

Ingres® 2006

Character-based Querying and Reporting Tools
User Guide

®

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres")
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user's
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2005-2006 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents iii

Contents

Chapter 1: Introduction

What You Need to Know... 1-2
Special Considerations ... 1-2
Conventions ... 1-3

Query Languages .. 1-3
Operating System Differences ... 1-3
Entering Data from the Keyboard... 1-3
Terminology ... 1-4
Syntax... 1-4

Chapter 2: Fundamentals of Using Querying and Reporting
Tools

Before Starting Ingres ... 2-1
Enabling Access to the Database.. 2-1
Setting System Variables .. 2-2

About Your Database ... 2-3
System Catalogs and the Catalogdb Utility .. 2-3
Creating and Maintaining Databases ... 2-4

Starting an Ingres Tool .. 2-5
Using Ingres Menu... 2-5
Specifying Startup Commands... 2-8
Database on Remote Network Node ... 2-10
Non-Ingres Database ... 2-10
Distributed Database.. 2-11

Accessing Database Tables ... 2-11
Using Synonyms.. 2-12
Using Schemas for Owner Qualification ... 2-13

Frames and Forms .. 2-13
Forms .. 2-14
Fields on Forms... 2-14

Menus ... 2-17
Menu Environment... 2-17
Choosing a Menu Option ... 2-18
Leaving Submenus and Quitting Ingres... 2-19

Keys and Mouse Support.. 2-20

iv Character-based Querying and Reporting Tools User Guide

Keys for Menu Operations..2-20
Keys for Standard Functions ..2-20
Cursor Movement and Editing Keys...2-21
Mouse Support ..2-21

On-Screen Help ...2-22
Printing and Redrawing the Screen...2-22

Printing the Screen...2-23
Refreshing the Screen...2-23

Error Messages..2-23
Viewing Error Messages ..2-24

Naming and Name Use Conventions ...2-24
Schema and User Names...2-24
Conventions for Regular Identifiers ...2-25
Delimited Identifiers ...2-26

Chapter 3: Using the Tables Utility

Before Using the Tables Utility .. 3-2
Tables ... 3-2
Synonyms.. 3-2
Views .. 3-3
Indexes ... 3-3

Starting the Tables Utility .. 3-4
Creating Tables .. 3-5

Table Names .. 3-7
Column Names ... 3-7
Data Types... 3-7
Key Numbers.. 3-8
Nulls ... 3-8
Defaults... 3-9
Setting Unique Keys ...3-11
Moving Column Specifications ..3-12
Cloning Table Specifications with GetTableDef ..3-12

Destroying Tables, Synonyms, Views, and Indexes ...3-13
Getting Information about Tables and Views ..3-14
Adding or Deleting Columns in an Existing Table ..3-16

Chapter 4: Using QBF

Before Starting QBF .. 4-2
Query Definition Phase... 4-2

Contents v

Query Execution Phase... 4-3
Starting QBF .. 4-3

Starting QBF from the Operating System .. 4-3
Starting QBF from the Ingres Menu .. 4-3

Choosing a Query Target.. 4-4
Using Catalog Frames for Query Target Selection ... 4-5
Data Display Forms for Query Targets .. 4-7

Executing a Query... 4-8
Displaying and Saving Query Results ... 4-10

Chapter 5: Working with QBF Operations

QBF Append Operation... 5-1
Starting the Append Operation .. 5-1
Using the Append Frame... 5-2
Exiting the Operation ... 5-4

QBF Retrieve Operation.. 5-5
Starting the Retrieve Operation ... 5-5
Using the Retrieve Frame.. 5-6
Qualifying Retrievals .. 5-7
Sorting Query Results .. 5-17
Viewing Retrieved Records .. 5-20
Transaction Deadlock in Retrieve Mode ... 5-24
Exiting the Retrieve ... 5-24

QBF Update Operation ... 5-24
Starting the Update Operation ... 5-24
Modifying Data.. 5-25
Deleting Data.. 5-27
Saving Updates ... 5-29
Exiting the Update Operation... 5-30

Chapter 6: Using JoinDefs in QBF

What Is a JointDef? ... 6-1
JoinDef Rules ... 6-3

Join Columns with Coercible Data Types.. 6-4
Multiple Join Columns... 6-5

Join Types.. 6-5
Master/Master JoinDefs .. 6-7
Master/Detail JoinDefs.. 6-9

Automatic Joins .. 6-9

vi Character-based Querying and Reporting Tools User Guide

Fields on a JoinDef Form.. 6-9
Creating a JoinDef ...6-10

Optional JoinDef Specifications ...6-12
JoinDefs Catalog Frame ..6-13
JoinDef Definition Frame...6-14

JoinDef Name ..6-15
Role ...6-15
Table Name...6-16
Owner ..6-16
Abbreviation..6-16
Choosing Table-Field Format..6-16

Specifying Join Columns ...6-17
Viewing or Changing Joined Columns ..6-19
Getting Information on Table Column Data Types ...6-20
Finishing with the JoinDef Join Specification Frame..6-20

Single-Table JoinDefs ...6-20
Update and Delete Rules...6-22

Default Update and Delete Rules ..6-23
Determining Update Rules ...6-23
Determining Delete Rules ..6-24
Exiting the JoinDef Update and Delete Rules Frame...6-24

Changing the Display of JoinDefs ...6-24
Deleting Fields from JoinDef Displays ..6-26
Exiting the JoinDef Change Display Frame..6-26

Testing JoinDefs ..6-26
Saving JoinDefs...6-27
Editing JoinDefs...6-28
Deleting JoinDefs...6-28

Chapter 7: Using RBF

RBF Frames and Operations ... 7-2
Starting RBF .. 7-3

Starting RBF from the Operating System .. 7-3
Starting RBF from the Ingres Menu .. 7-3

Obtaining Information About a Report Specification ... 7-5
Using RBF Pop-Up Frames.. 7-6
Preview Reports ... 7-6
Report Specifications... 7-7
Sources of Report Data.. 7-7
Sort Columns and Breaks... 7-8
Date, Time, and Page Number .. 7-9

Contents vii

Report Styles ... 7-10
Tabular .. 7-10
Wrap ... 7-12
Block ... 7-12
Indented .. 7-13
Master/Detail .. 7-13
Labels.. 7-14
Report Structure.. 7-16

Chapter 8: Working with RBF Report Specifications

Creating a Default Report Specification... 8-1
Using the ChooseColumns Operation .. 8-4
Choosing a Report Style ... 8-5

RBF Report Layout Frame... 8-6
Getting to the Report Layout Frame ... 8-7
Layout Frame and Report Components ... 8-7

Creating New Report Components ... 8-11
Creating Break Headers, Footers, and Other Report Sections ... 8-12
Creating Trim.. 8-14
Creating a Column... 8-14
Aggregates ... 8-16
Creating Additional Heading Lines .. 8-19
Creating Blank Lines .. 8-20

Deleting Report Components .. 8-20
Deleting Break Headers, Footers, and Other Report Sections.. 8-20
Deleting Other Report Components .. 8-22

Editing Report Components .. 8-22
Editing Trim and Headings .. 8-22
Editing Columns .. 8-23

Editing Column Display Formats .. 8-23
Representation of Display Formats ... 8-24
Changing Display Formats .. 8-24

Editing Column Sort and Selection Options ... 8-24
Defining Sort Order.. 8-25
Specifying Runtime Data Selection ... 8-28

Editing Column Break Options... 8-30
Options for Showing a Change of Value... 8-30
Using the Break Options Operation... 8-31

Moving Report Components .. 8-33
Moving Trim, Columns, Aggregates, and Headings.. 8-33
Moving the Report Margins.. 8-35

viii Character-based Querying and Reporting Tools User Guide

Specifying Report Options ...8-36
Page Length ..8-37
Underlining ...8-38
Page Header on First Page...8-38
Display of Null Values ...8-38
Form Feeds ...8-39
Date, Time, and Page Components ...8-39

Obtaining the Name of a Column ...8-41
Undoing Edits..8-42
Saving a Report Specification ..8-42

Save Report Frame...8-42
Using the Save Operation ..8-45
Save Report Pop-up..8-45

Archiving a Report Definition ...8-46
Using the Archive Operation...8-46
Comment Blocks in Archived Reports ..8-47

Copying Report Specifications..8-48
Deleting a Report Specification ..8-49

Chapter 9: Producing a RBF Report
Report Destinations .. 9-1
Background Mode ... 9-2

Report Log ... 9-2
Specifying Report Variables .. 9-3

Producing a Preview Report.. 9-3
Producing a Report from a Report Specification.. 9-5

Sending a Report to and from a Screen.. 9-5
Sending Reports from a Screen to a File ... 9-7
Sending Reports from a Screen to a Printer... 9-8

Sending a Report Directly to a File .. 9-9
Sending a Report Directly to a Printer ...9-10

Chapter 10: Using Report-Writer

What Is Report-Writer?...10-1
Report-Writer and RBF ..10-2

Before Starting Report-Writer ..10-2
Obtaining Data for Reports ..10-3
Sorted Data...10-3
Breaks..10-3

Contents ix

Headers and Footers .. 10-4
Detail Section ... 10-5

Producing a Report.. 10-5
Creating a Specification .. 10-6
Saving the Report Specification ... 10-6
Executing the Report Specification ... 10-7

Specifying Report Specifications .. 10-8
Types of Report Specification Statements.. 10-9
Format of Report Specification Statements ...10-13
Summary of Report-Writer Specifications ...10-16

Setting Up and Formatting a Report..10-19
Creating Reports with Variables ..10-20
Creating Reports Using Several Tables...10-22
Specifying Sorts and Breaks...10-22
Pagination in Reports ..10-24
Setting Report Margins ..10-25
Positioning, Formatting, and Printing Data..10-25
Using Conditional and Assignment Statements ..10-29
Calculating and Printing Summary Data ...10-30
Automatic Determination of Default Settings ..10-30

Chapter 11: Report-Writer Expressions and Formats

ANSI/ISO Entry SQL-92 Compliant Databases ... 11-2
Delimited Identifiers .. 11-2

Using Delimited Identifiers .. 11-3
Specifying Delimited Identifiers ... 11-3
Precedence over String Constants .. 11-6

Reserved Words.. 11-6
Types of Data in Expressions .. 11-7

String Constants.. 11-7
Hexadecimal Strings .. 11-9
Numeric Constants .. 11-9
Date Constants ..11-10
Columns..11-11
Variables ...11-13
Special Report Variables ..11-14
Aggregates ..11-15

Operations ..11-21
Arithmetic Operators...11-21
Comparison Operators...11-22
Conditional Expressions ...11-22

x Character-based Querying and Reporting Tools User Guide

Pattern Matching with Wild Cards ... 11-22
Logical Operators ... 11-24
Built-in Functions ... 11-24
Boolean Functions .. 11-26

Format Specifications ... 11-26
Default Formats ... 11-28
Blanking Format B.. 11-31
Character String Format C... 11-31
Date Format D... 11-34
Numeric Format E .. 11-38
Numeric Format F .. 11-39
Numeric Format G.. 11-40
Numeric Format I ... 11-41
Numeric Format N .. 11-42
Numeric Templates... 11-43
Control Character Format Q0 ... 11-46
Character String Format T ... 11-47

Expressions and Formats Syntax Summary ... 11-48
Special Report Variables.. 11-49
Arithmetic Operators .. 11-49
SQL Conversion Functions ... 11-49
QUEL Conversion Functions ... 11-50
Numeric Functions.. 11-50
SQL and QUEL String Functions .. 11-50
Date Functions... 11-51
Boolean Function.. 11-51
Aggregates.. 11-51
Formats .. 11-51

Chapter 12: Report-Writer Statements

Format of Report Specification Statements ..12-1
Statement and Parameter Delimiters...12-2
Using Schemas for Owner Qualification..12-3

Types of Report Specification Statements..12-4
Report Setup Statements..12-5

.Break ..12-6

.Cleanup ...12-7
Comments ..12-9
.Data.. 12-10
.Declare.. 12-11
.Delimid.. 12-15

Contents xi

.Delimid with QUEL Query..12-16

.Include ..12-17

.Longremark/.Endremark...12-18

.Name ..12-19

.Output ...12-20

.Query ..12-21

.Query for QUEL Users ..12-26

.Setup ..12-30

.Shortremark ...12-33

.Sort...12-34
Page Layout and Control Statements ..12-36

.Formfeeds/.Noformfeeds ..12-37

.Leftmargin..12-38

.Need ...12-39

.Newpage..12-40

.Nofirstff ...12-42

.Pagelength ...12-42

.Pagewidth ..12-44

.Rightmargin..12-45
Report Structure Statements ...12-46

.Detail ..12-46

.Footer..12-47

.Header...12-48
Column and Block Statements ...12-50

.Block/.Endblock...12-51

.Bottom ..12-53

.Format...12-53

.Position..12-55

.Tforma...12-57

.Top ...12-59

.Width ..12-60

.Within/.Endwithin ..12-62
Text Positioning Statements ..12-65

.Center ...12-66

.Left ...12-68

.Lineend..12-70

.Linestart ..12-71

.Newline..12-71

.Right ...12-73

.Tab ...12-75
Print Statements..12-77

.Nullstring ...12-78

.Print and .Println ...12-79

xii Character-based Querying and Reporting Tools User Guide

.Ulcharacter .. 12-81

.Underline and .Nounderline... 12-82
Conditional and Assignment Statements.. 12-83

.If .. 12-84

.Let .. 12-85
Statements Syntax Summary .. 12-87

Chapter 13: Using VIFRED

VIFRED Frames and Operations ...13-2
Starting VIFRED ..13-3

Starting VIFRED from the Operating System ..13-3
Starting VIFRED from the Ingres Menu ..13-4
Starting VIFRED in Expert Mode ...13-4

VIFRED Forms Catalog Frame..13-5
Creating New and Duplicate Forms...13-6

Duplicating Forms ..13-7
Creating Blank Forms ...13-7
Creating Default Forms ...13-7
Creating Forms that Use Multiple Tables ..13-9

Form Layout Frame.. 13-10
Alignment Guides ... 13-10
Layout Frame Menu Options .. 13-12

Specifying a Form’s Display Attributes .. 13-13
Choosing a Form’s Display Style .. 13-15

Fullscreen ... 13-15
Pop-up ... 13-15
Changing a Form’s Style.. 13-16

Specifying Borders for Pop-up Forms .. 13-17
Setting Form Size and Position .. 13-17

Setting Size and Position Attributes... 13-18
Moving the Margins of a Form .. 13-20
Visually Adjusting a Form .. 13-21

Saving Forms.. 13-24
Save Submenu .. 13-25
Save Changes Pop-up ... 13-26

Destroying Forms .. 13-26
Editing Existing Forms .. 13-26
Renaming Forms ... 13-27
Compiling Forms.. 13-27
Printing Forms... 13-28
QBFNames Operation ... 13-29

Contents xiii

QBFNames Catalog Frame..13-29
Assigning Additional QBFNames to Forms...13-30

Running QBF from VIFRED ..13-31
Exiting VIFRED ..13-31

Chapter 14: VIFRED Form Components

Parts of a Form... 14-1
Fields... 14-1

Using Operations on the Form Layout Frame... 14-3
Create Operation .. 14-4

Creating and Editing Trim ... 14-4
Creating New Blank Lines on the Form.. 14-7
Creating and Editing Boxes and Lines ... 14-7
Creating and Editing Simple Fields ..14-11
Creating and Editing Table Fields ..14-18
Creating Duplicate Fields ...14-25

Deleting Form Components ...14-27
Changing the Tabbing Order of Fields on a Form...14-28
Moving Components on a Form ..14-29

Moving a Single Component ...14-29
Moving a Group of Components at Once...14-32

Chapter 15: VIFRED Field Specifications

Specifying Field Attributes .. 15-1
Default Attributes .. 15-1
Setting Attributes for a Field or Column .. 15-2

Attributes in the Set List .. 15-4
An Alternative to the BoxField Attribute .. 15-5
Setting the Invisible Attribute.. 15-5
Turning Input Masking On or Off .. 15-6

Required and Other Attributes... 15-6
Changing the Internal Name of a Field .. 15-8
Changing a Field’s Data Type .. 15-8
Setting Nullable Data Types .. 15-9
Changing the Color .. 15-9
Scrollable Fields .. 15-9

Setting Default Values for a Field..15-10
Specifying a Validation Check ..15-11

Comparison Operator Validation Checks...15-12

xiv Character-based Querying and Reporting Tools User Guide

Creating a Validation Error Message.. 15-17
Derived Fields ... 15-18

Using Forms with Derived Fields ... 15-18
Specifying a Derived Field ... 15-19
Guidelines for Specifying Derivation Formulas... 15-20
Improving Performance of Derived Fields... 15-22

Chapter 16: Interactive Query Language Terminal Monitor

Capabilities of the Interactive Terminal Monitor..16-2
Starting the Interactive Terminal Monitor ..16-3
Entering Query Language Statements...16-4

Menu Operations..16-4
Reading from and Writing to a File ..16-6

Executing Query Language Statements ...16-7
Printing or Filing Output.. 16-10
Error Messages.. 16-10

Chapter 17: Using System Commands for the Forms-based
Tools

Syntax Conventions ...17-1
Report-Writer Command Syntax...17-2

Standard Flags and Parameters ...17-2
Compform ..17-4

Syntax..17-4
Description..17-5
Example ...17-6

Copyform ...17-6
Syntax..17-6
Description..17-7
Examples ..17-9

Copyrep ... 17-10
Syntax.. 17-10
Description.. 17-10
Example ... 17-12

Delobj.. 17-12
Syntax.. 17-12
Description.. 17-13
Examples .. 17-14

Ingmenu .. 17-15

Contents xv

Syntax..17-15
Description ..17-15
Examples ..17-15

Iquel ..17-16
Syntax..17-16
Description ..17-16

Isql ..17-16
Syntax..17-16
Description ..17-17
Examples ..17-19

Printform ..17-19
Syntax..17-19
Description ..17-20
Example..17-20

Qbf ..17-20
Syntax..17-20
Description ..17-21
Examples ..17-22

Query...17-23
Syntax..17-23
Description ..17-23
Examples ..17-23

Rbf ..17-24
Syntax..17-24
Examples ..17-26

Report..17-27
Syntax..17-27
Description ..17-27
Examples ..17-34
Passing Parameters on the Command Line ...17-35
Sending Reports to and from a Screen...17-43

Sreport...17-48
Vifred...17-50

Chapter 18: Working with Data Types and Data Display
Formats

Data Types .. 18-1
Character ... 18-3
Date .. 18-5
Floating Point.. 18-7
Decimal ... 18-7

xvi Character-based Querying and Reporting Tools User Guide

Integer ...18-7
Money ..18-8
Nulls ..18-8

Data Display and Input Formats...18-9
Data Types and Display Formats...18-9
Display Format Syntax.. 18-10
Default Data Display Formats... 18-13
Displaying Character Data ... 18-14
Displaying Numeric and Money Data ... 18-15
Displaying Date Data .. 18-16
Using Format Templates.. 18-17

Numeric Templates .. 18-18
Input Masking with Numeric Templates ... 18-18
Special Numeric Template Characters.. 18-19
Numeric Template Examples .. 18-21

Date and Time Templates ... 18-21
Absolute Date and Time Templates ... 18-22
Time Interval Templates.. 18-27

String Input Templates... 18-29
Creating a String Template .. 18-29
Forcing Mandatory Entry ... 18-35
Examples of User-Defined Character Sets .. 18-35
Examples of String Templates .. 18-36

Appendix A: Defining Your Terminal
The Termcap File .. A-1
How to Define Your Terminal .. A-2

Defining Your Terminal: Windows .. A-2
Defining Your Terminal: UNIX ... A-2
Defining Your Terminal: VMS ... A-3
Terminal Names.. A-4

Appendix B: Defining Function and Control Keys

Key Mapping Overview (PC Environment)... B-1
Termcap File... B-2
FRS Mapping File... B-4
Mapping File Example .. B-6
Standard FRS Mapping Files.. B-7
Application Mapping Files...B-11

Contents xvii

Key Mapping Overview (UNIX and VMS Environments) ... B-11
Role of the Termcap File ... B-12
Mapping Files.. B-14
Mapping File Example... B-15
Levels of Mapping.. B-16

Obtaining Information on Mappings ... B-24
FRS Mapping Objects... B-25

FRS Commands... B-25
Menu Items .. B-28
FRS Keys.. B-30

Mapping File Syntax .. B-32
Mapping Statements .. B-33
Disabling Statements ... B-36
Comments.. B-37
Mapping File Errors .. B-37

Troubleshooting (PC Environment) .. B-37
Restrictions and Limitations .. B-38
Troubleshooting Checklist ... B-38

Troubleshooting (UNIX and VMS Environments)... B-39
Restrictions and Limitations .. B-39
Troubleshooting Checklist ... B-41

Appendix C: Writing Termcap Descriptions

Modifying the Termcap File ... C-1
Setting the II_TERMCAP_FILE Variable ... C-2
Format of a Termcap Description ... C-3

Writing New Termcap Descriptions... C-6
Eleven Basic Commands .. C-7

Cursor Motion Command .. C-9
Commands for Advanced Features (PC Environment) ... C-11

Commands Used to Program Video Attributes .. C-12
Commands Used for Color... C-14
Specifying Fonts .. C-16

Commands for Advanced Features (UNIX and VMS Environment)... C-18
Commands Used to Program Video Attributes .. C-18
Commands Needed for Boxing Characters ... C-19
Commands Needed for Function Keys ... C-20
Commands Needed for Arrow Keys... C-22
Commands Used for Color... C-22
Commands to Specify Display Width... C-23
Command to Specify FRS Mapping File for Terminal.. C-24

xviii Character-based Querying and Reporting Tools User Guide

Commands to Optimize Cursor Movement..C-24
Commands for Special Situations ...C-25

Commands from the UNIX Termcap File ..C-25
Examples of Termcap Descriptions ...C-26

DEC VT100 (All-Inclusive) ...C-26
DEC VT100 (Simple)...C-26
Envision 230..C-27
Concept 100..C-27
Datamedia 3045 ..C-27

Appendix D: Data Types

Data Types in SQL, OpenSQL, and QUEL .. D-1

Appendix E: Calling Ingres Tools from Embedded SQL and
OpenSQL

Call Statement ... E-1
Tools and Parameters.. E-2

Abf Command... E-2
Ingmenu Command... E-2
Isql Command .. E-2
Qbf Command .. E-3
Rbf Command... E-4
Report Command .. E-4
Sql Command... E-6
Sreport Command... E-6
System Command... E-6
Vifred Command ... E-7

Appendix F: Report-Writer Report Examples

Population Example..F-1
Pop2 Example ...F-11
Account Example ... F-14
Dictionary Example .. F-21
Dict2 Example... F-26
Label Example... F-28
Creating Reports Using Several Tables.. F-31

Joining Tables for a Report .. F-31

Contents xix

Avoiding Awkward Page Breaks ..F-35

Appendix G: Troubleshooting Report-Writer

Parameter Substitution ..G-1
Queries ...G-3
Comments ...G-3
Default Print Positions..G-4
Formfeeds..G-5
Performance Problems ...G-6

Query Problems...G-6
Conversion Functions ...G-6
Memory Usage ..G-7

Index

Chapter 1: Introduction 1–1

Chapter 1: Introduction

The Character-based Querying and Reporting Tools User Guide describes how
to use the following forms-based tools:

 Tables Utility

 Query-By-Forms (QBF)

 Report-By-Forms (RBF)

 Visual Forms Editor (VIFRED)

 A terminal monitor (interactive query language facility)

 Report-Writer

The remaining forms-based tools, Application-By-Forms (ABF) and Vision, are
discussed in a separate guide, Forms-based Application Development Tools
User Guide.

A forms-based tool is a user interface to the Ingres® database management
system that uses forms and menus to provide database access and
manipulation capabilities.

The following list briefly describes the forms-based tools discussed in this
guide:

Forms-Based Tool Description

Tables Utility Forms-based utility that allows you to create,
modify, or perform other operations on tables
in the database.

QBF Forms-based query tool that allows you to look
at, modify, or delete selective data in the
database.

RBF Forms-based reporting tool that allows you to
set up report specifications and run reports on
the data in the database.

VIFRED Forms-creation tool that allows you to create
and modify forms for use with QBF and
customized applications.

A terminal monitor
(interactive query language
facility)

Query tool that allows you to interact with the
database by entering query language
instructions on a blank form in the window.

What You Need to Know

1–2 Character-based Querying and Reporting Tools User Guide

Forms-Based Tool Description

Report-Writer Report language tool that allows you to create
and run reports without writing an application.
You can also use it to enhance reports you
created with RBF.

What You Need to Know
This guide is designed for anyone who wants to use a forms-based tool to:

 Create tables, views, and JoinDefs to organize data in the database.

 Look at, update, or create reports on the data in the database.

 Create individual components of a database application, such as a query
form or report specification.

To use this guide effectively, you must:

 Have a basic understanding of how Ingres or another database
management system works, including the interaction between user
interfaces and the database servers.

 Be familiar with the structure of Ingres databases and database tables, as
well as the concept of local, remote, and distributed databases.

 Understand the differences between and purpose of Ingres tables, views,
and JoinDefs.

 Know how to use the database query language (SQL or QUEL) used at
your site to query Ingres databases.

If you are a beginner in database management or if you are unfamiliar with
the preceding topics, read the Database Administrator Guide.

Special Considerations
Before using this guide or any of the Ingres forms-based tools, you must be
aware of the following:

 Enterprise Access Products Compatibility

If you are working through an Enterprise Access product, see
your Enterprise Access product documentation for information
about command syntax that can differ from that described in this guide.
Refer also to the OpenSQL Reference Guide for query language details.

 Query Languages

Conventions

Chapter 1: Introduction 1–3

Some of the text and examples in this guide pertain only to the SQL query
language. For more information on using the forms-based tools with QUEL,
see the appendix “Appendix D: ” or the QUEL User Notes section in some
chapters.

Conventions
This guide uses the following conventions for consistency and clarity.

Query Languages

The industry standard query language, SQL, is used as the standard query
language throughout the body of this guide.

Ingres is compliant with ANSI/ISO Entry SQL-92. In addition, numerous
vendor extensions are included. For details about the settings required to
operate in compliance with ANSI/ISO Entry SQL-92, see the SQL Reference
Guide.

For a description of the QUEL statements available, see the QUEL Reference
Guide.

Operating System Differences

This guide provides information that is specific to your operating system, as in
these examples:

UNIX

Information is specific to the UNIX operating system.

VMS

Information is specific to the VMS operating system.

The symbol indicates the end of the system-specific text.

If an entire section is system-specific, it is indicated in the section title.

Entering Data from the Keyboard

This guide uses boldface text to represent text that you type exactly as
shown; for example:

Type ipm at the operating system prompt.

Conventions

1–4 Character-based Querying and Reporting Tools User Guide

The guide uses a distinct typeface to indicate text that appears on your
screen, such as the following prompt:

Enter database name:

Terminology

The documentation observes the following distinction in terminology:

 A command is an operation that you execute at the operating system
level.

 A statement is an operation that you embed within a program or execute
interactively from a terminal monitor.

A statement can be written in Ingres 4GL, a host programming language (such
as C), a database query language (SQL or QUEL), or in the Report-Writer
language (for report specifications).

Syntax

This guide uses the following conventions to describe statement and command
syntax specifications:

Convention Usage

Boldface Indicates keywords, symbols, or punctuation that you
must enter as shown

Italics Represent a variable name for which you must supply an
actual value

[] (brackets) Indicate an optional item

{ } (braces) Indicate an optional item that you can repeat as many
times as appropriate

| (vertical bar) Used between items in a list to indicate that you must
choose one of the items

The following example illustrates the syntax conventions:

create table tablename (columnname format {, columnname format})
 [with_clause]

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–1

Chapter 2: Fundamentals of Using
Querying and Reporting Tools

This chapter provides important information about:

 Setup requirements for using Ingres forms-based tools

 Using Ingres databases with the forms-based tools

 Starting an Ingres forms-based tool

 Specifying the database to access

 Accessing database tables

 Getting around in the Menu system

 Using frames, forms, and fields

 Using menus, keyboard keys, and on-screen help

 Printing and redrawing the screen

 Object naming and name use conventions

Explanations include both keyboard and mouse procedures where appropriate.

Before Starting Ingres
You or the system administrator must install Ingres on your computer before
you can use the program. For installation instructions for your operating
system, see the appropriate Getting Started guide.

Enabling Access to the Database

Ingres provides access to data stored locally on your computer, or if you are
connected by a network, to data stored remotely on other nodes as well.

Your database always resides on a remote host computer. Access the database
through a server installed on the remote host.

To access a database, you must have been given access to it by the database
administrator. Additionally, your system must meet the following requirements
to enable access to local and remote databases:

 For access to a local database, a server must be running on your local
node.

Before Starting Ingres

2–2 Character-based Querying and Reporting Tools User Guide

 For access to a database on a remote node in your network, Ingres Net
must be installed on both the local node and the remote node, and a
server must be running on the remote node.

 For access to a non-Ingres database, the Enterprise Access
product for that database must be installed. See the installation guide
specific to that Enterprise Access product.

 For access to a distributed database, if your system supports it, Ingres
Distributed Option must be installed.

Check with your system administrator for the status of access to local and
remote databases on your system from your terminal. Check with the
database administrator for a particular database to determine whether you
have permission to access it.

Setting System Variables

The system administrator or the person installing your system sets
environment variables or logicals that affect the operation of the program and
the way data is handled. For example, one environment variable/logical sets
the time zone; another establishes the type of currency symbol to use. These
system variables are discussed in the System Administrator Guide for the
system on which your database resides.

Defining the Terminal

VMS

UNIX

You or the system administrator must define the type of terminal you are
using. Normally, the system administrator sets up all such session options
and defines your terminal to Ingres. However, if the terminal you are using
has not been defined to Ingres, you must do so before you can access your
database.

The environment variable/logical, TERM_INGRES, allows you to define to the
type of terminal you are using. Depending on your operating system, use one
of the following commands:

UNIX

For the C shell:

setenv TERM_INGRES termname

For the Bourne shell:

TERM_INGRES=termname
export TERM_INGRES

VMS

define TERM_INGRES termname

About Your Database

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–3

The termname is the name of the terminal description for your terminal in the
termcap file, such as VT100i. For details, see the chapter "Defining Your
Terminal."

Mapping Function Keys

Menu operations, cursor movement, and all other operations can be mapped
to a particular function or control keys on your keyboard. Once you have
specified a mapping, you can invoke the operation by pressing the specified
key. For a discussion of key mapping, see the appendix “Defining Function and
Control Keys.”

About Your Database
Ingres is a relational database management system, which stores data in
integrated collections called tables. An Ingres database can consist of any
number of tables containing data of a variety of types. In addition to tables,
the database contains other objects, such as forms, JoinDefs, reports, and
applications you create to manipulate your data, as well as system catalogs
that keep track of the objects associated with the database.

For a complete introduction to Ingres database concepts, see the Database
Administrator Guide.

System Catalogs and the Catalogdb Utility

A system catalog is set up for each database created. The system catalog is a
table that holds information about the database as you work with it. These
system catalogs make up the data dictionary. System catalogs store
specifications for the tables, indexes, forms, reports, and queries associated
with a specific database.

You can review the information stored in the system catalogs by using the
following statements, operations, or commands:

 Help statement

 Select statement. For more information, see your query language
reference guide.

 Examine operation. For more information, see Getting Information about
Tables and Views in the chapter “Using the Tables Utility.”

 Catalogdb command

 Visual DBA

About Your Database

2–4 Character-based Querying and Reporting Tools User Guide

You access the catalogdb utility from the operating system.

You can obtain information about individual databases, lists of the databases
you own, and the databases you are authorized to access, and the locations of
specific files, such as the checkpoints and journals associated with a database.
The catalogdb command is not applicable to Enterprise Access
products. For a full explanation of catalogdb, see the Command Reference
Guide. For information about Visual DBA, see the online help.

Creating and Maintaining Databases

When you create a database, you become the database administrator (DBA)
for that database. The DBA creates an Ingres database with the system-level
command createdb. Unless the DBA specifies that a database must be private,
all databases created by the DBA are public and accessible to other users. The
DBA is responsible for maintaining the database, and only the DBA who
created the database can remove (destroy) it. Destroying a database removes
all tables and objects associated with that database.

In this environment, the DBA is the person who creates and maintains the
database on the remote host computer. The remote host computer is
connected to a PC through a network that provides access to the database.

For more information about creating, maintaining, and destroying databases,
see the Database Administrator Guide.

Location and Type of Database

The specific locations of your databases vary according to your operating
system and to the way Ingres was installed.

To access a database, you must know whether it is:

 An Ingres or non-Ingres database. If it is a non-Ingres database, you must
know the server type required to access it.

 Located on a local or remote computer. If located on a remote computer,
you must know the name of the remote node.

If you want to know the exact locations of databases, consult the system
administrator or other individual in charge of installing Ingres or maintaining
the database. For more information on accessing a database, see Specifying
Startup Commands.

Starting an Ingres Tool

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–5

Copying and Destroying Tables in a Database

If the DBA has granted you the proper permissions, you can copy or destroy
tables in a database, whether you are the DBA for that database. To copy a
table, use the system-level command, copydb. For more information, see the
Database Administrator Guide.

To destroy a table, you can use Ingres Visual DBA or database query language
statements. For more information, see your query language reference guide.

Backing Up and Restoring

Hardware failure or human error can accidentally damage databases or
individual tables. An integral logging facility keeps track of all database
transactions automatically. One installation-wide logging file keeps track of all
Ingres transactions of all users.

All database backup and restore procedures are carried out by the system
administrator on the host computer where the database resides. For more
information, see the System Administrator Guide. If you are using an
Enterprise Access product, see your database documentation for
more information.

Starting an Ingres Tool
You can start any Ingres forms-based tool, such as Ingres QBF or the
Visual-Forms-Editor, by:

 Starting Ingres Menu and then choosing an operation to start a particular
Ingres tool

 Entering a startup command at the system prompt (or in a Run dialog in
Windows)

Using Ingres Menu

Ingres Menu is a visually oriented, forms-driven, menu interface that provides
access to all Ingres forms-based tools and data. These tools allow you to:

 Manipulate database tables.

 Design, edit, and customize window-based forms.

 Join tables to create a single object to be queried called a JoinDef.

 Format and print reports.

 Create and print graphs.

Starting an Ingres Tool

2–6 Character-based Querying and Reporting Tools User Guide

 Develop and use applications that manage the data.

 Display, add, delete, or modify data in the database.

Accessing an individual tool through the Ingres Menu gives you the ability to
switch quickly from one forms-based tool to another, without having to go
back to the window manager or operating system command line to do so.

Bypassing Ingres Menu

You can bypass the Ingres Menu by entering a command to start a specific tool
from the operating system command line. In this case, the Ingres Menu is not
displayed and you are able to access only the particular tool you specified. For
details, see Specifying Startup Commands.

If you choose Ingres from an applications menu or load it from a script file,
whether you see the Ingres Menu frame depends on how the menu or script
has been configured.

Accessing Ingres Menu

To access the Ingres Menu from your operating system command line, issue
the following command:

ingmenu dbname|v_node::dbname [/server_type]

For detailed information about these parameters, see Specifying Startup
Commands. For a complete list of the flags and other parameters associated
with the ingmenu command, see the chapter “Using System Commands for
the Forms-based Tools.”

The Ingres Menu is illustrated in the following figure.

Starting an Ingres Tool

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–7

The Ingres Menu frame is divided into the following two parts:

 List of the forms-based tools you can access, as described in the table
following this discussion

 Menu of operations that enable you to make your selection, get help, end
the session, and so forth

The map in the following figure shows each forms-based tool that is accessible
from the Ingres Menu main frame. The menu choices you see depend on your
authorizations and on your environment.

Starting an Ingres Tool

2–8 Character-based Querying and Reporting Tools User Guide

To view additional menu maps corresponding to each of the main Ingres Menu
choices discussed in this guide, see the chapter that introduces the associated
tool. The Graphics and Applications menu choices see your graphics software,
ABF, and Vision, all of which are discussed in separate guides.

The following table explains each of the main Ingres Menu choices:

Operation Description

Tables Provides access to the Tables Utility for adding or
manipulating tables in your database.

Forms Provides access to tools for creating, editing, and
using custom or default forms.

JoinDefs Enables you to run a query on several tables at once
using a JoinDef.

r Enables you to run a report, or create and edit a
report specification designed with RBF.

Graphs Enables you to display or print existing graphs or
create new ones. For more information, see the
documentation for your graphics software.

Applications Enables you to access the tools for generating
applications: Vision and Applications-By-Forms. For
additional information about the application
generation tools, consult the Forms-based Application
Development Tools User Guide .

Queries Provides access to the interactive query languages
through the Interactive Terminal Monitor and to QBF,
a forms-based query system.

To choose one of the Ingres tools listed on the Ingres Menu frame, click on the
item with your mouse, or use the cursor control keys to highlight the item you
want and choose the Select operation.

Specifying Startup Commands

You can start the Ingres Menu or an Ingres forms-based tool with a startup
command entered on the operating system command line. You must specify
the database in which you want to work by including its name after the
command to start the Ingres Menu or the Ingres tool and before any other
non-flag parameters, as follows:

command dbname

Starting an Ingres Tool

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–9

For example, to start the Ingres Menu with access to the personnel database,
enter the following command:

ingmenu personnel

Depending on the type and location of the database you want to access, you
must sometimes specify the server type or location of the database in addition
to its name.

The following table defines the situations in which you are required to do so:

Database Type and
Location

Command Syntax Example

Local
Ingres database

command dbname ingmenu admin

Remote
Ingres database

command v_node::dbname ingmenu ny::admin

Local
non-Ingres database

command dbname/server_type qbf sales/db2

Remote
non-Ingres database

command
v_node::dbname/server
type

qbf ohio::sales/db2

Local
Ingres distributed
database

command dbname/d

command dbname/star

rbf corpdata/star

Remote
Ingres distributed
database

command v_node::dbname/d

command v_node::dbname/star

rbf ny::corpdata/d

The following table defines the access parameters you use in the commands to
start the Ingres Menu or an Ingres forms-based tool:

Operation Function

command Any command used to invoke the Ingres Menu or an
Ingres tool.

v_node Virtual node name of the remote node on which the
database is located. The v_node name implies the actual
network node address and the network protocol. They are
identified when the node name is defined with the netu
utility. Two colons (::) must follow v_node.

dbname Name of the database containing the relevant data. It can
be the name of a distributed database.

Starting an Ingres Tool

2–10 Character-based Querying and Reporting Tools User Guide

Operation Function

server_type Name of the type of server being accessed at the local or
remote site, (the default is Ingres, which is the
server_type designated for the DBMS Server). Other
server types are Star or one of the Enterprise
Access products to a non-Ingres database. For specific
names, see the database documentation.

The following sections provide a more detailed explanation and examples of
the basic command line syntax for each database type. For the complete list of
optional flags and parameters for each startup command, see the chapter
“Using System Commands for the Forms-based Tools.”

Database on Remote Network Node

If the database you want to access is on a remote network node, then you
must include the virtual node name (v_node) of the remote node, followed by
two colons (::), as follows:

command v_node::dbname

The virtual node name is the name of the computer as registered with Net. For
more information about Net, see the networking guide for your system or
consult your network administrator.

For example, to start Ingres Menu for the personnel database on the berkeley
node, enter:

ingmenu berkeley::personnel

Non-Ingres Database

If you want to access a non-Ingres database through an Enterprise
Access product, you must include the server type for the database, preceded
by a slash (/).

If the non-Ingres or distributed database is located on a remote node, you
must also include the virtual node name.

command dbname|v_node::dbname/server_type

For example, to use QBF with an IMS database called sales located on a local
node, enter:

qbf sales/ims

If the sales database resides on the remote node, hq, enter:

qbf hq::sales/ims

Accessing Database Tables

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–11

For more information about using tools through an Enterprise
Access product and for associated server types, see the documentation for the
specific Enterprise Access product.

Distributed Database

For those systems that support Star Server, using a distributed database
requires that you specify the server type. The server type for a distributed
database is /d or /star.

To start the Ingres Menu with a distributed database called corpdata, enter
either of the following commands:

ingmenu corpdata/d
ingmenu corpdata/star

If the database is on the remote oakland node, enter:

ingmenu oakland::corpdata/d
ingmenu oakland::corpdata/star

For more information about distributed databases, see the Database
Administrator Guide.

Accessing Database Tables
You can access a table, view, or synonym in the forms-based tools only if one
of the following is true:

 You are the object’s owner

 You have been granted the proper permission to access the object

Access to a view automatically provides access to the columns in the
underlying table that are defined in the view. The DBA or owner of a table can
grant different types of access to a table, called privileges. These privileges
are:

 Select

 Insert

 Delete

 Update

 Reference

For specific instructions on obtaining or granting access to database tables,
see the Database Administrator Guide for the system on which your database
resides.

Accessing Database Tables

2–12 Character-based Querying and Reporting Tools User Guide

Select a table, view, or synonym by:

 Typing its name on the command line when entering an appropriate
command

 Typing its name in a table name field on the current frame

 Highlighting it in a displayed list of choices and choosing the appropriate
operation

Each table, view, or synonym, also has a schema name that associates the
object with the user who owns it and distinguishes it from identically named
objects in different schemata. Lists of choices in the forms-based tools contain
all tables and views, including their schema names, to which you have access,
whether owned by you, the DBA, or another user. These lists also contain all
synonyms that you own or that are owned by the DBA, to which you have
access. For more information on synonyms, see Using Synonyms. For more
information on schemas, see Using Schemas for Owner Qualification.

Using Synonyms

A synonym is a definable label for a table name. You can use an existing
synonym, whether yours or someone else’s, to refer to a table when the actual
table name is subject to frequent or occasional change. Synonyms also provide
a shorter way to reference a long table name. Your entry is interpreted as the
table name currently defined by the synonym you entered.

Access to the underlying table implies access to its synonyms. In lists of
available choices, the Ingres forms-based tools display only the synonyms that
you own and those owned by the DBA to which you have access. Synonyms
owned by other users are not displayed.

To view a list of any other synonyms, you can enter the following SQL
statement from the Interactive Terminal Monitor:

help synonym *

If you want to use a synonym that belongs to another user, include its schema
name in the table name entry field. For more information on owner
qualification, see Using Schemas for Owner Qualification.

Although you can use existing synonyms in your database, you cannot define
them with an Ingres forms-based tool.

Frames and Forms

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–13

Using Schemas for Owner Qualification

A schema is a collection of database objects, such as tables. Each table, view,
and synonym belongs to a schema that is determined when the object is
created. The schema name corresponds to the user who owns the object. The
schema name helps distinguish between objects with identical names and
different owners.

Schema names appear in the Owner column of table selection lists. You can
also specify a schema name for a table, view, or synonym on the command
line or in a table name entry field to qualify the object name with its owner.
You use the following syntax to specify ownership:

schema.objectname

For example, to access the table named empinfo having a schema name of
dave, you would enter the table name as:

dave.empinfo

The period (.) must immediately follow the schema name and precede the
object name, with no intervening spaces. Both the schema name and the
object name can be delimited identifiers.

If you do not use a schema name when referencing a table, view, or synonym,
Ingres looks first for an object with a schema corresponding to the current
user; then it looks for an object owned by the DBA to which you have access.
Lastly, if the object name begins with ii, Ingres looks for a system catalog with
that name. For more information on schemas, see the Database Administrator
Guide.

Frames and Forms
A frame is a form with associated program code that defines the available
menu items. A frame contains the following parts:

 Window for displaying a form for data entry or data display

 Menu area for appropriate menu options

 Area for displaying program and error messages

Depending on the Ingres tool you are using and the menu operation you have
chosen, a form appears in the frame’s window with menu choices in the menu
area that are appropriate for that particular task.

The menu displays the operations available on the form in the current frame.
For more information on menus, see Menus.

Frames and Forms

2–14 Character-based Querying and Reporting Tools User Guide

The following figure illustrates a typical frame.

Forms

A form is the electronic equivalent of a paper form. The Ingres forms-based
tools display ready-made forms in a frame. These forms can contain data
fields in which you view or enter data.

Forms consist of trim and fields.

 Trim is independent of the data input and output functions of the form. It
can be text that provides helpful information or box graphics that provide
a decorative border.

 A field on a form displays data and/or accepts data entry. A field generally
corresponds with a value from a table.

Fields on Forms

Two types of fields appear on forms:

 Simple fields

 Table fields

Frames and Forms

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–15

A simple field displays data or accept data input one item at a time. The
following figure displays a form with six simple fields.

A table field, as shown in the following figure, displays several rows and
columns of data at a time.

You can include simple fields and a table field on the same form. A table field
can have more rows than can be displayed at one time. Use the arrow keys or
the Scrollup and Scrolldown keys to display more rows.

If the form itself is larger than the window, tabbing to a field or column
automatically brings that portion of the form into view. You can also use the
Scrollleft and Scrollright keys to move around a large form, or the Scrollup and
Scrolldown keys to display a simple field that is beyond the top or bottom of
your window.

Each field on a form consists of a data window, attributes, internal name, and
an optional title:

 The data window is the area in which data is displayed or entered.

Frames and Forms

2–16 Character-based Querying and Reporting Tools User Guide

 Attributes affect the way data is displayed in a field and the way a user
can work with a form. Some attributes control the look of the data. For
example, you can use video highlight on the data in the data window.
Other attributes control such things as the error message a user sees if
the wrong value is entered into a field.

 The internal name identifies the field and can be linked to the column in
the database table from which the field receives its data, or to which it
writes data. An application accesses the field by using the internal name.
The internal name is not visible on the form. For more information on
internal names, see the chapter “VIFRED Form Components.”

 The title describes the data that appears in a field. The title is optional and
need not correspond to the name of a column in a database table.

The following figure illustrates the title and data window of a simple field.

The following figure identifies the same components on a table field.

For more information on forms, see the chapters “Using VIFRED,” “VIFRED
Form Components” and “VIFRED Field Specifications.”

Menus

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–17

Menus
Menu operations are displayed at the bottom of each frame. To access the
menu using your keyboard, press the Menu key (the key that is mapped to the
menu operation in your key mapping file). The cursor moves to the first menu
operation.

The key on your keyboard that acts as the Menu key depends on your
keyboard type and the individual key mappings you have chosen. On a VT100i
keyboard, it is usually mapped to the PF1 key by default. In some cases, it can
be mapped to the Escape or F1 key. On a PC keyboard, it is usually mapped to
the Escape or F2 key by default. For more information on standard key
assignments, see Keys and Mouse Support. For more information on key
mapping, see the appendix “Appendix B: Defining Function and Control Keys.”

Your menu’s appearance and the method used to display additional menu
options depend on your particular environment and whether you are using a
mouse or your keyboard. The following sections contain information about
menus and choosing menu options.

Menu Environment

The menu appears at the bottom of the window and looks similar to this one:

Create(1) Destroy(2) Examine(3) Query(4) Report(5) >

Some menus are longer than the width of the frame. The presence of
additional menu items is indicated by either a greater than sign (>) at the
right end of the menu, a less than sign (<) at the left end, or both. If you are
using a mouse, click anywhere on the menu or click on the > or < signs to
view additional menu options.

If you are using your keyboard, press the Menu key to access the menu; then
press the Menu key repeatedly to cycle through the menu options.

To return to the forms window, click on the window or press the Return key.

Using Menus with a Mouse

If your system displays classic menus and you are using a mouse, click the
right mouse button (or right-click) from anywhere in the frame to access the
menu; then right-click the right repeatedly to cycle through the menu options.

If you are using your keyboard, press the Menu key to access the menu; then
press the Menu key repeatedly to cycle through the menu options.

To return to the forms window, click on the window or press the Enter key.

Menus

2–18 Character-based Querying and Reporting Tools User Guide

Choosing a Menu Option

Choose a menu option using one of these methods:

 Click on the operation with the mouse, if installed.

 Press a function key associated with the operation.

 Access the menu with the Menu key and type the capitalized or first few
letters of the operation.

Using the Mouse

If you are using a mouse, you can choose a menu operation by moving the
mouse pointer to the operation and clicking on it with the appropriate mouse
button.

Using a Function Key

Generally, a menu operation has a function key (or key combination) mapped
to it. In most environments, the associated key appears in parentheses
following the operation on the menu line.

Windows

In a Windows environment, the function key associated with the currently
highlighted menu item appears on the bottom line of your window. You can
also display a definition list of Ingres function keys by pressing F1 or clicking
on the Help operation with the mouse and then choosing the Keys operation.

You can choose the menu operation by pressing its associated function key,
regardless of the cursor location. This invokes the operation immediately. You
do not have to press Return. For example, if Quit(PF4) appears on the menu
line (or if PF4 is associated with Quit in a Help window), you press the PF4 key
to invoke the Quit operation. If ^F is shown as the associated key, hold down
the Control key and press the F key.

Typing or Highlighting the Operation Name

If your keyboard mapping does not correspond to the key designations on the
menu, or if for some other reason the function keys do not work, you can use
the following alternative keyboard procedure to choose an operation from the
menu:

1. Move the cursor to the menu by pressing the Menu key.

2. Do one of the following:

Menus

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–19

Type as many letters as necessary to make the operation name unique.
For example, if both the End and Edit operations appear on a menu, you
must type ed to use the Edit operation or en to use the End operation.

Windows

 In a Windows environment, press the arrow keys or Space Bar to move
the Input focus bar to your selection, or type the capitalized letter of the
desired operation. For example, type C for the Create operation.

3. Press Return.

Operation Function

Blank Clears the window of all entries

Cancel Returns to a previous window without saving changes
entered in current window

End Ends operations in current window and returns to
previous window

Go Follows the specified request

Help Displays Help windows relevant to the current action

Insert Puts a blank line at the cursor location

ListChoices Lists the available choices for the selected field

Undo Undoes or cancels the previous operation

Quit Exits module, either to the Ingres Menu or to the
operating system

Leaving Submenus and Quitting Ingres

When you choose an operation from a menu, you are often presented with a
submenu of operations on a pop-up form. An operation chosen from that
submenu can in turn present another pop-up form with a further set of
operations.

When you leave a submenu with the End operation, you always return to the
next higher-level menu.

When you leave a submenu with the Quit operation, you return to the Ingres
Menu or to the operating system or Windows program(depending on how you
entered the application or Ingres forms-based tool). When you quit from the
main menu, you quit Ingres and return to the operating system or Windows
program.

Keys and Mouse Support

2–20 Character-based Querying and Reporting Tools User Guide

Keys and Mouse Support
Through the use of key mapping, you can attain a high degree of flexibility in
your keyboard interaction with Ingres. The way the different keys on your
keyboard function depends on your keyboard and the specific changes you
have made to your key-mapping file. Application developers can also re-map
function keys for use in their applications. For more information on key
mapping, see the appendix “Appendix B: Defining Function and Control Keys.”

You can view the current mappings for your keyboard by choosing the Keys
operation on the Help menu.

Keys for Menu Operations

Menu choices on frames are generally associated with keyboard keys or key
combinations, such as Control-E or F1 that you can press to activate the menu
choice. These key assignments assume you are using a keyboard that
corresponds to your key-mapping file. The key assignment generally appears
in parentheses after each menu option on the menu line. If not displayed on
the menu line, you can use the Help operation to display current key
assignments.

