
| Purpose: Main body of Dynamic SQL forms application. Prompt for 
|          database, form and table name. Call Describe_Form  
|          to obtain a profile of the form and set up the SQL 
|          statements. Then allow the user to interactively browse 
|          the database table and append new data. 
} 
 
begin { Dynamic_FRS Main } 
 
 exec sql declare sel_stmt  
    statement;    { Dynamic SQL SELECT statement } 
 exec sql declare  
    ins_stmt statement;  { Dynamic SQL INSERT statement } 
 exec sql declare csr cursor  
    for sel_stmt;   { Cursor for SELECT statement } 
 exec frs forms; 
 
 { Prompt for database name - will abort on errors } 
 exec sql whenever sqlerror stop; 
 exec frs prompt (’Database name: ’, :dbname); 
 exec sql connect :dbname; 
 
 exec sql whenever sqlerror call sqlprint; 
 
 { 
 | Prompt for table name - later a Dynamic sql select statement 
 | will be built from it. 
 } 
 exec frs prompt (’Table name: ’, :tabname); 
 
 { 
 | Prompt for form name. Check forms errors reported 
 | through inquire_frs. 
 } 
 exec frs prompt (’Form name: ’, :formname); 
 exec frs message ’Loading form ...’; 
 exec frs forminit :formname; 
 exec frs inquire_frs frs (:err = ERRORNO); 
 if (err > 0) then begin 
  exec frs message ’Could not load form. Exiting.’; 
  exec frs endforms; 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–111 

  exec sql disconnect; 
  goto exit_program; 
 end; 
 
 { Commit any work done so far - access of forms catalogs } 
 exec sql commit; 
 
 { Describe the form and build the SQL statement strings } 
 if (not Describe_Form(formname, tabname, sel_buf, ins_buf))  
  then begin 
   exec frs message ’Could not describe form. Exiting.’; 
   exec frs endforms; 
   exec sql disconnect; 
   goto exit_program; 
  end; 
 
  { 
  | PREPARE the SELECT and INSERT statements that correspond to the  
  | menu items Browse and Insert. If the Save menu item is chosen 
  | the statements are reprepared. 
  } 
  exec sql prepare sel_stmt from :sel_buf; 
  err := sqlca.sqlcode; 
  exec sql prepare ins_stmt from :ins_buf; 
  if ((err < 0) or (sqlca.sqlcode < 0)) then begin 
   exec frs message ’Could not prepare SQL statements. Exiting.’; 
   exec frs endforms; 
   exec sql disconnect; 
   goto exit_program; 
  end; 
 
  { 
  | Display the form and interact with user, allowing browsing 
  | and the inserting of new data. 
  } 
  exec frs display :formname FILL; 
  exec frs initialize; 
  exec frs activate menuitem ’Browse’; 
  exec frs begin; 
   {  
   | Retrieve data and display the first row on the form, 
   | allowing the user to browse through successive rows.  
   | If data types from the database table are not consistent 
   | with data descriptions obtained from the form, a 
   | retrieval error will occur. Inform the user of this or  
   | other errors. 
   |  
   | Note that the data will return sorted by the first  
   | field that was described, as the SELECT statement,  
   | sel_stmt, included an ORDER BY clause. 
   } 
   exec sql open csr; 
 
   { Fetch and display each row } 
   while (sqlca.sqlcode = 0) do begin 
 
   exec sql fetch csr using descriptor :sqlda; 
   if (sqlca.sqlcode <> 0) then begin 
    exec sql close csr; 
    exec frs prompt noecho (’No more rows :’, :ret); 
    exec frs clear field all; 
    exec frs resume; 
   end; 
 
   exec frs putform :formname using descriptor :sqlda; 
   exec frs inquire_frs frs (:err = errorno); 



Sample Applications 

7–112     Embedded SQL Companion Guide 

   if (err > 0) then begin 
    exec sql close csr; 
    exec frs resume; 
   end; 
 
   { Display data before prompting user with submenu } 
   exec frs redisplay; 
 
   exec frs submenu; 
   exec frs activate menuitem ’Next’, FRSKEY4; 
   exec frs begin; 
     { Continue with cursor loop } 
     exec frs message ’Next row ...’; 
     exec frs clear field all; 
   exec frs end; 
   exec frs activate menuitem ’End’, FRSKEY3; 
   exec frs begin; 
     exec sql close csr; 
     exec frs clear field all; 
     exec frs resume; 
   exec frs end; 
 
  end;     { While there are more rows } 
exec frs end; 
 
exec frs activate menuitem ’Insert’; 
exec frs begin; 
 exec frs getform :formname using descriptor :sqlda; 
 exec frs inquire_frs frs (:err = ERRORNO); 
 if (err > 0) then begin 
  exec frs clear field all; 
  exec frs resume; 
 end; 
 exec sql execute ins_stmt using descriptor :sqlda; 
 if ((sqlca.sqlcode < 0) or (sqlca.sqlerrd[3] = 0)) then begin 
  exec frs prompt noecho (’No rows inserted :’, :ret); 
 end else begin 
  exec frs prompt noecho (’One row inserted :’, :ret); 
 end; 
exec frs end; 
 
exec frs activate menuitem ’Save’; 
exec frs begin; 
 { 
 | COMMIT any changes and then re-PREPARE the SELECT and INSERT 
 | statements as the COMMIT statements discards them. 
 } 
 exec sql commit; 
 exec sql prepare sel_stmt from :sel_buf; 
 err := sqlca.sqlcode; 
 exec sql prepare ins_stmt from :ins_buf; 
 if ((err < 0) or (sqlca.sqlcode < 0)) then begin 
  exec frs prompt 
    noecho (’Could not reprepare SQL statements :’,:ret); 
  exec frs breakdisplay; 
 end; 
exec frs end; 
 
exec frs activate menuitem ’Clear’; 
exec frs begin; 
 exec frs clear field all; 
exec frs end; 
 
exec frs activate menuitem ’Quit’, FRSKEY2; 
exec frs begin; 
 exec sql rollback; 



Sample Applications 

Chapter 7: Embedded SQL for Pascal    7–113 

 exec frs breakdisplay; 
exec frs end; 
exec frs finalize; 
 
exec frs endforms; 
exec sql disconnect; 
 
exit_program:; 
 
exec sql end. { Dynamic_FRS Main } 

 





  

 

    Index–1 
 

Index 
 

. 