Keys for Standard Functions

By default, certain functions, such as access the menu, get help, move cursor
to next field, or move cursor to previous field, have been assigned to specific
keys that operate consistently on any frame. Your key mapping files
determines the exact key you press. The following table lists some of the
default function keys that are common to all of the Ingres forms-based tools:

Function or Menu Operation MS Windows
Keyboard

VT100i Keyboard

Go to Menu Esc or F2 PF1

Get help F1 PF2 (or sometimes
Escape or F1)

Move cursor to next field and
clear it of data

Enter Return

Move cursor to next field and
retain its data

Tab Tab

Move cursor to previous field
for editing

Shift+Tab Control-P

Keys and Mouse Support

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–21

Function or Menu Operation MS Windows
Keyboard

VT100i Keyboard

End operation F2 or F10 PF3

Quit operation F6 PF4

The Tab, Return, and Enter keys move the cursor to the next field, but in
different ways:

 Tab moves the cursor to the next field or next column in a table field,
without clearing the contents of the field. If the cursor is in the last field,
Tab moves the cursor to the first field of the same form.

 Return (or Enter) moves the cursor to the next field and clears data to the
end of that field at the same time, unless it is a read-only form or table
field. In a table field, this key moves the cursor to the next column. If the
cursor is in the last column, it moves the cursor to the first column of the
next row.

If you do not want the Return (or Enter) key to clear the data to the end of the
field, you can map this key so that it works like the Tab key.

This guide refers to the Enter key as the Return key.

Cursor Movement and Editing Keys

Keys that facilitate moving the cursor within forms are both system and
keyboard-dependent. The keys that normally control cursor movement on your
keyboard can usually be used to control scrolling and other movements of the
cursor in a form.

You can edit text or work in either overstrike or insert mode. In overstrike
mode, which is the default, each character you type replaces the existing
character beneath it. In insert mode, characters are moved to the right as you
enter new characters. The key that controls your editing mode is called the
Mode key, and acts as a toggle that enables you to switch modes.

Mouse Support

In addition to using the keyboard keys to move around forms and menus, you
can also use a mouse.

On-Screen Help

2–22 Character-based Querying and Reporting Tools User Guide

On-Screen Help
Context-sensitive help is provided online. This means that the assistance is
based on the current task you are attempting to accomplish and the current
field you are attempting to complete. Sometimes help is provided on several
screens.

You can obtain help by choosing the Help operation from the menu, or you can
press the Help key to get help at any time. The Help key is designated in
parentheses following the Help operation—if your system displays key
assignments on the menu line. The key to which this function is mapped can
vary. On a VT100i keyboard, it is usually mapped to the PF2 key by default.
On a PC keyboard, it is usually mapped to the F1 key by default. You can also
determine your Help key by choosing the Help operation from your menu
using another method, and then choosing the Keys operation on the Help
submenu.

Help windows for Ingres contain the menu choices shown in the following
table:

Operation Function

Keys Describes the function, control, and arrow keys and their
current definition.

SubTopics Displays a pop-up with a list of subtopics. For an
explanation of a particular subtopic, select it from the
pop-up. This option appears only when subtopics are
available.

Help Displays the type of Help available.

End Exits from any Help window to the previous window.

To make a selection on a Help window, press the key designated in
parentheses after the operation, or type the first few unique characters of the
operation and press Return. To move through the Help windows, use the
cursor movement keys specific to your keyboard. If available for your terminal
type, you can also use the key mapped to the string-search (FRS Find)
operation to search for a specified text string within a Help window. Use the
Help Keys operation to determine which key is mapped to the string-search
operation.

Printing and Redrawing the Screen
You can print or redraw the currently displayed screen.

Error Messages

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–23

Printing the Screen

Depending on how you have defined your terminal or your keyboard keys, you
can print the contents of the currently displayed screen by pressing the
designated printscreen key.

You can also set the II_PRINTSCREEN_FILE environment variable/logical to a
file name that automatically writes the results of the printscreen function, or to
printer to send the screen contents to the line printer. For more information on
setting environment variables or logicals, see the System Administrator Guide.

To print the current screen

1. Press the key assigned to that function.

On a VT100, press Control-G; on a VT220, press F8; on a PC, press Prtsc.
The key assignment can vary from keyboard to keyboard.

If you have set II_PRINTSCREEN_FILE to a specific file or to printer, the
screen contents are sent to the file or printer. Otherwise, a prompt
appears:

Enter file name:

2. Do one of the following:

 Type the name of a file and press Return to transfer an image of the
current form, including all displayed data values, to the specified file.
The entire form is included, even though it can be longer and wider
than your window.

 Type printer as the file name and press Return to send the image to
the line printer.

Refreshing the Screen

You can also refresh, or redraw, the current screen, including any data you
have entered into its field. This is useful if you receive messages on the screen
or if disruptions in communication with the computer occur. The redrawing
function is assigned by default to Control+W, regardless of your terminal or
keyboard.

Error Messages
Context-sensitive error messages are provided in pop-up windows that appear
at the bottom of your screen. The error message you receive indicates the
error type, the error code, and in some cases offers an explanation.

Naming and Name Use Conventions

2–24 Character-based Querying and Reporting Tools User Guide

Viewing Error Messages

For messages with explanations, the first line is displayed, along with a prompt
offering you a choice of either End or More if the message contains more than
one line. To exit the message without reading the explanation, press the End
key or click on the word End with your mouse. To read the explanation, press
the More key or click on the word More. After reading the explanation, press
Return or Enter to return to your work in progress, or click anywhere inside
the message box to dismiss the message.

For messages without an explanation, a single-line message is displayed with
a prompt that tells you to press Return or Enter after reading the message.
This removes the message and returns you to your work in progress.
Alternatively, if you are using a mouse, click anywhere inside the message box
to remove it and return to your work.

Naming and Name Use Conventions
You can define a wide range of objects, from databases to reports and join
definitions. You must follow certain conventions when naming or referencing
objects. Identifiers are names for objects, such as table names, JoinDef
names, column names, QBFNames, and so forth.

There are two types of identifiers:

 Regular identifiers

 Delimited identifiers

Regular identifiers are user and object names that follow standard naming
conventions for that database. Delimited identifiers are delimited by double
quotes (") and can contain additional characters and words that are disallowed
in regular identifiers.

You can use only regular identifiers to name Ingres tools objects, such as
JoinDefs, reports, forms, and QBFNames, which you create with QBF, RBF, and
VIFRED. You can use either type of identifier to name Ingres database objects,
which you create in the Tables Utility or with query language statements.

Schema and User Names

Schema names for objects can be specified as either regular or delimited
identifiers, depending on the schema name’s compliance with conventions. If a
schema name contains characters unacceptable in a regular identifier, such as
in Da Vinci or O’Neil, then it must be specified as a delimited identifier in
double quotes.

Naming and Name Use Conventions

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–25

Default schema names are created based on the user ID associated with the
database connection. The user ID can be stored in uppercase, lowercase, or
mixed case, depending on choices made by the DBA when the database was
created. If a user ID is stored in mixed case, any schema name based on that
user ID can also be stored in mixed case and must be specified as a delimited
identifier, in double quotes, when qualifying an object with an owner name.

Also, you must specify any mixed-case user ID as a delimited identifier when
impersonating that user with the -u flag on the command line.

For more information on schema names or on specifying case conventions for
user identifiers in a particular database, see the Database Administrator Guide.

Conventions for Regular Identifiers

The following table lists the conventions you must follow when using a regular
identifier to specify the name for any object:

Quality

For General Use

For ANSI/ISO Entry
SQL-92 Compliant Databases

Size No more than 32 characters No more than 18 characters

First
character

Must be alphabetic
(a-z) or the underscore (_)

Must be alphabetic (a-z)

Other
allowable
characters

0-9, #,@, and $ allowed after
the
first character

Only alphabetic, numeric, or
underscore characters allowed

Case
sensitivity

Case insensitive Case insensitive

Examples of valid regular identifiers for object names are:

 new_york

 march98

 Quinn (equivalent to quinn or QUINN)

 _geneva$ (not allowed in databases that comply with ANSI/ISO Entry
SQL92 standards)

In addition to the restrictions described above, you must not use reserved
words as regular identifiers. For a full list of standard or embedded SQL,
OpenSQL, and QUEL reserved words, see your query language reference guide
or the Forms-based Application Development Tools User Guide.

Naming and Name Use Conventions

2–26 Character-based Querying and Reporting Tools User Guide

Delimited Identifiers

Delimited identifiers are database object names that are identical to reserved
words or that contain spaces or non-alphanumeric characters that are
disallowed in a regular identifier. If the database was created as case
sensitive, you can also use delimited identifiers to distinguish among identical
names with different case (for example, SALES as distinct from Sales). For
more information on allowable characters in delimited identifiers, see the SQL
Reference Guide.

You can use delimited identifiers for names of all database objects, such as:

 Table names

 View names

 Correlation names

 Column names in tables

 Schema and user names

You are not allowed to use delimited identifiers for Ingres tools objects such as
JoinDefs, reports, forms, and QBFNames.

Wild Card Characters

In some situations, you can use the SQL wild cards, underscore (_), asterisk
(*), or brackets ([]), within delimited identifiers in the forms-based tools. To
enter a wild card character as an explicit character, you must dereference it by
preceding it with a backslash (\). For more information, see the chapter(s) on
the specific forms-based tool or the command descriptions.

Case Sensitivity

When specifying delimited identifiers, follow the rules for case as defined for
your database. In standard Ingres databases, delimited identifiers can be
either case sensitive or case insensitive, as determined by the DBA when
creating the database. By default, standard Ingres databases are case
insensitive.

In databases compliant with ANSI/ISO Entry SQL-92 standards, delimited
identifiers are case sensitive. The following is an example of a case-sensitive
delimited identifier:

"Sales for March"

For more information on setting case for identifiers in Ingres databases, see
the Database Administrator Guide.

Naming and Name Use Conventions

Chapter 2: Fundamentals of Using Querying and Reporting Tools 2–27

Using Delimited Identifiers in Forms

You must always enclose delimited identifiers within double quotes ("), as
shown in the following examples:

 As a table, view, or synonym:

"dave's table"

 As a column name:

"Stocks & Bonds"

 In Help statement queries in the query language Interactive Terminal
Monitor; for example:

help table "my table"

 In VIFRED field validations; for example:

field_name in "table one"."column two"

 As a correlation name and column name in
correlation_name.column_name constructs:

select "t-1"."col 1" as col1, "t-2"."col 2" as
 col2

from table_one "t-1", table_two "t-2"

 When using owner qualification, for either or both the schema name
and/or object name, as follows:

"schema 1".table2
dave."Dave's table"
"schema 1"."view table1 & table2"
field_name in "schema 1"."table one"."column two"

 On the command line, as a username for the -u flag, groupid parameter
for the -G flag, or database object in a command parameter.

-u"user 2"
-G"tech sup"

Your operating system can require additional delimiting and dereferencing
quotes for these parameters and for delimited identifiers on the command
line. For details, see the System Administrator Guide.

Delimited identifiers are displayed in catalogs and other lists of available
choices without their surrounding double quotes, except when displayed for
update. You can choose a delimited identifier from one of these lists as you do
any other identifier—by moving the cursor to the item and choosing the
appropriate operation.

Delimiting quotes and, if present, de-referenced embedded double quotes are
shown in pop-up forms and entry fields containing delimited identifiers
displayed for update. If you edit a delimited identifier or enter one into a field
by manually typing it, you must also include the delimiting double quotes (")
and dereference any embedded double quotes by preceding them with another
double quote(""):

"""expert"" witness"

Naming and Name Use Conventions

2–28 Character-based Querying and Reporting Tools User Guide

Do not dereference single quotes or apostrophes within delimited identifiers:

"dave's table"

For information about specifying delimiting and dereferencing quotes in
delimited identifiers on the command line, see the System Administrator
Guide.

Chapter 3: Using the Tables Utility 3–1

Chapter 3: Using the Tables Utility

The Tables Utility lets you create or destroy tables in a database and inspect
their structure. It also provides access to Ingres forms-based tools that allow
you to run queries and reports on data contained in the tables. You can
perform the same operations offered in the Tables Utility by using database
query language commands, which are discussed in your query language
reference guide.

Note: Visual DBA provides an alternative way of creating and managing tables.
For complete information about Visual DBA, see the Getting Started guide and
online help.

This chapter describes how to create, destroy, and examine tables using the
Tables Utility, and explains how to enter the column specifications for a new
table.

The tables operation is illustrated in the following figure:

Before Using the Tables Utility

3–2 Character-based Querying and Reporting Tools User Guide

Before Using the Tables Utility
Before using the Tables Utility to access any of the following, you must
understand how each of them is used and what operations you can perform on
them in the Tables Utility:

 Tables

 Synonyms

 Views

 Indexes

Tables

Tables are used to store all the data in your database. Each row in a table
holds an individual record that contains one or more related data items. Each
column contains one particular type of data. You can use the Tables Utility to
create and delete tables, to look at the structure of a table, and to retrieve or
modify the data contained in a table.

Except for rows containing large objects (long varchar, byte, byte varying, and
long byte data types), all rows in a given table are the same width, measured
in bytes, with no row exceeding the lesser of the maximum configured row
size and 32,000. The number of rows is limited only by disk space.

Each column is assigned a data type to indicate the type of data to be stored
and the length of the data (or width of the column). For example, a column
with a data type of varchar (25) can hold 25 text (ASCII) characters. For more
information, see Data Types. A maximum of 1024 columns is allowed in a
table. Each column has a name that uniquely identifies the column within the
table.

You can access any table for which you have been granted the proper
permissions. For more information on permissions, see the Database
Administrator Guide.

Synonyms

A synonym is a redefinable label for a table, which you can use as an
alternative to the actual table name. You can access a table with an existing
synonym, but you cannot create synonyms in the Tables Utility. The list of
tables from which you can choose contains only synonyms you or the DBA
own, freely intermixed with table names. For more information on synonyms,
see Accessing Database Tables in the chapter “Fundamentals of Using
Querying and Reporting Tools.”

Before Using the Tables Utility

Chapter 3: Using the Tables Utility 3–3

Views

A view is actually a special definition, or virtual table, constructed from one or
more tables. A view is a way of looking at or updating data stored in tables
and does not contain any data or exist in physical storage.

Views enable you to:

 Limit a user’s access to specific rows and columns of a table

 Manipulate data from multiple tables as if all the data were contained in a
single table

 Gain access to aggregates (sets of data) as if they were individual columns
of data

Views simplify retrieval and modify the user’s view of data to only certain rows
and columns in a table. For example, the table on which you base a view can
contain the columns name, title, and hourly_rate. However, the view based on
that table might only show columns for name and title and could be restricted
to certain rows. Views also allow you to run queries and reports on specific
subsets of data and to specify certain rows that fit particular criteria.

You can use the Tables Utility to look at the structure of a view, and to
retrieve, modify, or perform computations on the data in the underlying
tables. For example, while in the Tables Utility, you could access a particular
view based on the emp and tasks tables to compute the average hourly rate of
programmers (emp table) working on a particular project (tasks table).

Views are created with a query language such as SQL. You cannot create or
destroy views from within the Ingres Menu or the Tables Utility. For detailed
information on views, see the description of the create view command in your
query language reference guide.

You can access any view for which you have been granted the proper
permissions. For more information on permissions, see the Database
Administrator Guide.

Indexes

An index is a table that indicates where data is stored in another table. It
contains the locations of specified columns in the base table that are queried
frequently. The index can speed up the retrieval of information.

You can examine an index’s structure but cannot perform any other operations
on it in the Tables Utility. You create an index on one or more columns of a
table, using a query language such as SQL. Whenever a user enters a query
based on the indexed column in the base table, the index helps locate the
information quickly. Use of indexes is recommended to improve performance
of the queries in your applications.

Starting the Tables Utility

3–4 Character-based Querying and Reporting Tools User Guide

Indexes are created with the create index query language statement. You
cannot create, destroy, or directly query or run reports on indexes from within
the Ingres Menu or the Tables Utility. For more information on indexes, see
the create index statement in your query language reference guide.

Starting the Tables Utility
To start the Tables Utility from the Ingres Menu:

1. Choose the Tables operation from the Ingres Menu. The Tables Catalog
frame displays.

The Tables Catalog frame lists the tables, views, and indexes in the
database to which you have access, as well as who owns each one. It also
lists the synonyms that you or the DBA own.

2. To locate a table, synonym, view, or index name, scroll through the list or
type the first letter of the item you are searching for. If you type the first
letter, the cursor jumps to the next item in the list that begins with that
letter.

Creating Tables

Chapter 3: Using the Tables Utility 3–5

The Tables Catalog frame includes the following menu options:

Operation Function

Create Create a new table. Displays the Table Create frame. Cannot
be used to create synonyms, views, or indexes.

Destroy Destroys the selected table, synonym, view, or index after
asking for verification. Destroying a synonym does not
destroy the underlying table.

Examine Displays information about the names and data types of the
columns in the selected table, view, synonym, or index.
Invokes the Table Information frame.

Query Allows you to retrieve data from the selected table (or
underlying table for a synonym, view, or index). Also allows
update and append operations on tables.

Report Runs a preview report on the selected table, view, synonym,
or index. Displays a submenu with the following report
styles: Tabular, Wrap, or Block. For descriptions of preview
reports and report styles, see the chapter “Using RBF.” After
you select the report style, it sends the report to a file or
screen. For additional instructions, see Sending a Report
Directly to a File or Sending a Report to and from a Screen in
the chapter “Producing a RBF Report.”

Help, End, Quit Standard operations.

Creating Tables
When you choose the Create operation from the Tables Catalog frame, the
Create a Table frame displays.

Creating Tables

3–6 Character-based Querying and Reporting Tools User Guide

The following table describes the operations available on the menu on this
frame:

Operation Function

Insert Insert a new column specification row directly above the
row on which the cursor now rests. You can then fill in
the column name and data format for the new row.

Delete Delete the column specification row on which the cursor
now rests.

Blank Clear the entire Table Create form of all entries and start
over.

Move Move the column specification row on which the cursor
now rests to a new location. For more information, see
Moving Column Specifications.

GetTableDef Copy column specifications from a different table. For
more information, see Cloning Table Specifications with
GetTableDef.

EditDefaults Displays a pop-up frame in which you can enter a
user-defined default value for the current column. It
changes the value of the Defaults column to value.

ListChoices Lists the available choices for the selected field.

Cancel Returns to the Tables Catalog frame without saving the
changes you entered on this frame.

Help, End Standard operations

To create a new table in the Tables Utility, follow these steps. See the
following sections for an explanation of each field.

1. Enter the name of the table in the first field. Press Return. The cursor
moves to the first row in the Column Specifications list.

2. Each row in the Column Specifications form represents one data column in
the table you are creating. Enter a Column Name, Data Type, Key # (if
any), Nulls (if any), and Defaults (if any), for each of the data columns
that you want to have in this table. You can use the GetTableDef
operation, as explained later in Cloning Table Specifications with
GetTableDef, to copy in column specifications from other tables.

3. When you finish listing your table’s data columns in the Column
Specification form, select End to save the table and return to the Create a
Table frame.

You can also use a query language create table statement to create a table, or
an SQL create schema statement to create a collection of tables. For details,
see your query language reference guide.

Creating Tables

Chapter 3: Using the Tables Utility 3–7

Table Names

Table names must conform to the standard object naming conventions
discussed in Naming and Name Use Conventions. Table names must be unique
by user. That is, one user cannot have two tables with the same name, unless
the identical names are delimited identifiers in different case. For more
information on delimited identifiers, see Naming and Name Use Conventions in
the chapter “Fundamentals of Using Querying and Reporting Tools.” Different
users can each have tables with the same names; however, we recommend
that you do not use the name of a table created by the database
administrator.

Column Names

Column names must conform to the standard object naming conventions
discussed in the chapter “Fundamentals of Using Querying and Reporting
Tools.” Different tables can have the same column names; however, column
names within a single table must be unique, unless the names are delimited
identifiers in different case. For more information on delimited identifiers, see
Naming and Name Use Conventions in the chapter “Fundamentals of Using
Querying and Reporting Tools.”

Data Types

Specify data types by entering a type identifier and, in some cases, a number
representing the maximum width of the data column. For example, the data
type c15 specifies a character data type and a maximum width of 15
characters. Be aware of the maximum possible length of the data type so that
you do not exceed it when you are specifying data types.

The following general data types are supported:

 Character

 Numeric

 Money

 Date

For a full description of all data types and their functionality, see the chapter
“Working with Data Types and Data Display Formats” and your query language
reference guide.

Creating Tables

3–8 Character-based Querying and Reporting Tools User Guide

Key Numbers

A key number is optional. When you specify a key number for a data column,
data entered into the table is automatically sorted by ascending data value in
the key column. For example, if a column named Lastname had the key
number of 1, all data in the table is stored according to the alphabetic order of
the names in the Lastname column.

You can specify more than one column as a key. This is known as a
multicolumn key. The data column is sorted with the lowest key number first,
then the column with the next highest number, and so on, until all the key
columns are sorted.

For example, in a table containing information about employees, if the
Department data column is key 1, and the Lastname column is key 2, all the
data rows for each department are stored together, and within each
department group the rows are alphabetized by last name.

When you are finished creating the table, you can optionally specify that all
key columns in the table be used as unique constraints. These constraints
prevent the user from entering multiple rows of data that have identical values
in the key columns. For details, see Setting Unique Keys.

You can also use ISQL in the Interactive Terminal Monitor or SQL outside of
the Tables Utility to specify unique constraints for the table, using the SQL
modify statement. For details, see the SQL Reference Guide.

Nulls

This field allows you to specify whether the data column accepts null values. A
null value is a special value that represents unknown or unavailable data. On
standard installations, a null value appears to be an empty field, but there is a
difference between a null value and a blank or a zero. A nullable column is one
that accepts a null value. The Nulls field works in conjunction with the Defaults
field.

To specify that the data column can accept null values, enter y in this field. If
a user does not enter data into a nullable column, a value is entered for that
column as specified by the Defaults field. For more information, see Defaults.

To specify that the column cannot accept null values, enter n. When a user
does not enter data into a non-nullable data column, either the value of zero
(0) is automatically entered into the column if it is a numeric column, or the
column is left blank if it is a character column, or the user is required to enter
a value. Use the Defaults column in the Column Specification form to specify
this choice.

Creating Tables

Chapter 3: Using the Tables Utility 3–9

Defaults

The Defaults field allows you to control what happens when a user does not
enter a value in the specified data column. It works in conjunction with the
Nulls field specification.

Standard Defaults

You can enter certain standard default instructions directly into the Defaults
field, as described in the following table:

Note: To enter a specific, user-defined default for the data column, see User-
Defined Defaults.

Nulls Field Defaults Field Results if User Does Not Enter Data

Yes yes Enters a null value in the data column.

Yes no Requires a user to enter data in this column. User can explicitly
specify a null value. Any QBFor VIFRED form created from this
table can have the Mandatory attribute set for this data column.

No yes Enters a default value as follows:

Numeric column = 0

Variable-length character column = string of zero length

Fixed-length character column = blanks

Date column = empty date

User cannot enter an explicit null value.

No no Requires a user to enter data in this column. User cannot enter a
null value. Any QBFor VIFRED form that is created from this table
can have the Mandatory attribute set for this data column.

Yes null Enters a null value in the data column.

No null Not allowed.

Yes user Enters the username of the runtime user in the data column if no
value is explicitly specified. User can explicitly specify a null value.

No user Enters the username of the runtime user in the data column. User
cannot enter an explicit null value.

Yes value Enters a user-defined default value created with the EditDefaults
operation.

No value Enters a user-defined default value created with the EditDefaults
operation.

Creating Tables

3–10 Character-based Querying and Reporting Tools User Guide

User-Defined Defaults

You can specify a user-defined default entry for a data column, using the
EditDefaults menu option on the Create a Table frame. A value is then entered
in the specified data column if an end user does not enter a value for that
column. You can specify a user-defined default value for a column even if none
of the other columns for the row have been filled in on the Create a Table
frame.

To specify a user-defined default value:

1. In the Create a Table frame, place the cursor in the Defaults field for the
row in the column specifications table field for which you want to define a
default value.

2. Type the word, value.

3. Tab out of the field or choose the End operation. The EditDefaults pop-up
window displays.

The pop-up contains a scrollable default value window that is initially 23
characters wide and scrollable to 1500 characters. The DBMS limit for
default values is 1000 characters; however, the extra space in the default
window allows for dereferencing characters.

4. Type the default value for the data column. The value can be any valid
entry that is compatible with the data type of the column, including today
or now for a date column.

You can remove or change the user-defined default value at any time. To
remove a user-defined default entirely, change the Defaults field entry to yes,
no, user, or null, as appropriate. To change the user-defined default, place the
cursor in the Defaults field and choose the EditDefaults menu operation; then
enter the new default value in the pop-up frame.

The previous user-defined default value is saved temporarily. To restore it,
type value in the Defaults field.

Creating Tables

Chapter 3: Using the Tables Utility 3–11

Setting Unique Keys

You can prevent a user from entering duplicate rows in a table by specifying
that all key columns for a table shall be unique keys. The unique key columns
function as a combined unique constraint during data entry, which can
improve performance and data integrity. If you use unique keys in your table,
you require that each key value in the table be unique. The key value is the
concatenation, or combined listing, of all the values in the key columns in a
row. If you specify unique keys, the table can only hold one record for each
combined key value.

For example, if you have specified that Firstname and Lastname are the key
columns in your table, and you specify that your table must use unique keys,
then the combined Firstname and Lastname columns are the unique key value
for the table. This prevents any entry that has a combined first and last name
from being identical to an existing entry in the table.

To make all key columns in your table a combined unique constraint:

1. After creating a table in an Ingres database and entering key columns for
the table, select End. The Tables Utility displays a pop-up menu:

The following describes the options at the bottom of the pop-up menu
frame:

Option Description

Select Selects the highlighted option in the pop-up menu.

Cancel Returns you to the Create a Table frame without specifying
unique keys.

Help Displays information about unique keys.

2. Move the cursor to the Unique option on the Unique Keys pop-up frame
and click the appropriate mouse button or choose Select at the bottom of
the frame to make the columns you specified in the Key column your
combined unique constraint.

Creating Tables

3–12 Character-based Querying and Reporting Tools User Guide

Moving Column Specifications

The order in which you enter the data columns in the Column Specification
form determines the way table data is presented in default reports. In default
reports, the report data is sorted on the values in the first column. You can
use the Move operation to change the order of data columns when creating a
table.

The top data column specification in the table field is the first data column in
the table and can be the leftmost data column in any default report created
from the table. To move a data column specification from one row of the
Column Specification form to another:

1. Place the cursor on the data column specification row that you want to
move.

2. Select the Move operation. The Move submenu appears.

3. Position the cursor on the row to which you want to move the data column
specification row.

4. Select the Place operation from the submenu to move the column
specification to the new location. The column specification row to be
moved is inserted at the new cursor location and the current row is pushed
down by the newly moved row.

Cloning Table Specifications with GetTableDef

The GetTableDef operation allows you to copy column specifications from an
existing table into your new table. This is useful because tables in the same
database often have identical data columns that are frequently used for joins
and views. By copying the column specifications from one table to another,
you ensure that these repeating columns all have the same data type, column
width, and null and default values.

When you select the GetTableDef operation, you are prompted for the name of
the table containing the column specifications you want to copy. Enter that
table’s name to copy all of that table’s column specifications into the Column
Specification form. You can copy columns from more than one table into the
new table column specifications.

After copying the column specifications into the new table, you can use the
Delete and Move operations to eliminate column specifications you do not need
and to modify the column order.

Destroying Tables, Synonyms, Views, and Indexes

Chapter 3: Using the Tables Utility 3–13

Destroying Tables, Synonyms, Views, and Indexes
To destroy (delete) a table, synonym, view, or index, you must own them or
have proper access permissions. Note that destroying a synonym does not
destroy the underlying database table.

To destroy a table, synonym, view, or index and all its contents from a
database:

1. Place the cursor on the name of the table, synonym, view, or index you
want to destroy. (You cannot destroy any object that does not appear in
the displayed list.)

2. Select the Destroy operation. A pop-up form asks you for confirmation.

3. Place the cursor on yes to confirm that you want to destroy the chosen
object or no to leave the object as is.

4. Click the appropriate mouse button or choose the Select operation.

You can also destroy a table, synonym, view, or index using a query language.
For details, see your query language reference guide.

Keep in mind that you cannot later undo the destruction of a table, synonym,
view, or index, or recover the contents of a destroyed table. To recover a table
later, copy it to a file with the copydb command before deleting it from the
database. Otherwise, you can recover the object only by restoring the entire
database from a backup tape, if you have one. For instructions on using the
copydb command, see the Database Administrator Guide.

Getting Information about Tables and Views

3–14 Character-based Querying and Reporting Tools User Guide

Getting Information about Tables and Views
Use the Examine operation on the Tables Catalog frame to display information
about a table, synonymview, or index.

To use the Examine operation, place the cursor over the name of the table or
view you wish to learn about and choose the Examine operation. The Examine
operation displays the Examine a Table frame.

If you are examining a synonym or view, the Rows, Storage Structure,
Pages/Overflow, and Journaling fields do not appear on the frame.

If you are examining a synonym, the base table’s name and schema name
also display. If you do not have access to the base table, only the base table’s
name and schema name display.

All the fields on the Table Information frame are display-only; you cannot edit
or change any information.

The following table describes the menu operations on the Examine a Table
frame:

Function Description

NewTable Allows you to name a new table that you want to
examine without returning to the Tables Catalog
frame.

ViewDefaults Allows you to look at the actual user-defined default
value for a data column, if the Defaults field entry for
the data column is value. If the Defaults field contains
any other entry, an error message is displayed.

Help, End Standard operations.

Getting Information about Tables and Views

Chapter 3: Using the Tables Utility 3–15

The following table describes the fields on the Examine a Table frame:

Field Function

Owner Name of the schema in which the table or view
resides.

Row Width Total width, in bytes, of any data row in the table.

Rows Approximate number of data rows (records) currently
stored in the table. For a new table that has not yet
had data entered into it, this number is zero (0). You
can multiply the row width by the number of data
rows to calculate how much disk storage space the
table now occupies.

Columns Number of columns in the table.

Table Type Table type (table, view, or secondary index).

Storage Structure Type of storage structure that the table uses; for
example, heap or compressed B-tree.

Pages/Overflow Number of pages and overflow pages the table now
occupies.

Base Table Name of the underlying table (for a synonym only).

Base Table Owner Name of the schema in which the base table resides
(for a synonym only).

Journaling Indicates whether journaling is enabled for this table.
Journaling is a process of logging all changes to the
table over time.

Column Name The name of the column in the table.

Data Type The type of data (and in some cases maximum
number of characters) stored in the column.

Key # The key sort priority number of the column, if any.

Nulls Indicates whether null values are accepted in the
column.

Defaults Indicates whether default values can be automatically
entered in the column if no data is entered by the
user.

Adding or Deleting Columns in an Existing Table

3–16 Character-based Querying and Reporting Tools User Guide

Adding or Deleting Columns in an Existing Table
To add or delete columns in an existing table, you must use query language
statements outside of the Tables Utility. This allows you to recreate the table
with all or some of the columns from the original table, as well as add any new
columns. For specific instructions on how to do this, see the Database
Administrator Guide for the system on which your database resides.

Note: When you recreate a table, you also must recreate any synonyms, views,
or indexes based on the original table. In addition, you must edit any forms or
reports based on the original table, if the form or report references any
changed or deleted columns or if it is to access any new column in the table.

Chapter 4: Using QBF 4–1

Chapter 4: Using QBF

QBF is an interactive, visually oriented, forms-based tool for adding, deleting,
changing, and viewing data on selected query targets in a database.

A query target can be a table, JoinDef, or QBFName. For ease of use, you can
use default forms to access tables or JoinDefs in QBF. You can also define a
customized form to suit your particular needs for accessing a table or JoinDef
with which the customized form is associated. A table or JoinDef that has been
associated with a customized form is called a QBFName. Use the VIFRED to
create the customized form for a QBFName, as described in the chapter “Using
VIFRED.”

This chapter explains the difference between the definition and execution
phases of QBF, and provides instructions for starting QBF, choosing a query
target, and executing a query.

The Append, Retrieve, and Update operations are described in the chapter
“Working with QBF Operations.” The chapter “Using JoinDefs in QBF” discusses
how to create, edit, and delete JoinDefs.

You can access all other QBF frames from the QBF Startup frame. For a map of
the options available to you when you choose the JoinDefs operation, see the
chapter “Using JoinDefs in QBF.”

Before Starting QBF

4–2 Character-based Querying and Reporting Tools User Guide

Before Starting QBF
Before starting QBF, you must understand the difference between the two
phases involved in performing a query. They are:

 Query definition phase

 Query execution phase

When starting QBF from the operating system, you can use different
commands to enter QBF at the correct phase.

When starting QBF from the Ingres Menu, you can move through each phase
in a predetermined order.

Query Definition Phase

In the query definition phase, you choose or create a query target. A query
target contains the data you want to review, add to, or change. You can use a
query target for queries as often as you like. There are three recognized types
of query targets:

Query Target Description

Tables Two-dimensional arrays of data

JoinDefs Two or more tables joined through common values in
one or more columns

QBFNames The association of a table or JoinDef with a form
created in the VIFRED

If your query target is a table or JoinDef that does not yet exist, you can
create it from the appropriate Catalog frame in the query definition phase. To
create a QBFName, however, you must use the VIFRED, which is accessed
through the Forms menu choice on the main Ingres Menu frame.

You can choose a defined synonym or an existing view as a query target in
place of a table name. However, you cannot create a synonym or view from
the Tables Catalog frame or any other QBF frame. You can create views only
with a query language. For more information on synonyms and views, see the
chapter “Using the Tables Utility.”

Starting QBF

Chapter 4: Using QBF 4–3

Query Execution Phase

After choosing or creating the query target, you enter the query execution
phase. In this phase, you can manipulate data in these basic ways:

 Append (add) data rows to a table

 Retrieve (view) data from tables

 Update (modify or delete) data in tables

For a discussion of these functions, see the chapter “Working with QBF
Operations.”

Starting QBF
You can start QBF from the operating system or from the Ingres Menu.

Starting QBF from the Operating System

The command and command line syntax you use to start QBF at the operating
system prompt determines the starting QBF phase:

 Using the QBF command without a query target starts QBF in the query
definition phase. From the query definition phase, you can then move to
the query execution phase.

 Using the QBF command with a specified query target starts QBF in the
query execution phase.

 Using the query command, which requires specification of a query target,
starts QBF in the query execution phase.

For more information on the QBF and query commands and their parameters,
see the chapter “Using System Command for the Forms-based Tools.”

Starting QBF from the Ingres Menu

To start QBF from the Ingres Menu:

1. Choose the Queries operation from the Ingres Menu to display the
Queries frame.

2. Choose the QBF operation from the Queries frame. The QBF Start-Up
frame displays.

Choosing a Query Target

4–4 Character-based Querying and Reporting Tools User Guide

3. From the QBF Start-Up frame, choose QBFNames, JoinDefs, or Tables.

 An appropriate Catalog frame displays, as discussed in Choosing a Query
Target.

Choosing a Query Target
Catalogs automatically keep track of query targets. A Catalog frame displays a
list of query targets, a menu of available operations, and some explanatory
information.

Query targets can be:

 Tables

 QBFNames associated with tables or JoinDefs

 Synonyms referring to tables

 Views or JoinDefs based upon tables

You must either own the query target object or have been granted the
appropriate permissions to access or perform an operation on the object. For
more information on granting or obtaining permissions, see the Database
Administrator Guide.

To locate the query target you want, scroll through the list in the Catalog
frame. A quicker alternative is to type the first letter of the item you are
searching for. The cursor moves to the next item in the list that begins with
that letter.

For each type of query target, a different type of form is used for displaying
your query results. For more information on data display forms, see Data
Display Forms for Query Targets.

Choosing a Query Target

Chapter 4: Using QBF 4–5

Using Catalog Frames for Query Target Selection

Each type of query target—QBFName, JoinDef, and table—has its own Catalog
frame. Each Catalog frame offers various operations, such as create, destroy,
edit, or examine, that are specific to that type of query target. The Tables
Catalog frame operations are discussed in detail in the chapter “Using the
Tables Utility.” Operations on the JoinDefs and QBFNames Catalog frames are
discussed in the chapters “Using JoinDefs in QBF” and “Using VIFRED.”

All catalog frames offer the following standard operations for use with QBF:

Operation Description

Go Runs a query on the target you choose

Help, Quit Standard operations

QBFNames Catalog Frame

The QBFNames Catalog frame, shown in the following figure, contains a list of
the QBFNames that you can access. A QBFName represents a data display
form designed or customized with the VIFRED and then linked to a JoinDef or
table. For a discussion of QBFNames, see the chapter “Using VIFRED.”

Choosing a QBFName query target from the QBFNames Catalog frame informs QBF to
use the customized data display form and the associated JoinDef or table in the query
operation.

Choosing a Query Target

4–6 Character-based Querying and Reporting Tools User Guide

JoinDefs Catalog Frame

The JoinDefs Catalog frame, shown in the following figure, contains a list of
the JoinDefs that you can access.

Tables Catalog Frame

The Tables Catalog frame, shown in the following figure, lists the names and
owners of all tables and views to which you have access in the current
database.

Choose any table or view in the Tables Catalog frame as a query target for
query execution. However, when executing a query on a view, you can only
perform a Retrieve operation. You cannot perform the Update or Append
operations on a view. For more information on views, see the chapter “Using
the Tables Utility.”

Choosing a Query Target

Chapter 4: Using QBF 4–7

Data Display Forms for Query Targets

If you choose an existing QBFName as your query target, an associated
custom form for the query is used. If you choose a query target that is a table
or JoinDef, an appropriate default form for the query is used. For a table, you
can choose between two additional options, SimpleFields or TableField format,
to specify which default form to use.

Custom Forms

You can use the VIFRED to develop a custom form and associate it with a
query target. VIFRED allows you to specify the dimensions and general
appearance of the form or form components and to specify different display
and behavior attributes for the fields on the form. For information about
creating custom forms, see the chapters "Using VIFRED," "VIFRED Form
Components," and "VIFRED Field Specifications."

To specify a query target for use with a custom form, you use the QBFName
that associates the form with the table or JoinDef.

Default Forms

When displaying a default form for a query, QBF uses the column names and
data types of the table or tables in the query target. Unless there is a conflict,
QBF uses the table column names as the internal name for each field on the
form. When conflicts occur, QBF creates unique internal field names by slightly
changing one of the column names.

When creating a form, QBF allocates each field enough space on the form for
data entry and field titles. If you have specified that a table field must appear
on the form, QBF first places all the simple fields on the form and then places
the table field at the end of the form.

QBF supports several types of fields, corresponding to the basic data types:

 Integer (whole numbers only)

 Floating-point (numbers including decimal places and scientific notation)

 Character (alphanumeric characters)

 Date

 Money

For more detailed information about data types and formats, see the chapter
"Working with RBF Report Specifications.”

Executing a Query

4–8 Character-based Querying and Reporting Tools User Guide

Executing a Query
You can start query execution from within the Ingres Menu, following the
query definition phase, or from the operating system, without traversing the
Ingres Menu and QBF definition phase screens. For instructions on starting
query execution from the operating system, see the chapter “Using System
Commands for the Forms-based Tools.”

To begin the query execution phase from the Ingres Menu, follow these steps:

1. Start QBF in the query definition phase and choose a query target, as
described in the sections, Starting QBF and Choosing a Query Target:

a. Choose Queries.

b. Choose QBF.

c. From the Start-Up frame, choose either Tables, JoinDefs, or
QBFNames.

 A Catalog frame displays with the available query targets of the type you
specified.

2. Place the cursor on the row in the Catalog frame that contains the query
target you want and choose the Go operation.

 If your query target is a table, a submenu appears. Choose the
SimpleFields or TableField operation to specify the format for the default
form.

 The data is retrieved from the system catalogs and displays an appropriate
QBF Execution Phase frame.

Executing a Query

Chapter 4: Using QBF 4–9

3. Choose an appropriate operation, as described in the following table:

Operation Description

Append Adds information to the database.

Retrieve Retrieves information from the database.

Update Changes or deletes information in the database.

Help, End, Quit Standard operations.

When you choose Append, Update, or Retrieve, QBF displays the appropriate
frame for the operation and query target you have chosen.

If you access the QBF Execution Phase frame directly from the operating
system by specifying a query target in the qbf command, two additional
operations on the QBF Execution Phase menu appear:

Operation Description

NewQueryTarget Chooses a new query target to run.

Start Goes to the Start-Up frame.

The NewQueryTarget operation lets you specify a new query target without
exiting QBF. You are prompted for the name of a new query target. It searches
for a query target with that name first among QBFNames, then, among
JoinDefs, and last, among tables. The Start operation returns you to the
Start-Up frame.

Displaying and Saving Query Results

4–10 Character-based Querying and Reporting Tools User Guide

Displaying and Saving Query Results
The Retrieve operation allows you to view, but not change, data. Both the
Append and Update operations allow you to make changes to the data, which
you can save.

A default form for all three operations used with tables and JoinDefs is
generated. For example, if your query target is a JoinDef, the default form
might look like the following figure.

The data retrieved by this query is shown in the following figure.

When you modify data with the Update operation, the changes you make are
stored in a temporary location. It does not write them into the actual table
until you select the Save operation. If you leave QBF execution without
specifically saving your changes, you can lose your modifications and the data
in the database tables remains unaltered.

Displaying and Saving Query Results

Chapter 4: Using QBF 4–11

If a join column in a JoinDef has been protected from updates with the Rules
operation, you cannot update the join column but you can update the rest of
the row. If the table has been protected from updates with the Rules
operation, you are not allowed to save changes to the protected table. QBF
issues an error message when you try to execute the Save operation. For
information on the Rules operation, see the chapter “Using JoinDefs in QBF.”

Chapter 5: Working with QBF Operations 5–1

Chapter 5: Working with QBF Operations

This chapter explains how to use the QBF operations, Append, Retrieve, and
Update. Append adds new records to a table, Retrieve retrieves information
and displays it in a window, and Update modifies, updates, or deletes existing
data.

QBF Append Operation
This section explains how to use the Append operation in QBF to add new
records (rows) to a table. To append data, you fill in a QBF form and choose
the appropriate menu operation.

In QBF, you can append data only to tables for which you have been granted
the Append privilege to add rows.

Starting the Append Operation

You can start the Append operation from the operating system or from the
Ingres Menu.”

The following steps describe how to start the Append operation from the
Ingres Menu. The chapter “Using QBF” discusses steps 1 through 5 in more
detail.

1. Choose Queries.

2. Choose QBF to reach the QBF Start-Up frame.

3. Choose Tables, QBFNames, or JoinDefs for the appropriate Catalog frame.

 When working with a table query target, you must also choose
SimpleFields or TableField format.

4. Place the cursor on the name of your query target in the Catalog frame
and choose the Go operation. The Execution Phase frame displays.

5. On the Execution Phase frame, choose Append.

 A default query form displays.

QBF Append Operation

5–2 Character-based Querying and Reporting Tools User Guide

Using the Append Frame

Two approaches to adding new rows of data to a table with QBF are available:

 Use a table field to append many rows of data at once.

 Use simple fields to append one row at a time.

Each field on the Append frame corresponds to a single column in the query
target table(s). On a default form, if the query target is a JoinDef, the join
field(s) appears in reverse video, if your terminal has that capability.

Whether you use simple fields or a table field depends on the query target:

 If the query target is a table, the menu choices SimpleFields and
TableField appear, following the table you chose in the Tables Catalog
frame.

 If the query target is a Master/Detail JoinDef, the default format is a table
field for the detail table and simple fields for the master. You can change
this default on the JoinDef Definition frame.

 If the query target is a QBFName, the form shown on the frame can have
table fields or simple fields or both. The appearance and behavior of a
QBFName form can be altered using the VIFRED as described in the
chapters "Using VIFRED," "VIFRED Form Components," and "VIFRED Field
Specifications."

Procedure for Adding New Rows of Data

To add new rows of data to the database:

1. Start the Append operation from the operating system or from the Ingres
Menu, as described in the section, Starting the Append Operation.

2. Enter your data in the fields of the form. If you are using a table field, you
can tab through the fields in each row. Press Return at the end of the row.

 If the query target is a QBFName, the sequence in which the cursor moves
from one field to the next is determined by the order specified in the
custom form created in VIFRED.

3. When you have typed in all the rows of data that you want to add, choose
the Append operation from the Append frame menu to save your
additions.

 Your data is added to the database tables and displays a message telling
you how many rows of data it has appended.

 If you do not choose the Append operation in the Append frame, your
additions are not saved.

The methods you use to append data differ slightly depending on whether you
are using a simple-fields or table-field format.

QBF Append Operation

Chapter 5: Working with QBF Operations 5–3

Simple-Fields Format

If you are appending data using simple-fields format, you can append only one
row at a time. When you are finished entering data, choose Append to write
your new data into the database. Append is the only operation available.

Table-Fields Format

If you are appending data using table-field format, you can enter more than
one row of data in the table field before choosing Append. When finished
entering data, choose Append to write your new data into the database.

The following menu operations are available on the Append frame if you
choose the table-field format:

Operation Description

Append Appends the data to the table.

Insert Inserts a new blank row in the table field.

ListChoices Displays the available choices for the selected field on a
QBFName.

Help, End Standard operations.

The Insert operation on the Append frame allows you to open a new line in the
table and insert a new row of data in a specific location. Using Insert does not
affect the retrieval or reporting of data in the table(s). The Insert operation is
provided as a convenience so that you can visually order your new rows as
you enter them on the frame.

To use the Insert operation, follow these steps:

1. Put the cursor where you want the new row to appear.

2. Choose Insert.

 QBF places the cursor at the beginning of a new blank row inserted above
the previously selected row.

Data Entry Errors

When you choose Append, each field is checked for errors. If an error is
detected, an error message appears and the cursor returns to either the field
containing the error or to the first field on the form.

Choose Append again to add your corrections to the database.

QBF Append Operation

5–4 Character-based Querying and Reporting Tools User Guide

If your query target is a QBFName, your customized form can contain
mandatory fields, validation checks, or special attributes. These requirements
must all be met before QBF allows the Append operation to add data from the
form to the database.

Duplicating Previous Entries

When entering data in simple-field format, press Control-A to duplicate the
previously entered value for that field. For example, pressing Control-A in the
Zipcode field enters whatever zip code was entered on the previous form.
Control-A does not work in table-field columns.

Transaction Deadlock in Append Mode

Because transactions are supported, a transaction deadlock can occur in
Append mode. This can only happen after you select the Append command to
add the data you have entered in the form to the database. If an attempt to
add a row to one of your query targets aborts because of a transaction
deadlock, QBF informs you that a deadlock has occurred and that your
transaction has been aborted. QBF then automatically retries the entire
append.

Confirmation Messages

If an append is successful, QBF displays a confirmation message, for example:

Appended 1 master and 2 detail row(s)...

QBF displays an error message if you attempt to append information to a table
that has update rules preventing this, or if you violate an integrity constraint,
which defines a valid range for data.

Exiting the Operation

After appending your data with the Append operation, choose End to exit to
the QBF Execution Phase frame. End returns you to the previous frame. If you
try to exit without committing the data with the Append operation, QBF
prompts:

Do you wish to leave APPEND without appending data on the frame?

If you type y (yes), QBF displays a message indicating how many rows of data
have been appended in this session and returns you to the QBF Execution
Phase frame without appending the current data. If you answer n (no), QBF
returns you to the form where you can choose Append.

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–5

Each time you exit after appending data, QBF displays a message containing
the number of rows successfully appended during the session.

QBF Retrieve Operation
This section explains how to use the Retrieve operation to retrieve information
from the database and display it in your window. In Retrieve mode, you can
browse through the retrieved data, but you cannot make any changes to it.

When you use Retrieve, QBF displays a blank form representing the JoinDef or
tables you want to review. To specify which data you wish to view, enter
search qualifications in the fields on a form.

Starting the Retrieve Operation

You can start the Retrieve operation from the operating system or from the
Ingres Menu.

The following steps describe how to start the Retrieve operation from the
Ingres Menu. The chapter “Using QBF” discusses steps 1 through 4 in more
detail.

1. Choose Queries.

2. Choose QBF to reach the QBF Start-Up frame.

3. Choose QBFNames, JoinDefs, or Tables for the appropriate Catalog frame.

 When working with a table query target, you must also choose
SimpleFields or TableField format.

4. Place the cursor over the name of your query target in the Catalog frame
and choose the Go operation. QBF displays the Execution Phase frame.

5. On the QBF Execution Phase frame, click Retrieve.

QBF displays the Retrieve frame with the fields of your query target and a
menu of operations. The appearance of the Retrieve frame varies depending
on the type of query target. The following section discusses the Retrieve
Frame.

Some data columns in a table can be hidden from your view by the JoinDef
ChangeDisplay operation.

QBF Retrieve Operation

5–6 Character-based Querying and Reporting Tools User Guide

Using the Retrieve Frame

The following figure shows the Retrieve frame for a JoinDef query target. The
Retrieve frame can contain simple fields and/or a table field.

Join columns are indicated by reverse video on a Retrieve frame if your
terminal has that capability.

If the query target contains too many columns to fit in your window, tab
through the columns to scroll to those that are outside the displayed window.

Operation Description

Go Executes the query.

Blank Clears the current entries from the window.

Order Displays current data sort order specification for review or
editing.

LastQuery Places the contents of the previously run query on the form
for review or editing.

ListChoices Lists the available choices for the selected field on a
QBFName.

Help, End Standard operations.

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–7

Follow these steps for using the Retrieve frame:

1. Enter search conditions in the columns of the Retrieve frame form to
qualify your search. Qualifying a search limits the results to records (rows)
containing the types of data you specified in the Retrieve frame. For
example, to look at only those records pertaining to the advertising
department, only records for the month of January, or only records of
employees with salaries greater than $30,000 per year. For more
information, see Qualifying Retrievals.

2. Use the optional Order operation to specify the order in which you want to
view the retrieved records. For example, to view records chronologically,
or by department, or size of budget. For more information, see Sorting
Query Results.

3. Choose the Go operation to start the search. For instructions on viewing
the retrieved data, see Viewing Retrieved Records.

4. Begin a new query by choosing the Query operation.

Qualifying Retrievals

Qualification is the process of specifying which rows in the table(s) you want to
retrieve. You indicate which rows to retrieve by entering your qualification
criteria, or search conditions, in the fields on the Retrieve form. This restricts
retrieval to those records (table rows) that match or meet the qualification
criteria you entered.

For example, if the Retrieve form has a Lastname field, and you enter Lincoln
in that field, the word Lincoln becomes a search condition. QBF retrieves only
those records with a value of Lincoln in the Lastname field.

Leaving all the fields on the QBF Retrieve form blank is equivalent to
specifying no restrictions on retrieval so that all records of data from the
table(s) are displayed.

QBF Retrieve Operation

5–8 Character-based Querying and Reporting Tools User Guide

The following figure gives an example of search conditions that restrict
retrieval of records from the Managers table to those data rows with the
Project of Advertise.

The following figure shows the results of a query that restricted retrieval of
records to data rows with the Projects Advertise and TextProc.

If the query target contains too many columns to fit in your window, tab
through the columns to scroll to those that are outside the displayed window.

The search conditions you enter in a field can exceed the field’s window width
on the form. When you enter a long specification in a field, the window scrolls
as you type.

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–9

You can duplicate a qualification value from a simple field on a form. For
information about using auto-duplication on your terminal, see the appendix
“Appendix B: Defining Function and Control Keys.”

Trailing blanks are ignored in a qualification specification.

Use various operators and expressions to further qualify your retrieval search.
These are discussed in the following sections.

Using Comparison Operators

A comparison operator is a symbol that informs QBF that you want to compare
two values or search for a range of data.

Qualify your query with these comparison operators.

Operator Description

= equal to

!= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

For example, the following figure shows a query that searches the Projects
table for records with a budget greater than or equal to $12,000.

All comparison operators have equal precedence.

QBF Retrieve Operation

5–10 Character-based Querying and Reporting Tools User Guide

QBF assumes that fields containing values with no comparison operator have a
defacto equals sign as the comparison operator. The equals sign works
differently when querying non-nullable and nullable fields. For more
information, see Queries in Blank and Nullable Fields.

Comparison operators are often combined with the AND operator within a
field. For example, entering a search condition of >100 and <900 searches for
all values between 100 and 900. You can also use the OR operator. For
example, <100 or >900 searches for all values that are either less than 100 or
greater than 900. Likewise, >=a <=d retrieves all character strings that begin
with the letters a, b, c, or d.

When using a comparison operator on a character field, the search is
case-sensitive because QBF treats lowercase and uppercase characters as
different characters. All uppercase letters come before all lowercase letters. If
you enter >a, you cannot find any character strings that begin with uppercase
letters, while if you enter >A <a, you can find all strings that began with
uppercase letters but no strings that began with lowercase letters.

Just as capital letters are ordered ahead of lowercase letters, QBF orders
numbers in a character field ahead of both uppercase and lowercase letters.

You cannot combine a greater than (>) or less than (<) comparison operator
with pattern matching. For example, >Sa% is not allowed. For more
information on pattern-matching, see Using Pattern-Matching Characters.

Using Logical Operators

QBF allows you to use the logical operators AND (conjunction) and OR
(disjunctive) to qualify retrievals. AND and OR are known as Boolean
operators:

 When you use the AND operator, QBF retrieves only data records that
meet both or all of the criteria you specify.

 When you use the OR operator, QBF retrieves data records that meet any
one of the criteria you specify.

There are two ways to use the AND and OR operators:

 Within a column

 Between different columns

For more information on the use of Boolean operators, see the chapter
“VIFRED Field Specifications.”

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–11

Logical Operators Within a Column

You can use logical operators within a data column. For example, if you enter
Lincoln or Douglas or Tubman in a Lastname field, the query returns records
with a value of either Lincoln or Douglas or Tubman in the Lastname column.

You can explicitly enter the AND operator in a field, as you do the OR operator,
or you can imply the AND operator by leaving a space between words. For
example, entering Delta Gamma is the same as entering Delta and Gamma.

If you want to search for a string of words separated by literal spaces, you
must enclose the string with double quotation marks (" "), because QBF
otherwise interprets the spaces as implied AND operators.

For most practical purposes, the AND operator is only useful in numeric fields
because the AND operator requires that the data in the field meet two
separate and exclusive criteria. For example, a number can be both greater
than 10 and less than 100.

Because the AND operator is exclusive, it usually returns nothing in a
character column. For example, entering 1776 and Adams and Street in an
Address field does not return the address 1776 Adams Street because QBF
looks for a single field with a value of 1776 and nothing else, a value of Adams
and nothing else, and a value of Street and nothing else. Because no field
could meet such impossible conditions, no data records can be found.

You can use the AND operator in a character field if you use the greater than
(>) and less than (<) comparison operators. For example, entering the search
condition >a and <d retrieves all character strings that begin with either b or
c.

Logical Operators Between Columns

When using logical operators between columns, you do not enter the words
AND or OR in the form as you do when you use these operators in a single
column. In QBF, the AND and OR operators are implied by the way the
qualifying criteria is entered in the fields. Simple fields and table fields differ in
how logical operators are implied:

 On a form with simple fields, the AND operator is always implied when
information is entered in more than one field.

 On a form in table-field format, the AND operator is implied when
information is entered in the columns across one row of a table field.

QBF Retrieve Operation

5–12 Character-based Querying and Reporting Tools User Guide

 In the following figure, for example, QBF only retrieves data from the
Project and Managers tables that have the Project ID Advertise AND a
Budget of more than $5,000.

 The OR operator can be implied only in table-field format. Values in
different rows of a table field are implicitly OR. In the following figure, for
example, QBF can retrieve data that has the Project ID Advertise OR has a
budget of more than $5,000.

Grouping Values

When using logical operators, you can use parentheses to group values. For
example, to retrieve all projects with budgets less than $5,000 or between
$15,000 and $20,000, enter the following expression in the Budget field:

<5000 or (>=15000 and <=20000)

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–13

For information on handling queries containing literal parentheses, see
Character String Qualifications.

Using Pattern-Matching Characters

For further qualification of queries, you can perform pattern matching with
wild card characters. Wild card characters are symbols that represent
unspecified character values. In QBF, the asterisk (*) and the question mark
(?) are the default wild card characters. Pattern-matching characters cannot
be used in fields with numeric data types.

As explained in The % and _ Pattern Matching Characters, you can specify that
your system use the % and _ character in place of ? and *.

? and * Pattern-Matching Characters

Use the question mark (?) to represent one unspecified character. For
example, T?P can find the values TAP, TCP, TOP, and so on. You can use more
than one question mark to indicate more than one character. For example, to
search for all 5-digit identification codes beginning with 941 enter 941??.

Use the asterisk to represent any number of unspecified characters or no
characters at all. For example, to search for all product codes containing the
characters ALPHA enter *ALPHA*. This returns answers such as:

122-STAR-ALPHA
STAR-ALPHA-X4
ALPHA-987-PROTO
ALPHA

To search for all product codes that begin with the characters STAR you enter
STAR*. This returns answers such as:

STAR-98-BETA
STAR-ALPHA
STAR

You can combine the question mark and the asterisk. For example, to locate
any product that begins with four characters and a dash and ends with ALPHA,
enter ????-*ALPHA. This returns answers such as:

STAR-986-ALPHA
PROT-BETA/ALPHA
TEST-ALPHA

Pattern-matching characters and logical operators interact with each other. For
example, you can combine the OR operator and pattern matching characters
in a column by entering STAR* or ALPHA-????. This returns answers such as:

ALPHA-98G5
ALPHA-TEST
ALPHA-5005
STAR-87-BETA

QBF Retrieve Operation

5–14 Character-based Querying and Reporting Tools User Guide

STAR-876-ALPHA-X
STAR

For most practical purposes, the AND operator is only useful in numeric fields
because it requires that the data in the field meet two separate criteria.
Therefore, the AND operator is rarely used in conjunction with pattern-
matching characters.

Because QBF treats spaces in search qualifications as an implied AND
operator, you must enclose pattern-matching qualifications containing a literal
space in quotation marks. For example, in an address field the specification
1776 Adams* returns nothing and does not find 1776 Adams St because the
space is treated as an AND operator. To include a space in a character field
specification you must enclose the specification in quotation marks. For
example, entering 1776 Adams* returns answers such as:

1776 Adams Ln.
1776 Adams St.
1776 Adams Street
1776 Adamstown Court

To use the asterisk or the question mark as actual characters rather than as
wild card characters, precede them with the backslash character (\). For
example, enter A*B to look for the actual sequence A*B. If you enter A*B by
mistake, QBF searches for any combination of any number of characters that
begin with the letter A and end with the letter B.

You cannot use a wild card pattern-matching symbol in conjunction with a
greater than (>) or less than (<) comparison operator. For example, >Sm* is
not allowed.

% and _ Pattern-Matching Characters

You can choose to use the underscore (_) and percent sign (%) pattern-
matching characters in place of the ? and * characters. The underscore is
equivalent to the question mark and the percent sign is equivalent to the
asterisk. To specify these pattern-matching characters, use the
II_PATTERN_MATCH environment variable/logical as explained in the System
Administrator Guide.

Using Bracketed Expressions

By enclosing characters within brackets ([]), you can stipulate specific values
in a pattern-matching search. For example, if you want to find employees
whose last names begin with R or T, enter [RT]* in a Lastname field. This
returns last names such as Randall, Rotelli, Tamatomi, and Tijerina. You can
include any number of characters within brackets and they can be placed in
any order.

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–15

All pattern-matching queries work in Query mode. However, if you invoke QBF
with the -e flag (for expert mode) you cannot use bracketed pattern-matching
operators for specifying selection criteria in an empty catalog in order to
retrieve a set of tables or other objects for querying.

A bracketed pattern is often used when a table contains data in different
cases. For example, if you entered S* as a query specification in the Dept
field, a retrieve returns rows with Sales, but not rows with sales. However, the
query specification [Ss]* returns all rows containing both Sales and sales. By
separating characters with a hyphen and surrounding them with brackets, you
can stipulate a range of characters for pattern matching. Thus, entering [A-
M]* in the Name field retrieves the names of all employees whose last names
begin with any letter in the first half of the alphabet, such as Alcott, Chung,
Feldmann, King, and Moore. The wild card characters can be combined with
bracketed expressions. Used either before or after the brackets, they further
refine a search for patterns in data.

Complex Queries

The following figure is an example of a complex query that utilizes comparison
operators, logical operators, and wild card characters. The query searches for
information from a JoinDef consisting of the Staff table and the Tasks table.
Specifically, it searches for records of employees whose names begin with the
letter B, whose hourly rate is less than $50, and who have either worked in
the Design phase or have worked more than 25 hours in the Implement
phase.

QBF interprets the search conditions on this form as follows:

Display the data if name = B* and hourly rate <50 and
(task = Design or (task = Implement and hours >25))

QBF Retrieve Operation

5–16 Character-based Querying and Reporting Tools User Guide

Character String Qualifications

The following sections describe the use of case, parentheses, and multiple
words in character strings.

Case Character string search conditions are case-sensitive. For example, if you
enter Franklin as a search condition, QBF displays only records with Franklin,
but not FRANKLIN or franklin.

Parentheses If a character string contains a literal parenthesis, you must enclose the
entire string in quotation marks. For example, to retrieve the record for
Martin (E) Smith, enter Martin (E) Smith.

Multiple Words in
Character Fields

If a character field contains two or more words separated by spaces, such as
a street address, you must either use a pattern-matching wild card character,
as explained in Using Pattern-Matching Characters, or enclose a multi-word
search condition in quotation marks.

For example, suppose you want to find records with a value of 1776 Adams
Street in the Address column. You could do this by entering 1776 Adams
Street as a search condition in the Address field.

However, if you enter 1776 Adams Street with no quotation marks as a search
condition in the Address field, nothing is found because QBF interprets the
spaces between the three words as implied AND operators.

As explained in the section on pattern-matching, you could also use a wild
card character. For example, entering a search condition of 1776* finds all
addresses on all streets beginning with 1776. Entering a search condition of
1776 Adams St* finds both 1776 Adams St. and 1776 Adams Street.

Date and Time Qualifications

Date fields can hold either a simple date, such as 22-mar-1998, or a date and
time, such as 22-mar-1998 10:44:23. You cannot use wild card characters in
date fields to qualify a retrieval. However, you can use comparison and logical
operators to retrieve a range of dates and/or times.

For example, to retrieve all records with dates from January 1, 1998 through
December 31, 1998, enter the following qualification in a date only field:

>=1-jan-1998 and <1-jan-1998

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–17

If the field contains only date values and no time values, you can retrieve all
records for a single date, such as March 22, 1998, by entering a qualification
such as:

22-mar-1998

If the field contains values in the date and time format and you want to
retrieve only records with the specific date and time of March 22, 1998
10:44:23, enter the qualification:

22-mar-1998 10:44:23

If the field contains both the date and time and you want to retrieve all
records for March 22, 1998, regardless of the time, enter the following date
range qualification in the date and time field:

>=22-mar-1998 and <23-mar-1998

To qualify the retrieval for a specific hour of one day, enter a qualification such
as:

>=22-mar-1998 10:00 and <22-mar-1998 11:00

Queries in Blank and Nullable Fields

Query specifications differ between nullable and non-nullable fields. For
general information on nulls and nullable columns, see the chapters “Using the
Tables Utility” and “Working with Data Types and Data Display Formats.”

In a nullable column, blank fields are treated as nulls (no data). In a query
operation, entering the equals sign (=) into a nullable numeric column without
anything else tells QBF to look for and return only rows in which the specified
field is null.

In a non-nullable column, blank fields are treated as if they contain a value of
zero (0). Entering the equals sign (=) into a non-nullable column without
entering anything else returns all rows containing a value of zero (0) in that
field.

Sorting Query Results

Use the Order operation to specify the order in which your retrieved data
displays.

Choosing Order on the Retrieve frame temporarily clears all qualification
specifications from the Retrieve frame form so that you can enter order
qualifications. Any previously entered sort-order specifications displays.

QBF Retrieve Operation

5–18 Character-based Querying and Reporting Tools User Guide

The frame menu now displays the following operations:

Operation Description

Blank Clears any specifications that have been entered.

Cancel Restores the previous ordering specifications, if any, and
returns to the previous Retrieve frame.

Help, End Standard operations.

Sort Sequence and Sort Priority

You control the order in which data displays in your window by specifying the
sort order. Sort order is governed by sort keys. Sort keys are data columns
(fields) that have been given a sort priority number. For example, if a field
called Name is the sort key, QBF presents all the data rows in alphabetic order
by Name.

If you do not use the Order operation to specify a sort order, QBF displays the
data according to how it is stored in the table. How data is stored in the table
depends on the table’s storage structure.

By default, QBF sorts columns in ascending order.

You can specify the sort order in master and detail tables, with or without
table fields, for any query target.

For example, Lastname might be the first field listed on the form and Zip the
fifth. But if you specify that you want zip-codes to be the primary sort key,
and last names the second sort key, your data is displayed by zip-code in
numeric order with the last names within each zip-code arranged
alphabetically.

To set the ordering sequence for a field, follow these steps:

1. Click Order on the Retrieve frame.

2. Put the cursor in a column (field) you want to sort on.

3. Type a number from 1 to 1024. This is the sort priority number. QBF sorts
the field with the lowest number first. The first sort is called the primary
sort. If you want the field displayed in descending order, follow the sort
priority number by d (or D). For ascending order, you can enter a (or A) or
no letter, because ascending order is the default.

4. If you want a secondary sort, repeat steps 2 and 3 in the secondary sort
field. Make sure that the number you enter in the secondary field is higher
than the number entered in the primary field. If you want additional sorts,
continue this process until all the fields you want to sort on have been
assigned a sort priority.

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–19

5. When you are finished, click End to return to the original menu for the
Retrieve frame and remove the sort order specifications.

6. Click Go to execute the query.

7. If you choose Order again, the previous sort priority numbers and sort
sequence letters display in the fields. To change them, type new values.
Use the Blank operation to erase all sort specifications and begin with a
blank form.

You can assign a sort sequence to any and all fields and table fields on the
form.

The Order operation treats sort sequence numbers as relative. If you assign sequence
numbers 1, 3, and 80, Order interprets them as follows:

1 primary

3 secondary

80 tertiary

The following figure shows a JoinDef of the Projects and Tasks tables. The
primary sort column is Dept. The secondary sort column is Budget. Because d
is specified for Budget, the highest figure is displayed first. The third sort
column (specified as 5) is Due Date, and the fourth (specified as 10) is Project.

When specifying sort order, the default is ascending order (A before B, 1
before 2). If you type d for descending order, the Order operation sorts text
fields in reverse order (Z before Y, 9 before 8). If desired, you can use a colon
(:) to separate the priority number from the sort direction.

QBF Retrieve Operation

5–20 Character-based Querying and Reporting Tools User Guide

For example, specifying either 2d or 2:d in the Budget field makes Budget the
secondary sort key and instructs QBF to display the results in descending
order according to Budget (highest budget first, lowest budget last).

Keep in mind that QBF sorts numbers in numeric fields differently than
numbers in character fields. Numbers in numeric fields are sorted by value (1,
2, 3, 10, 11, 12, 101, 112, 121,...). When numbers are part of a character
field (in an address, for example), they are sorted alphabetically (1, 10, 101,
11, 12, 121, 2, 3,...).

Nulls in a character field are sorted last.

Sort Precedence in JoinDef Execution

QBF sorts Master/Master JoinDefs in the same way as tables. The fields can be
sorted in any order.

In Master/Detail JoinDefs, the sorting sequence in a master field must have a
higher precedence (lower sort priority number) than a sorting sequence
assigned to a detail field. This rule ensures that the detail field remains
subordinate to the master field.

Viewing Retrieved Records

After entering the data qualification and sort order specifications (if any),
choose the Go operation on the Retrieve frame to display the data you have
specified.

The operations available on the Retrieve frame while viewing data vary
depending on the type of query target and whether the query target has a
table field or simple fields.

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–21

Viewing Retrieve Results for a Table

If the query target is a table in simple-fields format, you view retrieve results
one row at a time:

Operation Description

Next Retrieves the next record.

Query Clears the window of all retrieved information and allows
you to make another query.

Help, End Standard operations.

Use the Next operation to display the next record. To start a new query, click
Query. Click End to exit to the QBF Execution Phase frame.

The following figure shows query results for a table displayed on a form in
simple-fields format.

If the query target is in table-field format, you can view multiple rows in the
table field. The operations on the menu are Query, Help, and End.

After QBF displays all rows retrieved by your query, regardless of format, it
displays the following message:

No more rows in query

Viewing Sort Results for a Master/Master JoinDef

QBF displays the sorted results of a query on a Master/Master JoinDef with
records from each table in simple fields or in table fields.

QBF Retrieve Operation

5–22 Character-based Querying and Reporting Tools User Guide

If the rows are displayed in simple-fields format, click Next to display the next
single record.

The following table shows operations for a Master/Master join with simple
fields:

Operation Description

Next Retrieves the next record (row) of data.

Query Clears the window of all retrieved information and allows
you to make another query.

Help, End Standard operations.

If the rows are displayed in a table field, scroll through the data, if necessary,
to see all rows. QBF displays an Out of Data message if you attempt to scroll
past the end of the table field. You can suppress this message by changing the
setting of the II_SCROLL_MSG environment variable/logical. For details, see
the System Administrator Guide.

The following table shows operations for a Master/Master join with table fields:

Operation Description

Query Clears the window of all retrieved information and allows
you to make another query.

Help, End Standard operations.

Viewing Sort Results for a Master/Detail JoinDef

When you retrieve a master record in a Master/Detail JoinDef, QBF
automatically retrieves all detail records associated with it. The master record
is displayed in simple fields. The detail records display in either a table field or
simple fields, depending on which format you chose when you created the
JoinDef.

Regardless of the format, use the NextMaster operation to go from one master
record to the next. Within each master you can view all associated detail
records. If the display includes a table field for the detail records, QBF loads all
detail records for a single master into the table field. If all the rows do not fit
in your window, you can scroll through them. QBF displays an Out of Data
message if you attempt to scroll past the end of the table field. You can
suppress this message by changing the setting of the II_SCROLL_MSG
environment variable/logical. For details, see the System Administrator Guide.

QBF Retrieve Operation

Chapter 5: Working with QBF Operations 5–23

The following figure is an example of a retrieval for a Master/Detail JoinDef.

The preceding example includes a master row and its associated detail rows.
The detail rows in the table field are sorted in ascending order, based on the
Task column.

The following table shows the operations when records appear only in
simple-field format:

Operation Description

NextMaster Retrieves the next master record.

Query Clears the window of all retrieved information and
allows you to make another query.

NxtDetail Retrieves the next detail record.

Help, End Standard operations.

Use the NextMaster operation to display a master record and the first detail
record associated with it. Use NxtDetail to display the next detail record
associated with the same master; the master data cannot change. If you
choose NxtDetail when the last detail for that master has been displayed, QBF
displays the following message:

No more details for this master . . .

It then retrieves the next master and its first detail record.

When QBF has displayed all rows delivered by your query, it displays the
following message:

No more masters

QBF Update Operation

5–24 Character-based Querying and Reporting Tools User Guide

No Rows Meeting Specifications

If QBF does not find any rows meeting the specifications in your query, it
displays the message:

No rows found for this query

It then returns you to the Retrieve frame to enter a new query.

Transaction Deadlock in Retrieve Mode

If a transaction deadlock occurs while you are viewing data retrieved by a
query, QBF aborts the query and returns you to the Query Specification frame
to enter a new query. When this occurs, QBF displays the following message:

Deadlock detected, your transaction has been aborted.

Exiting the Retrieve

To set up another query specification, click End or Query. If you invoked the
Retrieve operation from the command line with the qbf or query command,
you can return to the operating system by choosing Quit.

QBF Update Operation
This section explains how to use the Update operation to modify, update, or
delete existing data. Using Update, you fill in a form to retrieve rows of data,
modify or delete the data in the form, and then save your results to the
database.

Starting the Update Operation

You can start the Update operation from the operating system or from the
Ingres Menu.

The following steps describe how to start the Update operation from the Ingres
Menu. The chapter “Using QBF” discusses steps 1 through 4 in more detail.

1. Choose Queries.

2. Choose QBF to reach the QBF Start-Up frame.

3. Choose QBFNames, JoinDefs, or Tables for the appropriate Catalog frame.

Note: When working with a table query target, choose SimpleFields or
TableField format.

QBF Update Operation

Chapter 5: Working with QBF Operations 5–25

4. Place the cursor on the name of your query target in the Catalog frame
and choose the Go operation. QBF displays the QBF Execution Phase
frame.

5. On the QBF Execution Phase frame, choose Update. QBF displays the
Update frame, containing an appropriate query form for the query target
you chose. At the top of the Update frame query form is the name of your
query target.

 The Update frame provides the following operations for use with the query
form:

Operation Description

Go Executes the query.

Blank Clears the current entries from the frame.

LastQuery Displays your last query specification for editing.

Order Sets the order of rows for sorting.

ListChoices Lists the available choices for the selected field on a
QBFName.

Help, End Standard operations.

6. Specify the row(s) you wish to retrieve for updating by filling in the
appropriate fields on the Update frame query form. This procedure works
in the same way as filling out the form on the Retrieve frame, as described
in the chapter “Working with QBF Operations.”

7. Choose Go to display the data that matches your specified criteria. You can
then modify or delete this data as explained in Modifying Data and
Deleting Data.

If QBF does not find any rows meeting your specifications, it displays the
following message and returns you to the Update frame query form to enter a
new query.

No rows found for this query

Modifying Data

QBF displays the data from your query on a data display form in the Update
frame. You can edit or delete this data, with the following exceptions:

 If the table or tables you are accessing have permissions assigned to
them, you need permission to perform an update.

 If JoinDef update rules specify that the table or tables you are accessing
cannot be updated, you cannot update columns in that JoinDef.

QBF Update Operation

5–26 Character-based Querying and Reporting Tools User Guide

 If JoinDef update rules have been applied to a join column on the frame,
the cursor cannot stop on that field.

 Delete rules have been established to prevent deletion of the rows in the
underlying tables.

For more information on restrictions for updating JoinDefs, see Update and
Delete Rules in the chapter “Using JoinDefs in QBF.”

To edit the data, type your corrections over the displayed text. QBF does not
commit your changes to the actual database as you enter them, but stores
them in a temporary buffer. To save your changes and update the database,
choose Save on the Update frame data display form menu.

Within QBF, you can change only one row of data at a time. However, you can
use the SQL update statement in the Interactive Terminal Monitor to change
all qualifying rows of data at one time.

Update Frame Data Display Form Operations

The operations for use with the Update frame’s data display form vary,
depending on the type of query target and whether the format is for a table
field or simple fields. QBF automatically presents the operations that are
appropriate for the query target and format you chose.

Operation Description

NextMaster Displays the next row of data from master and
associated detail table fields.

NxtDetail Displays the next row of detail. (This operation is valid
only for JoinDefs in simple-field format.)

AddDetail Adds a new detail record to the currently displayed
master. (This operation is valid only for JoinDefs in
simple-field format.)

Next Displays the next frame of data.

Query Returns to the Update frame query form and clears all
fields so that you can enter a new query, including sort
sequence and order values.

Delete Deletes the entry in the database, as shown on a
simple-fields data display form. Displays a new menu to
specify the deletion on a table-field form or Master/Detail
JoinDef.

Save Saves the changes from this session in the database.

Help, End Standard operations.

QBF Update Operation

Chapter 5: Working with QBF Operations 5–27

Adding New Detail Rows to a JoinDef

Use the AddDetail operation on the QBF Update frame data display menu to
add detail table records when both the master and detail table of a join
definition are displayed as simple fields.

After you have displayed a master table record and corresponding detail
record, you can add a new detail record by using the following procedure:

1. Position the cursor on the first simple field for the detail table.

2. Type the data for the new record over the existing data in the currently
displayed detail record.

3. Instead of saving the modified record, choose the AddDetail operation
from the menu.

 QBF writes the new detail record into a temporary buffer and redisplays
the prior detail record (as it appeared before you overtyped it with the new
data). If desired, you can continue to add additional records by repeating
the preceding procedure. Be sure to choose AddDetail rather than Save to
write the new record to the buffer; otherwise, you overwrite the existing
record rather than add a new one.

4. When you are done entering new detail records, choose Save to commit
the new records to the database.

Do not choose AddDetail until you have typed the new data into the existing
record. If you choose this menu option before typing the new data, one of the
following occurs:

 If duplicates are allowed, QBF enters the record that currently appears in
the window as a duplicate record.

 If duplicates are not allowed, an error message displays.

Deleting Data

You use the Delete operation to erase an entire record (row) of data. The
menu on the Update frame for the data display form includes this operation,
regardless of the type of query target you specify.

As you delete rows, QBF writes the deletions to a temporary buffer. If you
delete one row in a table field, the remaining rows scroll upward.

When you choose Delete on an Update frame with only simple fields displayed
in the data display form, the menu is unchanged. In this display format, rows
can only be deleted one at a time. QBF does not commit the deletions until
you choose Save.

QBF Update Operation

5–28 Character-based Querying and Reporting Tools User Guide

When you choose Delete for a data display form that displays a JoinDef or a
form with a table field or both simple fields and a table field, the menu
changes. It includes the operations appropriate to the various combinations of
query target types and display formats listed in the following table.

To delete a detail row in a JoinDef or in a form that includes a table field, place
the cursor on the row to be deleted and choose Delete. When the Delete menu
appears, choose DetailRow.

Operation Description

Master Deletes the master record currently displayed and all its
detail records.

AllDetailRows Deletes all retrieved rows in the table field for the detail
tables of the master currently displayed—QBF deletes all
rows regardless of whether they are visible in the window.

DetailRow Deletes the single detail row indicated by the cursor in
table-field display.

Detail Deletes the currently displayed detail row in simple-fields
display.

ListChoices Lists the available choices for the selected field on a
QBFName.

AllRows Deletes all retrieved rows in the table field, regardless of
whether they are visible in the window.

Row Deletes the row indicated by the cursor.

Help, End Standard operations.

QBF Update Operation

Chapter 5: Working with QBF Operations 5–29

Saving Updates

QBF stores your modifications and deletions in a temporary buffer. To save the
changes permanently, choose the Save operation on the data display form
Update frame. As QBF writes your changes to the database, it displays this
message:

Saving changes . . .

When the process is complete, QBF displays the following message and returns
you to the Update frame query form so that you can specify a new query:

Changes saved.

When you choose the Save operation, QBF attempts to update the database
with the current contents of all fields on the form, not just the field or fields
that you changed. It also checks the contents of all fields on the Update data
display form for data type consistency, integrity violations, and permission
violations, and reports any errors.

Update Operation and JoinDef Rules

When you update or delete rows using a JoinDef, be aware of the update and
delete rules for that JoinDef. For more information, see Update and Delete
Rules in the chapter “Using JoinDefs in QBF.” If you attempt to save invalid
changes, QBF does not commit your updates to those tables.

Errors Reported During the Save Process

If you attempt to update rows for which you do not have permission, QBF does
not commit your changes.

If you violate an integrity constraint (which guards against data of the wrong
data type being entered), QBF displays a message to that effect. If this
happens, you can:

 Press End to return to the field with the error and correct it.

 Press More to get more information about the error.

Transaction Deadlock in Update Mode

Deadlocks can occur at two times during the QBF Update function. First, a
deadlock can occur while you are editing rows of retrieved data. QBF displays
the following error message:

Deadlock detected, your transaction has been aborted.

QBF Update Operation

5–30 Character-based Querying and Reporting Tools User Guide

This means that you cannot update any more rows retrieved by your last
query. However, any changes you have made before this point are still stored
in the buffer. In this situation, QBF displays the following message:

Do you wish to save the changes made thus far?

Answering y (yes) is equivalent to selecting the Save operation. As QBF writes
your changes into the database, it displays the message:

Saving Changes

The second type of deadlock can occur during the Save operation while your
changes are being written from the temporary storage buffer to the database.
In this case, QBF displays the message:

Deadlock detected, your transaction has been aborted.

In this situation, all changes made since the last Save operation are lost and
you must begin again with a clear form.

Exiting the Update Operation

If you want to commit your modifications or deletions to the database before
exiting the Update frame, choose Save from the data display form’s menu on
the Update frame. This also returns you to the Update frame’s query form.

To leave the Update operation, choose End from the query form’s menu on the
Update frame. End returns you to the Query Execution frame.

If you make changes to the data and try to exit the Update frame’s data
display form before executing a Save operation, QBF asks:

Do you wish to leave UPDATE without saving changes?

If you type y (yes), QBF allows you to leave without saving your work. If you
type n (no), QBF redisplays the Update frame’s data display form, enabling
you to select the Save operation.

Chapter 6: Using JoinDefs in QBF 6–1

Chapter 6: Using JoinDefs in QBF

This chapter explains how to create, edit, and delete JoinDefs.

What Is a JointDef?
A JoinDef, or join definition, is a definition of a virtual table that conceptually
joins together multiple tables in your database. A JoinDef does not exist as an
actual table in the database, but temporarily links the information in different
tables by their common columns. This enables you to work with the data in the
tables simultaneously, as if it was contained in one table.

For example, in a relational database in which each table typically is devoted
to information related to a single item of interest, you can have the following
separate tables:

 Staff (employee’s name, hourly rate, title, and manager)

 Tasks (employee’s name, project identification, tasks, and the hours spent
on each task)

If you wanted to find out what tasks have been assigned to employees who
work for a certain manager, you would need to link the information in the Staff
and Tasks tables by employee name.

When you use a JoinDef to query multiple tables, you gain access to the data
in all of the columns in all of the joined tables. When you use a JoinDef to
append new data or update existing data, QBF writes identical information into
the common columns of the different tables in the JoinDef. For example, if a
common Lastname column links two tables, the same last name is
simultaneously written into both Lastname columns. QBF writes changes or
additions you made in non-common columns only to the table containing that
column.

What Is a JointDef?

6–2 Character-based Querying and Reporting Tools User Guide

A JoinDef is similar to a view in that you can use either to display data
contained in more than one table. However, whereas a JoinDef contains all of
the columns from the joined tables, a view can contain only selected columns
from the tables on which it is based. Also, you cannot use a view to append
new data or modify existing data in the underlying tables, as you can with a
JoinDef. You create JoinDefs with QBF, but you must use a query language to
create a view. Once created, QBF lists a view as if it were a table, but always
lists JoinDefs separately from tables. For additional information on views, see
your query language reference guide.

You can use JoinDefs in QBF, RBF, and VIFRED. However, you cannot
manipulate or access JoinDefs from within the Tables Utility, as you can a
view.

The map in the following figure illustrates the route QBF takes when you
choose JoinDefs from Ingres Menu or from the QBF menu:

JoinDef Rules

Chapter 6: Using JoinDefs in QBF 6–3

JoinDef Rules
To be linked with a JoinDef, two or more tables must have at least one column
with the same data type and one or more common values in those columns.
For example, if a table named Projects and a table named Departments both
have a column named Dept, which contains names of departments, the
common values in the two Dept columns join the two tables in the JoinDef, as
shown in the following figure:

While the two columns in this example have the same name, this is not
required for a JoinDef.

If you think of tables as two-dimensional grids of columns and rows, then
JoinDefs are the third dimension. JoinDefs can be described as corridors
linking the columns of two tables.

JoinDefs must follow these rules:

 The two join columns need not have the same name.

 Join column pairs must either be of the same basic data type, such as an
integer column joined to another integer column, or be of data types that
are coercible to one another.

 Except in a Master/Detail join, the data values in all the join columns must
be identical in the joined tables in order for a query to return that row.

 A JoinDef can join a total of 10 tables, either Master or Detail, that
together total no more than 600 columns.

 You can specify up to 50 columns in each table as join columns.

 You can create a JoinDef for a single table, which has several advantages
over using the table itself as a query target. See Single-Table JoinDefs.

JoinDef Rules

6–4 Character-based Querying and Reporting Tools User Guide

The figure below shows some examples of JoinDefs. As long as you do not
exceed the total limit of 10 tables, you can join one table to as many other
tables as you desire. However, any given JoinDef can have only one
Master-Detail join.

Queries only return those records that have identical data values in all the join
columns. Thus, if the Projects and Tasks tables are joined by the Project
column and they share only the single project name of Release6, a query
returns only one row of data from each table. If they share the project names
Release6 and Popup, then a query returns two rows from each table.

Join Columns with Coercible Data Types

Data columns are coercible when their data type can be changed from one to
the other. An integer data type, for instance, can be changed (coerced) into a
floating-point data type. In the same way, a money data type can be changed
into a floating-point data type. But a character data type cannot be coerced
into a numeric type.

When you join two columns that have coercible but not identical data types,
QBF displays a warning message, and QBF adopts the data characteristics of
the table column listed first in the JoinDef.

For example, if two character columns of different lengths are joined, the data
display on the QBF form uses the length of whichever column was specified
first in the JoinDef. The same principle holds true for column nullability and
data type. If two columns, one nullable and the other not, are joined, Query-
By-Form treats them both as nullable or not nullable according to which was
listed first in the JoinDef. If a floating-point column is joined to an integer
column, QBF uses the data type of the first one.

Join Types

Chapter 6: Using JoinDefs in QBF 6–5

Multiple Join Columns

The maximum number of join columns in a JoinDef is 50. When you use
multiple columns in a join other than a Master/Detail join, every set of join
columns must have common values in order for the query to return a row. For
example, if one set of join columns contains last names, and a second set of
join columns contains first names, a query returns only the rows in which the
first and last names are both identical. Thus, if two joined tables contained the
first name Thomas and last name Jefferson in a particular row, a query returns
data for that row from both tables. But if one table contained the first name
Thomas and last name Jefferson, and the other contained the first name
Thomas and last name Becket, a query cannot return any rows because only
the Firstname join columns had a name in common.

Join Types
QBF allows two types of joins:

 Master/Master (one-to-one)—These JoinDefs correspond to an ordinary
relational equi-join.

 Master/Detail (one-to-many)—This type of JoinDef corresponds to a
relational outer join.

The terms master and detail are meaningful only as they relate to each other.
The determining factor in whether a join is one-to-one or one-to-many is the
nature of the data in the tables you are joining.

Each column of each table in a Master/Master join contains singular or
exclusive properties. For example, the Staff table lists each employee only
once and the Managers table lists each manager only once. If you join the
Name column in the Staff table to the Manager column in the Manager table,
QBF returns one row of data for every employee who is also a manager.

Join Types

6–6 Character-based Querying and Reporting Tools User Guide

In a Master/Detail join, each detail table contains at least one column that is
not restricted to one item. That is, the column contains non-singular or non-
exclusive information. The join column—the common element—is the bridge
between each column in the master table and the column(s) in the following
detail table:

For example, in the Tasks table both the Project and Task columns contain
non-singular information. Wallace Fielding, for instance, might have three rows
showing that he works on the Portfolio project (Project column). Within the
Portfolio project, he works on three different tasks: Design, Manage, Test
(Task column). Each Portfolio task is on a separate row in the table.

If the EMP table (master) were joined to the Tasks table (detail) through the
Name column in each, you could access information such as the tasks,
projects, and hours (from the Tasks table) of employees who work for a
certain manager (from the Staff table).

Join Types

Chapter 6: Using JoinDefs in QBF 6–7

Thus, the many entries in the Task column of the Tasks table are accessible
through the one entry in the Manager column of the Staff table. The following
figure shows Jones, Betty, in the Manager field of a form for the EMP table.

The following figure displays a record retrieved for one of the employees she manages.

Master/Master JoinDefs

When used for a query, a Master/Master JoinDef selects records from two or
more tables based on the common values in the join columns. While the
respective join columns must share at least one common value, they need not
share all values. However, only records containing common values are
returned in a query.

Join Types

6–8 Character-based Querying and Reporting Tools User Guide

For example, suppose two tables are joined by the Lastname column that both
tables have. The Lastname column of the first table contains the names
Adams, Baker, Choy, and Diaz, while the Lastname column of the second table
contains the names Adams, Baruch, Choy, and Donelli. In this case, a query
returns only the records in both tables that contain the names Adams and
Choy.

When you create a Master/Master JoinDef, you enter the table name and
whether it is a master or detail table on the JoinDef Definition frame. For
more information, see Creating a JoinDef.

In the following figure is an example of a Master/Master JoinDef on the JoinDef
Definition frame.

The following figure shows the data retrieved from the JoinDef displayed in the
preceding figure.

Automatic Joins

Chapter 6: Using JoinDefs in QBF 6–9

Master/Detail JoinDefs

When QBF executes a query in which the query target is a Master/Detail
JoinDef, the data appears to have come from two tables—one that is a set of
all the master tables and one that is a set of all the detail tables. The master
table information is displayed as simple fields, and the detail table information
is displayed as either a table field or simple fields.

If there are no detail records for the master record, QBF still retrieves the
master record. Thus, QBF retrieves and displays master records even if there
are no corresponding identical values in the detail table join column.

A JoinDef can contain several Master/Master joins, but only one Master/Detail
join. You can include multiple detail tables relative to the master table(s) in a
Master/Detail JoinDef by joining them to the detail table in the Master/Detail
join. For example, the second figure in this chapter shows a Master/Detail
relationship combining only one pair of tables. This figure also shows several
pairs joined together with Master/Master joins and several Detail tables joined
to each other. For illustrations of a Master/Master JoinDef and resulting data,
see the preceding two figures.

Automatic Joins
Columns involved in a join need not have the same name, just the same data
type and common values. However, when tables specified in a join have
columns with the same name and data type, those columns automatically
become the join column. This is known as an automatic, default, or natural
join. QBF displays a list of join columns on the JoinDef Specification frame,
described later in this chapter. You can specify different columns as the join
columns or remove columns from the join columns list. For more information,
see Specifying Join Columns.

Keep in mind that when two tables have multiple join columns, all the data
values in each join column must be identical for a query to return that row of
data. For this reason, you must delete unneeded joins.

Fields on a JoinDef Form
You can use a JoinDef to append, retrieve, or update data. The JoinDef form
contains fields representing columns in all of the joined tables. On a default
form, QBF marks the common columns—the join fields—by displaying them in
reverse video if your monitor has that capability.

Creating a JoinDef

6–10 Character-based Querying and Reporting Tools User Guide

Creating a JoinDef
Creating a JoinDef requires specifying the tables, the common join column(s),
the update and delete rules, and the columns to be displayed.

The following steps describe the general process of creating, testing, and
saving a JoinDef. (The steps and frames are all discussed in more detail later
in this chapter.)

1. Choose JoinDefs from either the Ingres Menu or from the QBF Startup
frame.

2. Choose Create from the JoinDefs Catalog frame.

3. When the Creating a JoinDef pop-up form appears, place the cursor on one
of the available options and choose the Select operation:

 Blank (to create a JoinDef from a blank frame)

 Duplicate (to base a JoinDef on an existing JoinDef definition)

If you are basing the new JoinDef on an existing one, the Creating a
JoinDef by Duplication pop-up form appears. See the following figure.
Proceed to Step 4.

If you are creating a JoinDef from a blank frame, the JoinDefs Catalog
frame appears. Proceed to Step 5.

4. Enter the name of the existing JoinDef on the Creating a JoinDef by
Duplication pop-up form and choose the Select operation.

If you do not know the name of the existing JoinDef, select the ListChoices
operation to display a list of the available choices.

Creating a JoinDef

Chapter 6: Using JoinDefs in QBF 6–11

5. When the JoinDefs Catalog frame appears, choose the Create operation.
See the following figure.

See JoinDefs Catalog Frame and JoinDef Definition Frame.

6. Type the JoinDef name in the space following JoinDef Name and press
Return.

Perform the next three steps for each table you want to join. Use Tab and
the arrow keys to move from column to column and row to row as needed.

7. Type the kind of table it is (Master or Detail) in the Role column. If none of
the tables has a Master/Detail relationship to each other, enter them all as
Master tables even if some or all of them are Detail tables on other
JoinDefs. Enter as a Detail table any table that has a detail relationship
(many records to one record) to any master table.

8. Type the table name in the Table Name column.

If you do not know the table name, use the ListChoices operation to
display a list of the available tables.

9. Type an optional abbreviation for the table name in the Abbreviation
column.

10. Type n (no) in the Table Field Format field if you want to view all your data
in simple-fields format.

The default is to display the data in table-field form.

11. Choose Joins to display the JoinDef Join Specification frame. If QBF has
automatically established join columns to join the tables, they are
displayed. If necessary, enter or change the join specifications. For more
information, see Specifying Join Columns.

Creating a JoinDef

6–12 Character-based Querying and Reporting Tools User Guide

12. Return to the JoinDef Definition frame and save your JoinDef by selecting
the End operation. For more information, see Saving JoinDefs. Before or
after you save your JoinDef, you can perform either or both of the optional
enhancements listed below.

Optional JoinDef Specifications

You can further enhance your JoinDef specification by performing one or both
of the two optional operations listed below. (If you perform either of these
operations, be sure to save the changed JoinDef when you are finished.)

 To establish update and delete rules for the join columns, choose Rules to
display the JoinDef Update & Delete Rules frame. For more information,
see Update and Delete Rules.

 To hide one or more columns from view on the default query form created
by the JoinDef, choose ChangeDisplay to display the JoinDef Change
Display frame. For more information, see Changing the Display of
JoinDefs.

To run a JoinDef, choose the Go operation. The QBF Execution Phase frame
appears. Choose Append, Retrieve, or Update. A default form for your new
JoinDef appears. Use the menu items as desired.

JoinDefs Catalog Frame

Chapter 6: Using JoinDefs in QBF 6–13

JoinDefs Catalog Frame
The JoinDefs Catalog frame, shown in the following figure, displays a list of
existing JoinDefs and a menu of operations for working with JoinDefs.

The menu operations are described in the following table:

Operation Description

Create Guides/enables creation of a JoinDef.

Destroy Removes a JoinDef from the database.

Edit Enables editing or viewing of an existing JoinDef.

Rename Changes the name of an existing JoinDef.

Go Runs a query on an existing JoinDef.

MoreInfo Displays additional information about the JoinDef.

Help, End, Quit These are standard operations.

JoinDef Definition Frame

6–14 Character-based Querying and Reporting Tools User Guide

JoinDef Definition Frame
Use the JoinDef Definition frame to specify the tables to be included in a
JoinDef and their roles (Master or Detail), and whether the JoinDef must
include table fields.

The following table defines the menu items at the bottom of the frame:

Operation Description

Go Executes the JoinDef.

Blank Erases the current entries in the window.

ChangeDisplay Drops unnecessary columns from the JoinDef
specification.

Joins Displays the JoinDef Specification frame for viewing
or changing the join columns.

Rules Establishes rules for deleting or updating data in the
tables included in the JoinDef.

Save Saves the JoinDef.

ListChoices Lists the available choices for the selected field.

Help, End, Quit These are standard operations.

JoinDef Definition Frame

Chapter 6: Using JoinDefs in QBF 6–15

JoinDef Name

On the JoinDef Definition frame, name a new JoinDef by typing a unique name
of no more than 32 letters or numbers. A database cannot have two JoinDefs
with identical names. For naming conventions in databases compliant with
ANSI/ISO Entry SQL-92 standards, see the chapter “Fundamentals of Using
Querying and Reporting Tools.”

If you create a JoinDef based on an existing JoinDef, enter a different name
for the new JoinDef on this frame.

Role

In the Role column, type either Master or Detail for the role of each table. You
can use m or d as abbreviations.

At least one table in every JoinDef must be entered as a Master table. Keep in
mind that Master and Detail are relative terms. You can have as many Master
tables in a JoinDef as you need (up to the maximum of 10). You must
designate a table (or tables) as a detail table only if it has a many-to-one
relation to one or more of the master tables. For example, the Staff table lists
an employee only once, while the Tasks table can list that employee many
times for many different tasks. Thus, the Tasks table has a many-to-one
relationship to the Staff table and is designated as a detail table in a JoinDef
that links Staff to Tasks.

A table that is a master in one JoinDef can be a detail table in some other
JoinDef. You need to specify each table’s role as it relates to the current
JoinDef.

For example, the Staff table contains each employee’s name, title, hourly rate,
and manager. The Manager table contains the names of managers and their
titles. If you joined these two tables on the Manager column in each table, the
result is a Master/Detail join because one manager in the Manager table might
be the manager for several different employees. Thus, this join could be used
to list those employees supervised by each manager.

However, if you joined these two tables on the Manager column in the
Manager table and the Name column in the Staff table, the result is a
Master/Master join because those employees who were managers are listed
only once in each table. You can use this join to display the title and hourly
rate of those employees who were managers.

A complicated JoinDef containing many tables can have multiple master and
multiple detail tables.

JoinDef Definition Frame

6–16 Character-based Querying and Reporting Tools User Guide

Table Name

In the Table Name column, enter the name of each table. You can enter a
maximum of 10 names (that is, you can join a maximum of 10 tables in a
JoinDef).

Owner

In the Ownercolumn, enter the name of the schema to which the table
belongs; this also substantiates ownership. If you do not enter a name here,
QBF assumes the owner is the same as the current user ID. For more
information on schemas, see Using Schemas for Owner Qualification.

Abbreviation

An abbreviation is an alternate, usually shortened, name for a table. For
example, the Projects table could be abbreviated to the letter p. Abbreviations
are also sometimes known as correlation names or range variables. If you do
not specify an abbreviation, QBF assigns the table name as the abbreviation.

Abbreviations are necessary when you want to join two identically named
tables with different owners, or to join a table to itself. In these cases, use an
abbreviation for one of the table names when you specify the join. For more
information, see Single-Table JoinDefs.

Choosing Table-Field Format

The Table Field Format? or Simple-Fields Format? question controls how this
JoinDef displays data:

 Master/Master—If the JoinDef contains all master tables, answer this
question with y (yes) to specify table format for all data. Answer this
question with n (no) to display all data one record at a time in simple-field
format.

 Master/Detail—If the JoinDef contains both master tables and detail
tables, answer this question with y (yes) to specify simple-field format for
all data for all the master tables, and table format for all data for the detail
tables. Answer this question with n (no) to display all data for all tables
one record at a time in simple-field format.

Specifying Join Columns

Chapter 6: Using JoinDefs in QBF 6–17

Table-field format is particularly useful for Master/Detail joins, where many
detail rows in the table field can correspond to a single row in the master
table.

After you complete the JoinDef Definition frame, you can specify other
components of the JoinDef—the join columns, the update and delete rules, and
the display characteristics—as explained in the following sections.

Specifying Join Columns
When you create a JoinDef on the JoinDef Definition frame and select either
Go or Save, QBF selects as the join columns the columns in the two tables that
have the same name. QBF then compares the data types, leading to one of
three possible situations:

 The data types are the same, in which case QBF completes the join.

 The data types are not the same, but are coercible.

 This means that the data types can be changed from one to the other. For
example, a money data type can be coerced into a numeric type. In this
situation, QBF displays a warning message, but completes the join.

 The data types are different and not coercible.

 For example, a character data type cannot be coerced into a numeric type.
QBF prompts you to modify your joins using the JoinDef Specification
frame in order to establish proper joins. For more information, see
Finishing with the JoinDef Join Specification Frame.

To reach the JoinDef Specification frame, choose the Joins operation. The
JoinDef Join Specification frame includes a list at the top of the frame that
details existing joins, a table field for displaying information about table
column names, and a menu of operations.

Specifying Join Columns

6–18 Character-based Querying and Reporting Tools User Guide

You can use the JoinDef Join Specification frame to change Join columns.

For example, in a JoinDef containing the tables Staff and Tasks, QBF selects
the column called Name in each table as the join column. If there are no
common columns with the same name, the JoinDef Join Specification frame is
displayed empty, and you must enter the join columns you wish to use.

Operation Description

Rules Establishes rules for deleting or updating data in the
tables included in the JoinDef.

GetTablDef Gets information on columns in a table.

ListChoices Lists the available choices for the selected field.

Cancel Cancels any changes made to the join specification and
returns to the JoinDef Definition frame.

Help, End These are standard operations.

The rules and GetTableDef operations are described later in this chapter.

Specifying Join Columns

Chapter 6: Using JoinDefs in QBF 6–19

Viewing or Changing Joined Columns

In the following figure, the Name column in the Staff table is the join column
with the Manager column of the Manager table. The MM between the two-
table/column names indicates that this is a Master/Master join.

The following table describes the table field at the top of the JoinDef Join
Specification frame shown in the following figure:

Field Description

Column Contains the column name of join column(s) in the table.
Column name format: abbreviation.columnname, where
abbreviation is the abbreviation of the table name and
columnname is the column name. In the above figure, the
column name m.manager means the name column from
the Manager table. The column on the left is joined to the
column on the right.

Join Indicates whether the join is Master/Master (MM),
Master/Detail (MD), or Detail/Detail (D/D).

Column Contains the column name of join column(s) in the second
table. Column name format is the same as for the first
column. In the above figure, the column name s.name
means the name column from the Staff table.

You can add, delete, or change join specifications by editing the table field at
the top of the frame. If you alter the join specification, make sure that the two
join columns in each table are of the same data type.

Single-Table JoinDefs

6–20 Character-based Querying and Reporting Tools User Guide

Getting Information on Table Column Data Types

To display a list of a table’s columns and column formats, enter the name (or
abbreviation) of the table and select the GetTableDef operation. That table’s
columns and their data types are then displayed, as shown in the following
figure.

Finishing with the JoinDef Join Specification Frame

When you exit the JoinDef Join Specification frame by selecting Rules or End,
QBF checks the validity of your entries and reports any errors it finds. If the
join information is valid, you exit the frame. If it is not valid, QBF displays an
error message that indicates the problem and returns you to the frame so that
you can correct it:

 Select Rules to set rules for modifying the tables in your JoinDef. For more
information, see Update and Delete Rules.

 Choose the End operation to return to the JoinDef Definition frame.

 Choose the Cancel operation to cancel any changes made to the JoinDef
Join Specification frame and return to the JoinDef Definition frame.