.ada filename extension, 5-71 

.c filename extension, 2-77, 2-84 

.for filename extension, 4-69 

.o filename extension, 2-87 

.obj filename extension, 2-86, 2-88, 5-75, 6-
56 

.sa filename extension, 5-67, 5-71 

.sb filename extension, 6-54, 6-57 

.sc filename extension, 2-84 

.sf filename extension, 4-69 

A 

Ada 
Boolean operators, 5-32 
character data, 5-8, 5-40 
comments, 5-2, 5-69 
compiler, 5-74 
data type codes, 5-56 
data types, 5-5 
display (statement), 5-3 
goto (statement), 5-45 
include (statement), 5-67 
null indicators, 5-37 
numeric data types, 5-5, 5-73 
package specifications, 5-68 
preprocessor errors, 5-75 
preprocessor invocation, 5-70 
program library, 5-72 
source code generation, 5-70 
statement syntax, 5-1 
type definitions, 5-15 
variables, 5-5 

addform (statement), 2-26, 2-27, 3-21, 3-22 

All (clause), 5-37 

alphanumeric data categories, 3-12 

ampersand (&) 
line continuation indicator, 6-3 
reference operator, 2-12 

angle brackets (< >) 
label delimiter, 5-2 

ANSI C function prototypes, 2-44, 2-69, 2-71 

ANSI format 
generating output, 3-81 
margin considerations, 3-1 

applications, multi-threaded, 2-142 

applications, sample 
master/detail, 3-95, 4-77 
mixed form, 2-113, 3-115, 4-89, 5-90, 6-
72, 7-90 
SQL Terminal Monitor, 2-122, 3-128, 4-98, 
5-97, 6-79, 7-97 
table field, 2-106, 3-105, 4-83, 5-84, 6-67, 
7-84 

arrays 
declarations, 2-14, 6-12 
definitions, 5-19, 7-16 
variables, 2-33, 4-23, 5-32, 6-21, 7-34 

asterisk (*) 
comment indicator, 3-4, 4-3 
pointer declaration and, 2-15 

attributes 
psect, 6-56, 7-68 
type definition, 7-10 
variable, 2-89, 4-74, 6-56, 7-68 

B 

backslash (\), string literals and, 2-3 

BASIC 
comments, 6-3, 6-58 
compiling, 6-55 



  

 

Index–2     Embedded SQL Companion Guide 

data type codes, 6-43 
data types, 6-7 
display (statement), 6-4 
goto (statement), 6-34 
if blocks, 6-59 
include (statement), 6-57 
line numbers, 6-1 
null indicators, 6-15, 6-26 
preprocessor errors, 6-59 
preprocessor invocation, 6-52 
reserved words, 6-7 
select (statement), 6-3 
source code generation, 6-55 
statement syntax, 6-1 
variables, 6-7 

begin/end (keywords), 7-71 

blanks 
padding, 3-36, 4-29, 5-40, 6-29, 7-41, 7-
43 
trailing, 3-36, 4-29, 5-40, 6-29, 7-41, 7-43 
truncation, 3-36, 4-29, 5-40, 6-29, 7-41 

blocks (of program code) 
cautions, 2-3, 2-55, 3-4, 4-4, 4-35, 5-2, 5-
47, 6-4, 6-36, 7-3, 7-49 
delimiters, 2-55, 3-42, 4-35, 5-47, 6-36, 
7-11, 7-49 
generating labels, 7-70 

Boolean type 
Ada, 5-32 

braces { } 
comment delimiter, 7-2 
type declarations, 2-19 

C 

C (language) 
comments, 2-2 
data type conversions, 2-44 
data type declarations, 2-7 
display (statement), 2-3 
errors, 2-98 
null indicators, 2-24 
reserved words, 2-6 
variables, 2-5 

C compiler, 2-85 

C++ language, 2-90 

caret (^) 
pointer indicator, 7-38 

case, use in keywords, 2-6, 4-7, 6-7 

char data type, 6-29, 7-9, 7-17 

character data, 2-9, 2-63, 3-35, 4-11, 4-29, 5-
40, 7-41 

comparing, 6-30 
converting, 2-46, 4-29, 5-40, 6-28, 7-41 
inserting, 5-41, 6-29, 7-42 
retrieving, 5-40, 6-29, 7-42 
type, 6-29 

clauses, 5-22 

COBOL, 3-91 
comments, 3-4, 3-72 
compiling, 3-84 
data items, 3-7 
data types, 3-10 
IF blocks, 3-73 
IF-GOTO blocks, 3-77 
PERFORM blocks, 3-73 
preprocessor errors, 3-91 
preprocessor invocation, 3-78 
separator periods, 3-74 
source code efficiency, 3-77 
source code generation, 3-81 
statement syntax, 3-1 
strings, 3-77 
tables, 3-26 
variables, 3-7 

colon (:) 
Ada objects, 5-32 
host variable indicator, 6-26 
label terminator, 2-2, 7-2 
null indicator, 6-26 
statement terminator, 6-2 
structure member indicator, 6-26 
variables and, 3-25, 4-22, 6-21 

command line operations, 2-82 

comments, 3-4, 3-72 
program, 2-2, 2-90, 3-4, 4-3, 4-65, 5-2, 
5-69, 6-3, 6-58, 7-2, 7-71 

common variable declarations, 6-12 

compiled forms 



  

    Index–3 

addform (statement), 2-26, 2-27, 3-21, 3-
22 
assembling, 2-25, 4-18, 5-25, 6-18 
linking, 2-86, 2-87, 2-88, 3-84, 4-72, 4-
73, 5-74, 6-55, 7-68 
VIFRED, 2-25, 4-18, 5-25, 6-18 

computation, 5-7 

constants 
declaring, 4-9 

constants, declaring, 4-8, 4-9, 7-12 

constraints, index, 5-12 

continue (statement), 4-2 

conventions 
operating system differences, 1-4 
syntax, 1-3 

conversion 
automatic, 2-44, 3-32, 4-27, 5-38, 6-27, 
7-39 
language compatibility, 2-44, 3-31, 4-27, 
5-38, 6-27, 7-39 
numeric data, 2-46, 3-15, 3-16, 3-33, 4-
28, 5-39, 6-28, 7-41 
string/character data, 2-46, 3-35, 4-29, 5-
40, 6-28, 7-41 

create procedure (statement), 2-5, 3-6, 4-5, 
5-4, 6-5, 7-4 

cursor. See declare cursor (statement) 

D 

-d flag, 3-78, 4-67, 5-70, 6-52, 7-65 

data items 
declaring, 3-8 
elementary, 3-25 
null indicator, 3-13, 3-30 
record, 3-27 

data names, 3-8 

data types, 2-7, 2-45, 5-5, 6-8, 7-7 
access, 5-21 
array, 7-16 
boolean, 5-7, 7-8, 7-33 
char, 7-9 

character, 2-9, 2-63, 3-35, 4-11, 4-29, 5-
9, 5-40, 6-29, 7-9, 7-41 
conversion, 3-16 
date, 5-41 
decimal, 3-11, 4-10, 4-28, 6-10 
declarations, 4-7, 4-16, 5-5, 6-7, 7-6 
defined, 6-10 
derived, 5-21 
enumerated, 5-18, 5-22, 5-31, 7-14, 7-33 
file, 7-18 
floating-point, 5-7, 5-17, 5-73, 6-8, 7-9 
incomplete, 5-21 
indicator variables, 4-12 
integer, 4-10, 5-7, 5-16, 6-9, 7-7 
money, 3-34 
null indicator, 2-24, 3-13, 3-30, 4-17, 5-
37, 6-15, 7-8 
packed array of char, 7-9, 7-17 
pointer, 3-12, 7-15 
private, 5-22 
real, 4-11, 6-10 
record, 5-20, 5-33, 6-11, 6-14, 6-23, 7-
17, 7-35 
See also conversion, 3-15 
set, 7-19 
string, 5-8, 6-9, 7-16 
subrange, 7-15 
varchar, 2-20, 2-49, 3-35, 4-29, 5-40, 6-
28, 7-41 
varying of char, 7-9 

data, inserting, 5-41, 6-29, 7-42 

date (data type), 5-41 

DCLGEN Declaration Generator (utility), 2-22, 
2-92, 3-17, 4-14, 5-23, 6-16, 7-22 

debugging 
error information, 5-70, 6-52, 7-65 
program comments, 5-69, 6-58, 7-71 

decimal, 2-45 

decimal data type, 6-10 

declarations, 6-20, 6-59 
constant, 4-8, 4-9, 6-11, 7-12 
data item, 3-7 
data type, 4-6, 5-5, 6-7, 6-19, 7-6 
declare cursor (statement), 3-76 
declare statement (statement), 3-76 
declare table (statement), 3-76 