Single-Table JoinDefs
Although you can use a table as is for a query target, if you define a table as a
single-table JoinDef you can:

 Specify that the table is displayed in table-field format rather than simple-
field format.

Single-Table JoinDefs

Chapter 6: Using JoinDefs in QBF 6–21

 Set up a Master/Detail or Master/Master relationship between different
fields (columns) in the same table.

 Delete columns containing sensitive or unnecessary information from the
display by using the ChangeDisplay operation.

 Protect columns from updates but allow queries to display data by using
the Rules operation.

 Disable deletion of rows by using the Rules operation.

 Save these formatting features in the database for later execution.

To build a single-table JoinDef, follow these steps:

1. Follow Steps 1 through 4 in Creating a JoinDef, earlier in this chapter, to
get to the JoinDefs Catalog frame.

2. Choose Create on the JoinDefs Catalog frame.

3. Enter a name for the JoinDef.

4. On the JoinDef Definition Frame, enter master in the Role column, type the
name of the table you wish to use in the Table Name column. In the
Owner column, type the name of the schema to which the table belongs, if
appropriate. Then enter an optional abbreviation for the table in the
Abbreviation column.

 If you are joining a table to itself in order to create a Master/Detail or
Master/Master relationship between two columns in the same table,
perform Step 5. Otherwise, skip to Step 6.

5. To establish a Master/Detail or Master/Master relationship between two
columns in the table, move the cursor down to the second line. Enter d
(detail) or m (master) in the Role column of the second line, as
appropriate. After entering the role, enter the table name and, if
necessary, the table’s schema name. Then enter a unique abbreviation for
the table in the Abbreviation column.

6. When you have finished specifying the tables, specify the field format.
Table-field format is the default, which you can change to No if desired.

 If you are simply creating a single-table JoinDef in order to establish
display or update and delete rules, skip to Step 9.

7. Choose the Joins operation to display the JoinDef Join Specification frame.

8. To create a Master/Detail join between two different data columns in the
table, type blank spaces over the default join specifications established by
QBF to delete them.

 Specify the join by entering [schema.]tablename.columnname for the
join’s master data column in the left side of the form and
alternateabbr.columnname for the detail data column in the right side.

 Whenever you enter a column name in the right side of the form, you
always use the alternate abbreviation for the table.

Update and Delete Rules

6–22 Character-based Querying and Reporting Tools User Guide

9. Choose the End operation to finish specifying the join columns.

10. Choose the Go operation. The Query Execution frame is displayed.

You can choose the Rules operation to use the JoinDef update and delete rules
frame to modify update and deletion rules. You can use the JoinDef Change
Display frame to hide specified columns from view when you use the JoinDef
form. The following sections provide details.

Update and Delete Rules
A JoinDef allows you to modify data in single or multiple tables using a form.
You can use the form to delete or update information in the tables. QBF
provides update and delete rules that allow you to control the impact of
changes made when executing queries on multiple tables. These rules allow
you to specify the fields in which a user can perform updates and the tables
from which a user can delete records.

To reach the JoinDef Update & Delete Rules frame, choose Rules on the
JoinDef Definition frame or the Join Specification frame.

Operation Description

Joins Goes to the JoinDef Specification frame.

Cancel Cancels any changes made in this frame and
returns to the JoinDef Definition frame.

ListChoices Lists the available choices for the selected field.

Help, End These are standard operations.

Update and Delete Rules

Chapter 6: Using JoinDefs in QBF 6–23

Default Update and Delete Rules

The default update and delete rules are shown in two lists on the JoinDef
Update & Delete Rules frame.

The Update default is No and the Delete default is Yes for all columns in all
tables in the JoinDef. This means that, by default, updates to the join column
or columns are not allowed, but records can be deleted from any table in the
JoinDef.

You can browse through defaults and modify them to suit your needs. Change
the Yes and No values in the last column in each list to specify whether or not
data in a particular table or column can be updated or deleted. To do so, move
the cursor to the value and type n (no) or y (yes) over the current entry.

Determining Update Rules

Each row in the Update Information list on the JoinDef Update & Delete Rules
frame lists a table in the join and a join column in that table. If a table has
more than one join column, the table name appears in more than one row.

The list in the Update column shows whether updates are permitted for the
join column. The default for all join columns is No. This means that any
changes to values in the join column cannot be entered into the database. Yes
in the Update column allows changes to go into the database. You can allow
updates to a join column in one table and yet deny them in the corresponding
join column of the second table.

These update rules only apply to join columns. The other columns in a table
can be updated by the user. If you want to specify that a column that is not a
join column cannot be updated, you must edit the form with VIFRED.

Changing the Display of JoinDefs

6–24 Character-based Querying and Reporting Tools User Guide

Changing update rules can control the movement of the cursor through the
fields on a form for a JoinDef. If neither table allows updates to a join column,
that field becomes a display-only field on the JoinDef form and you cannot
move the cursor into it.

Determining Delete Rules

The list in the Delete Information section on the JoinDef Update & Delete Rules
frame contains one row for each table in the JoinDef. This row specifies its
type (master or detail), table name or abbreviation, and whether or not rows
can be deleted from that table. Again, only the Delete list can be modified.
Move the cursor to the entry and type the new value. Changing Yes to No
specifies that rows cannot be deleted from that table. Menu choices during
query execution change to fit the rules you have specified.

Exiting the JoinDef Update and Delete Rules Frame

To go to the JoinDef Join Specification frame, choose Joins. For more
information, see Specifying Join Columns. Click End to finish and return to the
previous frame. Click Cancel to cancel any changes and return to the JoinDef
Definition frame.

Changing the Display of JoinDefs
You can decide not to display certain columns on a form when you execute a
JoinDef. For example, you can hide blank columns or columns containing
confidential information in one of two ways:

 To avoid displaying certain columns, build a QBFName from a custom form
edited with the VIFRED. For more information about QBFNames, see the
chapter “Using VIFRED.”

 Use the ChangeDisplay operation as explained below to delete the display
of a column from a QBF form.

Changing the Display of JoinDefs

Chapter 6: Using JoinDefs in QBF 6–25

When you choose ChangeDisplay on the JoinDef Definition frame, the JoinDef
Change Display frame appears, as in the following figure.

Operation Description

NextTable Displays the next table in the JoinDef.

Delete Deletes a column from the display of the JoinDef when
a query is executed.

Undo Backs out the effects of the last Delete or Undo action.

Help, End These are standard operations.

On this form, you can scroll the Table name field to see the entire table name,
schema.tablename, if necessary.

The Column Name column and the Field Name column both list the names of
table’s columns. In most cases, the names listed in each column are identical.
However, when joined tables have non-join columns with the same name, QBF
changes one of the internal field names for JoinDef identification purposes. In
this case, the Column Name column lists the original column name as it still
appears in the table, and the Field Name column gives the altered name as it
appears on the JoinDef.

For example, suppose the Manager table is joined to the Staff table by joining
the Manager.Manager column to the Staff.Name column. In this example, both
tables have a column named Title that is not the join column. On the JoinDef
Change Display frame for the Manager table, both Column Name and Field
Name display title, but on the Change Display frame for the Staff table,
Column Name shows title and Field Name shows title0.

Testing JoinDefs

6–26 Character-based Querying and Reporting Tools User Guide

Deleting Fields from JoinDef Displays

Use the Delete operation on the JoinDef Change Display frame to remove
unwanted columns from the display. If the JoinDef contains more than one
table, you must delete columns from each table separately.

Columns deleted on this frame are deleted from the JoinDef form only, and not
from the database itself.

To delete a column from a table in the JoinDef, first display the table on the
form. Select the NextTable operation to display the proper table, if necessary.
Place the cursor on the row you want to delete and choose the Delete
operation. JoinDef join columns are indicated by an asterisk (*) in the leftmost
column. JoinDef join fields cannot be deleted.

If you change your mind about deleting a row, click Undo before pressing any
other key.

Exiting the JoinDef Change Display Frame

Choose the End operation to return to the JoinDef Definition frame.

You can then click Save to save the changes. If you click Quit without saving,
QBF reminds you of this and asks whether you want to quit anyway.

Testing JoinDefs
QBF provides a convenient way to test your JoinDef while you are still defining
it. At the JoinDef Definition frame, choose the Go operation. QBF builds a form
for the JoinDef and automatically goes into the query execution phase. In
query execution, you can append, retrieve, or update data in the tables used
in your JoinDef. These operations are described later in this chapter.

When you exit query execution after testing a JoinDef, QBF returns you to the
JoinDef Definition frame so that you can view or modify your JoinDef entries.
After making changes, you can easily switch to query execution phase by
clicking Go again.

Saving JoinDefs

Chapter 6: Using JoinDefs in QBF 6–27

Saving JoinDefs
Saving a JoinDef places it in the JoinDef Catalog and ensures that you can run
it again without having to rebuild it. Also, you can easily edit the appearance
of a saved JoinDef with the VIFRED and save the edited version under a new
name. For more information, see Editing JoinDefs.

To save a JoinDef, click Save on the JoinDef Definition frame.

If this is a new JoinDef, QBF displays the JoinDef Save frame. Enter the name
of the JoinDef. Be sure you choose a unique name. If you enter a name
already in use and try to save the JoinDef, QBF informs you that a JoinDef by
that name exists and asks whether you want to save the new JoinDef by the
same name. If you type y (yes), QBF overwrites the existing JoinDef.

The JoinDef Save frame allows you to enter a short remark or description of
the JoinDef and also a longer remark or description. These remarks are useful
for keeping track of your JoinDefs. The Short Remark that you enter here
appears on the JoinDefs Catalog frame to the right of the JoinDef’s name and
owner. The Long Remark that you enter here appears whenever a user
chooses MoreInfo about a JoinDef.

Editing JoinDefs

6–28 Character-based Querying and Reporting Tools User Guide

Editing JoinDefs
You can edit either the definition for a JoinDef on the JoinDef Definition frame,
or you can edit the JoinDef form on which the JoinDef query is run.

When you run a JoinDef, QBF provides a default form in the query execution
phase. You can make some adjustments to this form with the ChangeDisplay
operation, described above. Use the VIFRED QBF for more extensive
customization, such as adding descriptive title, validation checks, or displaying
fields in reverse video. This further customization turns your JoinDef into a
QBFname.

To make a JoinDef form accessible to VIFRED, be sure to save the JoinDef to
store it in the JoinDefs Catalog.

To modify a saved JoinDef from within QBF, put the cursor on the name of an
existing JoinDef on the JoinDefs Catalog frame and choose the Edit operation.
This displays the JoinDef Definition frame for that JoinDef.

To create a new JoinDef from an existing one without affecting the original
version, simply type a new name over the current one in the JoinDef Name
field on the JoinDef Definition frame and then save it. QBF stores your changes
under the new name when you choose the Save operation.

Deleting JoinDefs
You can delete a JoinDef with the JoinDefs Catalog frame. Place the cursor on
the name of the JoinDef you want to erase and choose the Destroy operation.
QBF prompts you for confirmation:

Do you wish to destroy JoinDef 'name'?

Type y (yes) to permanently delete the JoinDef. Type n (no) if you decide not
to delete the JoinDef.

You can also delete a JoinDef on the command line, using the delobj
command. For details, see the chapter “Using System Commands for the
Forms-based Tools.”

Chapter 7: Using RBF 7–1

Chapter 7: Using RBF

This chapter provides an overview of RBF, a forms-based interface for creating
and producing reports from an Ingres database.

Using RBF, you can:

 Produce a report immediately with the Preview operation

 Create, edit, and save report specifications that you can use repeatedly to
produce reports at any time

You can also create report specifications with Report-Writer, a command
language release of RBF. With Report-Writer, you can produce more complex
reports than you can with RBF, including conditional expressions, break
control, and complex queries. For complete information on creating report
specifications with Report-Writer, see the chapter “Chapter 10: Using Report-
Writer.”

This chapter explains how to start RBF and how to use the Report Catalog
frame to look up an existing report specification. It also discusses sources of
report data, the basic report styles, and concepts associated with reports.

For information on creating, editing, saving, and producing a report, see the
chapters “Chapter 8: Working with RBF Report Specifications” and “Chapter 9:
Producing a RBF Report.”

RBF Frames and Operations

7–2 Character-based Querying and Reporting Tools User Guide

RBF Frames and Operations
The following figures contain maps of the various RBF frames and operations.

Starting RBF

Chapter 7: Using RBF 7–3

Starting RBF
You can start RBF from the operating system or from the Ingres Menu.

Starting RBF from the Operating System

Use the rbf command to start RBF from the operating system. You can
optionally include parameters that:

 Display a named report specification for editing in the Report Layout
Frame

 Display the Report Catalog Frame, where you can examine or select one of
the listed report specifications

 Create a default report specification based on the layout style parameter
you specify

For more information on the rbf command and its parameters, see the chapter
“Chapter 17: Using System Commands for the Forms-based Tools.”

Starting RBF from the Ingres Menu

To start RBF from the Ingres Menu, choose the Reports operation from the
menu. RBF displays the Report Catalog Frame, shown in the following figure,
which provides access to all the basic RBF functions.

The table field portion of this frame lists all the report specifications for this
database owned by you or the database administrator. Report specifications
owned by other users are not listed in the Report Catalog frame.

Starting RBF

7–4 Character-based Querying and Reporting Tools User Guide

With each report specification name, RBF lists its owner (you or the DBA) and
a short description. To locate a report specification, scroll through the list or
type the first letter of the report specification you are searching for. If you
type the first letter, RBF places the cursor on the next report specification in
the list that begins with that letter.

The following table describes the menu items on the Report Catalog frame:

Operation Description

Create Creates a new report specification for a specified table,
view, RBF report, or JoinDef.

Destroy Deletes a report specification that you own from the
database.

Edit Selects a report specification for further editing. Places you
in the Report Layout frame. You can edit RBF reports only;
you cannot edit reports saved with the sreport command.
For additional information, see the chapter “Chapter 8:
Working with RBF Report Specifications.”

Rename Changes the name of a report specification that you own.

MoreInfo Calls a second frame containing more information on the
selected report specification.

Preview Runs a report immediately for the specified table or view.
Produces a one-time only report in the default format for
the report style you selected. Contains all the data in the
specified table or view. Does not save a report
specification. For instructions on producing a preview
report, see the chapter “Chapter 9: Producing a RBF
Report.”

Utilities Archives a report to a text file. For instructions, see the
chapter “Chapter 8: Working with RBF Report
Specifications.”

Go Runs an existing report specification.

Help, End, Quit These are standard operations.

Obtaining Information About a Report Specification

Chapter 7: Using RBF 7–5

Obtaining Information About a Report Specification
To display information about a report specification:

1. Place the cursor over the name of the report specification on the Report
Catalog frame.

2. Choose the MoreInfo operation.

 The MoreInfo about a Report frame displays.

The name of the table, view, or JoinDef on which the report is based appears
in the Data Table field. If the report is based on a JoinDef, the initials JD
appear in parentheses after the JoinDef name.

To edit the Short Remark (which is displayed along with the report
specification name on the Report Catalog frame) and the Long Remark, move
the cursor into the field and edit as you would in any form field. To save the
changes you made, select the Save operation.

The following table shows the operations in the Report MoreInfo frame:

Operation Description

Next Displays information for the next report that is listed in the
Report Catalog frame.

Previous Displays information for the previous report that is listed in
the Report Catalog frame.

Save Saves changes to the Short Remark and Long Remark fields
in the frame.

Go Runs the selected report.

Help, End These are standard operations.

Using RBF Pop-Up Frames

7–6 Character-based Querying and Reporting Tools User Guide

Using RBF Pop-Up Frames
When you create or edit a report specification with RBF, use a series of pop-
ups. These pop-ups either provide selections for you to choose from or fields
for you to complete.

Each time a pop-up appears, the menu line changes. It can contain some or all
of the operations listed in the following table:

Operation Description

ListChoices Lists the available choices for the selected field.

Select Chooses the highlighted item.

Help, Cancel These are standard operations.

Preview Reports
A preview report provides a quick method of producing a simple report
containing all the data in a given table, view, or JoinDef. Each preview report
is a one-time event; you cannot save a preview report.

The advantages of a preview report are:

 Ease

 Simplicity

 Speed (Producing a preview report is faster than creating and running a
report specification.)

The disadvantages of a preview report are that you cannot:

 Use aggregates

 Edit the report format

 Specify data sorting

 Produce Master/Detail, labels, or indented style reports

 Save the report specification

You can produce preview reports only in tabular, wrap, or block styles. Report-
sorts the data by the first column only. If your table has duplicate data in the
first column, RBF reports those rows together, but in an undetermined order
relative to each other.

For instructions on producing preview reports, see the chapter “Chapter 9:
Producing a RBF Report.”

Report Specifications

Chapter 7: Using RBF 7–7

Report Specifications
A report specification is a set of instructions telling RBF what data you want
included in the report and how you want the data presented. With RBF, you
can create report specifications:

 Based on tables, views, join definitions (JoinDefs), or other RBF reports

 In six different styles, which you can edit

 With report, page, and break headers and footers, which you can design to
your specifications

 With aggregated data

Once you have named and created a report specification, you can use the
same specification to produce a report as many times as you wish. The report
will always reflect the most recent data in the database.

If you edit the table, view, or JoinDef on which your report is based, you must
re-create your report specification. For restrictions that apply to the use of
certain report data sources, see Sources of Report Data.

Note: Report specifications created for this release of Ingres cannot be edited
or run in earlier releases due to changes in the underlying table name formats.

To produce a report from a report specification, you:

1. Create a default report specification and edit it, if you wish. For details,
see the chapter “Chapter 8: Working with RBF Report Specifications.”

2. Save the report specification. For details, see the chapter “Chapter 8:
Working with RBF Report Specifications.”

3. Run the report specification. For details, see the chapter “Chapter 9:
Producing a RBF Report.”

Sources of Report Data
A RBF report can be based on:

 A table

 Selected columns in a table

 A view

 A joinDef

 An existing RBF report

Sort Columns and Breaks

7–8 Character-based Querying and Reporting Tools User Guide

When choosing the source for your report, be aware of the following
restrictions:

 If you base the report on a table and later add a column to the table, the
report will not reflect the addition.

 If you delete a column or change the data type of a column, you will not
be able to edit or run the report using RBF.

 If ownership of the table changes to other than the DBA or the catalog
owner, you will not be able to edit or run the report using RBF, unless the
new owner grants you access.

 If you base the report on a view or JoinDef and later change the definition
of the view or JoinDef, the report will not reflect those changes.

 You cannot base a report on an existing report that was saved with the
sreport command, a system-level command used for saving reports in
Report-Writer format. For more information about sreport, see the
chapters “Chapter 8: Working with RBF Report Specifications” or “Chapter
10: Using Report-Writer.”

 You must specify SQL as the query language if you create a report in that
contains any of the following objects:

− JoinDef

− Table owned by a user other than yourself or the DBA

− Table, column, or correlation name that is a delimited identifier

 You cannot run the report under earlier releases of Ingres.

Sort Columns and Breaks
To specify the order in which your report must print the data, you can
designate certain data columns as primary or subordinate sort columns. For
instance, if you specify the Company column as the primary sort column, and
the Department column as the next subordinate sort column, the report will
organize the data first by Company, and then by Department within each
Company.

A break marks a change in the value of a report column that is designated as a
sort column. For instance, in the previous example, a break occurs each time
RBF encounters a new department name in the Department column. You can
designate how the report must indicate a break. For example, you could
instruct RBF to suppress duplicate department names in the Department
column and to start a new page for each new department name. Breaks are
helpful for presenting data in logical divisions that are easy to read.

To indicate a break you can:

Date, Time, and Page Number

Chapter 7: Using RBF 7–9

 Suppress duplicate values in a sort column and print a value only when it
changes.

 For instance, in the following example, the company name prints only once
and is not repeated for each of its departments:

 RB Associates Development
 Personnel
 Sales
 Support

 Weston, Inc. Accounting
 Marketing

 Start a new page each time a value in a sort column changes.

 Create a break header to indicate the beginning of a group of related rows
that have the same value in the sort column.

 Create a break footer to indicate the end of a group of related rows that
have the same value in the sort column.

 Create an aggregate in a break footer to calculate a subtotal or to
otherwise summarize information up to the break.

An example of a break is shown in the indented report style figure. The Dept
(department) column is a sort column. Each time the department name
changes, RBF prints a break header containing the department name.

Default RBF report styles have predefined sort columns (usually the first
column only) and predefined break actions associated with each sort column.
To customize the report, you must specify additional or different sort columns
and break actions. For details on using breaks, see the chapter “Chapter 8:
Working with RBF Report Specifications.”

Date, Time, and Page Number
The Report Options frame allows you to specify whether or not, and in what
format, you want the date, time, and page numbers to appear in your report.
By default, RBF automatically places the date and time in the report and page
headers and the page number in the page footer. These fields do not display
on the screen when you are creating a report specification. However, they do
appear on the report when it is run. If you delete these report sections, this
information will not appear on your report.

When you run a report including the date or time, RBF takes the date and time
from your computer’s operating system. If your system’s date and time are
incorrect, the report date and time will also be incorrect.

Report Styles

7–10 Character-based Querying and Reporting Tools User Guide

The report reflects the date and time when data is taken from the database,
not when the report specification was created. When you send a report to a
file for future printing, the date and time on the report reflect when you take
the data from the database rather than when you send the report to the
printer.

For more information, see Date, Time, and Page Components in the chapter
“Working with RBF Report Specifications.”

Report Styles
RBF offers the following six report styles:

 Tabular (or Column)

 Wrap

 Block

 Indented

 Master/Detail

 Labels

When you select a report style for your report, RBF provides you with the
default report specification for the chosen style. You can then edit the default
report specification to look exactly the way you want. The report style that you
initially choose is not a persistent attribute of the report; rather, it is a starting
point for further customization. There are some restrictions on editing labels
reports, as discussed in Labels Style.

After you have created and saved a report specification, you cannot instruct
RBF to convert it to a different style. For instance, you cannot take an existing
tabular report and instruct RBF to convert it to block style. But, you can
always change the appearance of the report by editing it, as noted above.

All styles are not always available. For example, the Master/Detail style is
available only when you base your report on a Master/Detail JoinDef. RBF
displays only those styles available for your report.

Tabular

Tabular reports, also called column reports, list the name of each column in
the table with column headings and the data in columnar format.

Report Styles

Chapter 7: Using RBF 7–11

This style produces a report as wide as necessary to fit all the columns in your
table. When you print a tabular report that is too wide to fit across a printed
page, the data that cannot fit is either wrapped around to the next line or
truncated (eliminated) from the report. Whether an overly wide report is
truncated or wrapped depends on your output device.

By default, tabular reports break on the first sort column and do not print
duplicate break values, except over page breaks.

This figure shows an example of a tabular report, which breaks on Manager,
the first sort column.

Report Styles

7–12 Character-based Querying and Reporting Tools User Guide

Wrap

Wrap style is similar to tabular style, except the column headings and data are
wrapped around to the next line at screen or page width.

This figure shows a wrap report with the Budget and Due Date columns
wrapped around to subsequent lines of the report.

Block

In a block report, each row of report data is formatted in a block. Each column
heading appears immediately to the left of its data on the same detail line. The
following figure shows a block report.

Report Styles

Chapter 7: Using RBF 7–13

Indented

The indented style, also called the hierarchical control break style, allows you
to produce a report with multiple levels of breaks. When specifying this report
style, you must specify at least one sort (break) column. The following figure
shows an indented report.

Master/Detail

A Master/Detail report presents master data in a break header and detail data
in columns. The default break column is the first Master/Detail join column. If
there are multiple join columns, RBF sorts the data on all the join columns.
However, only the first join column contains default break actions. If you want
specific break actions to occur on the other join columns, you have to add the
break actions yourself. For more information on specifying break actions, see
Editing Column Break Options in the chapter “Working with RBF Report
Specifications.”

Report Styles

7–14 Character-based Querying and Reporting Tools User Guide

A Master/Detail report must be based on a Master/Detail JoinDef. This figure shows a
Master/Detail report.

The query language for a Master/Detail report is SQL. For additional
information about the query language used for retrieving your report data, see
the chapter “Chapter 8: Working with RBF Report Specifications.”

Labels

The labels style produces a report similar to a mailing list. It presents blocks of
data across the page.

RBF calculates the size of the label and the number of labels across the page.
It bases its calculation on the size of the data fields and the location of the
right margin.

Unlike the other report styles, you cannot change the basic style of a labels
report. The data must appear in blocks across the page. Additionally, you
cannot delete the report footer, specify break options, or specify headers in
labels reports.

Report Styles

Chapter 7: Using RBF 7–15

The following figure shows a labels report.

Report Styles

7–16 Character-based Querying and Reporting Tools User Guide

Report Structure

A RBF report can contain some or all of the sections listed in the following
table:

Section Description

Report header Printed on the first page of the report.

Page header Printed at the top of the second and subsequent pages of
the report.

To print the Page Header on the first page of the report as
part of the report header, use the ReportOptions operation.
For instructions, see the chapter “Chapter 8: Working with
RBF Report Specifications.”

Break header Printed before the report’s detail lines. A report can have
one break header for each column designated as a sort
column. On the report specification, the break header
contains the name of the associated sort column. For
example, in the following figure, the column associated with
the break header is the Dept column, so the break header
is titled Dept-Break-Header.

If a report has multiple break headers, they are printed in
the order designated by the sort sequence of the sort
columns. For example, the first break header contains the
column with a sort sequence of 1, the second break header
contains the column with a sort sequence of 2, and so
forth.

To define the sort sequence, use the ColumnOptions
operation. For instructions, see the chapter “Chapter 8:
Working with RBF Report Specifications.”

Detail lines Printed for each row in the table, view, or JoinDef
associated with this report.

Break footer Printed after the report’s detail lines. A report can have one
break footer for each column designated as a sort column.

On the report specification, the break footer contains the
name of the associated sort column. For example, in the
following figure, the column associated with the break
footer is the Dept column, so the break footer is titled
Dept-Break-Footer. As with break headers, if a report has
multiple break footers, they are printed in the order
designated by the sort sequence of the sort columns.

Page footer Printed at the bottom of each report page.

Report footer Printed at the end of the report.

Report Styles

Chapter 7: Using RBF 7–17

The following figure shows a report specification with all of the report sections
listed. The break, page, and report footers contain aggregates. The aggregates
are discussed in the chapter “Chapter 8: Working with RBF Report
Specifications.”

The report sections that appear in your report are determined initially by the
default report layout for the report style you chose. The default layout for each
report style is shown in the following table. For instructions, see the chapter
“Chapter 8: Working with RBF Report Specifications.” The Layout operation,
also described in that chapter, allows you to add and delete some report
sections to customize the report.

Report Styles Report
Header

Page
Header

Break
Header

Detail Break
Footer

Page
Footer

Report
Footer

Tabular yes yes yes yes no yes no

Wrap yes yes no yes no yes no

Block yes yes no yes no yes no

Indented yes yes yes yes no yes no

Master/Detail yes yes yes yes no yes no

Labels yes yes no yes no yes yes

Chapter 8: Working with RBF Report Specifications 8–1

Chapter 8: Working with RBF Report
Specifications

This chapter describes how to create a default report specification with RBF. It
also explains how to edit a report specification in the Report Layout frame to
produce a more sophisticated report, using operations to:

 Create, delete, edit, and move report components, such as columns and
trim

 Change the report’s layout by adding and deleting report sections,
including report headers and footers, page headers and footers, and break
headers and footers

 Specify column options, including sort order and runtime selection criteria

 Specify report options, including page length, form feeds, underlining,
display of null values, and whether to duplicate the page header on the
first page of the report

This chapter also discusses saving and archiving a report specification. A
report specification must be saved before you can either archive it or use it to
run a report.

Creating a Default Report Specification
To create a default report specification with RBF:

a. Start RBF.

b. When the Report Catalog frame appears, select the Create operation. RBF
displays the Creating a Report pop-up, which lists the sources of data on
which you can base your report.

Creating a Default Report Specification

8–2 Character-based Querying and Reporting Tools User Guide

The following table describes the selections on the Creating a Report pop-
up:

Selection Description

Duplicate Bases your report on an existing report. A report cannot be
based on one that was saved with the sreport command.

Table Bases your report on a table or view, as it was defined when
you created the report specification.

JoinDef Bases your report on a JoinDef, as it was defined when you
created the report specification.

For restrictions and limitations on the use of tables, views, JoinDefs, and
other report specifications as sources of data for your reports, see Sources
of Report Data in the chapter “Using RBF.”

c. Place the cursor on Duplicate, Table, or JoinDef and choose Select.

RBF displays a pop-up similar to one in the following figure.

Creating a Default Report Specification

Chapter 8: Working with RBF Report Specifications 8–3

d. Do one of the following:

 If necessary, use the ListChoices operation to display a list of available
choices and select an item from the list.

 On the Create a Report Based on a Table pop-up, enter the name of a
table and choose ChooseColumns to base your report only on certain
columns of a database table. For details, see Using the
ChooseColumns Operation. RBF returns to the report specification
process when done.

 On the Create a Report Based on a JoinDef pop-up, choose the Create
operation to create or edit a JoinDef on which you are basing the
report. Then enter the name of an existing or new JoinDef and choose
the Edit operation to access QBF. RBF returns you to the report
specification process.

 On the appropriate pop-up, enter the name of a report, table, view, or
JoinDef on which you want to base the report and click OK.

e. If your report is based on a table, view, or JoinDef, you must choose a
report style. For more information, see Choosing a Report Style.

If your report is based on an existing report, or after you have chosen a report
style, RBF displays the default report specification in the Report Layout frame
in the figure below. At this point, you can either:

 Customize the report specification, as described in the remainder of this
chapter

 Save the report specification, as is, by choosing the Save operation. For
instructions, see Saving a Report Specification.

The following figure shows a default report specification for a tabular report.

Creating a Default Report Specification

8–4 Character-based Querying and Reporting Tools User Guide

Using the ChooseColumns Operation

The ChooseColumns operation on the Create a Report Based on a Table pop-
up allows you to specify only certain columns on which you wish to base the
report, as noted in Step 4 of the previous procedure for creating a default
report specification.

To specify particular columns in a table on which you want to base the report:

1. Choose the Create operation on the Report Catalog frame; then select the
Table option from the Creating a Report pop-up. RBF displays the Table
Name pop-up.

2. Enter the name of a table on the Table Name pop-up and choose the
ChooseColumns operation. RBF displays a pop-up containing a list of all
columns in the table.

Up to 10 columns appear in the pop-up. You can scroll to view any
additional columns.

3. Use the cursor to select a column and choose an appropriate operation on
the menu to edit the list of columns on which to base the report. The
following table describes each available operation:

Operation Description

OK Accepts the report column list as is, and returns the
user to the Table Name pop-up.

Add Redisplays a list of previously deleted columns. To add
the column back into the report column list (above the
current column), select it with the cursor and choose
the Select operation.

Delete Deletes the current column from the report column
list.

Move Displays a submenu of move operations for the
current column (Above, Below, Help, and End).
Choosing End cancels the Move operation.

RemoveAll Deletes all columns from the report column list at
once. You can then use the Add operation to put a few
of the deleted columns back into the list.

Cancel, Help These are standard operations.

4. When done editing the list of columns, choose the OK operation. RBF
returns you to the Table Name pop-up.

5. On the Table Name pop-up, choose OK again to continue with the creation
of your report specification. RBF displays the Choose a Report Style pop-
up.

Creating a Default Report Specification

Chapter 8: Working with RBF Report Specifications 8–5

Choosing a Report Style

If your report is to be based on a table, view, or JoinDef, you must choose a
report style when the Choose a Report Style pop-up in the following figure
appears during report specification creation.

The Choose a Report Style pop-up contains a list of the report styles available
for your report. The Master/Detail style is available only if you based your
report on a JoinDef.

To choose a report style:

1. Place the cursor on the desired report style and choose Select.

If you selected the indented style, go to Step 2.

If you selected the tabular, wrap, block, Master/Detail, or labels style, the
Report Layout frame appears with the default report specification. Go to
step 3.

2. The Break Columns pop-up appears in the figure below. This pop-up lists
all of the columns in the table or JoinDef on which your report is based.

To select break columns, enter a number between 1 and 1024 in the Sort
Sequence field. Each Column Name must have a unique sort sequence
number. Enter a zero (0) if you do not want to assign a sort sequence to
the column.

Break columns appear in the order specified by the sort sequence; that is,
the column with a sort sequence of 1 is the first break column, the column
with a sort sequence of 2 is the second break column, and so forth.

You must specify at least one break for an indented report. For a
discussion of breaks, see the chapter “Using RBF.”

RBF Report Layout Frame

8–6 Character-based Querying and Reporting Tools User Guide

3. When you have chosen the report style and break columns, if appropriate,
RBF displays the default report specification in the Report Layout frame in
the following figure. At this point, you can either:

 Customize the report specification, as described in the remainder of
this chapter

 Save the report specification, as is, by choosing the Save operation.
For instructions, see Saving a Report Specification.

RBF Report Layout Frame
The Report Layout frame is the primary frame for editing RBF report
specifications. You can use this frame to add, edit, or delete report
components. From this frame, you also can call up other frames to add and
delete report sections, and to specify report sorting order, runtime selection
criteria, and report output options.

RBF Report Layout Frame

Chapter 8: Working with RBF Report Specifications 8–7

The preceding figure shows a Report Layout frame for a tabular report with a
break header for the Name column. A layout frame for a report in another
style looks different. The operations of the Report Layout frame function the
same way regardless of the report’s style.

Getting to the Report Layout Frame

Use one of the following ways to load a default report specification into the
Report Layout frame:

 Create a default report specification with the Create operation on the
Report Catalog frame. RBF automatically places the new report
specification in the Report Layout frame for further editing.

 Place the cursor over an existing RBF report specification name in the
Report Catalog frame and choose the Edit option. RBF places the selected
report specification in the Report Layout frame.

 Use the rbf command and specify a table, view, or report name as a
parameter.

Layout Frame and Report Components

The Report Layout frame in the preceding figure the layout of the report
sections and other report components, as described in the following sections.

Report Sections

A Report Layout frame is divided into some or all of the following report
sections, depending on the report style you choose:

 Report header

 Page header

 Break headers

 Detail lines

 Break footers

 Page footer

 Report footer

Each report section is marked off by lines of dashes labeled with the name of
the section.

RBF Report Layout Frame

8–8 Character-based Querying and Reporting Tools User Guide

You use the Layout operation to create or delete report sections. You use the
Create and Line operations to add blank lines and other components to a
report section, and the Delete operation to delete them from a report section.
These operations are summarized in Report Layout Frame Menu.

Report Margins and Alignment Guides

The report’s bottom margin is identified by the line marked End-of-Report. The
report’s right margin is identified by a vertical line that is marked End.
Initially, the right margin line is located beyond the right edge of your screen,
although in the preceding figure it has been moved so that you can see it.

Use the Move operation, as described later in this chapter, to move these
margins and thus expand or contract the size of your report. Both report
margins, as well as the report section dividers, optionally display ruler marks
every fifth column or row, and a decimal digit every tenth column or row. Use
these rulers as alignment guides to help you determine the coordinates for
report components.

The Report Layout frame also provides optional horizontal and vertical straight
edge alignment guides for aligning report components. If straight edges are
turned on, the vertical and horizontal straight edges appear initially in the last
column of the report specification and the last row of the Detail section,
respectively. Move straight edges with the Move operation, as you would a
piece of trim or other report component.

The following figure shows straight edges aligned on the Hours column and
rulers turned on. For best results, use a monitor with a line graphics character
set.

RBF Report Layout Frame

Chapter 8: Working with RBF Report Specifications 8–9

You cannot delete the section markers from the Report Layout frame.
However, you can turn rulers and straight edges on or off independently of
each other by choosing the Rulers operation on the Report Layout frame. On
the pop-up menu, set each alignment guide to y (yes) or n (no). Regardless of
whether the alignment guides are set on or off, the section markers, margin
lines, and straight edges do not print on your report.

Trim

Trim is a report component that consists of all lines, words, and characters,
other than data or aggregates that print on your report. You can place trim in
any section of the report.

Headings are considered trim. A heading provides a description of the contents
of a column or aggregate. A heading can only be associated with a column or
aggregate. You can edit, add, delete, and move headings to any section of the
report. Headings are not available in Labels reports.

Columns and Aggregate Functions

Columns and aggregate functions are report components that deal with the
data in your report. Columns contain the actual data obtained from the table,
view, or JoinDef on which the report is based. You use an aggregate function,
such as sum or count, to calculate the value of a specified column up to the
occurrence of a break.

Columns and aggregate functions are represented on the Report Layout frame
by fields containing:

 Letters and symbols, which denote the data display format

For information about these formats, see Editing Column Display Formats.

 Solid lines, which show the width of the column or aggregate

Fields that represent data columns appear in the Detail section of the Report
Layout frame. The Report Layout frame does not initially display the names of
the columns associated with the fields in the Detail section. You can use the
Name operation to obtain the column name for a field. For details, see
Obtaining the Name of a Column.

RBF Report Layout Frame

8–10 Character-based Querying and Reporting Tools User Guide

At the bottom of the frame is the Report Layout menu. It allows you to
perform the following operations:

Operation Description

Create Displays a submenu with operations that allow you to
create most new report components, including trim,
columns, aggregates, headings, and blank lines. For
instructions, see Creating New Report Components. To
create break headers, footers, and other report sections,
use the Layout operation instead of Create.

Delete Deletes the report component at the cursor position. For
instructions, see Deleting Report Components. To delete
break headers, footers, and other report sections, use the
Layout operation instead of Delete.

Edit If the cursor is on trim, edit the trim.

If the cursor is on a column or aggregate, displays a
submenu with operations that allow you to change the
column’s data display format or other column options,
including the sort order and runtime selection criteria. If
the column being edited is a sort column, this submenu
also includes the BreakOptions operation, which allows you
to specify how RBF handles breaks in column values.

For instructions, see Editing Report Components.

Move Moves the current component through operations
presented on submenus. For instructions, see Moving
Report Components.

Layout Creates and deletes break headers, footers, and other
report sections. For instructions, see Creating New Report
Components and Deleting Report Components.

ColumnOptions Establishes sort order, sort direction, and runtime selection
criteria. For instructions, see Editing Column Sort and
Selection Options.

ReportOptions Establishes a variety of report options, including page
length, inclusion of form feeds, display of null values, and
underlining capabilities. For more information, see
Specifying Report Options.

Rulers Allows you to use horizontal and vertical straight edge
alignment guides for aligning report components. For
instructions, see Layout Frame and Report Components.

Name Allows you to obtain the name of a column for a field in the
Detail section of the Report Layout frame. For more
information, see Obtaining the Name of a Column.

Creating New Report Components

Chapter 8: Working with RBF Report Specifications 8–11

Operation Description

Undo Reverses the effects of the last editing operation. For
instructions, see Undoing Edits.

Save Saves the edited report specification into the database with
the report name of your choosing. For instructions, see
Saving a Report Specification.

Help, End These are standard operations.

Creating New Report Components
Use the Layout operation to create these report sections:

 Report header

 Page header

 Break headers

 Detail section

 Break footers

 Page footer

 Report footer

For instructions on using the Layout operation, see Deleting Break Headers,
Footers, and Other Report Sections.

Use the Create operation to create:

 Trim

 Columns

 Aggregates

 Column headings

 Blank lines

To use the Create operation:

1. Position the cursor where you want to create the new component.

2. Choose the Create operation from the Report Layout frame menu.

RBF displays the Create submenu, which offers the options described in
the following table:

Creating New Report Components

8–12 Character-based Querying and Reporting Tools User Guide

Operation Description

Trim Enters the text of a new trim element at the cursor
position. For instructions, see Creating Trim.

Column Creates a new column and column heading at the cursor
position. In Labels reports, creates a column without a
column heading. For more information, see Creating a
Column.

Aggregate Create an aggregate, such as sum or average, on a
column. Aggregates can be cumulative or unique and
must be in break, page, or report footer sections. For
instructions, see Aggregates.

Heading Creates a new or additional heading line (not available
for Labels reports). The new heading line must be
associated with an existing heading, column, or
aggregate. For details, see Creating Additional Heading
Lines.

Line Inserts a blank line above the line on which the cursor
rests. For instructions, see Creating Blank Lines.

Help, End These are standard operations.

The following sections present specific information about creating different
types of components.

Creating Break Headers, Footers, and Other Report Sections

The default report specification for each style of report contains its own default
report sections. You can use the Layout operation to create additional break
headers, footers, and other report sections in your report specification.

Note these restrictions:

 A report can contain only one of each of the following sections:

– Report header

– Report footer

– Page header

– Page footer

 A report can contain one break header and one break footer for each sort
column in the report

If the section you want to add is a header or footer for a column, you must
have first designated the column as a sort column. For instructions on
designating a sort column, see Editing Column Sort and Selection Options.

Creating New Report Components

Chapter 8: Working with RBF Report Specifications 8–13

To add a report section:

1. Select the Layout operation from the Report Layout frame menu. The Edit
Report Layout pop-up appears.

2. Select the Create operation from the menu. The Creating a Report Layout
Section pop-up appears, similar to the one in the following figure. This
pop-up contains a list of the report sections you can create.

This list always includes the option to create a break header or footer,
because you can create many of these. However, it only contains other
report sections if they do not already exist.

3. Place the cursor on the name of the report section that you want to create
and choose the Select operation.

If you are creating a report or page header or footer, proceed to Step 5.

If you are creating a break header or footer, the Sort Columns pop-up
appears in the following figure. It contains a list of the sort columns
available for the break header or footer.

Creating New Report Components

8–14 Character-based Querying and Reporting Tools User Guide

4. Move the cursor to the desired sort column and choose the Select
operation.

5. Select the End operation to return to the Report Layout frame.

The new report section appears on the Report Layout frame. If you created
a break header or footer, the name of the sort column appears with the
report section name.

Creating Trim

To create trim:

1. Position the cursor where you want to add the trim.

2. Select the Create operation from the Report Layout menu.

3. Select the Trim operation from the Create submenu.

4. Enter the text of the new trim.

If you want to create lines and borders for your report, use keyboard
characters such as the hyphen (-) or underscore (_).

5. Press the Menu key.

If necessary, correct the trim position with the Move operation.

Creating a Column

Use the Column operation to create a new column and column heading in your
report. Note these restrictions:

 The column must exist in the table, view, or JoinDef from which the report
is generated.

 The column must not already appear on the Report Layout frame.

Creating New Report Components

Chapter 8: Working with RBF Report Specifications 8–15

 In labels reports, the Column operation creates a column without a column
heading.

To create the new column:

1. Move the cursor into an open spot in any section of the report.

2. Select the Create operation from the Report Layout Menu.

3. Select the Column operation from the Create submenu.

RBF displays the Create a Column pop-up (shown below), which contains a
list of the columns that are available for mapping.

4. Position the cursor on the desired column and choose the Select operation.

RBF inserts the column and column heading at the cursor location and
pushes existing columns to the right, if necessary.

The new column is in block style with the heading to the left of the
column. To change this, use the Move operation.

For Labels reports, RBF creates the column only. It does not create a column
heading. To add a column heading, use the Trim operation.

Creating New Report Components

8–16 Character-based Querying and Reporting Tools User Guide

Aggregates

You use an aggregate function, such as sum or count, to calculate the value of
a specified column up to the occurrence of a break. In RBF, an aggregate must
appear in a footer for a report, page, or break. RBF calculates the aggregate
value each time a break occurs in the specified footer.

The cut-off point for data to be included in the calculation of an aggregate
depends on whether the aggregate is simple or cumulative. For more
information, see Simple and Cumulative Aggregates.

The following table lists all of the available aggregate functions:

Aggregate Function: Returns:

Any 1 if any data exists, 0 if none exists

Average Mean average of all values in the column

Count Count of all the values in the column

Minimum Smallest value in the column

Maximum Largest value in the column

Sum Arithmetic sum of all the values in the column

Note these restrictions:

 If the aggregate column is numeric, all of these functions are available.

 If the aggregate column is a character or date data type, the any, count,
minimum, and maximum aggregate functions are available. Additionally,
you can take a sum of a date data type column, but only if date intervals
(such as 1 day, 2 hours) are stored in the column. Taking a sum on
absolute dates (such as December 13, 1988) results in an error.

Simple and Cumulative Aggregates

Aggregates can be simple or cumulative.

A simple aggregate is determined by the type of footer in which you
specify it. For example:

 If you specify the sum aggregate for the budget column in a report footer,
then the aggregate contains the sum of the values in the budget column
for all rows in the report.

 If you specify the sum aggregate for the budget column in the page footer,
the aggregate contains the sum of the values in the budget column for the
rows printed on each page of the report.

Creating New Report Components

Chapter 8: Working with RBF Report Specifications 8–17

 If you specify the sum aggregate for the budget column in the break footer
for the Department column, the aggregate contains the sum of the values
in the budget column for all rows in each department.

A cumulative aggregate is a running total. It contains the aggregate of all the
rows processed since the start of the report and does not depend on the
location of the aggregate.

Unique Aggregates

You can create unique aggregates for sort (break) columns only. Unique
aggregates are calculated by using only the unique values of the sort columns.
You cannot specify a unique aggregate for a non-sort column.

If you change a column that has a unique aggregate associated with it from a
sort to non-sort column, RBF gives you the following options:

 Deleting the unique aggregate

 Changing the unique aggregate to non-unique

The unique aggregates are described in the following table:

Unique Aggregate Returns:

Average (Unique) Mean average of all the unique values in a sort
column.

Count (Unique) Count of all the unique values in a sort column.

Sum (Unique) Sum of all the unique values in a sort column.

Guidelines for Creating an Aggregate

When creating aggregates, you:

 Must create an aggregate in a footer (break, page, or report)

 Can create an aggregate on any column (the column does not have to be a
sort column)

 Can create more than one aggregate in a footer and more than one type of
aggregate for a particular column

For example, in a table containing the columns Project, Employee, and Salary,
you can create a break footer for the Project column (Project_Break_Footer).
Then, you can create Average and Sum aggregates (non-cumulative) for the
Salary column in the Project_break_footer. This instructs RBF to:

 Break each time it finds a new value in the Project column

Creating New Report Components

8–18 Character-based Querying and Reporting Tools User Guide

 Calculate the total salary and average salary cost of each project

Creating an Aggregate

To create an aggregate:

1. Place the cursor in the position in the footer section where you want to
create the aggregate. If you must create a footer section, see Creating
Break Headers, Footers, and Other Report Sections.

2. Select the Create operation from the Report Layout frame menu.

3. Select the Aggregate operation from the Create submenu.

The Create an Aggregate pop-up appears. This pop-up contains a list of
the columns in your report.

4. Position the cursor on the column for which you want the aggregate.

5. Choose the Select operation.

The Selecting Aggregates pop-up appears.

This pop-up contains a list of the aggregate functions that are available for
the column to be aggregated.

Creating New Report Components

Chapter 8: Working with RBF Report Specifications 8–19

6. Place the cursor on the desired aggregate function.

7. Choose the Select operation. The Cumulative Aggregation pop-up appears.

For a description of simple and cumulative aggregates, see Simple and
Cumulative Aggregates.

8. Select Yes to make the aggregate cumulative or No to make the aggregate
simple (non-cumulative).

9. Choose the Select operation to finish creating the aggregate and return to
the Report Layout frame.

Editing an Aggregate

After creating an aggregate, you can edit it in the same way you edit columns.
You can:

 Change its display format

 Edit it or the associated headings

 Move it to another footer section

 Delete the aggregate

Creating Additional Heading Lines

By using the Create and Heading operations, you can add a new heading or
additional heading line to a column or aggregate, except in Labels reports.

In Labels reports, use the Create and Trim operations to add column headings.
However, be aware that you cannot move columns with headings added in this
manner as a unit; you must move them separately. For instructions on moving
trim, columns, aggregates, and headings, see Moving Report Components.

Deleting Report Components

8–20 Character-based Querying and Reporting Tools User Guide

To create a new heading line:

1. Place the cursor on the existing heading or, if there is no existing heading,
on the column or aggregate.

2. Select the Create operation from the Report Layout frame menu.

3. Select the Heading operation from the Create submenu. See the first
figure in the Creating a Column topic.

If there is an existing heading, RBF moves the cursor to the first blank line
below the existing heading line, creating a new line, if necessary. If there
is no existing heading, RBF moves the cursor to the Page Header section
immediately above the column.

4. At the prompt, enter the new or additional heading and press the Menu
key. RBF inserts the heading.

Creating Blank Lines

When creating blank lines, keep in mind that the Line operation inserts the
new blank line at the current cursor position, pushing the current line and
everything below it down one line.

To add a blank line:

1. Place the cursor at the position where you want to insert the new line.

2. Select the Create operation from the Report Layout menu.

3. Select the Line operation from the Create submenu. See the first figure in
the Creating a Column topic. RBF inserts the blank line.

Deleting Report Components
You use the Layout operation on the Report Layout frame to delete report
sections and the Delete operation to delete other report components, as
described in the following subsections.

Deleting Break Headers, Footers, and Other Report Sections

The default report specification for each style of report contains its own default
report sections. You can use the Layout operation to delete some of the break
headers, footers, and other report sections in your report specification.

Deleting Report Components

Chapter 8: Working with RBF Report Specifications 8–21

Note these restrictions on deleting report sections:

 You can never delete detail sections.

 You cannot delete sections that are needed for the options set with the
BreakOptions operation. For example, if you choose to print on page
breaks, you cannot delete the page header. For more information, see
Editing Column Break Options.

 You cannot delete a section if doing so would cause the report to have no
data (columns or aggregates).

 Because the report and page header contain the report date and time, and
the page footer contains page numbers, your report cannot contain this
information if you delete these sections.

To delete a report section:

1. Select the Layout operation from the Report Layout frame menu.

RBF displays the Edit Report Layout pop-up, which contains a list of the
report sections you can delete.

2. Position the cursor on the report section you want to delete and select the
Delete operation from the menu.

3. Select the End operation to return to the Report Layout frame menu.

When you return to the Report Layout frame, the deleted section and its
contents disappear from the frame.

Editing Report Components

8–22 Character-based Querying and Reporting Tools User Guide

Deleting Other Report Components

Use the Delete operation on the Report Layout frame to remove any columns,
aggregates column headings, or trim from your report specification.

If you delete a column or aggregate, RBF automatically removes the
associated heading, but this is not true in reverse. If you delete a heading,
RBF does not automatically delete the associated column or aggregate.

If you delete all the trim on a line, a blank line is left. You can remove blank
lines by placing the cursor on the line and choosing Delete.

To delete a column, aggregate, heading, or trim:

1. Place the cursor on the component.

2. Select the Delete operation from the Report Layout frame menu.

Editing Report Components
Use the Edit operation to:

 Edit trim and headings

 Change a column or aggregate’s display format

 Change column options, such as sort order or runtime selection criteria

 Establish how your report handles breaks in sort columns

Editing Trim and Headings

The default editing mode is overstrike, which means that the characters you
type replace the existing character at the cursor position. To change to Insert
mode (in which the characters you type push existing characters to the right),
press the Mode key for your keyboard.

When you are editing a report component, the current editing mode is
displayed in the lower right corner of the frame.

When editing a report specification, you can only work on one line of trim at a
time. Each line of trim is considered a separate component. You cannot extend
or push a line of trim past the report’s right margin, but you can use the Move
operation to extend the report’s right margin.

To edit trim and headings:

1. Place the cursor on the trim or heading component that you want to edit.

2. Select the Edit operation from the Report Layout frame menu.

Editing Column Display Formats

Chapter 8: Working with RBF Report Specifications 8–23

3. Edit the component.

4. Press the Menu key.

Editing Columns

To edit a column:

1. Place the cursor on the column’s display format (the cursor must be on the
actual column, not on the column heading).

2. Choose the Edit operation from the Report Layout frame menu.

3. When the Edit submenu appears, select one of the operations described in
the following table:

Operation Description

DisplayFormat To edit the data display format.

ColumnOptions To specify sort order, sort direction, or runtime
selection criteria. This is the same as the
ColumnOptions operation on the Report Layout frame
main menu.

BreakOptions To suppress the printing of duplicate values in sort
(break) columns or to print a new page each time the
value in a sort column changes. This operation
appears only if the selected column is a sort column.

Editing Column Display Formats
The data display formats for each of the columns in your report specification
determine the way data appears in the report. You can display the data in a
particular column in various ways. For example, for a column containing dates,
you can choose from date formats such as January 15th, 1944 or 1/15/44.

RBF assigns a default display format for each data type. You can use the Edit
operation, as described in Changing Display Formats, to change these default
display formats. However, RBF does not allow you to use a display format that
is incompatible with the data type. For example, you cannot use the character
display format with a numeric data type.

Editing Column Sort and Selection Options

8–24 Character-based Querying and Reporting Tools User Guide

Representation of Display Formats

On the Report Layout frame, display formats are represented by letters,
symbols and lines. For example, a simple integer display format looks like this:

i________

The letter i indicates the integer display format and the underscore line shows
the remaining number of characters in the column. Fixed punctuation is also
shown in a display format representation. For example, a display format for a
column containing financial data might look like this:

$___,___.__.

The total width of the representation (symbols plus underscore) equals the
total width of the column.

RBF permits the same display formats as Report-Writer except for the B, q0,
and c0 formats. The c0.w format, however, is valid in RBF.

Changing Display Formats

To change a display format:

1. Place the cursor on the column or aggregate you want to change.

2. Select the Edit operation from the Report Layout frame menu.

3. Select the DisplayFormat operation from the Edit submenu.

The data display component changes from graphic representation of the
format definition to the symbol definition. For example, f_____ becomes
f6. The cursor appears on the first character of the display format
definition.

4. Enter the new display format definition, following the syntax shown in the
Display Format Syntax and Descriptions table in the chapter “Working with
Data Types and Data Display Formats.”

5. Press the Menu key.

The new format appears as a graphic representation.

Editing Column Sort and Selection Options
This section provides instructions for using the Column Options frame (in the
following figure) to:

 Create sort (break) columns for your report

 Modify a column’s sort order

Editing Column Sort and Selection Options

Chapter 8: Working with RBF Report Specifications 8–25

 Specify runtime selection criteria for a column

For an explanation of sorts and breaks, see Sort Columns and Breaks.

To get to the Column Options frame, you choose the ColumnOptions operation
on either the Report Layout frame or the Edit Submenu of the Report Layout
frame.

Defining Sort Order

Sort order determines the order in which data is presented in a report. There
are two components to sort order:

 Sort sequence

 Sort direction

Sort sequence is the order in which the columns are sorted. You designate one
column as the primary sort column. For instance, in a report of employees,
you could designate the Lastname column as the primary sort column so that
the report can be sorted according to last name.

You can designate additional columns as subordinate sort columns.
Subordinate sort columns sort data within each sort value of the primary sort
column. For example, if the primary sort column is Zipcode and the secondary
sort column is Lastname, all of the data rows containing zip code 00001 are
presented first. Within the 00001 group, the data rows are sorted by the
alphabetic order of the names in the Lastname column.

If you do not specify a sort order, data appears in the report in whatever order
it was stored in the table, view, or JoinDef on which the report is based.

Editing Column Sort and Selection Options

8–26 Character-based Querying and Reporting Tools User Guide

Sort Direction

Sort direction is another component of sort order. The sort direction is
ascending or descending. In ascending order, the lowest values are presented
first (1,2,3, a,b,c). In descending order, the highest values are given first
(9,8,7, z,y,x).

Sort Order and Data Type

Sort order is performed according to the data type of the column:

 Date columns are sorted in ascending or descending chronology.

 Numeric columns are sorted by ascending or descending numeric value.

 Character columns are sorted in ascending or descending alphabetical
order.

This means that numbers entered in a character column (in an address, for
instance) are sorted differently than numbers entered into a numeric column.
Numbers in a character column are sorted alphabetically, as shown in the
following sample table:

Numbers sorted in numeric column Numbers sorted in character column

1 1

2 101

3 11

11 12

12 2

22 22

101 3

Default Sort Order

When you create a default report specification or preview report, RBF sets an
initial default sort order based on the values in the first column of the table,
view, or JoinDef on which the report is based. Two exceptions to this are
Indented reports and Master/Detail joins, which can have multiple sort
columns.

Editing Column Sort and Selection Options

Chapter 8: Working with RBF Report Specifications 8–27

The following rules apply:

 If the data type of the sort column is character, RBF sorts report rows in
ascending alphabetic order on the first column.

 If the data type of the sort column is numeric, RBF sorts report rows in
ascending numeric order.

 If the data type of the sort column is date, then RBF sorts report rows
according to ascending chronological order.

 Except for Indented reports, if the first column contains duplicate values,
RBF sorts the rows in an indeterminable manner.

For Tabular reports with duplicate values in the first column, RBF prints the
duplicate value only once and does not print a value in the first column until
the value changes.

Sort Columns and Breaks

Before you create a break header or footer, you must designate the column
you want to break on as a sort column. If you change the sort order of the
columns, the order of the report’s break headers and footers also changes.

Changing a Column from Sort to Non-Sort

RBF does not allow you to change a sort column into a non-sort column if the
column has an associated break header or footer. In this case, you must
delete the associated break header or footer first with the Layout operation.
See Deleting Report Components.

Additionally, if you try to change a sort column into a non-sort column, you
must decide what to do with any unique aggregates. You can:

 Delete all unique aggregates associated with the column

 Change the unique aggregates to non-unique aggregates

Changing the Sort Order

To change the sort order of your report:

1. Select the ColumnOptions operation from the Report Layout frame menu.

The Column Options frame (in the seventh figure) appears, with a default
sort order based on the first column of the table, view, or JoinDef on which
your report is based. For more details, see Default Sort Order.

2. Tab to the Sort Sequence field and enter the order in which you want the
column sorted.

Editing Column Sort and Selection Options

8–28 Character-based Querying and Reporting Tools User Guide

You can have from 1 to 1024 sort columns, with 1 as the primary sort
column, 2 as the secondary, and so forth.

If you do not want to designate a column as a sort column, set the sort
order to zero (0).

3. For each sort column designated, establish the sort direction:

f. Tab to the Sort Direction field.

g. If necessary, type a (for ascending) or d (for descending) over the
values currently in the field and press Return. (RBF fills out the field
with the complete word for you.)

4. Select the End operation to return to the Report Layout frame.

Specifying Runtime Data Selection

Users often must limit the data that goes into a report. For example, a table
can contain sales figures for the past three years, but you only want a report
on sales data for the previous quarter. You can use the Column Options frame
to specify that RBF ask the user to enter criteria for the data to be selected
from that column when the report is run. This is called runtime data selection.

Runtime data selection is specified on a column-by-column basis. If the report
has a Date column, and you specify a runtime data selection range for that
column, each time a user runs the report RBF can ask the user to enter a
minimum (earliest) date and the maximum (latest) date. The resulting report
can only contain data from rows in which the date falls within the specified
range.

You can specify runtime data selection on more than one column. For
example, you can specify a runtime data selection for both the Date and
Customer columns. In this case, the user could specify a range of dates for a
particular customer at report runtime.

You can specify runtime data selection for both sort and nonsort columns.

Enter options in the Selection Criteria column on the Column Options frame to
specify whether RBF must use runtime selection criteria. The Column Options
frame provides three runtime data selection criteria options, as shown in the
following table. You must specify one of these options for each column in the
report.

Option Effect at Runtime

none (or n) No runtime selection criteria for this column. This is the
default. All data is presented in the report.

value (or v) You are asked to enter a specific value at runtime.

Editing Column Sort and Selection Options

Chapter 8: Working with RBF Report Specifications 8–29

Option Effect at Runtime

range (or r) You are asked to enter a maximum and minimum range
of values at runtime.

In a default report specification, all columns are set to the none option (no
runtime data selection).

Each time a user runs a report for which the value or range runtime data
selection option has been specified, RBF asks the user to enter the selection
criteria before running the report:

 Value - If the selection criteria is a value, the user enters the value.

 Range - If the selection criteria is a range, RBF prompts the user to enter
first the minimum value of the range and then the maximum value of the
range.

Hexadecimal Constants

To specify a nonprintable character, you can use a hexadecimal string constant
with the following format:

X|x'nn{nn}'

The introductory X identifies the string as a hexadecimal string constant. You
must specify the nonprintable character as two hexadecimal digits (nn) in the
range 0-9, a-f, or A-F, and the string must contain an even number of
characters. There must be no intervening white space between the X and the
single-quoted string of hexadecimal digits. The X and the hexadecimal digits
are case insensitive. RBF translates the hexadecimal constant into its
corresponding character value.

Null Values for Numeric Variables

If the user does not enter a value at runtime for a numeric variable with
runtime qualification, RBF issues an error message. To avoid this
circumstance, application developers have the following options:

 Quote the variable in the query by archiving the RBF report specification
and editing it in Report-Writer.

If the user does not enter a variable, RBF interprets the quoted empty
variable as a value of zero. This procedure is not recommended for fields
in which this behavior is semantically incorrect—for example, in nullable
fields. Once you have saved a report specification with the archive
command, you can no longer edit it in RBF.

Editing Column Break Options

8–30 Character-based Querying and Reporting Tools User Guide

 Supply the variable value in a call report statement, or require the user to
supply it on the command line, so the value is ensured to exist; then call
Report-Writer to run the report.

For details on accomplishing this, see Passing Parameters on the
Command Line and the section on report frames in the 4GL Reference
Guide.

Editing Column Break Options
The BreakOptions operation allows you to control how your report shows a
change of value in a sort column in the following ways:

 Optionally suppress duplicate values in sort (break) columns in the Detail
section of a report.

 Optionally print a new page when a sort column value changes.

You can also create break headers and footers to call attention to a change of
value in a sort column. To create break headers and footers, or to use
aggregate functions to summarize data in break footers, see Creating Break
Headers, Footers, and Other Report Sections topic.

The BreakOptions operation is not available for Labels reports.

Options for Showing a Change of Value

By default for most report styles, RBF prints a value in every column for every
row it retrieves. If several rows contain the same value for a column, RBF
prints each duplicate value. You can suppress duplicate values in sort columns
to make the report more readable.

Use the BreakOptions operation to specify one or a combination of the
following options for printing sort column values:

 Always print the value, including duplicates, as shown in the following
figure.

 Print the value only once when the initial break occurs and suppress
duplicates, as shown in the nineteenth figure.

 Print the value when a new page is printed.

 Create a new page when the sort column value changes.

Regardless of the other options you have chosen, you can instruct RBF to print
a new page when the value in a sort column changes. For example, for the
report shown in either of the following figures, you can instruct RBF to print a
new page when the value in the Dept column changes from Admin to Account.

Editing Column Break Options

Chapter 8: Working with RBF Report Specifications 8–31

By default, Tabular reports always suppress duplicate values, as shown in the
following figures. RBF prints the value in the Dept sort column only when it
changes from Account to Admin, and from Admin to Commun.

Using the Break Options Operation

To use the BreakOptions operation:

1. Place the cursor on a sort column and select Edit from the Report Layout
menu.

The BreakOptions operation appears on the Edit submenu only if the
column you select is a sort column.

2. Select BreakOptions from the Edit submenu.

If the selected sort column is in the Detail section of the report, the Break
Column Output Options pop-up appears.

Editing Column Break Options

8–32 Character-based Querying and Reporting Tools User Guide

If the selected sort column is in another section of the report, the Break
Column Output Options appears.

3. Specify the report’s break column options, as described in the following
table:

Option Description

Always To print a sort column value always, type yes
(or y) in this field.

If you enter yes in this field, RBF automatically
changes the values in the On breaks and On page
breaks fields to NO.

On breaks To print a sort column value when it changes only,
type yes (or y) in this field.

If you choose to print on breaks and the report
does not have a break header for the sort column,
RBF creates one.

Moving Report Components

Chapter 8: Working with RBF Report Specifications 8–33

Option Description

On page breaks To print a sort column value when a new page is
printed, type yes (or y) in this field.

If you choose to print on page breaks and the
report does not have a page header, RBF creates
one.

Do you want a new
page on each break in
the value of this
column?

To start a new page each time the sort column
value changes, type yes in this field.

If you enter yes and the report does not have a
break footer, RBF creates one.

4. Click OK to return to the Report Layout frame.

Moving Report Components
Use the Move operation to move:

 Trim, columns, aggregates, and headings

 Straight edge alignment guides

 Report’s right and bottom margins

Note these restrictions:

 You can only move aggregates to report, page, or break footer sections.

 The Column operation, which enables you to move columns and their
associated headings together, is not available for Labels reports (you must
move columns and column headings separately).

You move the straight edge alignment guides exactly as you do a piece of
trim, except that none of the other report components move. The alignment
guides can appear superimposed upon other report components.

Moving Trim, Columns, Aggregates, and Headings

To move trim, columns, aggregates, and headings:

1. Use the arrow keys or your mouse to position the cursor on and select the
component you wish to move. You can place the cursor anywhere on the
component.

2. Choose the Move operation from the Report Layout frame menu.

The component is highlighted in inverse or blinking video if your terminal
is capable of doing so.

Moving Report Components

8–34 Character-based Querying and Reporting Tools User Guide

3. Position the cursor at the new location, if appropriate. Then choose one of
the operations on the Move submenu.

The following table describes the Move submenu operations:

Operation Description

Place Moves the selected component to a position indicated by the
cursor. Before choosing this operation, position the cursor at the
desired location. For more information, see Place and Shift
Operations.

Left Moves the selected component to the current left margin of the
report layout, on the indicated line.

Center Moves the selected component to the center of the indicated
line, as defined by the report’s current margins.

Right Moves the selected component to the current right margin of the
report layout, on the indicated line.

Shift Moves the selected component to a position indicated by the
cursor, shifting other components to the right. Before choosing
this operation, position the cursor at the desired location. For
more information, see Place and Shift Operations.

Column This operation appears after you place the cursor on a column,
aggregate, or heading. It instructs RBF to move the column or
aggregate and the associated heading as a unit.

After choosing the Column operation, choose one of the other
move operations to move both the column or aggregate and the
associated heading. If you do not choose the Column operation,
you must move columns or aggregates and the associated
headings separately.

This operation is not available for Labels reports. In Labels
reports, you are required to move columns and column headings
separately.

Help, End These are standard operations.

Place and Shift Operations

The Place and Shift operations allow you to move a component to a specified
location, even if it is on another line. Before choosing either of these
operations, you must place the cursor where you want to move the
component. The location of the cursor marks where the first (leftmost)
character of the component is placed.

Moving Report Components

Chapter 8: Working with RBF Report Specifications 8–35

If the new location for the component does not affect any other component,
there is no difference between the Place and Shift operations. However, if the
new location causes the relocated component to overlap another component,
Place and Shift handle the situation differently.

Operation Description

Place Pushes the other component to the right. If there is not enough
space for the pushed component to fit without overlapping
additional components, the pushed component is dropped down
one line. Thus, the Place operation affects only two components:
the moved component and the component pushed out of the
way.

Shift Pushes the other component to the right. If there is not enough
space for the pushed component to fit without overlapping
additional components, the additional components are also
pushed to the right to make room. If all the components cannot
fit on a line, some components are forced down to the next line.
A Shift operation can affect all components to the right of the
moved components’ new location.

Centering The Center operation positions a report component in the center
of the total report line width (not the width of your screen). If
the report is wider than your screen, the centered component
appears off-center on your screen, but is correctly centered on
the printed report.

You can set report line width when you create the report specification. You can
also use the Move operation to move the right margin, as explained in the
following discussion.

Moving the Report Margins

You can use the Move operation to expand or contract the width or length of
the report by moving the right or bottom margin of the report.

To move a report margin:

1. Place the cursor on the margin line.

2. Select the Move operation from the Report Layout frame menu. The
following submenu appears:

Specifying Report Options

8–36 Character-based Querying and Reporting Tools User Guide

Operation Description

Place Places the selected boundary at the cursor position. If
this causes overlap with other form components, the
boundary is placed as close to the last component as
possible.

Expand Expands the form by a quarter of a display screen either
to the right (if you are moving the right border) or down
(if you are moving the bottom of the form).

Help, End These are standard operations.

3. To narrow the width or length of the report, position the cursor at the
location where you want the new margin to be and choose the Place
operation.

The margin moves left or up to the cursor location.

To expand the width or length of the report, choose the Expand operation.
The Expand operation moves the right margin to the right by one quarter
of your screen width. Expand moves the bottom margin down by one
quarter of your screen’s height. Each time you choose Expand, the margin
expands by one quarter of your screen width or height.

RBF defines the width of a report in number of characters across the page,
not in inches, centimeters, or picas. The actual width in inches of a report
printed on paper can vary from printer to printer, depending on the size of
the characters that the printer uses.

Specifying Report Options
The Report Options frame allows you to specify output options that apply to
the report as a whole. With the Report Options frame you can specify:

 Page length in number of lines

 Character to be used for underlining

 When and where to use underlining

 Whether to insert form feeds

 How to display null values

 Whether to print the page header on the first page of the report

To call up the Report Options frame, select the ReportOptions operation from
the Report Layout frame menu.

Specifying Report Options

Chapter 8: Working with RBF Report Specifications 8–37

Because the Report Options frame concerns the report as a whole, cursor
position on the Report Layout frame does not matter.

Page Length

RBF automatically formats reports in numbered pages. A report page length is
determined by its number of lines. RBF uses two different default page
lengths—one for reports displayed on a screen and one for reports sent to a
file or printer:

 Default screen page length equals 20 lines

 Default file or printer page length equals 61 lines

Report page lengths include all report lines, including title, trim, headings,
detail lines, headers, and footers.

You can specify a different page length for a report by moving the cursor to
the Page Length field and entering a new number of lines. The number of lines
you enter here is applied to reports displayed on your screen as well as reports
sent to a file. If you leave this field blank, the defaults are 20 lines when the
report is written to a screen and 61 when the report is sent to a file or printer.
To suppress all pagination (that is, to eliminate all breaks), enter a zero (0) in
this field.

Most printers print six lines to the vertical inch. Some printers print eight lines
per inch and some can be set to a variable number of lines per inch.

Specifying Report Options

8–38 Character-based Querying and Reporting Tools User Guide

Underlining

The Report Options frame allows you to determine how you want to use
underlining in reports written to a file or printer. Underlining is suppressed
when the report appears on your screen.

The default underlining character for reports sent to files or printers is the
underscore (_). To specify a different character, such as a hyphen (-), enter it
in the Underlining Character field.

Use the table field at the bottom of the Report Options frame to determine
how you want to apply underlining to different types of text elements in the
report. To specify how many lines of a particular report section must be
underlined, move the cursor to the appropriate field and enter one of the
codes listed in the following table:

Option Action

all (or a) Underline all lines of text in the layout area

last (or l) Underline only the last line of text in the report section

none (or n) Underline nothing

The default is to underline the last line in the:

 Report header (for all reports)

 Page header (for Tabular and Wrap reports only)

There is no default underlining for newly created sections.

When you are satisfied with your specifications on this frame, select the End
operation to return to the Report Catalog frame.

Page Header on First Page

If your report has a page header, it appears on the second and subsequent
pages of the report. To print the page header on the first page of the report,
type yes (or y) in the Print Page Header field.

Display of Null Values

The Display Null Values field allows you to specify how your report presents
null values. Depending on the data definition of the underlying table, a null
value can be left blank or printed as some special value.

Specifying Report Options

Chapter 8: Working with RBF Report Specifications 8–39

The default is to simply leave null values as blanks on the report. However,
you can use this field to specify some other value. For example, you can
specify that null values appear on the report as NA, Not Available, or To Be
Determined.

Form Feeds

Form feeds are commands sent to the printer telling the printer to advance to
the next piece of paper when a report page is finished. In a report file, a form
feed is usually indicated by Control-L.

By including form feeds in your report specification, you ensure that each new
page of the report begins on a new piece of paper, even if the number of lines
specified for the report page is not the same as the number of lines the printer
can put on a page. The default is to include form feeds in the report
specification. You can change this by entering n (no) in the Insert Formfeeds
field.

If you include form feeds, you can also specify whether to print the first form
feed. This initial form feed occurs at the start of the report before the first
page has been printed. The default is yes. Enter n (no) in the Print First
Formfeed field to suppress the initial form feed.

Date, Time, and Page Components

You can choose whether to print the date, time, and page number on the
pages of your report. By default, these components print in the following
positions on each and every page of the report:

 Date in upper left corner

 Time in upper right corner

 Page number centered at the bottom of page

You cannot change the print position of the page number, but you can reverse
the date and time or print both in the upper left or upper right corners by
using certain date and time formats, as described later in this section.

You can print or suppress each component independently of the others. The
default for each component is yes. Enter n (no) in the Include in Report field
for any component to omit it from your report.

Specifying Report Options

8–40 Character-based Querying and Reporting Tools User Guide

For each component included in the report, you can specify a print format as
indicated in the following table:

Report Component Format

Date Date and/or time format, or a character format
(cannot be a multi-line character format).

Time Date and/or time format, or a character format
(cannot be a multi-line character format).

Page Numeric format or template. You can include
characters such as hyphens or parentheses if you
dereference each one by preceding it with a
backslash (\).

The Date and Time components both contain the same data value, which
actually includes both a date and a time value. Therefore, when specifying a
date template for the Date or Time components, you can use either or both
the date and time designations. The portion of the date and time string used in
your template determines whether the date, time, or both appear in that
component’s location on the page. For instance, specifying d'16:05:06' for the
Date component and d'03-feb-1901' for the Time component prints the time in
the upper left corner (where the Date component would ordinarily print) and
the date in the upper right corner (where the Time component would ordinarily
print).

Specifying c25 for a Date or Time component displays the component as
dd-mmm-yyyy hh:mm:ss, which is equivalent to the date template, d'03-feb-
1901 16:05:06'. You cannot specify a multi-line character format such as
c30.5, cj30.15, or cf30.6 for the Date and Time components.

Component Format Sample Result

Date d'03-Feb-1901' 12-Sep-1993

 d'03-Feb-1901 16:05:06' 12-Sep-1993 17:07:55

 d'04:05:06 PM' 05:07:55 PM

 d'2/3/1' 9/12/93

 d'02/03/01' 09/12/93

 d'February' September

 d'010203' 930912

Time d'04:05:06 PM' 05:07:55 PM

 d'16:05:06' 17:07:55

 d'03-Feb-1901 16:05:06' 14-Sep-1993 17:07:55

Obtaining the Name of a Column

Chapter 8: Working with RBF Report Specifications 8–41

Component Format Sample Result

 d'03-Feb-1901' 14-Sep-1993

Page '\P\a\g\e zzz' Page 123

 'nnnnn' 00123

Obtaining the Name of a Column
The Report Layout frame does not automatically display the names of the
columns for the data fields in your report specification. It shows the data fields
only as lines and letters or symbols that indicate the maximum length and
data type of the data to be included in your report. The column headings
shown in the trim line can differ from the actual database table column names.

Use the Name operation Report Layout frame to display column represented
by a field in the Detail section of your report specification, as follows:

1. Place the cursor on a field in the Detail section of your report specification.

2. Choose the Name operation.

RBF displays the name of the database column at the bottom of the screen.
The following figure shows the actual column name, title, for the second
column in the Detail section, whose trim heading is Position.

Undoing Edits

8–42 Character-based Querying and Reporting Tools User Guide

Undoing Edits
You can reverse the effects of a Create, Delete, Edit, or Move operation by
choosing the Undo operation. Undo cancels the immediately preceding
operation, including another Undo operation. The report specification reverts
to its original state before the operation.

Undo only reverses the last operation. Undo has no effect on the
ReportOptions, ColumnOptions, BreakOptions, Save, or Layout operations.

Saving a Report Specification
You use the Save operation to save your report specification in RBF after
creating it or to save any changes you made while editing it.

The Save operation appears on the Report Layout frame, as well as on other
RBF frames and pop-up menus. When you choose the Save operation from any
frame, RBF displays either the Save Report frame or the Save submenu.

The Save Report frame, as shown in the following figure, allows you to edit the
report name or other general information about the report, such as a brief
description in the Long or Short Remarks field. This is the same information
that appears whenever you select the MoreInfo operation on the Report
Catalog frame. If you are creating a new report specification, RBF always
displays the Save Report frame.

If you are editing an existing report, RBF displays the Save submenu with the
following operations:

Operation Description

EditInfo Displays the Save Report frame so you can edit the name or
other information displayed on the Report MoreInfo frame.

Save Saves the report specification under its existing name.

Cancel Returns you to the previous frame.

Note: Report specifications created for this release of Ingres cannot be edited
or run in earlier releases of Ingres, due to changes in the underlying table
name formats.

Save Report Frame

The following figure shows an example of a Save Report frame.

Saving a Report Specification

Chapter 8: Working with RBF Report Specifications 8–43

The following table lists the fields contained in the Save Report frame:

Field Description

Name Name of the report. A newly created report
specification initially has the same name as the table,
view, or JoinDef on which it is based. Whenever you
change the name in this field, you create a new report
under the new name that includes all your changes.
The old report, under its old name, is left unchanged.
If you save a report without changing its name, your
changes are incorporated and the old version is
eliminated.

Created Display-only field giving the date and time the report
was created. If you are saving a report for the first
time, this field is blank.

Owner Display-only field identifying the owner of the report
specification. If you copy a report owned by the DBA,
your name is entered as the owner of the newly saved
report.

Modified Display-only field showing the last date and time the
report specification was saved. If you are saving a
new report specification for the first time, this field is
blank.

Short Remark Short description of the report specification. The
description you enter here is displayed on the Report
Catalog frame.

Long Remark Long description of the report specification. The long
description you enter here is displayed in the More
Information about a Report frame when you choose
MoreInfo from the Report Catalog frame.

Saving a Report Specification

8–44 Character-based Querying and Reporting Tools User Guide

Field Description

Data Table Name of the table, view, or JoinDef on which the
report specification is based. Do not change the Data
Table name to the name of a table, view, or JoinDef
that does not contain the same columns as the one on
which the report was originally based. If you do this,
the report cannot run and you cannot be able to use
RBF to edit the report specification or correct the Data
Table name.

Query Language Query language you want to use in retrieving the data
for the report (if your installation supports more than
one database language). If RBF has predetermined
the appropriate query language, you cannot be able to
edit this field.

The database language specified here is the one that
is used when the report specification is written into
the database. Additionally, if you write the report
specification into a text file with the Archive operation,
any .query statement generated by that operation is
written in the database language specified here.

Specify SQL as the query language if your report is
based on any of the following:

- JoinDef

- Table owned by a user other than yourself or the
DBA

- Table, column, or correlation name that is a
delimited identifier

For additional information, see Archiving a Report
Definition.

The following table lists the menu operations you can choose on the Save
Report frame:

Operation Function

Save Saves the report specification in the database with the
specified report name; then returns to the Report Layout
frame. You can select Save as often as you want during the
process of editing a report specification.

Cancel Resets all field values in this frame to the original values and
returns to the Report Layout frame without saving the
current edits.

Help Standard operation.

Saving a Report Specification

Chapter 8: Working with RBF Report Specifications 8–45

Using the Save Operation

To save a report specification using the Save operation on the Save Report
frame:

1. Choose the Save operation from any RBF frame. If the Save submenu
appears, choose the EditInfo operation.

RBF displays the Save Report frame, as shown in the preceding figure.

2. Make any changes to the report information displayed in the Save Report
frame.

3. Select the Save operation.

A message near the bottom of the frame indicates that RBF is copying the
edited report specification into the database, with the specified report and
table names.

If you decide you are not ready to save the specification, select the Cancel
operation instead.

When you select either Save or Cancel, RBF returns you to the Report
Layout frame.

4. Continue editing the report specification, or select End to exit the frame
and return to the Reports Catalog frame, or Quit to terminate your RBF
session.

Save Report Pop-up

If you select the End or Quit operations on an RBF frame without first saving
the report specification, RBF displays the Save Changes to Report pop-up,
shown in the following figure. Select Yes to save the report specification or No
to end without saving the specification.

Archiving a Report Definition

8–46 Character-based Querying and Reporting Tools User Guide

Archiving a Report Definition
Use the Archive operation to make a text file copy of a RBF report specification
that you can edit with a word processor or text editor. This allows you to use
Report-Writer to add sophisticated data selection and formatting commands
that are beyond the capabilities of RBF. You use the sreport command to save
the edited report specification text file. Once saved, the report specification
can be run at any time with the report command or the RBF Go operation to
produce the report.

After saving a report specification with sreport, you cannot edit it from RBF. A
report specification saved with sreport appears as a report title in the RBF
Report Catalog frame, and you can run the report by placing the cursor on it
and selecting the Go operation. However, if you choose the MoreInfo operation
for a report saved with sreport, you can see that the RBF Editable Field? has
been set to NO.

Using the Archive Operation

To archive a saved report specification:

1. On the Report Catalog frame, place the cursor over the name of the report
specification that you want to archive.

2. Choose the Utilities operation.

3. From the Utilities submenu, choose Archive. The Archiving a Report pop-
up appears.

4. In the File Name field, enter a file name for the report specification text
file.

The Archive operation automatically adds .rw to the end of the file name you
specify (unless you add your own extension). For example, if you entered the
file name staffprojects, the archived file has the name, staffprojects.rw.

Archiving a Report Definition

Chapter 8: Working with RBF Report Specifications 8–47

Comment Blocks in Archived Reports

RBF generates certain comment blocks in the report specification file. They are
the width comment block, JoinDef comment block, and union select comment
block. Comment blocks are visible when a report is archived or copied with the
copyrep command.

Do not modify comment blocks in RBF reports. Changing a comment block can
make the report unusable by RBF, sreport, and Report-Writer. If the report
specification file has been archived, you can replace certain comment blocks
with Report-Writer statements, if appropriate, as noted in the following
subsections.

Width Comment Block

Following is an example of a width comment block:

/* WIDTH 148
DO NOT MODIFY. DOING SO MAY CAUSE REPORT TO BE
 UNUSABLE.
 */

This comment block, which saves the report width, is generated for all RBF
reports. If the report is archived and you want to override its width by using
the .pagewidth Report-Writer statement, delete all three comment lines. For
additional information, see the chapter "Report-Writer Statements."

JoinDef Comment Block

The following is an example of a JoinDef comment block:

/*
DO NOT MODIFY. DOING SO MAY CAUSE REPORT TO BE
 UNUSABLE.
 *
* md
*/

RBF generates the JoinDef comment block for JoinDef reports only. You cannot
modify or delete this comment block.

Copying Report Specifications

8–48 Character-based Querying and Reporting Tools User Guide

Union Select Comment Block

The following is an example of a union select comment block:

/*
DO NOT MODIFY. DOING SO MAY CAUSE REPORT TO BE
 UNUSABLE.
*
The union clause is commented out because a selection
 criteria on a detail table is specified.
*/
/*
union select poheader.orderno, poheader.orddate,
 poheader.vendorno, poheader.invoiceno,
 poheader.status,'' as partno,' ' as qty,
 ' ' as unit_pr,' ' as unit_pr, ' ' as det_tot
 from poheader poheader where not exists(select *
 from podettot podettot podettot.orderno '$det_tot'))
*/

RBF generates the union select comment block for Master/Detail JoinDef
reports that have a selection criteria on a column in a detail table. You must
not modify or delete this comment block.

Copying Report Specifications
You can copy a report specification by using one of the following techniques:

 Create a report based on an existing report.

 Change the report specification name when saving it.

To create a report based on an existing report, choose the Duplicate option on
the Creating a Report pop-up menu on the Report Catalog frame. For more
information, see Creating a Default Report Specification.

To save an existing report specification to a new file with a new report
specification name, edit the name on the Save Report frame. If you have
already saved the report specification under its current name, changing the
name before re-saving causes RBF to save a duplicate copy under the new
name. For more information, see Saving a Report Specification.

You can also use the copyrep and sreport commands on the operating system
command line to copy a report specification out of one database and into
another. However, the sreport command saves the copied report specification
for use with Report-Writer only, and the report cannot be edited with RBF.

Deleting a Report Specification

Chapter 8: Working with RBF Report Specifications 8–49

Deleting a Report Specification
You use the delobj command on the operating system command line to delete
a report specification. With this command, you can delete a:

 Named report

 List of reports that you specify on the command line

 Several reports whose names are listed in a file

 All reports that match a wild card specification

You can also use the delobj command to delete other database objects.

Chapter 9: Producing a RBF Report 9–1

Chapter 9: Producing a RBF Report

You can produce reports:

 With the RBF Preview operation

 By running a report specification from RBF

 By issuing the report command from the operating system

This chapter provides instructions for using the Preview operation and for
running a report specification from RBF. Additionally, it:

 Describes report destinations

 Provides instructions for running a report in the background, which allows
you to continue to work in RBF while your report runs

 Tells you how to view reports on a screen and send reports to a file or
printer

For instructions on using the report command to run a report specification, see
the chapter “Using System Commands in the Forms-based Tools.”

Report Destinations
You can send a report to the following destinations:

 Default

 File

 Printer

The default destination can be a file or your screen. If the report specification
contains an .output statement, choosing the default destination causes RBF to
send the report to the file specified in the statement. Otherwise, RBF sends
the report to the screen. Only report definitions created or modified with
Report-Writer statements and saved with sreport can contain .output
statements.

After sending a report to a screen, you can:

 Send the report to a file

 Send the report to a printer

 Use the Forms Runtime System (FRS) printscreen command key to send
the currently displayed form to a file or printer

Background Mode

9–2 Character-based Querying and Reporting Tools User Guide

For additional information, see Sending a Report to and from a Screen.

If you choose the File destination, RBF sends the report to a file whose name
you provide. If the report specification contains an .output statement, as
previously described, the file name you provide overrides the file name in the
statement.

If you choose the Printer destination, RBF sends the report directly to a printer
(either the default printer or a printer whose name you provide). If the report
specification contains an .output statement, as previously described, RBF also
sends the report to the file named in the statement.

Background Mode

VMS

If you send your report to a file or printer, you can either wait or not wait for it
to finish running (the default is to wait). If you do not wait, you can continue
using RBF while your report is running. The choice not to wait is sometimes
referred to as running a report in the background or running in batch.

RBF submits the report to the batch queue, SYS$BATCH. Be sure that your
login.com file sets up your environment to run Ingres, because it is executed
at the start of the batch job to run the report.

Report Log

RBF logs all report statistics and errors, if any, in a report log. Because all
report errors go to this log file, we recommend that you do not run reports still
under development in the background. By default, RBF creates the report log
in the following directory:

Windows

Your working directory.

UNIX

Your working directory.

VMS

Your home directory.

Producing a Preview Report

Chapter 9: Producing a RBF Report 9–3

Specifying Report Variables

When running a report in the background, RBF prompts you to enter values for
the report’s declared variables or runtime selection criteria, if any, before
sending the report to a file or printer. If the report was saved with the sreport
command, the variables must have been declared with prompt. Specify values
for these variables on the Declared Variables frame (in the following figure),
which contains a prompt for each variable. The prompt can be up to 98
characters long, but only 31 characters are displayed. To see the entire
prompt, use the FullPrompt operation.

To specify the values:

1. Enter the value in the field beside the prompt.

2. Select the OK operation.

Producing a Preview Report
Use the Preview operation to produce a report on any table, view, or JoinDef.
The Preview operation produces a report directly from the selected table or
view; it does not produce a report specification.

To run a preview report:

1. Choose the Preview operation from the Report Catalog frame.

2. When the Run a Report Based on a Table pop-up appears (in the following
figure), enter the name of the table, view, or JoinDef for which you want a
report and select the OK operation.

Producing a Preview Report

9–4 Character-based Querying and Reporting Tools User Guide

3. The Choose a Report Style pop-up appears.

Place the cursor on the desired report style and choose the Select
operation. You can choose:

– Tabular

– Wrap

– Block

 The Master/Detail, Label, and Indented report styles are not available for
Preview reports.

4. When the Select a Destination pop-up appears, place the cursor on the
desired destination and choose the Select operation. You can choose:

– Default—The report appears on your screen. See Sending a Report to
and from a Screen.

– File—If you choose File, see Sending a Report Directly to a File for
additional instructions.

– Printer—If you choose Printer, see Sending a Report Directly to a
Printer for additional instructions.

Sending a Report to and from a Screen

Chapter 9: Producing a RBF Report 9–5

Producing a Report from a Report Specification

To use a report specification to produce a report from RBF:

1. Go to the Report Catalog frame and position the cursor on the name of the
report specification that you want to run. RBF displays the Select a
Destination pop-up.

2. Place the cursor on the desired destination and choose the Select
operation. You can choose:

– Default—If you choose Default, the report either appears on your
screen or is sent to a file, as described previously in Report
Destinations.

– File—If you choose File, see Sending a Report Directly to a File for
additional instructions.

– Printer—If you choose Printer, see Sending a Report Directly to a
Printer for additional instructions.

Sending a Report to and from a Screen
When you send a report to your screen, RBF displays the first page of the
report (in the following figure). If the report contains more than a single page,
you can scroll through the report by using the ScrollUp, ScrollDown, ScrollLeft,
and ScrollRight keys.

Sending a Report to and from a Screen

9–6 Character-based Querying and Reporting Tools User Guide

The report screen contains the following menu operations:

Field Descriptions

Print Sends the report to a printer.

File Sends the report to a file.

Help, End Standard operations.

After sending a report to a screen, you can:

 Use the Print operation to send the report to a printer. For instructions,
see Sending Reports from a Screen to a Printer)

 Use the File operation to send the report to a file. For instructions, see
Sending Reports from a Screen to a File.

 Use the FRS printscreen command to send the currently displayed form to
a file or printer. For instructions, see Printing and Redrawing the Screen.

When sending a report from the screen to a file or printer, you can send the
entire report or only the executed portion. The executed portion is the portion
that you have viewed on your screen.

If you send a report from a screen to a file or printer, RBF formats the report
to 20 lines per page. To format the report to 61 lines per page, send the
report directly to a printer or file, as explained in Sending a Report Directly to
a File and Sending a Report Directly to a Printer.

Sending a Report to and from a Screen

Chapter 9: Producing a RBF Report 9–7

Sending Reports from a Screen to a File

To send a report from your screen to a file:

1. Select the File operation from the report menu. The Sending a Report to a
File pop-up appears.

2. In the File Name field, enter the name of the file to which you want to
send the report.

 You can enter a file name or full file name specification. If you enter a file
name only, RBF sends the report to your working directory.

3. To file the entire report, choose the OK operation. (If you have not run the
report to completion, RBF executes the entire report before sending it to
the file.)

 To file the executed portion of the report only, choose the FilePartial
operation.

Sending a Report to and from a Screen

9–8 Character-based Querying and Reporting Tools User Guide

Sending Reports from a Screen to a Printer

To send a report from a screen to a printer:

1. Select the Print operation from the report menu.

 The Sending a Report to a Printer pop-up appears.

2. To send the report to a printer other than the default, type the printer
name in the Printer field.

 To send the report to the default printer, tab past this field. The default is
to send the report to the default printer, which is determined by the
system administrator.

3. In the Copies field, type the number of copies to print. The default is 1 and
the maximum is 999.

4. In the File Name field, type the name of a temporary file to send the
report to. You can enter a file name or full file name specification. If you
enter a file name only, RBF sends the report to your working directory.

 RBF first sends the report to this file and then sends it to a printer. After
RBF sends the report to the printer, it deletes this file.

5. To print the entire report, choose the OK operation. (If you have not run
the report to completion, RBF executes the entire report before sending it
to the printer.)

To print only the executed portion of the report, choose the PrintPartial
operation.

Sending a Report Directly to a File

Chapter 9: Producing a RBF Report 9–9

Sending a Report Directly to a File
If you send the report directly to a file, RBF displays the Sending a Report to a
File pop-up.

To send a report to a file, complete the fields on this pop-up:

1. In the File Name field, type the name of the file to send the report to. You
can enter a file name or full file name specification. If you enter a file
name only, RBF sends the file to your working directory.

2. To run the report in the background while you continue working in RBF,
type no (or n) in the Wait for Report to Complete field. The default is yes;
that is, wait for the report.

 If you enter NO, the Report Log field appears. Type the name of a file to
receive report statistics and errors. (After the report runs, check this file
for report errors.) If the report has variables, the Declared Variables frame
appears. For instructions, see Background Mode.

Sending a Report Directly to a Printer

9–10 Character-based Querying and Reporting Tools User Guide

Sending a Report Directly to a Printer
If you send the report directly to a printer, RBF displays the Sending a Report
to a Printer pop-up.

To send the report to a printer, complete the fields on this pop-up:

1. To send the report to a printer other than the default printer, type the
printer name in the Printer field. The default is to send the report to the
default printer, which the system administrator determines.

2. Type the number of copies you want to print in the Copies field. The
default is 1 and the maximum is 999.

3. To run the report in the background while you continue working in RBF,
type no (or n) in the Wait for Report to Complete field. The default is yes;
that is, wait for the report.

 If you enter no, the Report Log field appears. Type the name of a file to
receive report statistics and errors. (After the report runs, check this file
for report errors.) If the report has variables, the Declared Variables frame
appears. For instructions, see Background Mode.

Chapter 10: Using Report-Writer 10–1

Chapter 10: Using Report-Writer

This chapter introduces Report-Writer, and describes how it can be used with
RBF. In addition, it provides an overview of the information you must gather
before creating and producing a report. This chapter also discusses report
specifications, initial setup statements, creating reports using variables and
multiple tables, and setting up and printing reports.

What Is Report-Writer?
Report-Writer provides a high-level report language that allows you to quickly
create sophisticated reports without having to write an application program.
With Report-Writer, you can create regular production reports, as well as
special reports for your application, when needed.

Report-Writer contains features and capabilities to create reports that meet
your own special needs. Some broad categories of features include:

 Powerful tools to help you extract the data you want to print

For a simple report, you can easily specify which table to access and how
to sort the information. For a complex report, you can use a database
query to retrieve selected rows of data to be used in the report.

 Support for nulls

Your Report-Writer specifications can include use of logical operators, null
variables, dynamic definition of null strings, and complex null expressions
for specifying how null data is to be reported.

 Complete control over the appearance of the report

You have complete control over the appearance of titles, headings, and
placement of the data on the page. A powerful set of formatting
commands allows you to specify exactly how you want the numbers and
text information to print. Text formatting features include many features
similar to word-processing capabilities, such as centering, justification, and
automatic pagination.

 Powerful arithmetic capabilities

There are many functions to help you compute totals and averages over
ranges of data in your report; many arithmetic functions make almost any
kind of computation possible.

Before Starting Report-Writer

10–2 Character-based Querying and Reporting Tools User Guide

 Expressions and variables for report flexibility

You can customize reports using expressions and variables as arguments
to Report-Writer statements. Users can assign values to variables
interactively by responding to a prompt that you specify.

 Direct running of reports

You can use the report command with appropriate flags to run reports
from a report specification that you saved to a text file or to the database.
Running a report directly from a text file is more efficient for interactive
testing.

 Parameters to dynamically change the report each time it is printed

You can specify ranges of data, table names to operate on, or any other
information at the time the report is run. This allows you to use the same
report formatting commands for many different reports.

Report-Writer and RBF

Report-Writer alone provides a sophisticated language for creating and
customizing reports with detailed formats and multiple data sources. Report-
Writer, used in conjunction with RBF, provides a way for you to create a report
specification in RBF, use its archive operation to save the file as a text file, and
then edit the file to add additional Report-Writer features.

RBF is an interactive, visually oriented, forms-based approach to creating
simple reports. It offers its own default report styles in addition to the ones
available in Report-Writer. In RBF, you can edit the column headings, formats,
aggregates, and other parts of a default report in an on-screen display that
shows the overall layout of your report.

Although RBF is not as flexible as the full Report-Writer formatting language
described in this guide, it is adequate to create your report.

Before Starting Report-Writer
Before creating a report with Report-Writer, you must decide what data and
what kinds of summary information (such as subtotals) you want in your
report and how it is laid out on the printed page (or screen). These factors are
important in determining how the data must be extracted from the database,
how the data must be ordered, and where you must place breaks (logical
divisions between groups of data) in your report. The following sections
discuss data extraction, sorted data, and break actions. For information on
specific statements, see Types of Report Specification Statements in this
chapter or the chapter “Report-Writer Statements.”

Before Starting Report-Writer

Chapter 10: Using Report-Writer 10–3

Obtaining Data for Reports

 Depending on the intended use of the report, obtain the data for your report
in one of three ways:

 Specify a report directly from an existing table (or view) with the .data
statement.

 Specify a query to retrieve a specific subset of the data in the tables each
time the report is run.

 Create one or more temporary tables based on one or more existing
tables.

If you obtain data for your report with the .data statement, Report-Writer
reads all rows and columns in the table each time you run the report.

You can limit the data for the report by specifying conditions in a where clause
in the query. You can also specify a query that contains variables (generally in
the query’s where clause) to be specified each time the report is run.

Another way you can obtain data for the report is to create a temporary table
by specifying a series of query language statements in a .setup section. Create
this section with the optional .setup statement in conjunction with the required
.data or .query statement in your report. The .setup section can also be
customized at runtime, using variables.

Sorted Data

Most reports display sorted data. It is often desirable to sort the data for the
report for the sake of readability and usability. For instance, if you want a list
of employees in order by job title within each department, you must sort the
data in the table. Reports with subtotaling require sorted data. Sorting data is
discussed in more detail in Specifying Sorts and Breaks this chapter.

Breaks

Breaks are divisions between parts of a report (such as page breaks) or
between groups of data in your report (for instance, between data for
Employee 1 and Employee 2). You specify breaks between groups of data by
designating certain columns in a report as break columns. A break occurs
when Report-Writer encounters a change of value in a break column while
reading the data.

Before Starting Report-Writer

10–4 Character-based Querying and Reporting Tools User Guide

You can instruct Report-Writer to perform some action after a break has
occurred by placing formatting instructions, called break actions, in a header
or footer section associated with the break column. For example, you can
instruct Report-Writer to print heading information for the next group of data
rows, print summary information for the data rows associated with the last
break column value, or skip to a new page and print a page header.

Automatic Report Breaks

When running a report, several types of breaks occur automatically:

 Start-of-report (report header)—When the report begins, a
start-of-report (or report header) break occurs. This break can be thought
of as a change of value from no data to some data. Use this break to
specify titles and other heading information that appears once at the top of
the report.

 End-of-report (report footer)—When the report finishes, an
end-of-report (or report footer) break occurs. This break can be thought of
as the change from some data to no data. Use this break to specify
information that is only printed once, at the end of the report, such as
grand totals, footnotes, and so forth.

 Detail—When each data row is read by the report, a detail break occurs.
For the detail break, detailed printing of data items is most commonly
specified.

Page Breaks

You can also specify break actions to occur at the top and bottom of pages.
Page breaks occur when the report comes within a specified number of lines at
the end of the page. You can define the page size to fit your needs, or specify
a page footer to be printed at the page break, followed by a page header at
the top of the next page. You might want to print page numbers, the current
date or time, values of data items currently being processed by the report, or
any number of other items.

Headers and Footers

Headers and footers are sections of your report code where you put
instructions to tell Report-Writer what actions it must perform at the break for
that part of the report.

You can specify headers and footers for the report itself, for page breaks, and
for those columns you have designated as break columns. The page header
appears at the top of each page, except the first. The only header you can
specify at the top of the first page is the report header.

Producing a Report

Chapter 10: Using Report-Writer 10–5

If you specify break columns, the header section is executed each time the
column value changes, and the footer section is executed before the new value
of the column is retrieved.

Report-Writer performs the specified footer actions after it has processed all
rows in a group of data (indicated by the break designation). For instance, you
can specify a footer action to occur after Report-Writer has read all rows for
the entire report, all rows which can fit on a page, or all rows having the same
value in the specified break column.

The footer section often contains instructions for calculating and printing
subtotals or other summary information at the designated break. The special
functions used to calculate this information are called set functions or
aggregates, which you specify in print statements. A header action, if
specified, can occur at the start of the report, at the start of a new page, or
before the next group of data is processed.

You can specify both footer and header actions to occur in response to a
change of value in a break column. Report-Writer performs the footer actions
on the previous group of data rows and the header actions for the group yet to
come. At the end of the report, however, Report-Writer performs only footer
actions, because there is no more data. Similarly, at the start of the report, a
break in each of the break columns occurs and Report-Writer can perform
header actions for each of the major to minor break columns. However,
because there is no previous group of data, footer actions are not relevant.

Detail Section

Detail instructions are Report-Writer statements that format, position, and
print a row of data retrieved from the data table. The detail instructions are
grouped together in a detail section.

Producing a Report
The following steps are required to produce a report with Report-Writer. These
steps are described in detail in the sections below.

1. Create the report specification by entering your Report-Writer statements
in a text file.

2. Save the resulting text file, or store the report specification in the
database using the sreport command.

3. Execute the report using the report command.

Producing a Report

10–6 Character-based Querying and Reporting Tools User Guide

Creating a Specification

The report specification is a text file consisting of Report-Writer statements
that define the content and format of your report. You can create a report
specification in one of the following ways:

 Create Report-Writer source code from scratch in a text file using any text
editor and the language described in this guide.

 Use RBF to create a default report based on available default styles and
the table or view of your choice; then edit the report in Report-Writer, if
necessary.

Use the RBF Archive operation to save a RBF default report specification as a
text file that you can edit in Report-Writer. The Archive operation allows you to
choose a name for the text file. You can then edit the file to customize the
report to your needs by adding or deleting Report-Writer statements.

Note: Once a RBF report specification has been archived for use with Report-
Writer and stored in the database with the sreport command, the report
specification can no longer be edited in RBF.

Saving the Report Specification

The sreport report specifier command is used to compile and store the report
specification in the database. The sreport command reads the text file
containing your report specification statements, which are described in this
document, and performs the following tasks:

 Performs rudimentary syntax checking

 Loads the report specifications into your Ingres database from your base
text file, including any additional Report-Writer code in files specified in
.include statements

Note: If your database and database server reside on another system
called the remote host, whenever you specify a database, indicate the
v_node (virtual node) name of the remote host.

 Enters the report name in the Reports Catalog

If a report of the same name does not already exist in the Reports Catalog,
sreport adds the specification into the database. If a report with the specified
name already exists, sreport replaces the old report specification with the new
one. The sreport command only adds or replaces a report if it detects no
errors.