  

 

Index–4     Embedded SQL Companion Guide 

dimension (statement), 6-12 
external, 6-13 
label, 7-11 
number, 5-14 
numeric data type, 3-16 
parameters, 5-12, 7-20 
pointer, 2-15 
procedure, 3-7, 4-6, 5-5, 6-7, 7-6, 7-26 
scope, 7-30 
See also variable declarations, 3-7 
structure, 2-16, 4-13 
types, 7-13 

declare (statement), 5-69, 6-11, 6-59, 7-31 

declare cursor (statement), 4-21, 4-66, 5-29, 
5-69, 6-20, 6-59, 7-31, 7-72 

declare table (statement), 5-69, 6-59, 7-72 

dimension (statement), 6-12 

discriminant constraint, 5-12 

display (statement), 2-3, 4-4, 5-3, 6-4, 7-3 

display loops, 3-74 

dollar sign ($) 
statements, 6-2 
variable name suffix, 6-7 

double quotation marks (“) 
string literals and, 3-5 

E 

embedded SQL 
character data, 2-63 
coding requirements, 3-72, 4-65, 5-69, 6-
58, 7-71 
comments, 2-2, 2-90, 3-4, 3-72, 4-3, 4-
65, 5-2, 5-69, 6-3, 6-58, 7-2, 7-71 
data type conversion, 2-44 
data type declarations, 2-7, 3-10 
if blocks, 7-71 
include (statement), 2-76, 3-68, 3-70, 4-
60, 4-62, 4-63, 5-67, 6-57, 7-69 
keywords, 2-6, 6-7, 7-6 
library unit addition, 5-72 
linking, 3-84, 4-71, 5-74, 6-55 

margin considerations, 2-1, 3-1, 4-1, 5-1, 
6-1, 7-1 
null values, 2-41 
preprocessor, 3-78, 4-67, 5-70, 6-52, 7-64 
preprocessor errors, 2-89, 2-98, 3-91, 4-
74, 5-75, 6-59, 7-73 
preprocessor invocation, 2-80, 2-94 
SQLCA, 2-51, 3-38, 4-31, 5-42, 6-31, 7-45 
statement syntax, 3-1, 4-1, 5-1, 6-1, 7-1 
type codes for variables, 2-63, 3-51, 4-44, 
5-56, 6-43, 7-55 
variables, 2-5, 3-7, 4-6, 5-5, 6-7, 7-6 

end-exec (keyword), 3-2, 3-74 

enumerated data type, 5-18, 5-22, 5-31, 7-14, 
7-33 

enumerated variables, 2-19 

errors 
C (language), 2-98 
capturing. See user-defined handlers 
handling, 7-46 
preprocessing, 4-74, 4-75, 5-75, 6-59, 7-
73 

esqla (command), 5-70 

esqlb (command), 6-52 

esqlc (command), 2-82 

esqlcbl (command), 3-78 

esqlf (command), 4-67 

esqlp (command), 7-64 

events, capturing. See user-defined handlers 

exclamation point (!) 
comment indicator, 4-3, 6-3 

exec (keyword), 2-1, 3-1, 4-1, 5-1, 6-1, 7-1 

exec frs (keyword), 3-4 

exec sql (keyword), 3-4 

exec sql label (statement), 7-11, 7-71 

execute immediate (statement), 2-4, 3-5, 4-5, 
5-3, 7-4 

-extension flag, 2-95 



  

    Index–5 

F 

-f flag, 3-78, 4-67, 5-70, 6-52, 7-65 

file data type, 7-18 

file type 
definition, 7-18 
variable, 7-18 

filename extensions 
.ada, 5-71 
.c, 2-77, 2-84 
.cob, 3-80 
.for, 4-69 
.lib, 3-69, 3-71 
.o, 2-87 
.obj, 2-86, 2-88, 3-84, 4-73, 5-75, 6-56, 
7-68 
.pas, 7-66, 7-69 
.sa, 5-67, 5-71 
.sb, 6-54, 6-57 
.sc, 2-84 
.scb, 3-68, 3-70, 3-80 
.scc, 2-94 
.sf, 4-60, 4-62, 4-63, 4-69 
.sp, 7-66, 7-69 

FILLER, data names, 3-8 

floating-point data type, 5-7, 5-17, 5-73, 6-8, 
7-9 

forms, example applications, 2-113, 3-115, 4-
89, 5-90, 6-72, 7-90 

Fortran 
comments, 4-3, 4-65 
compiling, 4-69 
continue (statement), 4-2 
data type codes, 4-44 
data types, 4-6 
display (statement), 4-4 
if blocks, 4-65 
if goto (statement), 4-33 
null indicators, 4-26 
parameter (statement), 4-8, 4-9 
preprocessor errors, 4-74, 4-75 
preprocessor invocation, 4-67 
procedure declaration, 4-6 
reserved words, 4-7 
select (statement), 4-3 

source code generation, 4-69 
statement syntax, 4-1 
structure (statement), 4-13 
variables, 4-6 

FRS (Forms Runtime System) 
descriptor area (SQLDA), 2-58, 3-46, 4-39, 
5-50, 6-39, 7-52 
dynamic, 2-58, 3-45, 4-38, 5-50, 6-38, 6-
41, 6-45, 7-51 
linking with RTS, 3-87 

function prototypes, 2-69 

functions 
notrim, 4-30, 5-41, 6-30 
prototypes, 2-44, 2-71 

G 

goto (statement), 4-33, 5-45, 6-34, 7-47 

H 

hyphen (-) 
comment delimiter, 2-3, 3-5, 4-4, 5-2, 6-
4, 7-3 
in contrast to minus sign, 3-25 
line continuation indicator, 3-5 

I 

-i flag[i], 4-67 

identifiers, predeclared, 7-24 

IEEE formats, 2-85, 3-84, 4-70, 5-74, 6-55, 7-
67 

if blocks, 3-73, 4-65, 6-59, 7-71 

IF-GOTO blocks, 3-77 

IF-THEN-ELSE (statement), 3-77 

images, shareable, 2-89, 4-74, 6-56, 7-68 

include (statement), 2-76, 3-68, 3-70, 4-60, 
4-62, 4-63, 5-67, 6-57, 7-69 



  

 

Index–6     Embedded SQL Companion Guide 

include SQLCA (statement), 2-51, 3-38, 4-31, 
5-42, 6-31, 7-45 

include SQLDA (statement), 2-58, 3-46, 3-49, 
4-39, 5-51, 6-39, 7-52 

indicator types, 7-8 
character data retrieval, 7-8 

indicator variables, 2-24, 3-13, 4-12, 4-17, 5-
25, 5-37, 6-15 

character data retrieval, 2-24, 3-13, 4-12, 
4-17, 6-15 
syntax, 3-30, 6-26, 7-38 

indirection levels, 2-29 

insert (statement), 3-6, 4-5 

integer data type, 4-10, 5-7, 5-16, 6-9, 7-7 

integers 
enum (type declaration), 2-19 
literals, 6-5 
size and preprocessing, 4-10, 6-9 

K 

keywords, 7-6 
begin/end, 7-71 
case conversion, 4-7, 6-7 
Embedded SQL, 6-7, 7-6 
rem, 6-4 
reserved, 2-6, 4-7 

L 

-l flag, 2-83, 3-78, 4-67, 5-70, 6-53, 7-65 

labels 
declarations, 7-11 
program code, 3-3, 3-72, 4-2, 4-65, 5-2, 
6-2, 6-58, 7-2, 7-70 
statement prefixes, 2-2, 3-3, 4-2, 5-2, 6-
2, 7-5 

levels 
indirection, 2-29 
numbers, 3-8 

libraries, linking, 2-86, 2-87, 2-88, 3-84, 3-85, 
4-71, 5-74, 6-55, 7-67 

line numbers, 6-1 

lines, continuing, 3-4, 4-2, 5-2, 6-3, 7-2 

linking, 4-71 
compiled forms, 3-84, 3-88, 4-72, 5-74, 6-
55, 7-68 
programs, 3-84, 5-74, 6-55, 7-67 

literals 
integer, 6-5 
string, 2-3, 3-5, 4-4, 5-3, 6-5, 7-4 

-lo flag, 3-78, 4-67, 5-70, 6-53, 7-65 

long floating-point storage format, 5-7 

loop, display, 3-74 

M 

margins in program code, 2-1, 3-1, 4-1, 5-1, 
6-1, 7-1 

master/detail applications, 3-95, 4-77 

member alignment, 2-85, 3-84, 4-70, 5-74, 6-
55, 7-67 

messages, capturing. See user-defined 
handlers 

minus sign (-) 
constant names and, 7-13 

money (data type), 3-34 

-multi flag, 2-143 

multi-threaded applications, 2-142 
-multi flag, 2-143 
SQLCA diagnostic area, 2-143 
SQLSTATE variable, 2-144 

N 

nested structures, 4-14 

notrim (function), 3-36, 4-30, 5-41, 6-30, 7-43 



  

    Index–7 

null indicators, 2-24, 2-41, 3-13, 3-30, 4-17, 
4-26, 5-37, 6-15, 6-26, 7-8, 7-38 

null values, 2-20 

number declaration, 5-14 

number sign (#), declarations and, 2-10 

numeric data type, 7-7 
converting, 2-46, 4-28, 5-39, 6-28 
declarations, 3-14 
loss of precision, 3-14, 3-33 

O 

-o flag, 3-79, 4-67, 7-65 

object code, 2-86, 2-87, 2-88, 3-84, 4-73, 5-
74, 7-68 

occurs (clause), 3-9 

overflow 
data conversion, 2-46 
internal tables, 7-72 
type conversion, 3-33, 4-28, 6-28, 7-41 

P 

packed array of char data type, 7-9, 7-17 

paragraphs, 3-73 

parameter (statement), 4-8, 4-9 

parameters, declaring, 5-12, 7-20 

parentheses ( ) 
comment delimiter (with asterisk), 7-2 

Pascal 
character data, 7-9 
comments, 7-2, 7-71 
compiling, 7-67 
data type codes, 7-55 
data types, 7-6 
display (statement), 7-3 
function definition, 7-27 
goto (statement), 7-47 
if blocks, 7-71 
include (statement), 7-69 

null indicators, 7-8, 7-38 
numeric data types, 7-7 
preprocessor errors, 7-73 
preprocessor invocation, 7-64 
procedure declaration, 7-26 
program definition, 7-24 
reserved words, 7-6 
source code generation, 7-64 
statement syntax, 7-1 
variable type codes, 7-55 
variables, 7-6 

percent sign (%) 
integer literal indicator, 6-5 
variable name suffix, 6-7 

PERFORM blocks, 3-73 

period (.) 
group items, 3-27 
statement separator, 3-3, 3-74 
statements, 6-2 

plus sign (+) 
constant names and, 7-13 

pointers, 2-15 
data items, 3-54 
declarations, 2-15 
POINTER data items, 3-12 
pointer type definitions, 7-15 
variables, 2-34, 2-65, 4-45, 5-57, 6-44, 7-
56 

prepare (statement), 2-4, 3-5, 4-5, 5-3, 7-4 

preprocessor 
compiling/linking, 3-84, 4-69, 5-74, 6-55, 
7-67 
errors, 2-89, 2-98, 3-91, 4-74, 6-59, 7-73 
integer size, 4-10, 6-9 
invoking, 2-80, 2-94, 3-78, 4-67, 5-70, 6-
52, 7-64 
line numbers, 6-2 
source code format, 3-77, 3-81, 3-82, 4-
74, 5-70, 6-55, 7-64 

programs 
object code, 2-86, 2-87, 2-88, 3-84, 4-73, 
5-74, 7-68 
source code, 3-81, 3-82, 4-69, 5-70, 6-55, 
7-64 

prototypes, function, 2-44, 2-69, 2-71 



  

 

Index–8     Embedded SQL Companion Guide 

psect attributes, 2-89, 4-74, 6-56, 7-68 

R 

range variables, 5-11, 7-15 

real data type, 4-11, 6-10 

record data items, 3-27 

record data type, 5-20, 5-33, 6-11, 6-14, 6-
23, 7-17, 7-35 

record variables, 5-33, 6-23, 7-35 

rem (keyword), 6-4 

representation (clause), 5-22 

reserved words, 2-6, 3-9, 4-7, 6-7, 7-6 

retrieving character data, 5-40, 6-29, 7-42 

rows, retrieving information, 2-57, 3-44, 4-38, 
5-49, 6-38, 7-51 

S 

-s flag, 2-83, 3-79, 4-68, 5-71, 6-53, 7-65 

scalar-valued variables, 2-32, 4-22, 6-21 

select (statement), 4-3, 6-3 

semicolon (;) 
statement separator, 2-1 
statement terminator, 4-2, 5-1, 6-2, 7-1 

set data type, 7-19 

set type definition, 7-19 

set type variable, 7-19 

single quotation mark ('), string literals and, 2-
3, 3-5, 4-4, 5-3, 6-5, 7-4 

slash (/) 
comment indicator (C++), 2-90 
comment indicator (with asterisk), 2-2 
new listing page indicator, 3-5 

source code 
label generation, 3-72, 4-2, 4-65, 5-2, 6-2, 
6-58, 7-2, 7-70 

preprocessors, 3-77, 3-81, 3-82, 4-69, 5-
70, 6-55, 7-64 

spaces, 3-3 

SQL. See also embedded SQL 
communications area, 2-51, 3-38, 4-31, 5-
42, 6-31, 7-45 
descriptor area (SQLDA), 2-58, 4-39, 5-50, 
6-39, 7-52 
dynamic, 2-58, 3-45, 4-38, 5-50, 6-38, 7-
51 
execute immediate (statement), 2-4, 3-5, 
4-5 
insert (statement), 3-6, 4-5 
prepare (statement), 2-4, 3-5, 4-5 
sample application, 2-122, 3-128, 4-98, 5-
97, 6-79, 7-97 
SQLDA, 2-58 
SQLVAR, 2-62 