After you have stored a report specification with sreport, it appears in the RBF
Report Catalog frame under the report name in your specification. You can run
the report from RBF to produce it, but it cannot be edited from RBF.

Producing a Report

Chapter 10: Using Report-Writer 10–7

Note: The sreport command compiles and stores a report for later use—it does
not actually run it. You execute a report with the report command. If you
want, you can execute a report directly from a text file without compiling and
saving it to the database. For details, see the following section.

Executing the Report Specification

After you have successfully stored the report, you can run Report-Writer using
the report command to create the desired output. Or, if you choose to run the
report without compiling and storing the specification, you can use the report
command with the -i parameter to read the report specification directly from a
text file.

Executing a report directly from a text file is useful if you are testing the report
for content and appearance and do not want to save the specification until it
meets your standards. However, once you are satisfied with the report, you
must store the specification in the database, using the sreport command.

After a satisfactory specification has been stored in the database, execute the
report command each time you want to produce a new report. You need not
execute sreport before issuing the report command, unless you modify the
report specification.

Executing the report command performs the following tasks:

 Loads the report specification by reading in the report specification created
by RBF or stored by an sreport command and performing additional error
checking

 Runs the database query to extract the data (if specified)

 Writes the formatted report either to a file, to your screen, or sends the
output to a printer

The report command offers the option of producing a default report from a
specified table or view name. You can specify one of three available styles as
the format for the default report. The three available styles are:

 Wrap

 Tabular (also known as column)

 Block

Specifying Report Specifications

10–8 Character-based Querying and Reporting Tools User Guide

The wrap style lists the data in columns across the page, with column
headings at the tops of the pages. For tables with too many columns to fit
across the page, Report-Writer calculates a convenient place to wrap the
remaining column headings or entries to the next line, directly beneath the
first line of headings or entries. In this style of report, the column entries for a
single record (row) can be displayed on consecutive rows of the report, with
data in columns from the far right of a table wrapped beneath data in the
initial columns.

The tabular style, like the wrap style, also lists the data in columns across the
page, with column headings at the top of the page. However, depending on
your output device, Report-Writer either truncates lines wider than the page or
wraps them around to the next line.

The block style lists data without column headings, preceding each data value
with the name of the column from which it comes and organizing the columns
into blocks of data for each record.

If you do not specify a report style with the table or view name, Report-Writer
chooses as the default style either the tabular (column) or block style,
whichever is best suited for the report. Additional styles are also available
through RBF.

Specifying Report Specifications
To specify a report, you must create a text file containing report formatting
and structure statements. These statements define the data to be reported,
the order of the data, the page layout, explanatory text to be inserted in the
report, and the position and format of titles and data items.

Before developing your report specifications, you must know how you want the
finished report to look. Consider some of the following issues:

 What data is needed from your database to create the report?

If you must run a database query to get the data, design the query and
run it from a terminal monitor to make sure it retrieves the desired data.

 How do you want the data sorted?

If you want headings or footings for subgroups of your data, the data must
be sorted on the columns that define the subgroups. You must choose the
sort.

 What do you want the various headers and footers to look like?

Decide whether you want titles, subtotals, or other aggregates, extra
blank lines, or other types of headers or footers in your report. Sketch the
report layout on a piece of paper to see how it looks.

Specifying Report Specifications

Chapter 10: Using Report-Writer 10–9

 What information must be printed for each specific data row of the report,
and in what format must the information appear?

For numbers, you must think about the number of significant digits to
print, and the number of decimal places.

 What kind of page headers and footers do you want?

Types of Report Specification Statements

The following sections give a quick summary of the report statements,
grouped by function for easier reference.

Report Setup Statements

Statements for setting up the overall report environment:

 The .name statement names the report.

 The .delimitedidentifier statement enables recognition of delimited
identifiers for table, view, user, and column names in report specifications.

 The .setup/.cleanup statements perform data preparation and cleanup
tasks (specified through query language statements). The .setup tasks
occur before processing the query, whereas .cleanup tasks occur after
processing the query, but just before exiting the report.

 The .shortremark statement allows you to provide a brief description about
the report. This information is included in the Reports Catalog and the
Save window in RBF.

 The .longremark and .endremarkstatements allow you to enter a large
amount of descriptive text to describe the report specification. This text is
displayed in the RBF Save window and on the Reports Catalog frame in
RBF when you choose the MoreInfo operation.

 Comments can be placed in the text file of report specifications if preceded
with /* and followed with */. Comments are ignored in report processing.

 The .output statement sets up an external file to receive the report output.

 The .data or .query statements define the data to be used by the report
output.

 The .sort statement defines the sort order of the data for the report.

 The .break statement specifies the break columns for the report and the
order in which to process occurrences of breaks.

 The .declare statement declares variables to be a given data type and
allows definition of a prompt string or value string if required for that
variable.

Specifying Report Specifications

10–10 Character-based Querying and Reporting Tools User Guide

 The .include statement specifies the inclusion of Report-Writer code
residing in different files, and is executed when you run the sreport
command to store the report specification.

 The .cleanup statement performs initialization tasks, (specified through
query language statements) just before exiting the report.

Page Layout and Control Statements

You can specify the layout of report pages with the following statements:

 The .pagelength statement defines the page length, in lines.

 The .pagewidth statement defines the page width, in characters.

 The .formfeeds statement instructs Report-Writer to insert formfeed
characters to force a page break at the start of the report and at the end
of each page.

 The .noformfeeds statement suppresses the addition of formfeed
characters to the end of pages in the report.

 The .leftmargin statement sets up a left margin as the default start of all
new lines and for use with the .left and the .center statements.

If the left margin is not explicitly specified, Report-Writer determines this
default automatically from an analysis of the other report formatting
statements. For more information, see Automatic Determination of Default
Settings in this chapter.

 The .rightmargin statement sets the right margin of the report for use with
the .right and the .center statements.

 If the right margin is not explicitly specified, Report-Writer determines this
default automatically from an analysis of the other report formatting
statements. For more information, see Automatic Determination of Default
Settings.

 The .need statement tests for a given number of lines on a page to see if a
page break is appropriate.

 The .newpage statement skips to a new page, and optionally sets a page
number.

Report Structure Statements

Statements used in setting up the structure of the report:

 The .header statement designates a group of formatting statements for
the heading of the report, the page, or one of the break or sort columns.

 The .footer statement designates a group of formatting statements for the
report footer, the page, or one of the break or sort columns.

Specifying Report Specifications

Chapter 10: Using Report-Writer 10–11

 The .detail statement designates a group of formatting statements for
each data row in the report.

Column and Block Statements

You can use column and block statements to set up an explicit print position,
column width, and format for the values contained in the named database
column or for a report block (as defined by a .block statement). For instance,
you can use the .position and .width statements to assign the starting print
position and column width for a column or block, which are used in conjunction
with text positioning statements such as .tab and .right justification. See Text
Positioning Statements. If you do not explicitly specify column print positions,
column widths, and column formats with these statements, then Report-Writer
assigns defaults automatically from an analysis of the other report formatting
statements. See Automatic Determination of Default Settings.

Use the following column and block statements:

 The .format statement explicitly specifies a print format (such as character
string or standard decimal notation) for a column.

 The .tformat statement temporarily changes the print format for a column,
only for the next value to be printed.

This statement is used for such functions as printing a value of a column
on the first line of a page or of a group only, or including a currency
symbol only on the first printing of a column value.

 The .position statement sets up an explicit starting print position for a
column, which can be used with the .tab, .right, .left, or .center
statements.

 The .width statement sets up an explicit width for a column, to be used
with the .right or .center statements.

 The .block and .endblock statements allow you to treat sections of the
report as blocks.

This enables you to refer to positions on previous as well as on subsequent
lines in the report. These statements can be used in conjunction with the
.top and .bottom statements to align blocks of data horizontally adjacent
to each other rather than in vertical sequence.

 The .top statement, used while in block mode, moves the current position
to the top line of the current block.

 The .bottom statement, used while in block mode, moves the current
position to the bottom line of the current block.

 The .within and .endwithin statements allow you to temporarily set the
report margins to the confines of a specific column, using its position and
width.

Specifying Report Specifications

10–12 Character-based Querying and Reporting Tools User Guide

Text Positioning Statements

You can use text positioning statements to specify a print position—absolute or
relative to other positions—for any text to be printed. Most of these
statements also accept the name of a column for which a print position or
column width has been set with the .position or .width statements as value.
See Column and Block Statements.

Use the following text positioning statements:

 The .tab statement tabs to an exact or relative position before continuing
printing.

It can be used with the name of a column to tab to the specified or default
print position for that column.

 The .newline statement prints out the current line and skips to the start of
a new line.

 The .center statement centers text around the center of the page or
around a specified alternate position.

It can be used with the name of a column to center the text within the
specified or default margins for that column.

 The .right statement right justifies text to the right margin or to a specified
position.

It can be used with the name of a column to right justify text within the
specified default margins for that column.

 The .left statement left justifies text to the left margin or to a specified
position.

It can be used with the name of a column to left justify text within the
specified or default margins for that column.

 The .lineend statement tabs to the end of the text on the current line
before continuing to print.

 The .linestart statement tabs to the left margin before continuing to print.

Print Statements

Use these statements to print text or data values in a report:

 The .print statement prints text or values at a default position, or at a
position which was previously specified with the column and block and/or
text positioning statements.

 The .nullstring statement specifies a string of characters you want to print
in the report whenever a null value is encountered in the data.

 The .underline and .nounderline statements control underlining for
sections of text.

Specifying Report Specifications

Chapter 10: Using Report-Writer 10–13

 The .ulcharacter statement sets up a different underline character than the
default, for use with Report-Writer underlining statements.

Use an expression in the .print statement syntax to specify the text or value
you want to print. Expressions can include any (or any combination) of the
following:

 Column names from the data retrieval statement

 Variables

 Constants

 Functions

 Aggregates

 Special report variables, such as the current_time, current_date, or
page_number

You can optionally indicate the print format within the syntax of the .print
statement, or you can specify it in a separate .format or .tformat statement
for column values. See Column and Block Statements.

Conditional and Assignment Statements

Use these statements to specify alternative blocks of statements or to assign
values to variables:

 The .if, .then, and .else statements specify alternative blocks of
statements to be executed under specified conditions.

 The .let statement assigns a value to a variable, which can be used in
subsequent computations.

Format of Report Specification Statements

Specify report formatting statements with a keyword proceeded by white
space and a period (.), and optionally followed by parameters. The general
format of a report formatting (specification) statement is:

.statement {parameters}

This table describes the parameters in a report formatting statement:

Parameter Description

statement One of the text formatting statements, such as .data or
.tab. You can specify statements in uppercase, lowercase,
or mixed case letters.

Specifying Report Specifications

10–14 Character-based Querying and Reporting Tools User Guide

Parameter Description

parameters Optional parameters to the statement. Parameters take
many different forms, depending on the specific
statements. In many cases, parameters to the statement
can also be variables and expressions. To obtain the value
of a variable, precede the variable with a dollar sign ($).

Here are some examples of report formatting statements; they include a .tab,
.newline, .header, .println, and a .sort statement:

.tab $first_col

.newline

.header report

.println 'This is the value of:',abc(f10.2),
 ' Sum:',sum(def)
.sort a,b,c

The sample reports in the appendix, “Report-Writer Report Examples”
demonstrate the correct specification of statements.

Statement and Parameter Delimiters

You must precede and follow a report formatting statement with white space,
either by explicitly entering spaces or tabs before and after a statement, or by
using line breaks to separate the statements. White space following a
statement must occur between the statement and any numeric parameter
following the statement, as in:

.pagewidth 80

Lack or incorrect placement of white space statement delimiters can result in
incorrect statement interpretation and could cause an error.

Statements can span any number of lines. Except where otherwise noted,
commas separate multiple values for a parameter within statements, such as
in the .sort or .print statements.

If a parameter is a user name, column name, or table name (including view
names and synonyms), you can delimit it with double quotes (") to include
spaces or other characters that are usually disallowed in these names. For
more information, see Delimited Identifiers in the chapter “Report-Writer
Expressions and Formats.”

Specifying Report Specifications

Chapter 10: Using Report-Writer 10–15

Using Schemas for Owner Qualification

A schema is a collection of database objects, such as tables. Each table, view,
or synonym belongs to a schema that is determined when the object is
created. The schema name corresponds to the user who owns the object. The
schema name helps distinguish between objects with identical names and
different owners.

In report specifications containing a SQL .query or .data statement, you can
qualify a table name, view name, or synonym by specifying the schema to
which it belongs (which also implies its owner), using the following construct:

schema.objectname

This allows you to access a table, view, or synonym owned by a user other
than yourself or the DBA, if you have the correct permissions to access it.

A period (.) must immediately follow the schema name, although white space
following the period is allowed. For example, Report-Writer allows the
following construction:

schema. objectname

Both the schema name and the object name (table name, view name, or
synonym) can be variables or delimited identifiers. A schema.objectname
construct in which both the schema and table name are variables would take
the form:

$schema.$objectname

A schema.objectname construct in which both the schema and object name
are delimited identifiers would take the form:

"schema name"."object name"

A separate set of double quotes must surround each delimited identifier. For
more information on delimited identifiers and variable substitution, see the
chapter “Report-Writer Expressions and Formats.”

You can use the schema.objectname qualification within the following
statements:

.cleanup

.data

.declare (in the with value string)

.query (SQL only)

.setup

Specifying Report Specifications

10–16 Character-based Querying and Reporting Tools User Guide

If you do not qualify the table, view, or synonym with a schema, Report-Writer
searches for the specified object in the following order:

1. Objects owned by the current user.

2. Objects owned by the DBA to which you have been granted access.

3. Objects in the system

Summary of Report-Writer Specifications

In summary, the general specification of a report can be defined as a collection
of distinct groups of related statements. Some of these statements relate to
the overall composition of the report and some relate to major action groups
within a report:

 The Report Header—At the start of the report, you can specify some
textual information to print and set up many of the report layout
specifications, such as page size and margins. The report header precedes
the page header on the first page of the report.

 Page Headers and Footers—At the top of each page, except the first
page, you can specify that Report-Writer print a page header, and at the
bottom, a page footer. These usually include titles, page numbers, the
date and time the report was printed, and so on.

 A Break Header—When Report-Writer detects a change of value in any of
the designated break columns, a break occurs. Before Report-Writer
processes a new group of data rows, it performs the break header actions.
Break headers often highlight information such as the value of the break
column, as well as textual information.

 Detail Section—Report-Writer processes this group of statements as it
reads each new row of data. These statements generally include the
instructions necessary to format and print specific data items. The detail
break is the only break that does not include a header and a footer.

 A Break Footer—Report-Writer processes the break footer at the end of a
group of data rows (as determined by the next break). A break footer
often prints the current value of the break column just before the break, or
prints a subtotal associated with the data rows just processed.

 The Report Footer—At the end of the report, you can specify some
textual information to be printed.

Sample Report

The following example demonstrates a simple report using Report-Writer. This
report specification was created with a text editor, stored within the database
with the sreport command, and run with the report command.

Specifying Report Specifications

Chapter 10: Using Report-Writer 10–17

The report shows a titled listing of data from an existing table, edat in a
database. The jobcat column is displayed only once for each job category
value.

/* Sample report */
 .NAME jobcat
 .OUTPUT jobcat.out
 .DATA edat
 .SORT jobcat, name
 .HEADER REPORT
 .NEWLINE 2
 .CENTER
 .PRINT 'Sample Report'
 .NEWLINE 2
 .HEADER jobcat
 .TFORMAT jobcat(' zzzz ')
 .DETAIL
 .PRINT jobcat(b8), name(c15), dept,
 code, age, sales(f12.3)
 .NEWLINE

The report output looks like this:

 Sample Report
10 Adams,Joe toy 0 22 10500.000
 Green,James toy 0 34 43645.000
 Smith,Tony acct 0 48 8690.000
20 Davis,Miles music 0 56 234987.000
 Tanhous,Karl music 0 20 18765.000
30 Jones,Mary acct 1 34 34599.000
 Maney,Sikkim none 1 51 15333.000
 Mellon,Tim toy 0 24 45098.000
 Mellon,Tim any 0 44 67876.000
 Norris,Bill acct 0 22 23988.000

This list briefly explains each statement’s function:

 The .name statement gives a name to the report, which is placed in the
Reports Catalog by the sreport facility and is used by the report command
to locate the report specifications.

 The .data statement identifies an existing table or view in the database
that contains the data to report.

 The .sort statement indicates the order the data is to be displayed on the
report.

 The .header report statement begins the section of Report-Writer
statements to be performed at the start of the report.

 The .newline, .center, and .print statements are used in positioning and
printing a title.

 The .header jobcat statement begins the section of Report-Writer
statements to be performed any time the value in the jobcat column
changes. The .tformat statement is used to temporarily change the normal
print format of the jobcat column on the next printing of jobcat, which
occurs in the .detail section.

Specifying Report Specifications

10–18 Character-based Querying and Reporting Tools User Guide

Normally jobcat is not printed. Its format is (b8), which means “print 8
blank spaces.” The .tformat statement makes a change to the format to
enable a one-time printing of this value, so the actual value of the jobcat
column is output. The .detail statement begins the specification of Report-
Writer statements to be performed on each row in the data table.

The .print statement within the detail section prints out the values of the
columns in the formats given after the column names, or the default
format for that type of data item, if no format is specified. The chapter
“Report-Writer Expressions and Formats” describes the format
specifications that appear in the parentheses following the column names
in detail.

This table shows the table definition data on which the report was run:

Column Name Type Length Nulls Defaults

jobcat integer 4 yes no

name char 15 yes no

dept char 6 yes no

code integer 1 yes no

age integer 2 yes no

sales money yes no

This table shows the data for the sample report:

jobcat name dept code age sales

10 Adams, Joe toy 0 22 $10500.00

10 Green, James toy 0 34 $43645.00

10 Smith, Tony acct 0 48 $8690.00

20 Davis, Miles music 0 56 $234987.00

20 Tanhaus, Karl music 0 20 $18765.00

30 Jones, Mary acct 1 34 $34599.00

30 Maney, Sikkim none 1 51 $15333.00

30 Mellon, Tim toy 0 44 $67876.00

30 Mellon, Tim any 0 24 $45098.00

30 Norris, Bill acct 0 26 $23988.00

Setting Up and Formatting a Report

Chapter 10: Using Report-Writer 10–19

Setting Up and Formatting a Report
At the beginning of your report specification file, you must include some
statements to perform the following setup tasks:

 Name the report.

 Set up a report results file.

 Specify SQL statements to perform setup and cleanup tasks that occur
before the main query is processed.

 Specify the table, view, or query from which data is to be obtained.

 Specify the optional inclusion of Report-Writer formatting statements
residing in different files.

 Define the order in which the data is to be sorted.

 Define the break columns for the report.

 Declare any variables used in the report specification.

 Enter optional remarks and comments.

Use the .name statement to name the report, the .output statement to set up
the report results file, and the .declare statement to declare variables for
creating custom runtime query or formatting criteria.

Additionally, you can use the optional .setup statement to perform set up
tasks (such as setting the lock mode, or creating a temporary table), and the
.cleanup statement to perform clean up tasks (such as dropping a temporary
table).

To obtain the data for your report, use either the .data or the .query
statement. These statements are mutually exclusive. Use the .data statement
to name a table or view in the database from which data can be obtained. Use
the .query statement to retrieve a subset of the available data, based on the
results of the query. By including parameters in the query, you can allow users
to choose the criteria for the report at runtime. For more information on
queries and data retrieval, see Creating Reports with Variables and Creating
Reports Using Several Tables.

To sort the data for your report, you must include a .sort statement in your
report specification. The .sort statement lists the columns, in order of
precedence, on which the data can be sorted. You also must specify the break
columns, using the .break statement, if you want breaks to occur between
data items in columns other than those specified in the .sort statement. For
more information on sorts and breaks, see Specifying Sorts and Breaks.

Setting Up and Formatting a Report

10–20 Character-based Querying and Reporting Tools User Guide

To ensure standardization between reports and to take advantage of repeated
report formatting statements, you can create commonly used Report-Writer
formatting statements in text files for inclusion in report specifications. The
.include statement allows you to specify the text file containing the formatting
statements. This statement can appear anywhere in your specification, if it is
logically correct and is executed when you run the sreport command to store
the report specification.

In addition to the report setup statements described above, you can include in
your report specification some descriptive text about your report. The
.shortremark and .longremark statements can be used to include text that
appears on the RBF Save frame and in the MoreInfo display on the RBF
Reports Catalog frame. Additionally, you can include comments anywhere in
the report specification by enclosing them with the comment delimiters /* and
*/. The chapter “Report-Writer Statements” discusses the use and syntax of
remark statements and comments in detail.

Creating Reports with Variables

For more dynamic report specifications, you can design a report using
variables. You can use variables in queries or report formatting specifications.
The values of the variables are specified at runtime by:

 Assigning initialization values using the .declare statement

 Responding to prompts for values

 Assigning values using the .let statement

 Passing values as parameters on the command line

You are strongly encouraged to define all variables with the .declare
statement. Although Report-Writer recognizes any name preceded by a dollar
sign ($) as a variable, undeclared variables assume default types and
characteristics that are often incompatible with their intended use. By defining
variables with .declare, you can use the variables in all of the ways described
previously. If a variable has not been defined through the .declare statement,
you can assign it a value only by using a command line parameter or by
entering a value in response to a runtime prompt. A value cannot be specified
for an undeclared variable with a .let statement. In addition, unless the
variable has been declared, attempting to pass a parameter with a null value
to Report-Writer can produce incorrect results.

During execution of the report, the value assigned to a variable from data
retrieval can vary, depending on the placement of the assignment statement
in various .header, .footer, or .detail sections.

Note: A report cannot be run in the background if it contains undeclared
variables.

Setting Up and Formatting a Report

Chapter 10: Using Report-Writer 10–21

Many Report-Writer statements accept variables, alone or in expressions, to
allow users flexibility in determining report specifications.

For information on these specific statements: Report Setup Statements, Page
Layout and Control Statements, Report Structure Statements, Column and
Block Statements, Text Positioning Statements, Print Statements, and
Conditional and Assignment Statements, see the chapter “Report-Writer
Statements.”

Procedures for using variables are common throughout Report-Writer
statements. Exceptions are the .declare and .let statements, which are used to
define the variables.

Using variables in the .query statement allows the end user to retrieve data
that meets particular needs. For instance, the user can obtain a report on a
single employee or on all employees in a specified department by entering the
employee name or the department name at runtime.

To create a report with user-specified variable values, precede the variable
with a dollar sign ($) when specifying it in the query. At report runtime, the
user can either put the value for the variable on the command line when
invoking the report, or respond to a program prompt.

For example, suppose you have a banking database in which you keep a table
of customer accounts. In this table you have fields for customer names
(custname), customer account numbers (custno), checking account balances
(checking), and savings account balances (savings). You want to create two
reports. They must be identically formatted, but must present different
information; one report must provide checking account balances, and the
other must provide savings account balances. To accomplish this task you can
write a query like this:

.declare account_type = c10 with prompt
'Please enter "savings" or "checking":'
.query
 select custno, custname,$account_type as val
 from account

The value of the variable account_type is the column name checking or
savings rather than a string value.

As Report-Writer generates your report, it prompts you to enter an account
type (savings or checking). Your response tells Report-Writer which kind of
information it must retrieve with the query. If you respond to the prompt with
checking, the completed query looks like this:

select custno, custname, checking as val
from account

Setting Up and Formatting a Report

10–22 Character-based Querying and Reporting Tools User Guide

For variables declared with the .declare statement, you can create a
customized prompt string by using the with prompt clause, or you can specify
an initial value for the variable by using the with value clause. For those
variables that are undeclared, Report-Writer uses a default prompt string
when prompting the user for the variable value.

You can also use variables in titles and other places within the report. For
details on using variables in reports, see the .query, .declare, and .let
statements in the chapter “Report-Writer Statements.”

Creating Reports Using Several Tables

At times, you must use Report-Writer to produce a report from related
information scattered across several tables that share one or more column
definitions. You can do this several ways. You can specify the tables in a query
in the .query section of your specification. Alternatively, you can build a report
on an existing view or you can create a temporary table or view based on
multiple tables using query language statements in the .setup section. You can
then drop the table or view, or update a status, in the .cleanup section of the
same report.

For a discussion and example of joining tables for a report, see Joining Tables
for a Report in the appendix “Report-Writer Report Examples.”

Specifying Sorts and Breaks

To produce a report that is orderly and easy to read, you must sort the
retrieved data based on one or more of the columns. The data must be sorted
if you want to include subtotals or other summary information in your report.
In addition, you must specify the break columns in which a change of value
signals Report-Writer to look for subtotaling or other special statements. For
example, the Population Example in the appendix, “Report-Writer Report
Examples” is a 1970 U.S. population report by region and state. To generate
the regional population subtotals, the states must first be grouped by the
value of the region column in the database, and breaks must occur at each
change of value in the region column.

The easiest way to group rows is to sort them on the column that is used as
the grouping column (in this example, region). Often, a report is sorted on
more than one column. In such cases, the rows are first grouped on the basis
of the first sort column (called the major sort column) and, within those
groups, on the basis of the next sort column (called a minor sort column), and
so forth. The sort order is specified by naming the columns in the .sort
statement in a section containing report set-up statements. If you have a
.query statement with an order by clause, you cannot use the .sort statement.

Setting Up and Formatting a Report

Chapter 10: Using Report-Writer 10–23

By default, Report-Writer assumes the break columns are the same as the sort
columns. In the above example, for instance, no other breaks need be
specified. However, you can override the default breaks by specifying break
columns with the .break statement. Use the .break statement to specify your
break columns if you have a .query statement with an order by clause.

The currently active list of break columns (specified by either the .sort or
.break statement) is known as the break list. The first column in the break list
indicates a major break column, while those that follow are considered minor
break columns. A break on one break column automatically produces a break
on all subsequent break columns in the currently active break list.

In the Account Example of the appendix “Report-Writer Report Examples,”
break columns are not explicitly specified, so breaks can occur on the sort
columns. Report-Writer sorts the data based on acctnum (the major sort
column) and, within acctnum, based on date. When a change occurs in the
value of date, the date break occurs and Report-Writer looks for some of your
formatting instructions to process. When a change in value occurs in the
acctnum column, breaks in both acctnum and date occur.

You need not specify actions for every break in your report. You can specify
sort columns (which produce breaks) simply for the appearance of the report.
In the Population Example, in the appendix, “Report-Writer Report Examples,”
breaks in region invoke a number of summary and heading actions, whereas
breaks in state do not.

Under certain conditions, such as with numeric columns of rounded values,
breaks occur by default when the formatted value changes, not when the
actual value changes. For example, assume a column is rounded to the first
decimal place. There can be no break between the actual values of 35.87 and
35.92, because each rounds to 35.9.

You have control over how numeric values are rounded through the format
specification. For more information, see the Format Specifications section in
the chapter “Report-Writer Expressions and Formats.” To force breaks to
occur on the actual values rather than on the formatted values, specify the -t
flag on the report command line. For more information on the -t flag, see the
Report command in the chapter “Using System Commands for Forms-Based
Tools.”

Setting Up and Formatting a Report

10–24 Character-based Querying and Reporting Tools User Guide

Pagination in Reports

Pagination in the report is controlled by a number of statements. The
.pagelength statement specifies the vertical size of pages, in lines, while the
.pagewidth specifies the horizontal size of pages, in characters. Statements
are used in the page header and footer sections to define actions to be taken
at the beginning and end of each page. Use the .newpage and .need
statements to force page breaks, and the .formfeeds statement to instruct
Report-Writer to send a formfeed character to the printer after printing all
lines that fit on the defined page. Line numbering begins at 1 (top line).

Before Report-Writer begins to print a report, it calculates the number of lines
in the page header and footer you have specified. After printing each line, it
compares the specified or default page length with the number of lines already
printed. If there are only enough blank lines left to write the page footer,
Report-Writer prints the page footer, issues a formfeed character (if specified)
for a page break, updates the page number, and prints the page header for
the next page.

If the .formfeeds statement is in effect, Report-Writer inserts the formfeed
character at the start of the report and at the end of each page. In some
cases, the .formfeeds statement is not needed. For instance, the .print
statement automatically inserts formfeeds appropriate for 11-inch paper if you
use the default page length (61 lines).

The following command, issued at the operating system prompt, sends the
output of “myreport” to the specified file and to the default printer, assuming
the default value of 61 lines per page. It does not require the .formfeeds
statement.

report mydb myreport -frepfile.lis -o

For a format that uses 66 lines per page, you can add the flag -v66 at the end
of the report command line, or you can use the .pagelength statement in the
report specification.

For a printer that is 80 characters wide, you can add the flag -l80 or use the
.pagewidth statement.

For special forms and other printers, use the .formfeeds statement to instruct
Report-Writer to insert its own formfeeds, or the .noformfeeds statement to
prevent Report-Writer from inserting them.

You can use the .newpage statement to force an immediate page break at any
point in the report. This statement causes Report-Writer to skip enough lines
to get to the first line of the page footer (if specified), and to print the page
footer before going to the top of the next page.

Setting Up and Formatting a Report

Chapter 10: Using Report-Writer 10–25

The .need statement forces a page break to occur if the remaining available
lines on the page are less than the number of lines specified in the .need
statement. It is used to keep lines of text together on the same page. For
instance, this statement can be used prior to a break header to insure that
enough lines remain on the current page to print the entire break header.

For details on using variables in reports, see Page Layout and Control
Statements in the chapter “Report-Writer Statements.”

Setting Report Margins

Report-Writer can determine report margins by analyzing your report code.
(Automatic Determination of Default Settings is discussed in more detail later
in this chapter.) In most cases, the default settings generated by Report-
Writer are quite adequate. However, in some cases you must define these
settings explicitly, using the .leftmargin and .rightmargin page layout
statements to indicate the starting and ending character positions. Horizontal
character positions start at 0 (left margin).

In some reports, the right and left margins are changed dynamically to
achieve different effects. See Dictionary Example in the appendix “Report-
Writer Report Examples.” In cases such as these, you must keep the margins
for the page header and footer independent of the margins for the rest of the
report, because the report margins have been set to values inappropriate for
the footer and header when a page break is encountered.

Because the margins for the page header and footer can be independent of the
margins for the rest of the report, the page header margins are stored
separately. These can be determined automatically in the same way that
default margins for the report are determined, or you can specify the margin
setting statements, .leftmargin and .rightmargin, in the formatting statements
for the page header.

For detailed information on margin setting statements, see Page Layout and
Control Statements in the chapter “Report-Writer Statements.”

Positioning, Formatting, and Printing Data

Report-Writer relies on three different groups of statements to print data in
the correct place and format. These are:

 Column and block default setting statements

 Text positioning statements

 Print statements

Setting Up and Formatting a Report

10–26 Character-based Querying and Reporting Tools User Guide

You use these statements to:

 Set default print positions and widths for columns

 Position text explicitly, or left justify, right justify, or center column values
within the margins defined by the column defaults

 Define the print format (for instance, character string or decimal) for the
value to be printed

 Print an explicit value or print the next value in a column at the previously
defined position, in the designated format

The following discussions describe the process of positioning, formatting, and
printing data in more detail.

Note: Column defaults can be explicitly defined with the column and block or
other statements noted previously. If defaults are left undefined, Report-
Writer automatically determines the defaults from an analysis of your report
code. See Automatic Determination of Default Settings. Explicitly set defaults
override any automatically determined ones.

Setting Default Print Positions for Columns

Before you can print a value, indicate where it must be printed. As noted
previously, Report-Writer automatically determines default column print
positions from an analysis of the other report formatting statements. However,
if you want to set up your own defaults, you can do so with the following
column and block statements:

 .position

 .width

Using the .position statement, you can effectively set up margins for each
column. This statement allows you to set the starting print position for a
column and optionally, the width of the printed column in number of
characters. You can also set the width of a column with the .width statement.
All horizontal print positions start at 0 (left margin).

To print columns horizontally adjacent to each other, you must reference the
column names within the same .print statement, separated by commas. If
possible, Report-Writer can print the columns next to each other, at the
positions specified in the .position statement(s) or at default print positions.

In some cases, however, the following block statements can be used to
exercise more control over the printing of horizontally adjacent text:

 .block and .endblock

 .top

Setting Up and Formatting a Report

Chapter 10: Using Report-Writer 10–27

 .bottom

 .within and .endwithin

The .block and .endblock statements allow you to define a block of formatting
and print statements to be treated as a unit. Then, you can use the .top or
.bottom statements to reset the current line to the top or bottom of the
defined block before processing the next statement. The .within and
.endwithin statements temporarily set the report margins to the margins for a
referenced column. This allows you to print text (such as the caption, Total)
within the column margins without having to calculate the exact print position.

Column and Block Statements in the chapter “Report-Writer Statements”
discusses the column and block statements in detail.

Positioning Text

In addition to the column and block default-setting statements, you generally
use another group of statements, called text positioning statements, to tell
Report-Writer how to position the text or data in relation to the default
position. The text positioning statements are:

 .tab

 .newline

 .left

 .center

 .right

 .lineend

 .linestart

You can use the .tab statement with a column name to tab to the assigned
print position for that column before issuing a .print statement. In addition to
tabbing, text positioning statements allow you to center or justify text within
the default column margins, or to position text at the beginning or end of a
line or on another line.

You can also use the text positioning statements with explicit values (instead
of column names) or variables for the tab setting, left and right justify
positions, and so on. Explicitly set positions override column defaults. Text
Positioning Statements in the chapter “Report-Writer Statements” discusses
text positioning statements in detail.

Setting Up and Formatting a Report

10–28 Character-based Querying and Reporting Tools User Guide

Specifying the Print Format

The appearance of the text or data in your report is controlled by the format
specification. For instance, the c format indicates a character string format and
the e format causes a value to be printed in scientific notation. You can also
specify the format with a template such as $zz,zzz.nn, containing characters
with special meanings, which define the way a value is to be printed.

The print format can be specified in the .print statement, or can be used in a
.format statement to set a default print format for a column, as in the code
fragment:

.format emp (c12), sal ('$zz,zzz,zzn.nn')

.print emp,sal

The results might look like this:

Jones $ 109,224.00
Smith $ 32,575.00

You can temporarily override a default column format with the .tformat
statement to print the next value only in a different format. After the value is
printed, the format returns to the original default type. This is useful for
printing a dollar sign only once at the start of a page, for instance.

You can also override a default format by specifying the format as a parameter
in the .print statement, as in this example:

.print salary ('zz,zzz,zzn.nn')

This code fragment causes Report-Writer to print salary values in the specified
format, without the dollar sign, until it encounters another format or print
statement for this column. For more information on print formats, see Format
Specifications in the chapter “Report-Writer Expressions and Formats.”

To indicate underlining of text or values, use the .underline and .nounderline
statements. Any .print statements located between the .underline and
.nounderline statements can produce underlined text. By default, the underline
character is the underscore (_) for reports written to a file (reports written to
the screen do not display underlining). You can change the default to any
other character, using the .ulcharacter statement. All underline characters are
printed on the line below the text, except for the underscore (_) character,
which appears on the same line as the text. For more information on
underlining, see Print Statements in the chapter "Report-Writer Statements."

Setting Up and Formatting a Report

Chapter 10: Using Report-Writer 10–29

Specifying What to Print

The actual text or value to be printed is specified as an expression in the .print
statement syntax. The expression can be a column name, a constant, a
function, an aggregate, a runtime report variable such as the current date and
time, or a variable whose value is specified in a .declare or .let statement or
on the command line, with or without a prompt.

By default, Report-Writer prints an empty string when it encounters a null
value. You can change this default to any string of characters, using the
.nullstring statement. For instance, you can tell Report-Writer to print the
string “none” wherever it finds a null value in the data.

For more information on the .print and .nullstring statements, see Print
Statements in the chapter “Report-Writer Statements.”

Using Conditional and Assignment Statements

Use the conditional .if, .then, and .else statements to tell Report-Writer to
execute alternative blocks of statements, under specified conditions. For
example, you can test for the current line number or character position using
one of the special report variables (discussed in the chapter “Report-Writer
Expressions and Formats”), and then issue a .newpage or .newline statement.
Or, you can execute alternative .print statements to suppress or print
confidential data, based on a user’s ID number stored in a declared variable.

The condition in an .if statement is a boolean expression that evaluates to true
or false. Each of the following is a condition:

 a clause

 a boolean function

 not condition

 condition or condition

 condition and condition

 (condition)

Some examples of conditions in .if statements are:

age <= 50
not (age <= 50)
 (age <= 50) and (salary >= 40000) and
 (job = 'programming')
 age > avage

Setting Up and Formatting a Report

10–30 Character-based Querying and Reporting Tools User Guide

You can use the .let statement to assign a value to a declared variable. For
instance, you could calculate the number of years which have elapsed since an
employee was hired, and assign the result to a variable for a report on
employee longevity. The .let statement is often used in conjunction with the
.if, .then, and .else statements.

Note that the .declare statement, used to define variables, can also be used to
assign an initial (first-time) value to the variable during the loading of the
report specification. See the .Declare statement in the chapter “Report-Writer
Statements.”

For more information, see Conditional and Assignment Statements in the
chapter “Report-Writer Statements.”

Calculating and Printing Summary Data

You can use aggregate functions such as sum or count, as well as arithmetic
and other built-in functions, to calculate subtotals and other summary values
to be printed in a report. Many Report-Writer statements accept expressions.
For example, you can specify an aggregate, arithmetic operation, or function
in the .print statement for immediate printing of the calculated value.
Alternatively, you can use an expression containing the operation in a .let
statement to assign the calculated value to a variable prior to printing, in case
you want to use the result in additional calculations.

Automatic Determination of Default Settings

If you have not explicitly specified them, Report-Writer calculates default
settings for the right and left margins of the report, for the starting position
and width of each column (for use with statements such as .tab and .right),
and/or for the formats to use when printing columns. Report-Writer
determines the default settings on the basis of an analysis of the other report
formatting statements, which are performed after the report set up and page
layout statements (such as .leftmargin), but before the first printing of the
report.

Analysis of Report Formatting Statements

To determine default values, Report-Writer analyzes the formatting statements
in reverse hierarchical order, from the innermost (detail level) statements to
the outermost (report level) statements, as shown below:

1. .detail section statements

2. .footer statements for innermost sort column

3. .header section for innermost sort column

Setting Up and Formatting a Report

Chapter 10: Using Report-Writer 10–31

4. .footer and .header sections for the next to the last sort column, and so on

5. .footer and .header text for the page

6. .footer and .header text for the report

By analyzing the report code in this way, Report-Writer attempts to determine
the innermost references to columns in the report, and to determine the
leftmost and rightmost print positions indicated by the specified report
formatting statements.

Determining Default Page Width

For default reports—that is, a report based on a table, as in the command,
report mydb tblname—the page width default is 80 characters if the report is
displayed on the screen, or 132 characters if the report is written to a file or
sent to the printer. You can override the default with the .pagewidth
statement. See the .Pagewidth statement in the chapter “Report-Writer
Statements.”

Determining Default Margins

If you explicitly specify the margins for the report with the .leftmargin and
.rightmargin statements, these values are used. Otherwise, Report-Writer
determines the minimum and maximum print positions for a line in the report
while scanning the report formatting statements. If only one of the margins is
explicitly stated, Report-Writer determines the other one during the scan.
Report-Writer uses margins derived in this manner to determine line positions
for the .center, .right, or .left statements, when these statements are used
without specified parameters.

Determining Default Column Positions

If you do not specify a .position statement for a column, Report-Writer
determines the column’s default position for use with the .tab, .right, .left, or
.center statements from the analysis of report formatting statements. Report-
Writer determines default column positions by the first print position it
encounters that has been specified for the printing of a value in that column or
for an aggregate of that column.

Setting Up and Formatting a Report

10–32 Character-based Querying and Reporting Tools User Guide

Reports are usually set up in such a way that the innermost printing of column
values occurs in the .detail statements of the report. Items such as column
headers and aggregates, which print in the header or footer text for a break,
can then use the .tab or another positioning statement in relation to the
default position for the innermost position of a column. If you want to change
the position of a column and its associated heading and/or aggregates, you
must change the innermost print position for the column. Because all
references to headers and aggregates are given in relative terms, Report-
Writer changes their positions automatically.

As an example, see Account Example in the appendix “Report-Writer Report
Examples.” The default position for the amt column is determined by the
cumulative aggregate for amt.

Determining Default Column Formats

If you do not specify a .format statement for a column, Report-Writer
determines the column’s default format in a manner similar to that used for
determining the default column position. Report-Writer uses the innermost
reference to a format for a column, or to an aggregate for a column, as the
default format for a column. If you do not specify any formats for a column,
Report-Writer determines defaults from the data type of the column, as
described in Default Formats in the chapter “Report-Writer Expressions and
Formats.”

The default format for a column is best used in situations where you specify
the format in the reference to a column in the .detail formatting statements.
Aggregates of that column are specified in the footers for some of the breaks.
Report-Writer then correctly uses the format you specified in the .detail
section for the aggregates.

However, the .format statement is often quite useful for specifying a series of
columns that are given the same format. For a good illustration of the use of
the .format statement for this purpose, see Population Example in the
appendix “Report-Writer Report Examples.”

Determining Default Column Widths

If you do not specify a .width statement or width parameter to the .position
statement for a given column, Report-Writer determines the default column
width by the default format for that column, as specified by the .format
statement or as determined from the analysis of report formatting statements.
The default width of a column is the width required by the column format to
print a value. Report-Writer uses the column width to determine the print
positions for the .right or .center statements.

Chapter 11: Report-Writer Expressions and Formats 11–1

Chapter 11: Report-Writer Expressions
and Formats

In Report-Writer, expressions are used to obtain data values in your report.
Expressions are composed of constants, variables, columns, aggregates, and
functions that are combined with operators to produce a single value. Each of
these types of expressions is described in this chapter.

Many Report-Writer statements accept expressions that provide users control
and flexibility in determining report values. In general, Report-Writer
statements can be divided into the following two categories:

 Statements that accept only variables and are evaluated once during the
loading of the report specification before retrieving the report data.

 Statements that accept any expression appropriate in the context of the
statement and are evaluated each time the statement is executed.

For ways to use expressions in a given statement, see each individual
statements in the chapter "Report-Writer Statements."

The .print and .query statements are two statements in which you often use
variables and expressions. One way you use variables in the .query statement
is in the where clause to retrieve a subset of the data. In the .print statement,
you can use expressions to print multi-column functions, such as adding
columns together, or to determine the printing format.

You can compare expressions to other expressions in conditions for the .if
statement, or use them in the .let statement to specify a value to be assigned
to a variable. For details on conditional and assignment statements, see the
chapter “Report-Writer Statements.”

The following example uses several expressions. The example uses a
database, which has a table of shipments featuring part number, number of
defective parts in a shipment, and the total number of parts in a particular
shipment. Suppose you want a report of the shipments grouped by part
number, with the calculated percentage of defective parts for all the shipments
of that part. The following report fragment would accomplish this:

.sort partno
 .
 .
 .
.footer partno
 .print partno, ' IS '
 .print (sum (defective)/sum (total)) * 100,
 ' % DEFECTIVE '
 .newline

ANSI/ISO Entry SQL-92 Compliant Databases

11–2 Character-based Querying and Reporting Tools User Guide

In the previous example, the following are expressions:

partno
' IS '
(sum(defective)/sum(total)) * 100
'% DEFECTIVE'

Because no print formats have been explicitly specified in the preceding report
code, Report-Writer automatically uses predetermined ones.

ANSI/ISO Entry SQL-92 Compliant Databases
For reports based on tables or views in ANSI/ISO Entry SQL-92 compliant
databases, observe the following conventions regarding object names when
referencing them within Report-Writer statements and commands:

 Names consist of 18 or fewer characters.

 Regular identifiers begin with an alphabetic character (a - z) and contain
only alphabetic, numeric, or underscore (_) characters.

 Regular identifiers are case insensitive.

 Delimited identifiers are case sensitive.

These conventions differ somewhat from standard Ingres conventions for
regular and delimited identifiers, which can be up to 32 characters long. Also,
in standard Ingres databases, regular identifiers can include the
non-alphanumeric characters #, @, and $, and delimited identifiers can be
case insensitive, depending on how the database was created.

Delimited Identifiers
Using delimited identifiers allows you to reference database objects such as
tables and columns that are identical to reserved words or that contain spaces
or other characters disallowed in regular identifiers. If the database was
created as case sensitive, you can also use delimited identifiers to distinguish
between identical names with different cases (for example, “SALES” as
opposed to “Sales”).

Delimited Identifiers

Chapter 11: Report-Writer Expressions and Formats 11–3

Using Delimited Identifiers

Report-Writer statements accept delimited identifiers as table names, view
names, synonyms, column names, correlation names, and schemas under the
following conditions:

 Recognition of delimited identifiers has been turned on with the .delimid
statement.

 Statement syntax permits a table, view, column, or schema.

 SQL is used in .query statements.

Report-Writer also accepts delimited identifiers as user identifiers in system
level commands.

In order for Report-Writer to recognize delimited identifiers within a report
specification, the .delimid statement must be included in the report
specification file. For details, see the chapter “Chapter 12: Report-Writer
Statements.” Otherwise, any use of delimited identifiers within the report
specification results in errors when compiling the report.

If you attempt to run a report with delimited identifiers against a database
created with an earlier release, Report-Writer interprets the delimited
identifiers as string constants, which can result in unpredictable behavior.

Ingres supports delimited identifiers in .query statements if the query
language is SQL. Delimited identifiers cannot be used in QUEL queries.

QUEL User Notes

Delimited identifiers are not available for use in QUEL queries. If you have
specified the .delimid statement in a report specification that uses a QUEL
query, Report-Writer suppresses recognition of delimited identifiers during the
query. Although it is possible to use delimited identifiers in other parts of your
report specification, we do not recommend that you do so if you are using a
QUEL query, as this can cause errors in some circumstances. For example, if
you create temporary tables in the .setup section that have delimited
identifiers as table names or columns, those tables or columns cannot be
accessed in a QUEL query.

Specifying Delimited Identifiers

You can specify delimited identifiers for database objects in the following
circumstances:

 Within the report specification code

 On the command line within a command to run a report

Delimited Identifiers

11–4 Character-based Querying and Reporting Tools User Guide

 On the command line in response to a prompt for runtime substitution of a
variable

To specify a delimited identifier in the report specification code, as a
parameter on the command line, or in response to an Ingres prompt on the
command line, enclose the delimited identifier within double quotes (") and
escape any embedded double quotes by doubling them. For convenience, we
refer to this as editable format. You can specify delimited identifiers as follows:

Editable Format Stored Format

“Dave’s table” Dave’s table

“Dave’s ““Expert”” Witness table” Dave’s “Expert” Witness table

You can use delimited identifiers in the following circumstances:

 As a table, view, or synonym:

.data "Dave's table"

 As a column name:

.print "Stocks & Bonds"

 As a correlation name and column name in
correlation_name.column_name constructs:

.query
 select "t-1"."col 1" as col1, "t-2"."col 2"
 as col2
 from table_one "t-1", table_two "t-2"

 When using schemas for owner qualification, for either or both the schema
name and/or object name, as follows:

"schema 1".table2

dave."Dave's table"

"schema 1"."view table1 & table2"

 On the command line, as a username for the -u flag, groupid parameter
for the -G flag, or database object in a command parameter

If your operating system requires additional delimiting and dereferencing
quotes for delimited identifiers on the command line, see the System
Administrator Guide.

When using schemas for owner qualification or when specifying a user ID on
the command line, the schema or user ID must be enclosed in double quotes if
it does not conform to the conventions for regular identifiers. If a schema or
user ID contains characters unacceptable in a regular identifier, such as in
Da Vinci or O’Neil, then all objects created by that user can have a schema
name that must be specified as a delimited identifier in double quotes.

Delimited Identifiers

Chapter 11: Report-Writer Expressions and Formats 11–5

In addition, the DBA can specify at database creation time whether Ingres
stores user IDs in uppercase, lowercase, or mixed case when impersonating
that user with the -u flag on the command line.

Also, any schema name that Ingres creates by default based on that user ID is
stored in mixed case and must be specified as a delimited identifier, in double
quotes, when qualifying an object with an owner name.

For more information on schema names or specifying case conventions for
user identifiers in a particular database, see the Database Administrator Guide
for the system on which your database resides. For information about
specifying embedded quotes and other special characters in delimited
identifiers, see the SQL Reference Guide.

Case Sensitivity

When specifying delimited identifiers, follow the rules for case as defined for
your database. In standard Ingres databases, delimited identifiers can be
either case sensitive or case insensitive, as determined by the DBA when
creating the database. By default, standard Ingres databases are case
insensitive.

In databases compliant with ANSI/ISO Entry SQL-92 standards, delimited
identifiers are case sensitive.

Multiple Delimited Identifiers

Separate multiple delimited identifiers on the same line with at least one
space, because Ingres perceives two adjacent double quotes ("") as an
escaped double quote ("). For example, suppose you specify:

.print "abc""def"

it is interpreted as:

.print abc"def

Separating delimited identifiers with white space prevents confusion. For
example, include a space between the delimited identifiers “abc” and “def”:

.print "abc" "def"

It is correctly interpreted as:

.print abc def

Reserved Words

11–6 Character-based Querying and Reporting Tools User Guide

Precedence over String Constants

When enabled, delimited identifiers take precedence over double-quoted string
constants. For example, the following statement causes Ingres to attempt to
print the value of a column named “a b c” rather than the string “a b c”.

.print "a b c"

If it does not find a column matching that description, Ingres issues an error.

To avoid any potential confusion between delimited identifiers and string
constants or format templates, we strongly recommend that you use single
quotes (') to delimit quoted strings and format templates within Report-Writer.
The only exception to this rule is in .query statements if the query language is
QUEL, in which case double quotes for string constants and format templates
are required. This does not pose a problem because delimited identifiers are
not allowed within QUEL queries.

Reserved Words
The identifiers in the following table are reserved for use as keywords by
Report-Writer. If delimited identifiers have been turned on, you can use
reserved words as delimited identifiers for table, view, column, schema, or
user names by enclosing them within double quotes ("). Using reserved words
in QUEL is not allowed. Follow all rules for using delimited identifiers, as
described in the section, Delimited Identifiers. Using reserved words in any
other way is likely to produce incorrect results when Report-Writer prints the
report.

abs
and
ascii
atan
average
averageu
avg
avgu
break
cnt
cntu
concat
cos
count
countu
cum
cumulative
current_date
current_day

current_time
date
decimal
detail
dow
exp
float
float4
float8
int4
integer
integer1
integer4
interval
left
left_margin
length
line_number

locate
log
lowercase
max
maximum
maximumu
maxu
min
minimum
minimumu
minu
mod
not
null
or
page
page_length
page_number

page_width
position_
numberreport
right
right_margin
run
shift
sin
smallint
sqrt
squeeze
sum
sumu
table
trim
uppercase
w_column
w_name

Types of Data in Expressions

Chapter 11: Report-Writer Expressions and Formats 11–7

If you use one of the reserved words in the preceding table as a column name
without delimiting it, Report-Writer issues a warning message. It also
supersedes the definition of the built-in function with the column name you
specify. All further references to the reserved word relate to the column, not to
the Report-Writer function, which could produce unexpected results.