SQLCA (SQL Communications Area) 
contents, 2-52, 3-38, 4-32, 5-43, 6-32, 7-
45 
error handling, 2-53, 3-40, 4-33, 5-44, 6-
33, 7-46 
include SQLCA (statement), 3-38, 4-31, 5-
42, 6-31, 7-45 
Include SQLCA (statement), 2-51 
row determination, 2-57, 3-44, 4-38, 5-49, 
6-38, 7-51 
structure declaration, 2-52, 3-38, 4-32, 5-
43, 6-32, 7-45 

SQLDA (SQL Descriptor Area), 2-58, 3-46, 4-
39, 5-50, 6-39, 7-52 

sqlerrd variable, 3-44, 4-38, 5-49, 7-51 

sqlerrm variable, 5-44, 7-46 

sqlname, 2-66, 3-49, 3-55, 4-42, 4-47, 5-53, 
5-58, 6-41, 6-45, 7-53, 7-57 

SQLVAR, 2-62, 3-51, 4-44, 5-55, 6-42, 7-55 

strings, 5-8, 6-9, 7-16 
converting, 2-46, 4-29, 5-40, 6-28, 7-41 
data type, 5-8, 6-9 
literals, 2-3, 3-5, 4-4, 5-3, 6-5, 7-4 
varying length, 7-16 

structure, 4-13 
generating, 2-22, 3-17, 5-23, 6-16, 7-22 
members, 4-25 



  

    Index–9 

nested, 4-14 
SQLCA, 2-52, 3-38, 4-32, 5-43, 6-32, 7-45 
struct (declaration), 2-16 
variables, 2-36, 4-23 

subrange type definition, 7-15 

syntax, 4-1 
conventions, 1-3 
data item declaration, 3-8 
program definition, 7-24 

systems 
operating system variants, 1-4 
SYSTEM package, 5-6 

T 

table fields 
sample application, 2-106, 3-105, 4-83, 5-
84, 6-67, 7-84 

tables, overflow handling, 7-72 

tag structure, 2-16 

terminator, statement, 7-1 

truncation 
blanks, 3-36, 4-29, 5-40, 6-29, 7-41 
data conversion, 2-46, 3-33, 3-36, 4-28, 
5-39, 6-28, 6-29, 7-41 

type declarations, 5-21, 7-13 

type definition, 5-15, 7-14, 7-18 

typedef (declaration), 2-13 

U 

underscore (_) 
constant names and, 7-12 
type names and, 7-13 

union declaration, 4-13 

UNIX 
icon, 1-4 
linking compiled forms, 2-87 
linking libraries, 2-87 

use (clause), 5-30, 5-68 

user-defined handlers, 2-68, 2-93, 3-58, 4-49, 
5-60, 6-46, 7-58 

use-types, clauses, 3-9 

V 

varchar data type, 2-20, 2-49, 3-35, 5-40, 6-
28, 7-41 

variable declarations 
array, 2-14 
common, 6-12 
include (statement), 5-67 
indirection levels, 2-29 
map, 6-12 
pointer, 2-15 
redeclarations, 2-29 
reserved words, 2-6, 4-7, 6-7, 7-6 
scope, 2-29, 3-24, 4-20, 5-28, 6-19, 7-30 
section, 2-5, 3-7, 4-6, 5-5, 6-7 
syntax, 2-11, 5-10, 6-11, 7-19 
types, 2-11 

variables, 4-12 
accessing, 5-36 
array, 2-33, 4-23, 5-32, 6-21, 7-34 
colons, 3-25 
null indicator, 2-24, 2-41, 3-13, 3-30, 4-
17, 4-26, 5-37, 6-15, 6-26, 7-8, 7-38 
pointer, 2-34, 5-36, 7-38 
range, 5-11, 7-15 
record, 5-33, 6-23, 7-35 
renaming, 5-14 
scoping, 2-29, 4-20, 5-28, 6-19, 7-30 
simple, 2-32, 4-22, 5-31, 6-21, 7-32 
SQLDA, 2-60, 4-43, 5-53, 6-41, 7-53 
structure, 2-36, 4-23 
varchar, 2-49 

varying of char data type, 7-9 

VMS 
icon, 1-4 
IEEE formats, 2-85, 3-84, 4-70, 5-74, 6-
55, 7-67 
linking compiled forms, 2-88 
linking libraries, 2-88 



  

 

Index–10     Embedded SQL Companion Guide 

member alignment, 2-85, 3-84, 4-70, 5-
74, 6-55, 7-67 

W 

-w flag, 2-83, 3-79, 4-68, 5-71, 6-53, 7-66 

wchar_t data type, 2-33 

whenever (statement), 2-53, 3-40, 4-33, 4-66, 
5-44, 5-69, 6-33, 6-59, 7-46, 7-72 

whenever goto (statement), 7-49 

Windows 32 
linking compiled forms, 2-86 
linking libraries, 2-86 

Windows icon, 1-4 

with (clause), 5-30, 5-68 

-wopen flag, 2-84, 4-68, 5-71, 6-53, 7-66 

 


	Bookshelf
	Ingres Embedded SQL Companion Guide 
	Contents
	1: About This Guide
	Purpose of This Manual 
	Audience 
	Contents 
	Enterprise Access Compatibility 
	Conventions 
	Statements and Commands 
	Terminology 
	Syntax 


	System-Specific Text 
	Related Manuals 

	2: Embedded SQL for C
	Embedded SQL Statement Syntax for C 
	Margin 
	Terminator 
	Labels 
	Line Continuation 
	Comments 
	String Literals 
	String Literals and Statement Strings 

	The Create Procedure Statement 
	Creating Sub Processes in ESQL/C Programs 

	C Variables and Data Types 
	Variable and Type Declarations 
	Embedded SQL Variable Declaration Sections 
	Reserved Words in Declarations 
	Data Types 
	#Define Declaration 
	Variable Declarations Syntax 
	Type Declarations Syntax 
	Array Declarations Syntax 
	Pointer Declarations Syntax 
	Structure Declarations Syntax 
	A Structure with a Tag and a Body 
	A Structure with a Body and No Tag 
	A Structure with a Tag and No Body 
	Enumerated Integer Types 
	The Varying Length String Type 
	The Varying Length Binary Type 
	The DCLGEN Utility 
	DCLGEN and Large Objects 
	Indicator Variables 
	Compiling and Declaring External Compiled Forms 
	Concluding Example 

	The Scope of Variables 
	Variable Usage 
	Simple Variables 
	Array Variables 
	Pointer Variables 
	Structure Variables 
	Using Indicator Variables 
	Using Varchar Variables for Logical Key Data Types 
	Declaring Function Arguments 

	Data Type Conversion 
	Runtime Numeric Type Conversion 
	Runtime Character Type Conversion 


	The SQL Communications Area 
	The Include SQLCA Statement 
	Contents of the SQLCA 
	Using the SQLCA for Error Handling 
	Error Handling with the Whenever Statement 
	Explicit Error Handling 
	Determining the Number of Affected Rows 

	Using the SQLSTATE Variable 

	Dynamic Programming for C 
	The SQLDA Structure 
	Declaring and Allocating an SQLDA Variable 
	Dynamic Allocation of an SQLDA 
	Static Declaration of an SQLDA 

	Using the SQLVAR 
	C Variable Type Codes 
	Character Data and the SQLDA 
	Binary Data and the SQLDA 
	Pointing at C Variables 

	Setting SQLNAME for Dynamic FRS 

	Advanced Processing 
	User Defined Error, DBevent, and Message Handlers 
	Declaring and Defining User Defined Handlers 

	User Defined Data Handlers for Large Objects 
	ESQL/C Usage Notes 
	Data Handlers and the SQLDA 
	Sample Programs 


	Preprocessor Operation 
	Include File Processing 
	Including Source Code with Labels 

	Coding Requirements for Writing Embedded SQL Programs 
	Comments Embedded in C Output 
	Embedding Statements Inside C If Blocks 
	Embedded SQL Statements that Do Not Generate Code 

	Command Line Operations 
	The Embedded SQL Preprocessor Command 
	The C Compiler 

	Linking Embedded SQL Programs--Windows 
	Programs Without Embedded Forms 
	Compiling and Linking Precompiled Forms 

	Linking Embedded SQL Programs--UNIX 
	Programs Without Embedded Forms 
	Compiling and Linking Precompiled Forms 

	Linking Embedded SQL Programs--VMS 
	Assembling and Linking Precompiled Forms 
	Linking an Embedded SQL Program Without Shared Libraries 
	Placing User Written Embedded SQL Routines in Shareable Images 

	Embedded SQL/C Preprocessor Errors 

	C++ Programming 
	Creating ESQL/C++ Programs 
	Program Comments 
	Declaring Data 
	Transferring Data Between Programs and the Database 
	Declaring Function Parameters 
	DCLGEN and ESQL/C++ 
	Ingres Runtime Library Prototypes 
	4GL Restriction 
	Creating User Defined Handlers 

	Building ESQL/C++ Programs 
	Sample Application 

	Preprocessor Error Messages 
	Sample Applications 
	The Department-Employee Master/Detail Application 
	The Table Editor Table Field Application 
	The Professor-Student Mixed Form Application 
	The SQL Terminal Monitor Application 
	A Dynamic SQL/Forms Database Browser 

	Multi-Threaded Applications 
	Current Session 
	SQLCA Diagnostic Area 


	3: Embedded SQL for COBOL
	Embedded SQL Statement Syntax for COBOL 
	Margin 
	COBOL Sequence Numbers 
	Terminator 
	Labels 
	Line Continuation 
	Comments
	String Literals 
	String Literals and Statement Strings 

	The Create Procedure Statement 

	COBOL Data Items and Data Types 
	Variable and Type Declarations 
	Embedded SQL Variable Declaration Sections 
	Data Item Declaration Syntax 
	Reserved Words in Declarations 

	Data Types 
	Alphabetic, Alphanumeric, and Alphanumeric Edited Categories 
	Indicator Data Items 
	Numeric Edited Data Category 
	The Numeric Data Category--Windows and UNIX 
	The Numeric Data Category--VMS 
	Declaring Records 
	DCLGEN Utility 
	Compiling and Declaring External Compiled Forms 
	Assembling and Declaring External Compiled Forms--VMS 
	Concluding Example 

	Scope of Variables 
	Variable Usage 
	Elementary Data Items 
	COBOL Tables 
	Record Data Items 

	Data Type Conversion 
	Decimal Type Conversion 
	Runtime Numeric Type Conversion 
	Runtime Character and Varchar Type Conversion 


	The SQL Communications Area 
	The Include SQLCA Statement 
	Contents of the SQLCA 
	Using the SQLCA for Error Handling 
	Error Handling with the Whenever Statement 
	Explicit Error Handling 
	Determining the Number of Affected Rows 

	Using the SQLSTATE Variable 

	Dynamic Programming for COBOL 
	The SQLDA Record 
	Declaring the SQLDA Record 
	Using the SQLVAR Table 
	COBOL Data Item Type Codes 

	Pointing at COBOL Data Items 
	Setting SQLNAME for Dynamic FRS 

	Advanced Processing 
	User Defined Error, DBevent, and Message Handlers 
	Declaring and Defining User-Defined Handlers 
	Including User-Defined Handlers in the Micro Focus RTS--UNIX 

	User-Defined Data Handlers for Large Objects 
	ESQL/COBOL Usage Notes 
	Data Handlers and the SQLDA 
	Sample Programs 


	Preprocessor Operation 
	Include File Processing 
	Including Files--Windows and UNIX 
	Including Files--VMS 

	Including Source Code with Labels 
	Coding Requirements for Writing Embedded SQL Programs 
	Comments Embedded in COBOL Output 
	Embedded SQL Statements In IF and PERFORM Blocks 
	COBOL Periods and Embedded SQL Statements 
	Embedded SQL Statements That Do Not Generate Code 
	Efficient Code Generation 

	Command Line Operations 
	The Embedded SQL Preprocessor Command 

	Source Code Format 
	Format Considerations--Windows and UNIX 
	Format Considerations--VMS 

	The COBOL Compiler--Windows and UNIX 
	The COBOL Compiler--Windows Micro Focus Net Express 

	The COBOL Compiler--VMS 
	Linking an Embedded SQL Program 

	Incorporating Ingres into the Micro Focus RTS--UNIX 
	Building an Ingres RTS Without the Ingres FRS 
	Building an RTS with the Ingres FRS 
	Including External Compiled Forms in the RTS 

	Embedded SQL/COBOL Preprocessor Errors 

	Preprocessor Error Messages 
	Sample Applications 
	The Department-Employee Master/Detail Application 
	The Table Editor Table Field Application 
	The Professor–Student Mixed Form Application 
	The SQL Terminal Monitor Application 
	A Dynamic SQL/Forms Database Browser 


	4: Embedded SQL for Fortran
	Embedded SQL Statement Syntax for Fortran 
	Margin 
	Terminator 
	Labels 
	Line Continuation 
	Comments 
	String Literals 
	String Literals and Statement Strings 