All SQL keywords are also reserved words in Report-Writer. For a complete list
of these keywords, see the SQL Reference Guide.

Types of Data in Expressions
Expressions can contain any of the following data elements, which are
described in the following sections:

 String Constants

 Numeric Constants

 Date Constants

 Columns

 Variables

 Special Report Variables

 Aggregates

 Operators

 Boolean Functions

 Format Specifications

String Constants

Many reports have lines of text that appear in the body of the report. You can
specify these string constants by enclosing them in single quotation marks (').
The correct syntax for specifying any character string in most Report-Writer
statements is:

'string'

However, within a .query statement, use the quotes appropriate to your query
language. As a convention, this document uses single quotes ('), as required in
SQL queries, to delimit string constants.

Types of Data in Expressions

11–8 Character-based Querying and Reporting Tools User Guide

Using double quotes for string constants outside of SQL queries does not
necessarily generate an error in Report-Writer. However, if you activate
delimited identifiers with the .delimid statement, using double quotes for string
constants produces unexpected or incorrect results, because Ingres interprets
the double quotes as signifying a delimited identifier.

If you want to include a single quotation mark within the text of a
single-quoted string constant, enter it as two adjacent single quotes, together
on a single line, so that Report-Writer does not assume it has found the end of
a string. Ingres automatically interprets a backslash (\) within a single-quoted
string as a literal backslash, unless it precedes a wild card character. For more
information about wild card characters, see Operations.

For information on dereferencing double quotes within double-quoted strings,
see the QUEL User Notes section below.

Examples of valid strings delimited by single quotes are:

'This is a string'

'This string has extra blanks '

'This string has one \ backslash in it'

'This string has a ''single-quoted'' string in it'

'This string has a "double-quoted" string in it'

QUEL User Notes

Within a .query statement, the following must be enclosed in double quotes
("):

 String constants

 Dates, specified as string constants

 Numeric templates

You need to dereference a literal double quotation mark (") or backslash (\)
within a string constant by preceding it with a backslash (\).

Examples of valid strings delimited by double quotes are:

"This is a string"

"This has extra blanks"

"This has a \"quoted\" string in it"

"This has one \\ backslash in it"

The syntax for a valid absolute date and time format for use in a QUEL query
is:

"mm/dd/yy hh:mm:ss"

Types of Data in Expressions

Chapter 11: Report-Writer Expressions and Formats 11–9

An example of a valid numeric template for use in a QUEL query is:

"$zz,zzz,zzn.nn"

Hexadecimal Strings

To specify a nonprintable character, you can use a hexadecimal string constant
with the following format:

X|x'nn{nn}'

The introductory X identifies the string as a hexadecimal string constant. You
need to specify the nonprintable character as two hexadecimal digits (nn) in
the range 0-9, a-f, or A-F, and the string must contain an even number of
characters. There must be no intervening white space between the X and the
single-quoted string of hexadecimal digits. The X and the hexadecimal digits
are case insensitive. Report-Writer interprets hexadecimal constants as data
type varchar.

You can use hexadecimal string constants anywhere you use a string constant.
Ingres translates the hexadecimal constant into its corresponding character
value. The following example uses hexadecimal string constants in a .query
statement:

.query
 select binary_key, X'414243' as abc
 from my_table
 where binary_key = X'5A7B0034'

You can also use hexadecimal string constants as expressions in .print
statements. Hexadecimal strings are intended for use primarily with the q0
format, which sends the string directly to the output device as is, without
interpretation. Hexadecimal strings in .print statements without the q0 format
are interpreted by the formatting routines and can produce undesirable results
or cause Report-Writer to fail. For more information on the q0 format, see
Control Character Format Q0.

QUEL User Notes

Hexadecimal string constants are not supported within QUEL .query
statements.

Numeric Constants

Numeric constants consist of an integer, a decimal point, and a fraction or
exponential (scientific) notation. You can specify numeric constants with the
following format, where d is a digit:

[+|-] {d} [.{d} [e|E[+|-]d[d]]]

Types of Data in Expressions

11–10 Character-based Querying and Reporting Tools User Guide

Some examples of valid numeric constants are:

23
8.97327
4.7 e-2

Numeric constants can range from -10**38 to +10**38 (** denoting “to the
power of”) with precision to 17 decimal places.

Report-Writer interprets a numeric constant as follows:

 Integer, if it has no decimal point or exponent. A numeric constant of type
integer is treated as type decimal if the value exceeds i4 (4,294,967,295)

 Decimal, if it has a decimal point but no exponent. Under the following
circumstances, a numeric constant of type decimal is treated as type float:

– If the total number of digits exceeds 31

– If you have set the II_NUMERIC_LITERAL environment variable/logical
to float

 Float, if it has an exponent, or if the release is Ingres 6.4 or earlier and it
has a decimal point.

Date Constants

Dates are referenced as single-quoted character string constants. However, as
with string constants within a .query statement, the quotation marks
appropriate to your query language must be used.

Report-Writer accepts the following variations as date expression. You can
specify a date template for the date expression in the .print, .format, or
.tformat statement. For details, see Format Specifications.

 Absolute dates - Examples of expressions of the date November 15, 1998
are:

'11/15/98'
'15-nov-98'
'15-nov-1998'
'11-15-98'
'98.11.15'
'111598'
'11/15'
'11-15'

The string ‘today’ is a legal absolute date, which returns today’s date as its
value. The string ‘now’ is a legal absolute date and time, which returns
today’s date and the current time as its value.

 Absolute times - Examples of expressions of the time 10:30:00 are:

'10:30:00'
'10:30:00 pst
'10:30'

Types of Data in Expressions

Chapter 11: Report-Writer Expressions and Formats 11–11

Note: Report-Writer supplies the appropriate time zone designation. Time
formats are assumed to be on a 24-hour clock. However, time entered
with a designation of “am” or “pm” is automatically converted to 24-hour
internal representation. Any such designation must follow the absolute
time and precede the time zone, if included. If you do not specify a date
with an absolute time, today’s date (that is, the current day) is supplied.

 Absolute date and time - Examples of expressions of the date and time,
November 15, 1998, 10:30:00 are:

'11/15/98 10:30:00'
'15-nov-98 10:30:00'
'11/15/98 10:30:00 pst'
'15-nov-98 10:30:00 pst'
'11/15/98 10:30'
'15-nov-98 10:30'
'11/15/98 10:30 pst'
'15-nov-98 10:30 pst'

 Date intervals - Examples of date interval expressions are:

'5 years'

'8 months'
'14 days'
'5 yrs 8 mos 14 days'
'5 years 8 months'
'5 years 14 days'
'8 months 14 days'

 Time intervals - Examples of time interval expressions are:

'23 hours'

'38 minutes'
'53 seconds'
'23 hrs 38 mins 53 secs'
'23 hrs 53 seconds'
'28 hrs 38 mins'
'38 mins 53 secs'
'23:38 hours'
'23:38:53 hours'

Columns

To reference a column value in a data row currently being processed, you can:

 Specify the database column name directly

 Reference the column by a name you give it in the as clause of a select
statement within the .query statement

You can use the select as construct in a .query statement to select a column
by its correlation name, which is not recognized by Report-Writer, and then
give it another name, which you can use in Report-Writer statements. You can
also use this construct to select a column whose name is a delimited identifier,
and give it another name that is easier to reference in other Report-Writer
statements.

Types of Data in Expressions

11–12 Character-based Querying and Reporting Tools User Guide

To reference a column from a database table by a name other than its actual
database column name, use the following construct in a .query statement:

select columnname as resultcolumn from tablename

Thereafter, refer to the column by its result name, as in the following print
statement:

.print resultcolumn

After assigning a result name in the query, any references to columnname
causes an error.

Use a delimited identifier to reference a column that contains spaces or other
non-alphanumeric characters, or that is identical to a reserved word. For more
information on delimited identifiers, see Delimited Identifiers.

Columns are comprised of one of the following types of expressions:

 Numeric

 Character

 Abstract

This table shows the SQL data types that belong to each of these categories.
See the QUEL User Notes for QUEL data types.

Numeric Character Abstract

decimal char date

float c money

float4 text

float8 varchar

integer1

integer2 (smallint)

integer4

Report-Writer perceives and treats a user-defined (UDT) data type as a
character string. It does not recognize columns of data types long varchar,
byte, byte varying, and long byte. If you specify a column of this data type in
the query, Report-Writer silently ignores and does not print values for that
column.

Note: If Report-Writer encounters subsequent references to a column of the
long varchar, byte, byte varying, and long byte data types—for example, in
sort operations—it issues an error message and terminates the report.

Types of Data in Expressions

Chapter 11: Report-Writer Expressions and Formats 11–13

QUEL User Notes

The QUEL data types that belong to these categories are listed in the following
table:

Numeric Character Abstract

f4 char date

f8 c money

i1 text

i2 varchar

i4

Variables

Variables are user-defined symbol names that represent a data value that can
change with each run of the report. Many Report-Writer statements accept
variables as parameters. For example, in a .query statement you can use
variables as substitutes for any part of a query. See .Query in the chapter
“Report-Writer Statements.”

In Report-Writer, assign variable values in the following ways:

 At report runtime, as a parameter on the command line or in response to a
default or custom prompt

 In a .declare statement, as an initial value for a variable (useful for
variables evaluated during the loading of a report specification)

 In a .let statement, where you can assign a value to a variable for use
within the body of the report. See .Let in the chapter “Report-Writer
Statements.”

You define variables through the .declare statement, which allows you to name
a variable. The .declare statement also allows you to:

 Create your own custom prompt

 Specify the data type and nullability of the variable

You are strongly encouraged to define all variables with the .declare
statement. By declaring variables, there are no limits to the ways you can use
them in your report. Although Report-Writer recognizes any name preceded by
a dollar sign ($) as a variable, undeclared variables assume default types and
characteristics that are often incompatible with their intended use.

Types of Data in Expressions

11–14 Character-based Querying and Reporting Tools User Guide

If you use a variable in your report without declaring it, you can assign it a
value only by using a command line parameter or by entering a value in
response to a runtime prompt.

You cannot specify a value for an undeclared variable with a .let statement. In
addition, unless the variable has been declared, attempting to pass a
parameter with a null value to Report-Writer can produce incorrect results. For
more information, see the .Declare statement in the chapter “Report-Writer
Statements.”

Note: If you run reports from the RBF catalog, they cannot be run in the
background if they contain undeclared variables.

When you specify variables for runtime substitution of values in expressions,
precede the variable name with a dollar sign ($). The dollar sign cannot be
embedded within the variable (for example, var$name). In addition, variable
names must follow these rules:

 Can be up to 32 characters long. Valid characters are letters, digits, and
underscore (_). For ANSI/ISO Entry SQL-92 compliant database
restrictions, see ANSI/ISO Entry SQL-92 Compliant Databases.

 Must begin with a letter

 Cannot match any of the reserved words listed in the Reserved Words
section

 Any commas (,), parentheses (), or colons (:) required in the statement
syntax must be explicitly stated and cannot be part of the variable.

Some examples of variables are:

$myvar
$your_name
$salary
$start_date

A variable used in a query can be referenced in other parts of the report
specification as well, but it must always be preceded by a dollar sign ($). The
variable must logically correspond to its intended value. For example, if the
variable is used as a number, its value must be a legal Ingres number. If the
variable is used as a date, its value must be a legal Ingres date. Otherwise,
Ingres interprets the variable as a character string.

Special Report Variables

You can use the following predefined report variables to generate and print
such items as page numbers and the date and time a report is run, or to
control the report layout.

Types of Data in Expressions

Chapter 11: Report-Writer Expressions and Formats 11–15

Name Description

page_number Current page number in the report—pages number from 1

line_number Current line number on the page—starts at 1

position_number Current column position on the page—starts at 0

page_length Current length of the page

page_width Current width of the report

left_margin Current left margin column position.

right_margin Current right margin column position

current_date Date when report is run. This does not include the time
component. For full date and time, use current_time.

current_day Day of the week when report is run. This is a three-
character string (for example, Mon or Fri).

current_time Complete date and time of day when report is run

w_name Name of the column currently being used in a within
block. This is a string.

w_column Value of the w_name column in the data row currently
being processed.

Aggregates

You use an aggregate function, or set function, such as sum or count, to
perform a calculation on data read in from one column, up to the occurrence of
a break in another column. For instance, in the section, Population Example in
the appendix, “Report-Writer Report Examples,” the regional population
subtotals represent use of the sum aggregate on each of the columns tot,
tot_18 to 65, tot_under18, and tot_over65 up to a break in region.
Additionally, the population totals at the end of the report represent use of the
sum aggregate for the same columns up to a break in “report.”

You specify which data must be used in the calculation by naming the column
containing that data as a parameter of the aggregate function. In the
POPULATION example, the columns containing the relevant data are tot,
tot_18 to 65, tot_under18, and tot_over65. You indicate the cut-off point for
the data to be included in each calculation by placing the aggregate function
within the footer section for a particular column or section of the report. The
aggregate value is calculated each time a break occurs in the specified footer.

Types of Data in Expressions

11–16 Character-based Querying and Reporting Tools User Guide

Aggregates can be non-unique or unique, simple, or cumulative. A non-unique
aggregate performs a calculation based on every value read in from the
aggregate column up to a break in the specified footer. A unique aggregate
performs a calculation on each break value in the aggregate column, up to a
break in the specified footer. (Depending on how the data is sorted and where
the aggregate is specified, the break values can or cannot be the actual unique
values in a column.)

A simple aggregate produces a single value, calculated on all the values in the
aggregate column up to a break in the specified footer. A cumulative
aggregate calculates a running total for each value in the aggregate column up
to the break containing the aggregate instruction. Simple and cumulative
aggregates can be either non-unique or unique. Aggregate types are discussed
in more detail later in this section.

The following aggregates are allowed:

Aggregate Description

avg Finds the average value of a numeric column up to a break in
the specified footer. You can take the average value of a date
data type column that has date intervals. Taking an average of
absolute dates generates a DBMS error.

avgu Finds the average value of the unique or break values for a
numeric column up to a break in the specified footer. You can
specify avgu only for a break column. For additional details, see
Unique Aggregates. You can take the average value of a date
data type column that has date intervals. Taking an average of
absolute dates generates a DBMS error.

count Counts the number of rows up to a break in the specified footer.

countu Counts the number of unique or break values up to a break in
the specified footer. You can specify countu only for break
columns. For additional details, see Unique Aggregates.

min Finds the minimum value of a numeric or date column up to a
break in the specified footer.

max Finds the maximum value of a numeric or date column up to a
break in the specified footer.

sum Calculates the sum of a numeric column up to a break in the
specified footer. In columns of data type date, you can use the
sum aggregate only if the column contains time intervals.
Taking a sum on absolute dates generates a DBMS error.

Types of Data in Expressions

Chapter 11: Report-Writer Expressions and Formats 11–17

Aggregate Description

sumu Calculates the sum of the unique or break values in a numeric
column up to a break in the specified footer. You can specify
sumu only for break columns. For additional details, see Unique
Aggregates. In columns of data type date, you can use the
sumu aggregate only if the column contains time intervals.
Taking a sum on absolute dates generates a DBMS error.

Syntax of Aggregates

The basic syntax of an aggregate specification is:

[cumulative|cum [(breakname)]] aggname
(columnname [, preset])

The following table describes the parameters for specifying aggregates:

Parameter Description

breakname Name of a break in the report (either a sort column name, or
report or page). It is optionally used as a parameter to the
cumulative function to indicate when to reset the cumulative.
The value of a cumulative represents the aggregate since the
last break in breakname. The default value for breakname is
report (that is, the value represents the cumulative value of an
aggregate since the start of the report).

aggname Name of the aggregation to be executed. Valid aggnames and
synonyms are average (avg), decimal, count (cnt), minimum
(min), maximum (max), and sum.

columnname Column name in the data being reported. Values of this column
are aggregated. Therefore, the column must be of the correct
type (that is, numeric or date columns only for all aggregates
except count). Note that a columnname must be specified for
the count aggregate even though all columns result in the same
value.

Types of Data in Expressions

11–18 Character-based Querying and Reporting Tools User Guide

Parameter Description

preset Either a constant value or the name of a column that is used for
pre-setting the aggregate before calculations begin. This is used
primarily with the cumulative function to set an aggregate to a
non-zero value before starting.

For example, if to print an account balance next to each
transaction in an account, use the cumulative sum aggregate
with a preset to the starting balance of the account. For an
example, see Account Example in the appendix “Report-Writer
Report Examples.” If preset is a constant, the aggregate is set to
that value. It can be a numeric or date constant.

If preset is a valid numeric or date column name, the aggregate
is set to the value in that column at the start of the break over
which the aggregate is defined. In addition, preset is not allowed
with the average aggregate.

Simple Non-Unique Aggregates

The scope of a simple non-unique aggregate is determined by the context in
which it is specified. For example, if you specify sum (salary) in the footer for
the report, it refers to the sum of salary for all rows read in the report. If you
specify sum (salary) in the page footer, it refers to the sum of salary for all
rows that were processed during the printing of each page. If specified in the
footer for a break in department, sum (salary) refers to the sum of salary for
all rows in each department.

You can specify simple aggregates only in the .footer section for breaks,
because these calculations are intended to provide summary information.

Unique Aggregates

You specify a unique aggregate by following the aggregate name with the
letter “u,” as in sumu, countu or avgu, respectively. The difference between a
unique and a non-unique aggregate is that a unique aggregate performs an
operation only when the value in the aggregate column changes, while a non-
unique aggregate performs the operation for every value in the aggregate
column. Therefore, a unique aggregate performs its calculation only on the
break values in the specified column, up to the break containing the aggregate
instruction.

Types of Data in Expressions

Chapter 11: Report-Writer Expressions and Formats 11–19

For example, if you specify the aggregate, count(region), in the report footer
for the sample report in the Population Example section of the appendix,
“Report-Writer Report Examples,” the result would be 51 (remember District of
Columbia), because there are 51 rows in the report. However, if you specify
“countu(region)” instead, the result would be 9, because nine breaks occur on
region.

The number of breaks is not necessarily the same as the actual unique values
in the column. This result depends on the break in which the aggregate
instruction is placed, and on whether the data in the aggregate column has
been sorted or not. For instance, countu would produce a result of 3 on the
following unsorted data in Column 1, even though the data contains only two
unique values, because three breaks would occur:

Column 1

AAA
BBB
AAA

Cumulative Aggregates

Preceding an aggregate name with the keyword cumulative or cum indicates
that the cumulative value of an aggregate is to be calculated and printed. As
such, you can specify cumulatives in any context (for instance, in detail
sections), because you use them to provide running totals. You can apply a
cumulative to any of the other aggregates. Cumulatives are particularly useful
for applications that need to use running totals, such as account balance
applications.

If you do not specify a breakname after the cumulative keyword, or if you
specify a breakname of report, Report-Writer assumes that the cumulative
aggregate refers to all data rows processed since the start of the report. If a
breakname of page is specified, the cumulative aggregate refers to all data
rows processed since the last page break. If a breakname is specified which is
one of the break columns, the cumulative aggregate refers to all data rows
processed since the last break in that column.

Types of Data in Expressions

11–20 Character-based Querying and Reporting Tools User Guide

You can specify the preset parameter to set the cumulative function to a
constant value or to the value of a column when it is initialized (that is, at the
start of the break in breakname). For example, in the Account Example
section of the appendix, “Report-Writer Report Examples,” the aggregate,
cum(acctnum) sum(amt,balance), in the detail block indicates a common use
of the preset parameter. When a break occurs in acctnum, Report-Writer sets
the cumulative function to the value of balance. As each new transaction is
processed, Report-Writer adds the value of amt to the cumulative aggregate.
Because deposits are positive and withdrawals are negative, the cumulative
aggregate reflects the running balance.

Rounded or Actual Values

By specifying the +t flag on the report command line, aggregates utilize the
rounded values for any floating point column whose format has been specified
in a .format statement with a template or as numeric F (for additional
information about these formats, see Format Specifications). That is, the value
of the aggregate for such a column is derived from the rounded values for the
individual column rows. To force the aggregate to utilize the actual, rather
than the rounded, values, specify the -t flag on the report command line. For
more information, see the Report command description.

Examples of Aggregates

Here are some examples of aggregates:

min(salary)

Specified in footer for dept, this element gives the minimum value of salary for
all data rows in a dept.

average(age)

Specified in the footer for class, this element gives the average age for all data
rows in a class.

count(name,200)

Specified in the footer for the report, this element gives the count of the
number of data rows in the report + 200.

sum(transact,oldbal)

Specified in the footer for acct, this element gives the sum of transact,
initialized by the value of oldbal at the start of each acct.

cumulative avg(height)

Specified in the detail text, this element gives the cumulative average of
height since the start of the report.

cum(acctnum) sum(amt,balance)

Operations

Chapter 11: Report-Writer Expressions and Formats 11–21

Specified in the detail text, this element gives the cumulative sum of amt since
the last change in acctnum and initialized by the value of balance at the last
change of value in acctnum.

Operations
The following operators can be used in expressions.

Arithmetic Operators

Numeric expressions can be combined arithmetically to produce other
(compound) expressions. The following arithmetic operators are supported (in
descending order of precedence):

Operator Description

+, - plus, minus (unary)

** exponentiation

*, / multiplication, division

+, - addition, subtraction (binary)

Unary operators group from right to left, while binary operators group from
left to right. You can force the order of precedence of operations using
parentheses. For example, the following is an expression with no ambiguity as
to precedence of operations.

(salary + 1000) * 12

Some arithmetic operations on date expressions are available:

Date Addition:
interval + interval —> interval
interval + absolute —> absolute

Date Subtraction:
interval - interval —> interval
absolute - absolute —> interval
absolute - interval —> absolute

Report-Writer does not support multiplication or division of date values. For
example, suppose birthdate is an absolute date column in the data table. The
following constructs give tomorrow’s date and the age of the person with that
birthdate, respectively:

current_date + date('1 days')

Operations

11–22 Character-based Querying and Reporting Tools User Guide

current_date - birthdate

Comparison Operators

A comparison operator is a binary operator that takes two expressions as
operands. Both expressions must be of the same type—numeric, string, or
date. The following operators are recognized:

Operator Description

= equal to

!= or <> not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

All comparisons are of equal precedence. When comparisons involving
character strings are made, all blanks are ignored.

Conditional Expressions

A conditional expression has the form:

expr comp_op expr

The expr is an expression, and comp_op is a comparison operator.

An expression can be enclosed in parentheses without affecting its
interpretation, as in the following examples:

(age < 50)
((salary * 12) >= 20000)

A conditional expression evaluates to true or false. It can contain partial match
specification characters.

Pattern Matching with Wild Cards

You can indicate partial matches of character string data in a conditional
clause in an .if statement and in the where clause of a query by using special
wild card characters with the comparison operators. The character string data
must be delimited by single quotes (except when used in a QUEL query).

Operations

Chapter 11: Report-Writer Expressions and Formats 11–23

Wild Cards in an .If Clause

When used in a string within an .if condition, the special meaning of wild card
characters can be disabled by preceding them with a backslash (\) character.
Report-Writer then interprets the wild card character literally. Thus, * refers
to the asterisk character. When used outside of an .if condition, wild card
characters have no special meaning and are always interpreted literally.

You can use the following wild card characters within a conditional clause in an
.if statement for the purpose of comparing character string data:

Character Description

* Matches any string of zero or more characters

? Matches any single character

[..] Matches any of the characters in the brackets

Any of these special characters can be used alone or in combination to specify
partial match criteria:

Example Description

ename = '*' Matches all values in the “ename” column

ename = 'E*' Matches any value beginning with “E”

ename = '*ein' Matches any value ending with “ein”

ename = '*[aeiou]*' Matches any value with at least one vowel

ename = 'Br???' Matches any five-character value beginning with “Br”

ename = '[A-J]*' Matches any value beginning with A, B, C, ..., J

ename = '[N-Z]???' Matches any four-character value beginning with N, O,
P, ..., Z

You cannot use blanks in bracketed expressions such as “[A-J]*” or “[N-
Z]???”.

Wild Cards in Queries

When a string appears within the where clause of a .query statement, the wild
card conventions must follow those of the database query language you are
using to retrieve the data.

Operations

11–24 Character-based Querying and Reporting Tools User Guide

Logical Operators

Report-Writer recognizes the following Boolean logical operators:

Operator Description

not logical not - negation

and logical and - conjunction

or logical or - disjunction

is null test to see if value is null

is not null test to see if value is null

These operators take Boolean expressions as operands and evaluate to true or
false. The not operator has the highest precedence of the operators; and/or
have equal precedence. You can use parentheses for arbitrary grouping.
Logical operators group from left to right.

Built-in Functions

You denote a function by a function name, followed by an operand (or two
operands) in parentheses. When valid expressions are substituted for the
operands, the result itself is an expression that evaluates to a number, string,
or date.

The resulting expression assumes the default print format appropriate for that
type of expression (number, string, or date), as described in Format
Specifications. For example, if you specify the following:

.print uppercase(column1)

The expression, uppercase(column1), evaluates to a string. When printing the
string, Report-Writer uses the default format for strings (c0), not the format
for the specified column. If you want to print the resulting expression in a
format other than the default for number, string, or date, specify the format
explicitly in a .print or .format statement; for example:

.print uppercase(column1) (cf30.6)

A faster and more efficient way to unconditionally print the column value in
uppercase for all retrieved rows would be:

select uppercase(column1) as column_a
.format column_a (cf30.6)
.print column_a

You can nest functions to any level.

Operations

Chapter 11: Report-Writer Expressions and Formats 11–25

All of the Ingres conversion, numeric, string, and date functions are
syntactically allowed in the .cleanup, .query, and .setup statements. For all
other Report-Writer statements the following table lists the supported
functions. To determine if a function is appropriate for use in a particular
context within Report-Writer, see its description in the SQL Reference Guide,
or if you are using an Enterprise Access product, the OpenSQL
Reference Guide.

The following table lists the built-in functions:

Conversion Numeric String Date

c(expr) abs(n) charextract
(c1,n)

date_gmt
(date)

char(expr) atan(n) concat(c1,c2) date_part
(unit,date)_

date(expr) cos(n) left(c1,len) date_trunc
(unit,date)_

dow(expr) exp(n) length(c1) interval
(unit,date_interval)_

float4(expr) log(n) locate(c1,c2) _date(s)

float8(expr) mod(n,b) lowercase(c1) _time(s)

hex(expr) sin(n) pad(c1)

int1(expr) sqrt(n) right(c1,len)

int2(expr) shift(c1,nshift)

int4(expr) size(c1)

money(expr) squeeze(c1)

object_key
(expr)

 trim(c1)

table_key
(expr)

 uppercase(c1)

text(expr)

varchar(expr)

vchar(expr)

Format Specifications

11–26 Character-based Querying and Reporting Tools User Guide

Boolean Functions

A Boolean function is like a built-in function except that it returns a value of
true or false instead of number, string, or date. The result of a Boolean
function cannot be printed; it can only be used as a condition. A Boolean
function is composed of a function name followed by an operand in
parentheses.

The break function is the only Boolean function found in Report-Writer. For
more information, see Breaks in the chapter “Using Report-Writer.” Its syntax
is:

break (columnname)

The columnname parameter must either be a break column (that is, it must be
in the sort list) or the value report.

If you specify a break column, Report-Writer returns a value of true if the
current value for that column has changed from the previous value or if the
current value in any column of higher precedence than column has changed. If
neither the current value for column nor the current value of any column of
higher precedence in the sort list has changed, it returns a value of false. If
report is specified, it returns true if the end of the report is reached;
otherwise, it returns false.

The following example illustrates the use of Boolean functions:

.sort dept, empno
 /* Other Report Writer statements */
.footer empno
 .if not break(dept) .then
 .newpage
 .endif

This generates a new page when the employee number breaks, but only if no
break occurs on the department.

Format Specifications
You can give special format specifications to expressions in the report in the
.print statement or in a .format or .tformat statement. The format determines
whether the data is printed as a character string, decimal value, date, or in
some other format. Be sure to use the right type of format depending on the
type of expression. As discussed in Automatic Determination of Default
Settings in the chapter “Using Report-Writer,” if no format is specified,
Report-Writer determines a default format from an analysis of your other
statements.

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–27

The following formats are allowed:

 B format specifies that the value be blanked out. This is a special format
used for blanking out a field, for use with temporary formats in
conjunction with the .tformat statement.

 C format specifies character strings.

 Date templates are formats that allow you very detailed control over the
appearance of dates and times in your reports.

 E format specifies numeric expressions printed in scientific notation.

 F format specifies numeric expressions.

 In the F format, you can control the placement of the decimal point or
suppress it entirely.

 G format specifies numeric expressions. This format chooses either F or E
format, depending on what fits in the field width. This format also
guarantees that decimal points align, whether printed in F or E format.

 I format specifies numeric expressions printed in integer format.

 N format specifies numeric expressions like G format, but decimal points
do not necessarily align.

 Numeric templates are complex formats for numeric data that allow you to
control placement of dollar signs, commas, or other punctuation within the
number.

 Q0 format specifies character strings like the C format, except that control
characters can be part of the character string without affecting the layout
of the report.

 T format specifies character strings like the C format, except that it
displays certain unprintable characters in a visible format.

Each of these formats is discussed in more detail in its own section later in this
chapter.

You can precede any of the preceding format specifications with a sign
character to indicate that the value printed is to be either right justified, left
justified, or centered. The following list describes each of the valid sign
characters:

 A minus sign (-) indicates that the data is to be left-justified in the
specified field width.

 An asterisk (*) indicates that the data is to be centered in the width of the
field.

 A plus sign (+) indicates that the data is to be right-justified in the
specified field width.

Format Specifications

11–28 Character-based Querying and Reporting Tools User Guide

The behavior of the sign characters is different for each data type. The
discussions for each data format type later in this section contain examples of
the effect of each sign character. If no sign is given, justification defaults to
left justification for character fields and right justification for numeric fields.

Default Formats

If you do not specify a format after an expression, Report-Writer uses a
default format.

Default Format for Strings

Report-Writer prints any string expression without a specified format in its
entirety. That is, the default format for strings is c0.

Default Format for Columns

If you do not specify a column format with the .format statement, Report-
Writer uses the default format for the column. The default format is based on
the data type of the column. For more information, see Determining Default
Column Formats in the chapter “Using Report-Writer.”

The following table lists default formats for SQL data types:

SQL Data Type For Reports
Other Than
Block Style

For Block Style
Reports

c1 - c35 c1 - c35 c1 - c35

c36 - cn

where n is the lesser of the maximum
configured row size and 32,000

cj0.35 cj0.35

char(1) - char(35) c1 - c35 c1 - c35

char(36) - char(n)

where n is the lesser of the maximum
configured row size and 32,000

cj0.35 cj0.35

text(1) - text(35) c1 - c35 c1 - c35

text(36) - text(n)

where n is the lesser of the maximum
configured row size and 32,000

cj0.35 cj0.35

varchar(1) - varchar(35) c1 - c35 c1 - c35

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–29

SQL Data Type For Reports
Other Than
Block Style

For Block Style
Reports

varchar(36) - varchar(n)

where n is the lesser of the maximum
configured row size and 32,000

cj0.35 cj0.35

integer1 f6 f10

smallint (integer2) f6 f10

integer (integer4) f13 f10

decimal (31.31 - 31.0) Based on size. For example,
decimal (5.1) defaults to f7.1,
allowing additional digits for the
decimal point and an optional +|-
sign.

float(n n10.3 f10.3

float4 n10.3 f10.3

float8 n10.3 f10.3

date c25 c25

money '$---------------
.nn'

'$---------------
.nn'

Note: All character data types are fully supported in non-Ingres databases
accessed by way of an Enterprise Access product, in which case the
column size limit can be greater than the lesser of the maximum configured
row size and 32,000.

Default Format for Special Report Variables

The following non-string report variables have the corresponding default
formats:

Report Variable Default Format

page_number f6

line_number f6

position_number f6

left_margin f6

right_margin f6

Format Specifications

11–30 Character-based Querying and Reporting Tools User Guide

Report Variable Default Format

page_length f6

page_width f6

current_date d' 3-feb-1901'

current_time d' 3-feb-1901 16:05:06'

w_column The default format for the column currently being used
in a .within block. See the default column formats in
the previous table.

Default Format for Aggregates

The default format for all the aggregates except count(u) is the format of the
column being aggregated. For count(u), Report-Writer uses the default format
Nw, where w is the width of the column being counted.

Default Format for Numbers

Any other numeric expressions such as numeric constants, numeric functions,
numeric parameters, and arithmetic operations have a default format based on
its data type.

Default Format for Dates

Any other date expressions, such as the date function, date parameters and
date arithmetic operations, have a default format of c0, which appears in the
report as if specified as “d' 3-feb-1901'” for an absolute date, “d' 3-feb-1901
16:05:06'” for an absolute date and time, or as the needed portion of the
template “d' 1 yrs 2 mos 3 days 4 hrs 5 mins 6 secs'” for a time interval.

QUEL User Notes

The default column formats used for reports based on QUEL data are identical
to those listed in the Default Formats for Columns table, but with the following
data types designated differently in QUEL:

In place of: Use QUEL Data Type:

integer1 i1

smallint i2

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–31

In place of: Use QUEL Data Type:

integer i4

float4 f4

float f8

Blanking Format B

The B format can be used with any type of data to print blanks in place of the
value of the specified variable.

The syntax of the B format is:

bw

The w parameter specifies the desired field width.

You can specify either an uppercase B or lowercase b (they are identical).
Report-Writer ignores the value of the expression, and prints w spaces in the
output instead.

You can use this format in conjunction with the .tformat statement, which
temporarily changes a column format, to suppress printing of unchanged
values in break columns. For more information, see the description of the
.Tforma statement in the chapter “Report-Writer Statements.”

Character String Format C

Use the C format to print string expressions.

The syntax of the C format specification is:

[-|*|+] c[f|j]n[.w]

The following table describes the C format parameters:

Parameter Description

f Instructs Report-Writer to fold (wrap) text by breaking
between words when printing strings that span multiple lines.
Tab and carriage return characters produce tab and carriage
return actions within the string. Must be specified in
conjunction with either w and/or n.

Format Specifications

11–32 Character-based Querying and Reporting Tools User Guide

Parameter Description

j Instructs Report-Writer to fold (wrap) text by breaking
between words, and to right justify text by padding the line
with blanks between words, when printing strings that span
multiple lines. Tab and carriage return characters produce tab
and carriage return actions within the string. Must be specified
in conjunction with either w and/or n.

n Specifies the maximum number of characters to print. If there
are more than n characters in the string, it truncates the
excess. If there are fewer, it pads the rest of the string with
blanks until n characters have been printed. Use a value of 0
for n if the entire string is to be printed, regardless of its
length.

w Specifies the number of characters to print on each line. If n is
greater than w, then more than one line is written, in
newspaper-style column format. By default, w is set to n.

When specifying the previous options, you can use either uppercase or
lowercase letters interchangeably. The optional field width n can be specified
to give an exact width. If n is specified and the character string is less than n
characters wide, blanks are added to the output to assure n characters. If the
string is longer than n characters, only the leftmost n characters are printed
and the rest are ignored.

If you specify a value for w as well as n, you can print text in column format
(that is, newspaper style). The f and j modifiers can be used to assure
breaking of words at blanks, or right justification of text. If neither is specified,
simple wrap-around of text occurs, regardless of where the line break might
occur.

Report-Writer has a default maximum of 310 lines for printing a character
string. If you exceed this maximum, some of the text can not appear in your
report. You can override the default by specifying the -wmxwrap parameter on
the command line.

If you use the C format statement, the following unprintable characters are
printed as spaces:

 Horizontal tab

 Vertical tab

 Line feed

 Form feed

 Carriage return

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–33

Note that tabs and carriage returns cause tabs and carriage return actions if
you are using multi-line formats, such as cf or cj.

To print a visual representation of unprintable characters, use the T format
statement. For more information, see Character String Format T.

These examples illustrate the use of the C format.

Example 1: Suppose your report contains a character column called name that you want to
print, and a value for name is Jones, J. Then, suppose you issue the following
six .print statements:

.print 'First :', name (c15),':First' .nl

.print 'Second:', name (c4), ':Second' .nl

.print 'Third :', name (c0), ':Third' .nl

.print 'Fourth:', name (-c15), ':Fourth' .nl

.print 'Fifth :', name (+c15), ':Fifth' .nl

.print 'Sixth :', name (*c15), ':Sixth' .nl

The print statements produce, respectively, the following six lines of output:

First :Jones, J. :First
Second:Jone:Second
Third :Jones, J.:Third
Fourth:Jones, J. :Fourth
Fifth : Jones, J.:Fifth
Sixth : Jones, J. :Sixth

Example 2: If your data includes the character string, “Now is the time for all good men to
come to the aid of their party.”, the following table shows the effect of three
different format specifications used to print the output on multiple lines in
three different ways:

c0.15 cf100.15 cj0.15

Now is the time Now is the time Now is the time
 for all good m for all good for all good
en to come to t men to come to men to come to
he aid of their the aid of the aid of
 party. their party. their party.

Because the second format specification, cf100.15, specifies an actual number
of character positions to print, Report-Writer prints out two blank lines after
the text, to pad out the 75 characters already printed to the full 100-character
column width specified.

After Report-Writer prints a string in column format, it sets the position for the
next text output to the top line of the column, at the end of that line (in the
example, this would be after “time”).

Format Specifications

11–34 Character-based Querying and Reporting Tools User Guide

Date Format D

You can output date expressions using a D format specification. The date
format specification is a D or d, followed by a quoted string template indicating
exactly how a specific date would be printed. Ingres requires that you delimit
the template with single (') or double (") quotation marks; single quotes are
recommended for consistency with requirements for quoting string constants.

The date is left justified by default, but by specifying the optional plus
sign (+), you can right justify the date. The template must be surrounded with
single quotes.

The syntax of a date template is:

[-|*|+] D|d 'template'

The date format parameter is as follows:

Parameter Description

template A string of characters representing a sample absolute
date and time

Specifying Absolute Date and Time Templates

Specify the absolute date and time format by a string containing one of many
possible representations of a sample date and time, such as “SUN Feb 3
04:05:06 p.m.” or “FEB 03 16:05.” The selection and arrangement of the
sample date and time elements within the template indicate the way you want
all dates and times to be displayed or printed. The following date and time
must be used as the basis for your template:

Sunday, 1901 February 3 at 4:05:06 p.m.

Note: This specific date and time was chosen as the sample for the template
because Sunday is the first day of the week, and arguments 1, 2, 3, 4, 5, and
6 are the year, month, day, hour, minute, and second, respectively. This
makes it easy to interpret the elements of the template correctly. For instance,
in the template '2/3/01,' the 2 indicates the month (February), the 3 indicates
the day (3), and 01 indicates the year (1901).

Your template can contain only the weekday of Sunday and the month name
of February (or their accepted abbreviations), the day of the month as 3, the
year 1901, the time 04:05:06 p.m. in various formats, and the time
designation p or p.m. (including the periods for p.m.). Report-Writer prints any
other word exactly as entered.

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–35

You can specify 24-hour (military) time by using 16 instead of 4 for the hour in
your template. Do not use p or p.m. with 24-hour time.

You can use all or only some of the arguments in your template, and you can
arrange the arguments in any order. You can use any combination of
lowercase and uppercase letters, and you can abbreviate the day of the week
as Sun or Su and the month as Feb or Fe. The resulting output assumes the
same format as your template.

You can create ordinal numbers from numbers by suffixing them with the
appropriate “st”, “nd”, “rd”, or “th,” as in:

d'3rd day of the 2nd month of 1901'

To print the day of the year, you specify the day and year, but leave out the
month:

d'3/1901'

The following examples demonstrate the use of absolute date and time
templates:

Format Value Output

d' 2/ 3/01' 25-oct-1998 10/25/98

d' 2/ 3/01' 5-jun-1909 6/ 5/09

d'03-02-01' 5-oct-1998 07:24:12 05-10-98

d'2/3/1' 25-oct-1998 10/25/98

d'2/3/1' 5-jun-1909 6/5/9

d'010203' 5-oct-1998 981005

d'1\|2\|3' 5-oct-1998 98|10|5

d'FEBRUARY, 1901' 1-sep-2134 09:13:02 SEPTEMBER 2134

d'FEBRUARY, 1901' 7-may-1962 13:08:42 MAY, 1962

d'Sunday' 5-oct-1998 Wednesday

d'SUN Feb 3 16:05 1901' 13-oct-1998 07:24:03 THU Oct 13 07:24 1998

d'FEB 03 4:05:06 p.m.' 12-dec-1998 22:13:03 DEC 12 10:13:03 p.m.

d'04:05:06 PM' 5-oct-1998 14:08:45 02:08:45 PM

d'04:05:06 PM' 5-oct-1998 07:29:12 07:29:12 AM

d'16:05 pst' 5-oct-1998 14:08:45 14:08 pst

d'3/01' 5-oct-1998 278/98

d'February 3rd' 29-jul-1954 July 29th

Format Specifications

11–36 Character-based Querying and Reporting Tools User Guide

Format Value Output

d'3rd day of 1901' 11-may-1999 131st day of 1999

If you use the special report variables, current_date, current_day, or
current_time, to print an absolute date, day, or date and time, be sure to use
only that portion of the date template that matches the returned variable
value. Specifying more of the template than you need causes Report-Writer to
print zeros (0) or empty strings for the unneeded portions of the template. For
example, suppose you specify the following:

.print current_date(d' FEB 03 1901 16:05:06')

Report-Writer returns the current date, but with a time of 00:00:00, because
the current_date report variable returns only the date and not the time.

Numbers requiring more than one digit replace preceding blanks or zeroes in
the template, as needed. If there are no more available preceding blanks or
zeroes, the number expands to the right. Ingres retains in the output any
single blank following a letter, word, or number in the template; it does not
replace such a blank with a succeeding number.

You can align columns of numbers by preceding them with an appropriate
number of blanks or zeroes (as shown by the first three examples in the
preceding examples of output).

Because full month and weekday names (as well as numbers without
preceding blanks or zeros) are of differing lengths, date columns using either
of these components in the format rarely line up.

Following February or Sunday with a vertical bar (|) specifies that for shorter
month names or weekdays, an appropriate number of blanks are substituted
for the vertical bar to line up the components. Similarly, if you place a vertical
bar after a single digit number in your template, Report-Writer prints a blank
before each single-digit number it encounters (unless the digit is already
preceded by a blank or zero).

For example, the template Sunday,| February | 3,| 1901 produces dates like:

Friday, January 15, 1998
Wednesday, May 4, 1998
Saturday, November 20, 1998

Report-Writer prints any character preceded by a backslash exactly as it
appears.

Specifying Date and Time Interval Templates

Date and time interval templates show the amount of elapsed time between
two dates or times, rather than an absolute date or time.

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–37

Specify a time interval with a quoted string containing one of many possible
representations of a sample time interval, such as 1 year or 1 yr 3 day. The
selection and arrangement of the time interval elements within the template
indicate the way you want time intervals to be displayed or printed. Use the
following time interval as the basis for your template:

1 year 2 months 3 days 4 hours 5 minutes 6 seconds

You can use all or only some of these units in your template, and the units can
be arranged in any order. Use the plural or singular form of any unit, as well
as the singular or plural form of the abbreviations, yr and mo, hr, min, and
sec.

To specify a time interval, use the format d'template', where template contains
one or more time interval keywords (for example, minutes) preceded by the
appropriate digit from the representative time interval string, as in:

d'5 minutes'

This format displays results followed by the keyword; for example:

9 minutes

The following examples demonstrate the use of the time interval templates:

Format Value Output

D'1 year' 3 yrs 5 mos 16 days 3 years

d'2 MONTHS, 3 DAYS' 3 yrs 5 mos 1 days 41 MONTHS, 1 DAY

d'1 yr 3 day' 1 yrs 5 mos 16 days 1 yr 168 days

D'4 hours 6 seconds' 23 hrs 8 mins 53 secs 23 hours 533 seconds

d'04:05 \hours' 23 hrs 0 mins 53 secs 23:01 hours

d'3 days 4 hours' 23 hrs 8 mins 53 secs 0 days 23 hours

d' 1 yr 2 mos 3 days' 200 yrs 11 mos 28 days 200 yr 11 mos 28 days

d' 1 yr 2 mos 3 days' 5 yrs 1 mos 3 days 5 yr 1 mos 3 days

For the purpose of date interval calculation, Report-Writer assumes there are
30.4376875 days in a month and 365.2425 days in a year. The smallest unit is
rounded up.

Numbers requiring more than one digit replace preceding blanks or zeroes in
the template, as needed. If there are no more available preceding blanks or
zeroes, the number expands to the right. Report-Writer retains in the output
any single blank following a letter, word, or number in the template; it does
not replace such a blank with a succeeding number. You can align columns of
numbers by preceding them with an appropriate number of blanks or zeroes
(as shown by the last two examples in the preceding examples of output).

Format Specifications

11–38 Character-based Querying and Reporting Tools User Guide

For English-language releases, if the number preceding a completely spelled
template word is 1, Report-Writer prints the template word in its singular form
(for example, 1 year); otherwise, it prints the word in its plural form (for
example, 2 years). Report-Writer makes this adjustment only if you spell out
the template word completely. For example, specifying 2 month would produce
appropriate singular and plural results, such as 1 month, 5 months, and
9 months. Specifying 2 mo would produce only singular results such as 1 mo,
5 mo, or 9 mo.

Report-Writer prints any character preceded by a backslash (\) exactly as it
appears.

Numeric Format E

The E format prints numeric expressions in scientific notation. Numbers output
in E format take the form of
[-]m.nnnnnE|e[+|-]ppp (or [-]m.nnnnnE|e[+|-]pp for VMS), where m is the
mantissa, n is the number of decimal digits, and p is an exponential digit. For
example, 10.456e+03 means 10.456 times 10 raised to the 3rd power.
Numbers output in E format are right justified in the field, unless preceded by
a .left statement or the minus sign (-) in the format designation.

The syntax of an E format specification is:

[-|*|+] ew[.d]

The E format parameters are as follows:

Parameter Description

w The maximum field width.

d The precision or the number of digits to print after the
decimal point.

You can specify either an uppercase or lowercase e, which also determines the
case of the “e” in the output. Specify the field width w, which refers to the
maximum number of spaces in the field. Be sure to include spaces in the field
width to account for the exponential part of the printout—that is, include five
spaces for E+ppp (or four spaces for E+pp for VMS). If the value can be
printed in fewer than w spaces, Report-Writer right justifies it in the field. If
this width is too small to fit the value to be printed, Report-Writer fills the
entire field with asterisks (*) instead.

If you specify d, Report-Writer prints a decimal point, followed by d digits to
the right of the decimal point.

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–39

If you do not specify d, or if you specify a value of “0” for d (for example,
E20.0), Report-Writer does not print the decimal point and rounds off any
fractional digits (it does print the exponential part).

This table illustrates the E format specification. The carets (^) in the Output
column are used here only to show where blanks occur in the output; they do
not print in your report.

Format Value Output

e10.3 22.3 22.300e+00

E10.2 -.123 -12.30E-02

e10 123.789 ^^1238e-01

E4.2 22.34 ****

+E10.2 22.34 ^22.34E+00

-e10.2 22.34 22.34e+00^

Numeric Format F

The F format causes Report-Writer to print numeric expressions in standard
decimal notation, with or without a decimal point. Numbers in F format are
right justified in the field, unless preceded by a .left statement or by the minus
sign (-) in the format designation.

The syntax of an F format specification is:

[-|*|+] fw[.d]

The F format parameters are as follows:

Parameter Description

w The maximum field width.

d The precision or the number of digits to print after the
decimal point.

The minus sign (-) and plus sign (+) characters, when used as prefixes for the
format specification, specify how the entire text must appear in the field—as
either right or left justified. They do not refer to the placement of the sign of
the number, as is the case in some programming languages.

Format Specifications

11–40 Character-based Querying and Reporting Tools User Guide

You can specify this format with either uppercase or lowercase letters. Specify
the field width w, which refers to the maximum number of printing positions in
the field. If the value can be printed in fewer than w spaces, Report-Writer
right justifies it in the field. If the value cannot be printed in w or more spaces,
Report-Writer fills the entire field with asterisks (*).

If you specify d, Report-Writer prints a decimal point followed by d digits to
the right of the decimal point. The number of digits to the left of the decimal
point is a maximum of (w - (d + 1)), because you need to account for the
fractional part in the field-width specification.

If you do not specify d, or if you specify a value of “0” for d (for example,
F20.0), Report-Writer does not print a decimal point and rounds off any
fractional digit.

The following table illustrates the F format specification. The carets (^) in the
Output column are used here only to show where blanks occur in the output;
they do not print in your report.

Format Value Output

f10.2 22.3 22.30^^^^^

F10.2 -.123 -0.12^^^^^

f10 123.789 124^^^^^^^

f4.2 22.34 ****

+f10.2 22.6 ^^^^^22.60

-f10.2 22.6 22.60^^^^^

Numeric Format G

The G format uses an F format specification if there is enough room in the
field, or E format if there is not enough room.

The syntax of the G format specification is:

[-|*|+] gw[.d]

The G format parameters are as follows:

Parameter Description

w The maximum field width.

d The precision or number of digits to print after the
decimal point.

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–41

You can specify either an uppercase G or lowercase g, which determines the
case of the “e” if the value is printed in scientific notation. For a full description
of the meanings of w and d, see Numeric Format E and Numeric Format F.

Report-Writer aligns data on the decimal point and then justifies the entire
column right or left, according to the sign specified. By default, the column of
numbers is right justified. To align F format numbers with E format numbers,
Report-Writer right justifies F format numbers to a location several spaces in
from the right edge of the field to account for the space taken up by the E
format’s exponential power designator—that is, five spaces for E+|-ppp (or
four spaces for E+|-pp for VMS).

The following table of examples illustrates the G format. The carets (^) in the
Output column are used here only to show where blanks occur in the output;
they do not print in your report.

Format Value Output

g10.2 123.456 123.46^^^^

G10.2 123456 ^12.35E+04

g8.2 -134.65 -.13e+03

g8 -123 -123^^^^

+g10.2 123.45 ^^^^123.45

-g10.2 123.45 123.45^^^^

Numeric Format I

The I format prints numeric expressions in integer format. The syntax of the I
format specification is:

[-|*|+] iw

The I format parameter is as follows:

Parameter Description

w The maximum field width.

Specifying i9 prints a number up to nine characters long in integer format,
including an optional sign, and left justifies it in the column by default.
Specifying a plus sign (+i9) right justifies the number in the column.

Format Specifications

11–42 Character-based Querying and Reporting Tools User Guide

Format Value Output

i10 22,000 22000^^^^^

I10 -120,300,000 -120300000

i4 123.789 124^

i4 22,800 ****

+i8 22.4 ^^^^^^22

-i8 22.6 23^^^^^^

Numeric Format N

The N format specification is identical to the G format specification except that
the field is right justified, whether printed with E or F format. Of course, if you
specify the optional minus sign (-) before the format designation, the value is
left justified.

The syntax of the N format specification is:

[-|*|+] nw[.d]

The N format parameters are as follows:

Parameter Description

w The maximum field width.

d The precision or number of spaces to print after the
decimal.