	The Create Procedure Statement 

	Fortran Variables and Data Types 
	Variable and Type Declarations 
	Embedded SQL Variable Declaration Sections 
	Reserved Words in Declarations 
	Typed Data Declarations 
	Constant Declarations
	Data Types 
	The Integer Data Type 
	The Real Data Type 
	The Character Data Type 
	Indicator Variables 
	Structure and Record Declarations Syntax 
	The DCLGEN Utility 
	DCLGEN and Large Objects 
	Indicator Variables 
	Declaring External Compiled Forms 
	Concluding Example 

	The Scope of Variables 
	Variable Usage 
	Simple Variables 
	Array Variables 
	Structure Variables 
	Using a Structure as a Collection of Variables 
	Using a Structure Member 
	Using Indicator Variables 

	Data Type Conversion 
	Ingres and Fortran Data Type Compatibility 
	Runtime Numeric Type Conversion 
	Runtime Character and Varchar Type Conversion 


	The SQL Communications Area 
	The Include SQLCA Statement 
	Contents of the SQLCA 
	Using the SQLCA for Error Handling 
	Error Handling with the Whenever Statement 
	Whenever Goto Action in Embedded SQL Blocks 
	Explicit Error Handling 
	Determining the Number of Affected Rows 

	Using the SQLSTATE Variable 

	Dynamic Programming for Fortran 
	The SQLDA Structure 
	Declaring an SQLDA Variable 
	Using the SQLVAR 
	Fortran Variable Type Codes 
	Embedded SQL/Fortran Type Codes 
	Pointing at Fortran Variables 

	Setting SQLNAME for Dynamic FRS 

	Advanced Processing 
	User-Defined Error, DBevent, and Message Handlers 
	Declaring and Defining User-Defined Handlers 

	User-Defined Data Handlers for Large Objects 
	ESQL/Fortran Usage Notes 
	DATAHANDLERS and the SQLDA 
	Sample Programs 
	Handler Program 
	Put Handler 
	Get Handler 
	Dynamic SQL Handler Program 


	Preprocessor Operation 
	Include File Processing 
	Including Files – UNIX 
	Including Files – VMS 

	Including Files – Windows 
	Including Source Code with Labels 

	Coding Requirements for Writing Embedded SQL Programs 
	Comments Embedded in Fortran Output 
	Embedded SQL Statements and Fortran If Blocks 
	Embedded SQL Statements that Generate Labels 
	Embedded SQL Statements that Do Not Generate Code 

	Command Line Operations 
	The Embedded SQL Preprocessor Command 
	Esqlf Command Examples 
	The Fortran Compiler 

	Linking an Embedded SQL Program 
	Linking Precompiled Forms 
	Linking an Embedded SQL Program without Shared Libraries - VMS 
	Placing User-written Embedded SQL Routines in Shareable Images - VMS 

	Embedded SQL/Fortran Preprocessor Errors 

	Preprocessor Error Messages 
	Sample Applications 
	The Department-Employee Master/Detail Application 
	The Table Editor Table Field Application 
	The Professor-Student Mixed Form Application 
	The SQL Terminal Monitor Application 
	A Dynamic SQL/Forms Database Browser 


	5: Embedded SQL for Ada
	Embedded SQL Statement Syntax for Ada 
	Margin 
	Terminator 
	Labels 
	Line Continuation 
	Comments 
	String Literals 
	String Literals and Statement Strings 

	The Create Procedure Statement 

	Ada Variables and Data€Types 
	Embedded SQL/Ada Declarations 
	Embedded SQL Variable Declaration Sections 
	Reserved Words in Declarations 
	Data Types and Constants 
	Ada Data Types and Corresponding Ingres Types 
	Constants and Corresponding Ingres Types 
	The Integer Data Type 
	The Float Data Type 
	The Long Float Storage Format 
	The Character and String Data Types 
	Variable and Number Declaration Syntax 
	Simple Variable Declarations 
	Type Constraints 
	The Range Constraint 
	The Discriminant and Index Constraints 
	Formal Parameter Declarations 
	Number Declarations 
	Renaming Variables 
	Type Declaration Syntax 
	Type Definition 
	Subtype Definition 
	Integer Type Definitions 
	Floating-point Type Definitions 
	Enumerated Type Definitions 
	Array Type Definitions 
	Record Type Definitions 
	Incomplete Type Declarations and Access Types 
	Derived Types 
	Private Types 
	Representation Clauses 
	The DCLGEN Utility 
	DCLGEN and Large Objects 
	Indicator Variables 
	Assembling and Declaring External Compiled Forms 
	Concluding Example 

	The Scope of Variables 
	Variable Usage 
	Simple Variables 
	Array Variables 
	Record Variables 
	Using a Record as a Collection of Variables 
	Using Record Components 
	Access Variables 
	Using Indicator Variables 

	Data Type Conversion 
	Ingres Data Types and Corresponding Ada Data Types 
	Runtime Numeric Type Conversion 
	Runtime Character and Varchar Type Conversion 


	The SQL Communications Area 
	The Include SQLCA Statement 
	Contents of the SQLCA 
	Using the SQLCA for Error Handling 
	Error Handling with the Whenever Statement 
	The Whenever Goto Action in Embedded SQL Blocks 
	Explicit Error Handling 
	Determining the Number of Affected Rows 

	Using the SQLSTATE Variable 

	Dynamic Programming for Ada 
	The SQLDA Record 
	Declaring an SQLDA Record Variable 
	Using the SQLVAR 
	Ada Variable Type Codes 
	The SQL Type Codes 
	Pointing at Ada Variables 

	Setting SQLNAME for Dynamic FRS 

	Advanced Processing 
	User-Defined Error, DBevent, and Message Handlers 
	Declaring and Defining User-Defined Handlers 

	User-Defined Data Handlers for Large Objects 
	ESQL/Ada Usage Notes 
	DATAHANDLERS and the SQLDA 
	Sample Programs 
	Handler Program 
	Put Handler 
	Get Handler 
	Dynamic SQL Handler Program 


	Preprocessor Operation 
	Include File Processing 
	Including and Processing Variable Declarations 
	Including and Processing Package Specifications 

	Coding Requirements for Writing Embedded SQL Programs 
	Comments Embedded in Ada Output 
	Embedded SQL Statements that Do Not Generate Code 

	Command Line Operations 
	The Embedded SQL Preprocessor Command 
	Esqla Command Examples 
	The ACS Environment and the Ada Compiler 
	Entering Embedded SQL Package Specifications 
	Defining Long Floating-point Storage 
	The Ada Compiler 
	Linking an Embedded SQL Program 
	Assembling and Linking Precompiled Forms 
	Linking an Embedded SQL Program without Shared Libraries 

	Embedded SQL/Ada Preprocessor Errors 

	Preprocessor Error Messages 
	Sample Applications 
	The Department-Employee Master/Detail Application 
	The Table Editor Table Field Application 
	The Professor-Student Mixed Form Application 
	The SQL Terminal Monitor Application 
	A Dynamic SQL/Forms Database Browser 


	6: Embedded SQL for BASIC
	Embedded SQL Statement Syntax for BASIC 
	Margin 
	BASIC Line Numbers 
	Terminator 
	Labels 
	Line Continuation 
	Comments 
	String Literals 
	Integer Literals 
	The Create Procedure Statement 
	Decimal Literals 

	BASIC Variables and Data Types 
	Variable Declarations 
	Embedded SQL Variable Declaration Sections 
	Reserved Words in Declarations 
	Data Types 
	BASIC Data Types and Corresponding Ingres Types 
	The String Data Type 
	The Integer Data Type 
	The Real Data Type 
	The Decimal Data Type 
	The Record Data Type 
	Variable and Constant Declaration Syntax 
	The Declare Statement 
	The Dimension Statement 
	Static Storage Variable Declarations 
	The External Statement 
	Record Type Definitions 
	Indicator Variables 
	The DCLGEN Utility 
	DCLGEN and Large Objects 
	Assembling and Declaring External Compiled Forms 
	Concluding Example 

	The Scope of Variables 
	Variable Usage 
	Simple Variables 
	Array Variables 
	Record Variables 
	Using a Record as a Collection of Variables 
	Using a Record Member 
	Using Indicator Variables 

	Data Type Conversion 
	Ingres and BASIC Data Type Compatibility 
	Runtime Numeric Type Conversion 
	Runtime Character and Varchar Type Conversion 


	The SQL Communications Area 
	The Include SQLCA Statement 
	Contents of the SQLCA 
	Using the SQLCA for Error Handling 
	Error Handling with the Whenever Statement 
	The Whenever Goto Action in Embedded SQL Blocks 
	Explicit Error Handling 
	Determining the Number of Affected Rows 

	Using the SQLSTATE Variable 

	Dynamic Programming for BASIC 
	The SQLDA Record 
	Declaring an SQLDA Variable 
	Using the SQLVAR 
	BASIC Variable Type Codes 
	The SQLDA Type Codes 
	Pointing at BASIC Variables 

	Setting SQLNAME for Dynamic FRS 

	Advanced Processing 
	User-Defined Error, DBevent, and Message Handlers 
	Declaring and Defining User-Defined Handlers 

	Sample Programs 
	Handler Program 
	Put Handler 
	Get Handler 

	User-Defined Data Handlers for Large Objects 
	Dynamic SQL Handler Program 


	Preprocessor Operation 
	Command Line Operations 
	The Embedded SQL Preprocessor Command 
	Esqlb Command Examples 
	The BASIC Compiler 
	Linking an Embedded SQL Program 
	Assembling and Linking Pre-Compiled Forms 
	Linking an Embedded SQL Program without Shared Libraries 
	Placing User-written Embedded SQL Routines in Shareable Images 

	Include File Processing 
	Including Source Code with Labels 

	Coding Requirements for Writing Embedded SQL Programs 
	Comments Embedded in BASIC Output 
	Embedding Statements Inside BASIC If Blocks 
	Embedded SQL Statements that Do Not Generate Code 

	Embedded SQL/BASIC Preprocessor Errors 

	Preprocessor Error Messages 
	Sample Applications 
	The Department-Employee Master/Detail Application 
	The Table Editor Table Field Application 
	The Professor-Student Mixed Form Application 
	The SQL Terminal Monitor Application 
	A Dynamic SQL/Forms Database Browser 


	7: Embedded SQL for Pascal
	Embedded SQL Statement Syntax for Pascal 
	Margin 
	Terminator 
	Labels 
	Line Continuation 
	Comments 
	String Literals 
	String Literals and Statement Strings 

	The Create Procedure Statement 
	Decimal Literals 

	Pascal Variables and Data Types 
	Embedded SQL/Pascal Declarations 
	Embedded SQL Variable Declaration Sections 
	Reserved Words in Declarations 
	Data Types and Constants 
	Pascal Data Types and Corresponding Ingres Types 
	Constants and Corresponding Ingres Types 
	The Integer Data Types 
	The Integer Data Types 
	The Indicator Type 
	The Floating-Point Data Types 
	The Double Storage Format 
	The Character Data Types 
	Declaration Syntax 
	Attributes 
	Label Declarations 
	Constant Declarations 
	Type Declarations 
	Renaming Type Definition 
	Enumeration Type Definition 
	Subrange Type Definition 
	Pointer Type Definition 
	Varying Length String Type Definition 
	Array Type Definition 
	Record Type Definition 
	File Type Definition 
	Set Type Definition 
	Variable Declarations 
	Formal Parameter Declarations 
	The DCLGEN Utility 
	DCLGEN and Large Objects 
	Predeclared Identifiers 
	Program Syntax 
	The Procedure 
	The Function 
	Assembling and Declaring External Compiled Forms 
	Concluding Example 

	The Scope of Objects 
	Variable Usage 
	Simple Variables 
	Array Variables 
	Record Variables 
	Using a Record as a Collection of Variables 
	Using Record Components 
	Pointer Variables 
	Indicator Variables 

	Data Type Conversion 
	Ingres and Pascal Data Type Correspondence 
	Runtime Numeric Type Conversion 
	Runtime Character and Varchar Type Conversion 


	The SQL Communications Area 
	The Include SQLCA Statement 
	Contents of the SQLCA 
	Using the SQLCA for Error Handling 
	Error Handling with the Whenever Statement 
	The Whenever Goto Action in Embedded SQL Blocks 
	Explicit Error Handling 
	Determining the Number of Affected Rows 

	Using the SQLSTATE Variable 

	Dynamic Programming for Pascal 
	The SQLDA Record 
	Declaring an SQLDA Record Variable 
	Using the SQLVAR 
	Pascal Variable Type Codes 
	The SQLDA Type Codes 
	Pointing at Pascal Variables 

	Setting SQLNAME for Dynamic FRS 

	Advanced Processing 
	User-Defined Error, DBevent, and Message Handlers 
	Declaring and Defining User-Defined Handlers 

	Sample Programs 
	Handler Program 
	Put Handler 
	Get Handler 

	User-Defined Data Handlers for Large Objects 
	Dynamic SQL Handler Program 


	Preprocessor Operation 
	Command Line Operations 
	The Embedded SQL Preprocessor Command 
	Esqlp Command Examples 
	The Pascal Compiler 
	Linking an Embedded SQL Program 
	Assembling and Linking Pre-Compiled Forms 
	Linking an Embedded SQL Program without Shared Libraries 
	Placing User-written Embedded SQL Routines in Shareable Images 

	Include File Processing 
	Including Source Code with Labels 

	Coding Requirements for Writing Embedded SQL Programs 
	Comments Embedded in Pascal Output 
	Embedding Statements Inside Pascal If Blocks 
	Embedded SQL Statements That Do Not Generate Code 

	Embedded SQL/Pascal Preprocessor Errors 

	Preprocessor Error Messages 
	Sample Applications 
	The Department-Employee Master/Detail Application 
	The Table Editor Table Field Application 
	The Professor-Student Mixed Form Application 
	The SQL Terminal Monitor Application 
	A Dynamic SQL/Forms Database Browser 


	Index