You can specify either an uppercase N or lowercase n, which determines the
case of the “e” if printed in scientific notation. For a full description of the
meanings of w and d, see Numeric Format E and Numeric Format F.

Numbers printed with N format are right justified in the output field. Unlike G
format, the decimal points are not always aligned.

The following table of examples illustrates the N format. The carets (^) in the
Output column are used here only to show where blanks occur in the output;
they do not print in your report.

Format Value Output

n10.2 123.456 ^^^^123.46

N10.2 123456 ^12.35E+04

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–43

Format Value Output

n8.2 -134.65 -.13e+03

n8 -123 ^^^^-123

+n10.2 123.79 ^^^^123.79

-n10.2 123.79 123.79^^^^

Numeric Templates

If you need more complex numeric formats than the standard formats offer,
you can specify a numeric format in a template form. Essentially, a template is
an example of what the formatted output appearance. However, instead of
specifying an actual sequence of digits, you use specially designated
characters to indicate what must be printed at that position in the template.
For instance, a Z indicates that the next digit in the number (or a space, if no
digits remain) must be printed. A comma (,) in the template causes a comma
to be printed in that position. So the template Z,ZZZ would cause the number
1000 to be printed as 1,000. In addition to the specially defined characters
listed below, you can include any other character directly in the numeric
template by preceding it with a backslash.

The general syntax of a numeric template is:

[-|*|+] '{c}'

The parameter for a numeric template is as follows:

Parameter Description

c One of several special characters that can be repeated
any number of times.

The numeric template, like any number, is right justified by default. You can
left justify the template by specifying the optional minus sign (-) as the first
character in the template. Surround the template with single (') or double (")
quotes; single quotes are recommended for consistency with requirements for
quoting string constants.

Ingres evaluates the data from right to left, as it compares the number to the
template. The following table describes the special characters you can use in a
numeric template:

Format Specifications

11–44 Character-based Querying and Reporting Tools User Guide

Character Description

n or N Prints a digit if the number contains a digit in that
position. Otherwise, prints a zero. If a field is specified
without n in the numeric positions and Report-Writer
encounters a value of zero (0), Report-Writer enters
blanks in the field.

z or Z Prints a digit if the number contains a digit in that
position. Otherwise, prints a space. This is used for
standard blank-padded numeric fields.

$ (Dollar sign) Prints a digit if the number contains a digit in
that position. If no digits remain, prints a floating dollar
sign immediately to the left of the last evaluated digit.
Report-Writer displays a dollar sign only once in the
output field. If a dollar sign has already been printed,
Report-Writer prints a space in this position. This can be
used to print a dollar sign directly to the left of the
number, or to place a dollar sign in a fixed position in the
field when used with other template characters.

- (Minus sign—Preceding or Trailing)

For preceding: Prints a digit if the number contains a digit
in that position. If no digits remain and if the number is
negative, prints a floating minus sign immediately to the
left of the last evaluated digit. Report-Writer prints a
minus sign only once in the output field. If a minus sign
has already been printed, or if the number is positive and
no digits remain, Report-Writer prints a space in this
position.

For trailing: Prints a minus sign in the position if the
number is negative, or if the number is positive, prints a
space.

+ (Plus sign—Preceding or Trailing)

For preceding: Prints a digit if the number contains a digit
in that position. If no digits remain, prints a floating sign
(+ or -). Report-Writer prints a plus or minus sign only
once in the output field. If one has already been printed,
Report-Writer prints a space in this position.

For trailing: Prints a plus sign in the position if the number
is positive or a minus sign if the number is negative.

, (Comma) Prints a comma if the number contains any
digits to the left of this position. If no digits remain, prints
a space.

. (Decimal point) Prints a decimal point in this position. The
template can contain only one decimal point.

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–45

Character Description

* (Asterisk) Prints a digit if the number contains a digit in
this position. If no digits remain, prints an asterisk. This is
useful to fill a number on the left with asterisks (for
example, for checks).

space Prints a blank space in this position. This is identical to
specifying a backslash followed by a space, and is
provided for convenience only. Do not use spaces as
thousands separators in place of commas and a decimal
point if your template contains floating characters (+ - $ [
] () < > { }). Floating characters work correctly only
when used with commas and the decimal point as
separators.

\c (Backslash) Prints in the specified position any character c
preceded by a backslash. This allows you to insert
hyphens, slashes, or other characters into the number.
(The backslash is not printed.)

CR (Two characters) Inserts the characters “CR” (for credit) if
the number is negative, or two blanks if positive. The
letters “CR” appear exactly as specified, in uppercase
and/or lowercase letters.

DB (Two characters) Inserts the characters “DB” (for debit) if
the number is negative, or two blanks if positive. The
letters “DB” appear exactly as specified, in uppercase
and/or lowercase letters.

() or [] or < > (Parentheses, brackets or angle brackets) If the number is
negative, prints it within the specified symbols.

If Report-Writer encounters a value of zero, it prints blanks (spaces) in the
output field, unless the template contains n in the numeric positions. Report-
Writer prints a floating symbol ($, - , or +) only once in the output field,
regardless of the number of times it appears in the template.

The following examples demonstrate the use of numeric templates. The carets
(^) in the Output column are used here only to show where blanks occur in
the output; they do not print in your report.

Format Value Output

'zzzzz' 123 ^^123

'zZzZz.Zz' 0 ^^^^^^^^

'zzzzz.nn' 0 ^^^^^.00

'+++,+++,+++' 23456 ^^^^+23,456

Format Specifications

11–46 Character-based Querying and Reporting Tools User Guide

Format Value Output

'---,---,---.NN' 23456.789 ^^^^^23,456.79

'---,---,---.zz ' -3142.666 ^^^^^-3,142.67^

'zzz,zzz,zzz.zz-' -3142.666 ^^^^^^3,142.67-

'$$$,$$$,$$$.nncr' 235122.21 ^^^$235,122.21^^

'$$$,$$$,$$$.nnDb' -235122.21 ^^^$235,122.21Db

'$zz,zzz,zzn.nn' 1234.56 $^^^^^1,234.56

'$**,***,***.nn' 12345 $****12,345.00

'+$$,$$$,$$$. ' 54321 ^^^+$54,321.00

' nnn\-nn\-nnnn ' 023243567 ^023-24-3567^

-'zzzzz' 123 123^^

'(zzzzz)' -123 (^^123)

'[[[[[z]' -123 ^^[123]

Control Character Format Q0

The q0 (q zero) format allows you to print a character string without the string
taking up any actual space in the report. Report-Writer treats the string as if it
had a length of zero. This format is designed to allow the printing of control
character sequences within a report, although it can be used for other
purposes. A typical use for the q0 format in a report might be to send an
initialization sequence to an output device to change fonts or write bar codes.

The syntax of the q0 format is:

q0

The parameter for the q0 format is as follows:

Parameter Description

0 This required parameter permits any string length to be
printed in this format. The parameter assumes a control
sequence or a non-printable string is being specified.

Format Specifications

Chapter 11: Report-Writer Expressions and Formats 11–47

Any printable character or hexadecimal string can be printed with this format.
You must specify non-printable characters, such as TAB, SPACE, LF, FF, CR,
and ASCII NUL (X'00'), as hexadecimal strings in the format, X|x'nn{nn}'. The
q0 format sends the string directly to the output device as is, without
interpretation. Hexadecimal strings in .print statements without the q0 format
are interpreted by the formatting routines and can produce undesirable results
or cause Report-Writer to fail. For more information, see Hexadecimal Strings.

Important! Sending a report with a q0 character string to a device other
than the one intended can halt your output device. For example, if your report
uses q0 to highlight specific characters on your screen, your printer halts
because it does not understand the initialization string.

Also, if you are sending a report with a q0 format to the screen, place
positioning commands (such as .tab or .right) on a separate line from the q0
format and its string. For example:

.tab 14

.println $start_hilite (q0), 'This is
 hi- lighted', $end_hilite (q0)

or

.println $start_hilite (q0)

Placing positioning commands between the Q0 format and its string can
produce incorrect positioning of the string output.

The following example initializes the printer to use a special font. The
initialization sequence has been previously assigned to the variable start_font.
After Report-Writer prints the string, the variable end_font resets the printer
back to the original font.

.print $start_font (q0)

.print 'This will be printed in a different font.'

.print $end_font (q0)

Character String Format T

The T format is nearly identical to the C format, except that the T format
translates characters outside the normal character set into visible
representations. For more information, see the description of the Character
String Format C.

This format is useful when you want to produce output that looks exactly like
that of a terminal monitor, which expands unprintable characters into visible
representations.

The syntax of a T format specification is:

[-|*|+] tn[.w]

Expressions and Formats Syntax Summary

11–48 Character-based Querying and Reporting Tools User Guide

The value for n is the width of the field that the expanded output occupies on
the page. It does not refer to the number of characters of data that are
translated.

Assume the data you wish to print is the character string “John?Smith,\Esq.”,
where the question mark (?) actually stands for a non-printing formfeed
character. You might enter a print statement such as:

.print 'Output:', user_data(t0), ':Output'

.newline

The preceding statement would produce the following output:

Output:John\fSmith,\\Esq.:Output

The following list describes the character representation of each unprintable
character translated by the T format:

 Newline becomes \n.

 Horizontal Tab becomes \t.

 Backspace becomes \b.

 Carriage Return becomes \r.

 Form Feed becomes \f.

 Backslash becomes \\.

 Null becomes \0.

 Any other unprintable character is printed as the character string \nnn,
where nnn is the three-digit octal number equivalent to the character.

Expressions and Formats Syntax Summary
The following lists useful expressions and formats syntax.

Expressions and Formats Syntax Summary

Chapter 11: Report-Writer Expressions and Formats 11–49

Special Report Variables

current_date
current_day
current_time
left_margin
line_number
page_length
page_number
page_width
position_number
right_margin
w_name
w_column

Arithmetic Operators

+, - plus, minus (unary)

** exponentiation

*, / multiplication, division

+, - addition, subtraction (binary)

SQL Conversion Functions

c(expr)
char(expr)
date(expr)
dow(expr)
float4(expr)
float8(expr)
hex(expr)
int1(expr)
int2(expr)
int4(expr)
money(expr)
text(expr)
vchar(expr)
varchar(expr)
table_key(expr)
object_key(expr)

Expressions and Formats Syntax Summary

11–50 Character-based Querying and Reporting Tools User Guide

QUEL Conversion Functions

c(expr)
char(expr)
date(expr)
dow(expr)
float4(expr)
float8(expr)
hex(expr)
int1(expr)
int2(expr)
int4(expr)
money(expr)
text(expr)
vchar(expr)
varchar(expr)

Numeric Functions

abs(n)
atan(n)
cos(n)
exp(n)
log(n)
mod(n,b)
sin(n)
sqrt(n)

SQL and QUEL String Functions

charextract(c1,n)
concat(c1,c2)
left(c1,len)
length(c1)
locate(c1)
lowercase(c1)
pad(c1)
right(c1, len)
shift(c1,nshift)
size(c1)
squeeze(c1)
trim(c1)
uppercase(c1)

Expressions and Formats Syntax Summary

Chapter 11: Report-Writer Expressions and Formats 11–51

Date Functions

date_trunc(unit,date_)
date_part(unit,date_)
date_gmt(date)
_date(s)
interval(unit,date_interval)
_time(s)

Boolean Function

break (columnname)

Aggregates

cumulative [(breakname)] sum[u] (columnname [preset])
cumulative [(breakname)] count[u] (columnname [preset])
cumulative [(breakname)] minimum (columnname [preset])
cumulative [(breakname)] maximum (columnname [preset])
cumulative [(breakname)] average[u] (columnname) [(format)]

Formats

[+ | * | -]bw where w is width

[+ | * | -]c[f | j] n[.w] where n is total string length, and w is the column
width

[+ | * | -]ew[.d] where w is width, d is precision

[+ | * | -]]fw[.d] where w is width, d is precision

[+ | * | -]gw[.d] where w is width, d is precision

[+ | * | -]nw[.d] where w is width, d is precision

[+ | * | -]tn[.w] where n is total string length, and w is the
columnwidth

[+ | * | -] '{c}' valid characters are: n or N z or Z $ + ’ , . * CR [] (
) DB \c or space

[+ | * | -] D|d] 'template' where template is a string of characters
specifying the absolute date and time or specifying a
time interval

q0 where 0 is a required parameter that permits any
string length to be printed

Chapter 12: Report-Writer Statements 12–1

Chapter 12: Report-Writer Statements

To specify a report, a text file containing report formatting and structure
statements must be created. These statements define the data to be reported,
the order of the data, the page layout, explanatory text to be inserted in the
report, and the position and format of titles and data items.

Before developing your report specifications, you should know how you want
the finished report to look. Consider some of the following issues:

 What data is needed from your database to create the report?

If you need to run a database query to get the data, design the query and
run it from a terminal monitor to make sure it retrieves the desired data.

 How do you want the data sorted?

If you want headings or footings for subgroups of your data, the data must
be sorted on the columns that define the subgroups. You must decide
which sort order is to be used.

 What do you want the various headers and footers to look like?

Decide whether you want titles, subtotals or other aggregates, extra blank
lines, or other types of headers or footers in your report. Sketch the report
layout on a piece of paper to see how it looks.

 What information should be printed for each specific data row of the
report, and in what format should the information appear?

For numbers, you should think about the number of significant digits to
print, and the number of decimal places.

 What kind of page headers and footers do you want?

Format of Report Specification Statements
Specify report formatting statements with a keyword preceded by white space
and a period (.), and optionally followed by parameters.

The general format of a report formatting (specification) statement is:

.statement {parameters}

Format of Report Specification Statements

12–2 Character-based Querying and Reporting Tools User Guide

This table describes the parameters in a report formatting statement:

Parameter Description

statement One of the text formatting statements, such as .data or
.tab. Specify statements in uppercase, lowercase, or
mixed case letters.

parameters Optional parameters to the statement. Parameters take
many different forms, depending on the specific
statements. In many cases, parameters to the statement
can also be variables and expressions. To obtain the value
of a variable, precede the variable with a dollar sign ($).

Here are some examples of report formatting statements; they include a .tab,
.newline, .header, .println, and a .sort statement:

.tab $first_col

.newline

.header report

.println 'This is the value of:',abc(f10.2),
 ' Sum:',sum(def)
.sort a,b,c

The sample reports in the appendix, “Report-Writer Report Examples,”
demonstrate the correct specification of statements.

Statement and Parameter Delimiters

A report formatting statement must be preceded and followed with white
space, either by explicitly entering spaces or tabs before and after a
statement, or by using line breaks to separate the statements. White space
following a statement must occur between the statement and any numeric
parameter following the statement, as in:

.pagewidth 80

Lack or incorrect placement of white space statement delimiters can result in
incorrect statement interpretation and could cause an error.

Statements can span any number of lines. Except where otherwise noted,
commas separate multiple values for a parameter within statements, such as
in the .sort or .print statements.

If a parameter is a user name, column name, or table name (including view
names and synonyms), you can delimit it with double quotes (") to include
spaces or other characters that are usually disallowed in these names. For
more information, see Delimited Identifiers.

Format of Report Specification Statements

Chapter 12: Report-Writer Statements 12–3

Using Schemas for Owner Qualification

A schema is a collection of database objects, such as tables. Each table, view,
or synonym belongs to a schema that is determined when the object is
created. The schema name corresponds to the user who owns the object. The
schema name helps distinguish between objects with identical names and
different owners.

In report specifications containing an SQL .query or .data statement, you can
qualify a table name, view name, or synonym by specifying the schema to
which it belongs (which also implies its owner), using the following construct:

schema.objectname

This allows you to access a table, view, or synonym owned by a user other
than yourself or the DBA, if you have the correct permissions to access it.

A period (.) must immediately follow the schema name, although white space
following the period is allowed. For example, Report-Writer allows the
following construction:

schema. objectname

Both the schema name and the object name (table name, view name, or
synonym) can be variables or delimited identifiers. A schema.objectname
construct in which both the schema and table name are variables would take
the form:

$schema.$objectname

A schema.objectname construct in which both the schema and object name
are delimited identifiers would take the form:

"schema name"."object name"

A separate set of double quotes must surround each delimited identifier.

You can use the schema.objectname qualification within the following
statements:

 .cleanup

 .data

 .declare (in the with value string)

 .query (SQL only)

 .setup

Types of Report Specification Statements

12–4 Character-based Querying and Reporting Tools User Guide

If you do not qualify the table, view, or synonym with a schema, Report-Writer
searches for the specified object in the following order:

a. Objects owned by the current user.

b. Objects owned by the DBA to which you have been granted access.

c. Objects in the System Catalogs

QUEL User Notes

If you are a QUEL user, you cannot use schemas or owner qualification for a
table name, view name, or synonym in a report specification that contains a
QUEL query. If you use the schema.objectname construct in reports with QUEL
queries, Ingres tries to interpret the construct as a Report-Writer statement,
which generates a runtime error.

Types of Report Specification Statements
There are seven types of report specification statements:

 Report Setup Statements

 Page Layout and Control Statements

 Report Structure Statements

 Column and Block Statements

 Text Positioning Statements

 Print Statements

 Conditions and Assignment Statements

The following sections provide detailed information about each type of report
specification statement. The statement types are grouped by function for
easier reference.

Note: For more information, see the Statements Syntax Summary in this
chapter.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–5

Report Setup Statements
Statements for setting up the overall report environment:

 The .break statement specifies the break columns for the report and the
order in which to process occurrences of breaks.

 The .cleanup statement performs initialization tasks, (specified through
query language statements) just before exiting the report.

 Comments can be placed in the text file of report specifications if preceded
with /* and followed with */. Comments are ignored in report processing.

 The .data or .query statements define the data to be used by the report
output.

 The .declare statement declares variables to be a given data type and
allows definition of a prompt string or value string if required for that
variable.

 The .delimid identifier statement allows recognition of delimited identifiers
for table, view, user, and column names in report specifications.

 The .include statement specifies the inclusion of Report-Writer code
residing in different files, and is executed when you run the sreport
command to store the report specification.

 The .longremark and .endremarkstatements allow you to enter a large
amount of descriptive text to describe the report specification. This text
displays in the RBF Save window and on the Reports Catalog frame in RBF
when you choose the MoreInfo operation.

 The .name statement names the report.

 The .output statement sets up an external file to receive the report output.

 The .setup/.cleanup statements perform data preparation and cleanup
tasks (specified through query language statements).

The .setup tasks occur before processing the query, whereas .cleanup
tasks occur after processing the query, but just before exiting the report.

 The .shortremark statement allows you to provide a brief description about
the report. This information is included in the Reports Catalog and the
Save window in RBF.

 The .sort statement defines the sort order of the data for the report.

Report Setup Statements

12–6 Character-based Querying and Reporting Tools User Guide

.Break

Specifies the break columns for the report and the order in which they should
break.

Syntax .break | .brk columnname{, columnname}

In the preceding syntax, columnname can be expressed optionally as a
delimited identifier or a variable. The comma (,) must be stated explicitly and
cannot be part of a columnname variable.

Description You can use the optional .break statement to specify the break columns if no
.sort statement has been specified, or to override the default break columns
created by the .sort statement. The order in which Report-Writer processes
the break statements is the order in which they appear in the specified break
list. A break on one column in the list produces a break on all subsequent
columns in the list.

If a variable is specified as the column, Report-Writer evaluates the
columnname during the loading of the report specification, before retrieving
the data.

If a .sort statement is not specified, all columns that have .header or .footer
statements must be included in the break list.

If you specify an order by clause in a .query statement, a .break statement
that lists the columns in the order by clause must also be specified. The .query
statement does not create default column breaks as does the .sort statement.

Note: When using a variable for columnname, the variable must be specified
identically in corresponding .sort, .header, and .footer statements.

The parameters for the .break statement are as follows:

Parameter Description

columnname Name of a column in the table used as the basis for your
report, or the label for a column in the result column list
of the specified query. You can specify columnname as a
delimited identifier by enclosing it in double quotes ("), if
you have previously specified the .delimid statement.

$columnvariable Variable whose value is a column name. The variable
must be preceded with a dollar sign ($).

Report Setup Statements

Chapter 12: Report-Writer Statements 12–7

Examples

Example 1 The following example breaks on the columns, state and city of employment
(a delimited identifier). The order to sort the rows retrieved from the
database appears in the .query statement. The .break statement is required
to identify the sort columns to Report-Writer.

.query
 select *
 from emp
 order by state, "city of employment"
.break state, "city of employment"

Example 2 The following example overrides the original sort order specified in the .sort
statement by using the .break statement. This might be done so that a
change in the second sort column does not trigger a break on the third
column. Note the consistent usage of variable names.

.sort $first_col :a,
 $second_col :a,
 $third_col :a
.break $first_col, $third_col

.Cleanup

Embeds SQL statements that do not involve data retrieval into Report-Writer
sections. Report-Writer executes the statements after the main report query is
processed.

Syntax .cleanup SQL_statement; {SQL_statement;}

For a complete explanation of all available statements, see the SQL Reference
Guide.

Description Use the optional .cleanup statement to embed groups of SQL statements that
perform cleanup tasks such as dropping temporary tables created in the .setup
section. Report-Writer executes the .cleanup section after it substitutes
Report-Writer variables into the SQL statements. For information on
embedding groups of SQL statements before the report is processed, see the
.Setup statement.

Use as many lines as you need to specify the .cleanup. You can also include
embedded declared variables within an SQL statement in the .cleanup section.
The end of .cleanup is detected by the start of a new Report-Writer statement
or an end-of-file indicator.

Report Setup Statements

12–8 Character-based Querying and Reporting Tools User Guide

The parameter for the .cleanup statement is as follows:

Parameter Description

SQL_statement One or more action SQL statements that do not involve
data retrieval, separated by semicolons (;). (Note that
the select statement cannot be used.)

The following rules apply to the .cleanup section:

 The .cleanup section only supports SQL statements. The language of your
.query section determines the query language of the report. If you have a
QUEL .query section, the query language is QUEL; otherwise it is SQL. You
can have a QUEL query and SQL .setup and .cleanup sections.

 If the report query language is SQL, the default value of autocommit is off.
If it is QUEL, the default is on. To override the default commit behavior,
set autocommit off or on as the first statement in your .setup section.

 Only statements that are compatible with execute immediate are
permitted in a .cleanup section. For a list of compatible statements, see
the SQL Reference Guide. Neither the select statement nor any statement
requiring embedded semicolons (;) or colons (:), such as create
procedure, are allowed. Semicolons within quoted strings are allowed.
Therefore, you can specify a table for selection by using the expression:

create table tablename as select...

 Report-Writer evaluates variables in the .cleanup section only once, before
running the report. Therefore, you can set the value of the variable only at
report runtime, as follows:

– On the command line in a variablename=valuestring clause

– On the command line in response to a prompt

– In the with value or with prompt clause of a .declare statement
associated with the variable

While actually executing the .cleanup section, Report-Writer does not
recognize any changes that have been made to .cleanup section variables
while the report was being run.

 In the .cleanup section, Report-Writer evaluates variables before sending
them to the Database Management System (DBMS) and evaluates SQL
statements at report runtime. It generates error messages at runtime
from the DBMS. If it does not detect any errors in the report or in the
.cleanup and .setup sections, and if autocommit is off, Report-Writer
executes an explicit commit at the close of report processing.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–9

 Use the -d flag with the report command to run the report as if there were
no errors. This flag causes DBMS errors in the .setup and .cleanup section
to be ignored. The failure of the .setup statement, however, can affect
data availability in the .query. For example, if you run the report on a
temporary table created improperly in the .setup section, the report fails.

 When you specify the -d flag, error messages continues to display on the
screen. Although it is not recommended, you can also run the report with
the -s flag if you do not want error messages to display.

 If you do not use the -d flag, errors and transaction handling follow these
rules:

– If Report-Writer detects an error in the .cleanup section, the .setup
section (if it exists) and the report have already run. The transaction is
rolled back if autocommit is off.

– If Report-Writer detects an error in the .setup section, neither the
report nor the .cleanup section runs. The transaction is rolled back if
autocommit is off.

– If Report-Writer detects an error in the query, or if there is a fatal
error in the report, neither the .cleanup section nor the report runs.
The transaction is rolled back if autocommit is off.

Examples For .cleanup examples, see .Setup in this chapter.

Comments

Include comments for your own documentation within a report specification
saved as a text file.

Syntax /* {any_text} */

Description To create internal documentation for a report specification saved as a text file,
you can include comments within the report specification by bracketing them
between the /* and */ characters. Report-Writer ignores all text between
these characters during report processing. If you save your report specification
with the sreport command, Report-Writer ignores the comments and does not
save them when storing your report specification in the database.

Comments can be nested; that is, you can have a set of comments within
another set of comments. You can place comments anywhere within your file.

Comments can be defined as follows:

Parameter Description

any_text Any text, except the characters */ which close the
comment.

Report Setup Statements

12–10 Character-based Querying and Reporting Tools User Guide

Examples

Example 1 /* this is an example
 of a comment...
 */

Example 2 /* You can also have
 /* nested comments */
 in Report-Writer specifications */

.Data

Specifies the table or view in the database containing data for the report.

Syntax .data | .dat | .table | .view [schema.]tablename|viewname|synonym

In the preceding syntax, schema, tablename, viewname, and synonym can be
expressed as variables or delimited identifiers.

Description The .data statement identifies a table or view in the database that is used in
its entirety in the report. The four statement names shown in the syntax are
synonymous and can be used interchangeably. Each time you run a report
with the report command, all of the rows and columns in the table or view are
available for use in the report specification. One exception to this is that
Report-Writer silently ignores and does not print values for columns with
unsupported data types such as long varchar, byte, byte varying, and long
byte.

Note: If Report-Writer encounters subsequent references to a column of an
unsupported data type, such as within sort operations, it issues an error
message and terminates the report.

You can use a delimited identifier for tablename if you have previously
specified the .delimid statement. For more information on delimited identifiers,
see Delimited Identifiers and .Delimid in this chapter.

If you specify a variable as the table, Report-Writer evaluates tablename
during the loading of the report specification, before retrieving the data.

An SQL language report specification includes duplicate rows in the data for
reports that use the .data, .table, or .view statements. To specify distinct
rows, you can specify the -6 flag on the report command line.

Either the .data or the .query statement is a required statement for each
report. The .data and .query statements are mutually exclusive; both cannot
appear in the same report specification.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–11

The parameters for the .data statement are listed below:

Parameter Description

schema Collection of database objects to which the specified
object belongs. The schema also implies the user that
owns the object.

tablename
viewname

Name of a table or view in the database. You can also
use a synonym for tablename. Report-Writer reads all
rows and columns in the specified table or view each
time the report is run. Rules for the use of tablename
and viewname are the same as in all other Ingres tools.

$tablevariable Variable whose value is the name of a table, view, or
synonym for a table in the database. The variable must
be preceded with a dollar sign ($).

Examples

Example 1 Use table “repdat” for the report.
.data repdat

Example 2 Use view “myview” for the report.
.table myview

Example 3 Use the value of variable rep_table as the table for the report.
.data $rep_table

Example 4 For the report, use the table whose name is the delimited identifier “my
table” and whose schema is “robert.”
.data robert."my table"

.Declare

Declares variables that can be assigned values and used in expressions.

Syntax .declare variablename = datatype
 [with null | not null]
 [with prompt 'promptstring']
 [with value 'valuestring']
 {, variablename = datatype...}

Description The .declare statement declares variables that can be assigned values
interactively or in Report-Writer code. You can assign a value to the variable in
any of the following ways:

 On the command line during runtime

Report Setup Statements

12–12 Character-based Querying and Reporting Tools User Guide

 On the command line in response to a runtime prompt, which you define in
the with prompt clause of a .declare statement

 In .let assignment statements placed in any .header, .footer, or .detail
sections.

 In the with value clause of a .declare statement

Declared variables can also be used in a query block to specify runtime
substitution of text in the query. For details, see the .Query statement in this
chapter.

More than one .declare statement can be specified in a report.

The parameters for the .declare statement are listed below:

Parameter Description

variablename A valid variable name. In standard Ingres databases, the
variable name can be up to 32 characters long and must
begin with an alphabetic, or underscore (_) character.
Following characters must be alphanumeric or underscore.
For naming conventions in databases compliant with
ANSI/ISO Entry SQL-92 standards, see ANSI/ISO Entry
SQL-92 Compliant Databases.

datatype A legal data type.

promptstring A string constant up to 100 characters in length including
quotes. The constant must be enclosed in single quotes to
preserve spaces. For more information, see String
Constants.”

valuestring An initial string value for the variable up to 100 characters in
length including quotes. The value must be expressed as a
constant in character, numeric, or date format and must be
enclosed in quotes to preserve spaces. It can contain
delimited identifiers (enclosed in double quotes) or
schema.objectname constructs.

Note: To reference the value of a declared variable within a report
specification, the variable must be preceded with a dollar sign ($); otherwise,
the name of the variable is referenced. Do not use the dollar sign ($) when
referencing the name of the variable in the .declare statement or on the left
side of an assignment in the .let statement. For example:

.declare var = c3 . . .

.let var = 'abc'

.print $var

Report Setup Statements

Chapter 12: Report-Writer Statements 12–13

The .declare statement declares each variable to be the given data type. You
can specify whether a data type is nullable or not nullable by including the with
null or not null option.

 If the variable is declared as nullable with the with null option, it is
automatically initialized to the null value.

 If the variable is declared with the not null option, it is initialized to the
default value for the data type.

If you specify neither option, the variable data type defaults to null or not null,
depending on the query language (SQL or QUEL) used in the .query
statement. If you specify a .data statement instead of the .query statement,
the installation default language determines default nullability.

The with prompt option instructs Report-Writer to prompt for the initial value
of the variable at runtime, using the specified prompt string. The with value
option instructs Report-Writer to use an initial value that you specify for the
variable in the .declare statement. Using both the with prompt and with value
options allows you to specify a default value if the user fails to enter a value at
the prompt. This value remains unchanged by any .let statement until after
the query. For more information, see the .Query and .let statements.

You can use the schema.objectname construct in the with value clause, as
appropriate. You can also use a delimited identifier as the schema name, table
name, or name of a column in the with value clause, if you have previously
specified the .delimid statement.

For example, the following code fragment declares the variable, default_table,
with an initial default value of a table belonging to the schema “dave” and
whose name is the delimited identifier, “my table.” The value string parameter
for the with value clause is enclosed in single quotes.

.declare default_table=varchar(65) with value
 'dave."my table"'
.query
 select * from $default_table

For more information on delimited identifiers, see Delimited Identifiers in
the chapter “Report-Writer Expression and Formats” and .Delimid in this
chapter.

If you do not specify an initial value or prompt, and you reference the variable
outside of a query block, the initial value is null (or the default value for that
data type, if not null was used). When you reference a declared variable within
a query block, its initial value must be entered either in the .declare
statement, on the command line, or in response to a prompt string specified in
the .declare statement.

Report Setup Statements

12–14 Character-based Querying and Reporting Tools User Guide

Note: Some statements (such as .query) accept variables that can be executed
before the .header report statement. However, variable values cannot be
assigned with the .let statement before the .header report statement. In these
cases, the person running the report must specify the value of a variable as a
parameter on the command line or in response to a prompt.

The with value option, used in conjunction with the .include statement, allows
greater reporting flexibility. For example, you can create various include files
to define date formats for various languages. Instead of entering the initial
value of the date format interactively, the date formats are initialized in the
.declare statement during the loading of the report specification. For more
information, see Example 2 in the following section, Examples.

If both the with prompt and with value options are included in a declaration,
the promptstring overrides the valuestring. No warning is issued about the
override. The user is prompted with the specified promptstring for an initial
value at runtime.

Examples

Example 1 Declare variables using with prompt, with null, and not null.

.declare
 counter = integer,
 salary = money with prompt
 'Please enter the salary:',
 spouse = c30 with null,
 dept = i4 not null with prompt
 'What department?'

Example 2 Declare variables using with value in .include files “BR_fmts.rw” and
“AM_fmts.rw,” and then include the appropriate definition for that version of
your report.
.declare date_fmt = c30 with value 'd\'03/20/01\''

or

.declare date_fmt = c30 with value 'd\'02/03/01\''

The main body of the report can be written independently of the exact value
of the date format; for example:
.print current_date ($date_fmt)

Example 3 Declare a variable with a value that is an schema-qualified table name.

.declare var1 = varchar(65) with value 'mike.table_abcd'

Either or both the schema and table name can be delimited identifiers, if you
have specified the .delimid statement. The variables have been declared with
the maximum size to accommodate a compound identifier in which each part
is a delimited identifier.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–15

.delimid

.declare var2 = varchar(133)
 with value 'jane."table efg"'

.declare var3 = varchar(133)
 with value '"c bradley".table_hijk'

.declare var4 = varchar(133)
 with value '"r panzer"."table xyz"'

.Delimid

Allows recognition of delimited identifiers for table, view, column, schema, and
user names.

Syntax .delimid

Description Specify the .delimid statement in the Report-Writer source file to enable
Report-Writer to recognize delimited identifiers in your report specification
code. For a detailed discussion of delimited identifiers, see the chapter
“Report-Writer Expressions and Formats.”

You only need to specify this statement once in the source file. However,
Report-Writer accepts multiple occurrences in a report specification to support
use of the statement in individual and independent .include files for which
delimited identifiers must be enabled.

Note: If you use the .delimid statement in an .include file, be sure the included
file actually contains code that requires this statement. Otherwise, Report-
Writer can produce unexpected results.

Observe the following rules regarding placement of this statement in your
report specification:

 The .delimid statement must precede any statement that allows delimited
identifiers. Therefore, only the following statements can precede the
.delimid statement:

– .name

– .shortremark

– .longremarkendremark

– .[no]formfeeds

– .nullstring

– .output

– .ulcharacter

The .include statement cannot precede the .delimid statement because the
included file can contain statements that allow delimited identifiers.

Report Setup Statements

12–16 Character-based Querying and Reporting Tools User Guide

 If your report specification contains a .query statement specifying QUEL as
the query language, .Delimid with QUEL Query for additional information.

Example The following example shows use of the .delimid statement in a report
specification that creates a temporary table with columns “aaaa” and “delim
col,” then selects and prints values from column “aaaa” that match the value
entered in response to a prompt for the variable “my_smallint.”

.name sql_setup

.delimid

.declare my_smallint = smallint with prompt 'Enter
 selection key numeric value: '
.setup
 create table my_temp_table (aaaa smallint,
 "delim col" varchar(4));
 insert into my_temp_table values (123,'abcd');
.query
 select aaaa from my_temp_table where aaaa =
 '$my_smallint'
.detail
 .println 'Key Value: ',aaaa
.cleanup
 drop table my_temp_table;

.Delimid with QUEL Query

Delimited identifiers cannot be used in a QUEL query. However, you can use
delimited identifiers and the .delimid statement in non-query portions of a
report specification that contains a QUEL query, as shown in the following
example.

QUEL Example This example creates a temporary table with columns “aaaa” and “delim col,”
then retrieves and prints values from column “aaaa” that match the value
entered in response to a prompt for the variable “my_smallint.”

.name sql_setup

.delimid

.declare my_smallint = smallint with prompt 'Enter
 selection key numeric value: '
.setup
 create table my_temp_table (aaaa smallint,
 "delim col" varchar(4));
 insert into my_temp_table values (123, 'abcd');
.query
 range of mtt is my_temp_table
 retrieve (mtt.aaaa, quote = "\"")
 where mtt.aaaa = "$my_smallint"
.detail
 .println 'Key Value: ',aaaa
.cleanup
 drop table my_temp_table;
 create table my_temp_table (aaaa smallint,
 "delim col" varchar(4));
 insert into my_temp_table values (123, 'abcd');
 drop table my_temp_table;

Report Setup Statements

Chapter 12: Report-Writer Statements 12–17

.Include

Imports Report-Writer code residing in more than one file when the report is
saved.

Syntax .include filename

Description Use the optional .include statement to specify one or more files containing
Report-Writer code to be imported into the command text file. By using this
statement, you can avoid retyping commonly used constructs that you need in
more than one of your reports. You can nest .include statements within an
.include statement.

Because Report-Writer constructs do not have to appear in any particular
order, the .include statement can appear anywhere within Report-Writer code.
However, the .name statement must still be the first statement in your
specification.

Report-Writer incorporates the contents of the file specified in an .include
statement each time you execute the sreport command to save your report
specification. This means that when you update included files, the report
specifications that include those files must be saved again using sreport to
incorporate the changes. As Report-Writer executes sreport, it displays a
message notifying you of each file that is included in your specification. This
message can help diagnose report errors if any should occur.

The parameter for the .include statement is as follows:

Parameter Description

filename The name of a text file containing a Report-Writer construct to
be included in a report. If necessary, specify the full path
name for the file. If you do not explicitly specify an extension
for the file, the system assumes “.rw” as the default
extension.

VMS

If you give the full path name for a file, enclose the name in single quotes. If
it is the name of a file in the current directory, no quotes are needed.

The following rules apply to the .include section:

 The .include statements cannot contain variables. This is because variables
are only available at runtime and Report-Writer only executes .include
statements when you save the report specification with the sreport
command (rather than when the report is executed with the report
command).

Report Setup Statements

12–18 Character-based Querying and Reporting Tools User Guide

 An included file can contain more than one statement. However, a single
Report-Writer statement must be contained completely within one file. You
cannot use .include statements in the middle of another Report-Writer
statement.

 Within an .include file, you can have nested .include statements.

 The maximum number of nested .include statements permitted is based
on the number of open files allowed in your system.

 A corresponding .if -.then-.else[if] -.endif statement must all be contained
in the same .include file, but statements following the condition can be
other .include statements.

Examples

Example 1 Include a file in current directory.

.include otherrep.rw

Example 2 Include a file name with full path name.

Windows

include \direct\subdirect\otherrep.rw

UNIX

.include /direct/subdirect/otherrep.rw

VMS

.include '[direct.subdirect]otherrep.rw'

.Longremark/.Endremark

Begins and ends a multi-line block of text that describes the report.

Syntax .longremark | .lrem
 remark_text
.endremark | .endrem

Description The .longremark and .endremark statements are an optional pair that specify
a lengthy description of the report. Indicate the start of the block of
descriptive text with the .longremark statement and denote the end of the
block with the .endremark statement. This long description appears in the
Save frame and MoreInfo display of the Catalog frame in RBF.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–19

The long remark differs from a Report-Writer comment (/* comment text */).
Report-Writer stores the descriptive text in the .longremark statement in the
database when you save the report with the sreport command, so that it is
thereafter available to other Ingres application development tools. By contrast,
you can only save Report-Writer comments in the text file. The sreport
command ignores comments of this type and does not save them in the
database.

There can be only one .longremark statement in a report specification. Should
you attempt to enter two .longremark statements in one report specification,
the second is flagged with a syntax error. You can enter as much remark text
as you like. However, only the first 600 characters of remark text is saved in
the DBMS and appear in the RBF windows; the rest is ignored. Report-Writer
ignores leading spaces that separate the .longremark statement from the first
character of the remark text. Tab characters convert to blank characters.

The parameter for the .longremark statement is as follows:

Parameter Description

remark-text Any number of characters or lines of text.

Examples

Example 1
.longremark
This report correlates information from the sales order header, the sales order
detail, and the inventory files, to produce the customer backlog by part number
report.
.endremark

Example 2
.lrem
Stock Analysis Report
8 1/2" x 11" output
10 minutes runtime
Input: Begin/End date
.endrem

.Name

Names reports.

Syntax .name | .nam reportname

Description The .name statement is required and must be the first statement specified for
a report. The program sreport stores the report in the database under the
report name rather than the file name of the file containing the report
specification statements.

Report Setup Statements

12–20 Character-based Querying and Reporting Tools User Guide

Specifications for several reports can be stored in one text file by using several
.name statements. Each occurrence of a .name statement signals the end of
the previous report’s specification statements and the beginning of a new
report. You can then save the reports in the database by using sreport.

When executing a report directly by using the -i flag with the report command,
you must have exactly one .name statement specifying one report only. The
.name statement cannot appear in a file specified by an .include statement.

The parameter for the .name statement is as follows:

Parameter Description

reportname The name of a report to which the next set of formatting
statements apply. The reportname is a standard object, with
a maximum length of 32 characters for a standard Ingres
database, or 18 characters for ANSI/ISO Entry SQL-92
compliant databases.

Examples

Example 1 Denote the start of the report, abc:

.name abc

Example 2 Denote the start of report, my_rep:

.name my_rep

.Output

Specifies the file name where the report is written.

Syntax .output | .out filename

In the preceding syntax, filename can be expressed as a variable.

Description The .output statement is an optional statement that specifies the name of a
file where the report is written.

If you specify a variable for filename, Report-Writer evaluates the variable
during the loading of the report specification, before retrieving the data.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–21

If you don’t use the .output statement in your report specification, Report-
Writer either directs the output to the screen, or to a file name specified on
the command line for the report command with the -f flag. The -f flag takes
precedence over the .output statement. If both the -f flag and the .output
statement are present, the report results are sent to the file specified by the -f
flag, rather than of the .output statement. If the .output statement is not
specified, and no file is specified with the -f flag, the report appears on your
screen.

The parameters for the .output statement are as follows:

Parameter Description

filename A file to which the formatted report is written each time the
report is run. The filename parameter must follow all
conventions for valid file names in the operating system.

$filevariable Variable whose value is the file name. The variable is preceded
by a dollar sign ($).

VMS

If you give the full path name for a file, enclose the name in single quotes. If
it is the name of a file in the current directory, no quotes are needed.

Examples

Example 1 Write to file in current directory.

.output myreport.lis

Example 2 Write to file with full path name.

Windows

.out \direct\subdirect\myreport.lis

UNIX

.out /direct/subdirect/myreport.lis

VMS

.out '[direct.subdirect]myreport.lis'

.Query

Specifies an SQL or QUEL query to be used to generate data for a report. The
statement syntax and description provided here apply to SQL only. If you are
using the QUEL language, see .Query for QUEL Users for the correct syntax,
parameters, and description of this statement.

Report Setup Statements

12–22 Character-based Querying and Reporting Tools User Guide

Syntax .query | .quer
 select [all | distinct] column_list
 [as resultcolumn_list]
 from [schema.]table |view|synonym[corr_name]
 {, table |view|synonym[corr_name]}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 {union select_statement }
 [order by ...]

For a complete explanation of the syntax and parameters for the SQL select
statement within the Report-Writer .query statement, see the SQL Reference
Guide.

Description The .query statement indicates the start of a valid SQL query that creates the
data to be reported. This query follows the same rules as any other SQL select
statement, although it can also contain variables. You can use as many lines
as you need to specify the query. The end of the query is indicated by the
start of a new report formatting statement.

Specify either the .query or the .data statement (but not both) for every
report. Only one .query statement is permitted for a report, and only one data
retrieval statement is permitted within the .query statement. Both a .query
with an order by clause and a .sort statement cannot be in the same report
specification.

You can use the optional select column_list as resultcolumn_list construct to
reference a column in subsequent statements by a name other than its
database table column name. For example, if you selected A_column as
B_column, thereafter you need to refer to B_column in all statements
referencing that column. This construct is useful for printing the value of a
column that is specified as a runtime variable. When Report-Writer encounters
a .print statement that directly references a runtime variable for a column
name (for example, .print $account_type), it prints the name of the column as
entered at runtime, rather than its data. To print the data rather than the
column name, you use the select column_list as resultcolumn_list construct in
the query and reference the resultcolumn_list name in the .print statement.
For example:

.query
 select $account_type as val
.print val

The Examples section contains a complete example of this usage.

Because the .query statement generates a standard query, the standard limits
apply to any report’s query. For Ingres databases, these limits are 1024
columns and 2008 bytes per row. These limits are extended for some
Enterprise Access products. For details, see your Enterprise Access
product guide.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–23

If any column you specify with select * is of an unsupported data type, such as
long varchar, byte, byte varying, and long byte, Report-Writer silently ignores
and does not print any values for that column. If you explicitly specify a
column with an unsupported data type in the column_list of a select statement
in a query, Report-Writer additionally issues a warning message. If it
encounters any subsequent reference to a column with an unsupported data
type, regardless of the method used to select the column, Report-Writer issues
an error message and terminates the report.

You can specify the table, view, or synonym as schema.objectname. You can
also use delimited identifiers for table, column, or schema names if you have
previously specified the .delimid statement. This includes use of delimited
identifiers as either or both the correlation name and the column name in a
correlationname.identifier as resultcolumn construct. For more information on
delimited identifiers, see Delimited Identifiers in the chapter “Report-Writer
Expressions and Formats” and .Delimid in this chapter.

To avoid any potential confusion with delimited identifiers, which are
double-quoted, enclose string constants with the standard SQL string
delimiter, the single quote (').

Variables For standard Ingres databases, variable names:

 Can be up to 32 characters long. Valid characters are letters, digits, and
underscore (_).

 Must begin with a letter.

 Cannot match any of the words in the reserved words list. For more
information, see Reserved Words in the chapter “Report-Writer
Expressions and Formats.”

For variable naming conventions in databases that comply with ANSI/ISO
Entry SQL-92 standards, see ANSI/ISO Entry SQL-92 Compliant
Databases.

You can use variables as runtime substitutes for any part of a query (that is,
as a field name, table name, or even in where clauses). You indicate variables
in a query by preceding the name with a dollar sign ($). For example, you can
specify a query as follows:

.query
 select empname, salary, manager
 from emp
 where salary>$minsal

Subsequently, you can invoke the report with a statement such as:

report mydb myrep (minsal = 20000)

Report Setup Statements

12–24 Character-based Querying and Reporting Tools User Guide

If the parenthetical clause contains characters that are treated specially by
your operating system (such as parentheses in Windows NT), enclose it in
double quotes:

report mydb myrep "(minsal = 20000)"

Report-Writer converts the query to:

... where salary>20000

You can also assign an initial value for the variable using the with value option
in the .declare statement. Report-Writer initializes the variable with your
assigned value during the loading of the report specification.

If the value of a variable is not assigned on the command line or during the
loading of the report specification, Report-Writer prompts you for the value,
using the custom string specified in the with prompt option in the variable
declaration. If you did not specify a custom string prompt, Report-Writer uses
a default prompt.

You are strongly encouraged to define all variables with the .declare
statement. Although Report-Writer recognizes any name preceded by a dollar
sign ($) as a variable, undeclared variables assume default types and
characteristics that are often incompatible with their intended use.

By defining variables with .declare, there is no limit to the ways you can use
the variable in your report. You can assign a value to an undeclared variable
only by using a command line parameter or by entering a value in response to
a runtime prompt. A value for an undeclared variable cannot be specified with
a .let statement. In addition, unless the variable has been declared,
attempting to pass a parameter with a null value to Report-Writer can produce
incorrect results.

Specify as many variables as you want in a query by defining a unique name
for each variable. If the same variable is to be substituted more than once
within the query, specify the name, prefixed by a dollar sign ($), at each place
where substitution is to be done.

Variables can be specified anywhere in the query, or example, within the
column list for a select statement or as a value to which the contents of a
column is compared. For example, the following query phrases are legal:

... select $var, ... from emp ...

... where name = '$employee_name' ...

If the variable is a character string used for comparison purposes in a where
clause, enclose the variable within quotes that are appropriate for your query
language (single quotes for SQL), as shown in the preceding example. If you
omit these quotes in the query, the user must be made aware of the need to
include them in the string value for the variable at runtime.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–25

If you actually want to include the dollar sign ($) as a literal part of the query,
precede it with a backslash (\). For example:

... where symbol = '\$' ...

You can also use variables specified in the .query statement in the body of the
report. Report-Writer prints the value of the variable if the variable name is
preceded by a dollar sign ($). For more information, see the Population
Example in the appendix “Report-Writer Report Examples.”

Examples

Example 1 You set up the query as:

.query

 select *

 from emp

 where salary > $sal

 and dept = '$dept'

You invoke the command:

report mydb myrep (sal = 50000, dept = 'toy')

Enclose toy within single quotes to identify it to Report-Writer as a string.
Report-Writer strips off these quotes before passing it to the query.

Note: If your operating system requires it, enclose the parenthetical clause
within double quotes:

report mydb myrep "(sal = 50000, dept = 'toy')"

Report-Writer executes the following query:

select *

 from emp

 where salary > 50000

 and dept = 'toy'

Example 2 Consider a table called account owned by davis with columns including
customer number, customer name, checking, and savings. You have separate
fields for checking and savings accounts on one row, because most
customers have both a savings and a checking account with the bank.

Report Setup Statements

12–26 Character-based Querying and Reporting Tools User Guide

If you want to write one report specification that prints either the savings or
checking account balances with a single query, you could code a .query
statement similar to the following, using the select column_list as
resultcolumn_list construct:

.delimid

.declare account_type = c10 with prompt
 'Please enter the type of account:'
.query
 select "customer number", "customer name",
 $account_type as val
 from davis."bank accounts"

The column names and table name in the preceding code must be
double-quoted, according to standard rules for specifying delimited identifiers.

You can invoke the preceding query with the command:

report otherdb repname

At execution, Report-Writer issues the following prompt and, in this example,
the user enters the column name, savings:

Please enter the type of account: savings

The following query would be executed, which selects values from the savings
column and assigns them to the result column name, val:

select "customer number", "customer name", savings as val
 from davis."bank account"

To print the value of the column, savings, refer to the result column name,
val:

.println val

.Query for QUEL Users

This statement specifies a QUEL query to be used to generate data for a
report.

Syntax .query|.quer
{range_statement(s)}
retrieve [unique] (target_list) [where qual]
 [sort by | order by...] sort-list

Description The .query statement indicates the start of a valid QUEL query that creates the
data to be reported. All range statements needed to designate the row
markers for the query must be specified. This query follows the same rules as
any other QUEL query, although it can also contain parameters. You can use
as many lines as you need to specify the query—sreport detects the end of the
query by the start of a new report formatter statement.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–27

Either the .query or the .data statement (but not both) must be specified for
every report. Because the .query statement generates a standard Ingres
query, the usual limits of 1024 columns and a maximum row width of 2008
bytes apply to any query issued through the Report-Writer.

If any column you specify with retrieve all is of an unsupported data type,
such as long varchar, byte, byte varying, and long byte, Report-Writer silently
ignores and does not print any values for that column. If you explicitly specify
a column with an unsupported data type in the column_list of a retrieve
statement in a query, Report-Writer additionally issues a warning message. If
it encounters any subsequent reference to a column with an unsupported data
type, regardless of the method used to select the column, Report-Writer issues
an error message and terminates the report.

You can use the optional retrieve (resultcolumn=table.columname) construct
to reference a column in subsequent statements by a name other than its
database table column name. For example, if you retrieved
B_column=table1.A_column, in subsequent statements refer to the column as
B_column.

Only one .query statement is permitted for a report, and only one data
retrieval statement is permitted within the .query statement.

You cannot have both a .query with an order by or sort by clause and a .sort
statement in the same report specification, because their functions are
mutually exclusive.

Neither delimited identifiers nor the schema.objectname construct are allowed
in QUEL queries.

String constants must be enclosed by the standard QUEL string delimiter, the
double quote ("). The double quote string delimiter is required only within the
.query statement; within other Report-Writer statements, the string delimiter
is the single quote.

Variable names:

 Can be up to 32 characters long. Letters of the alphabet, digits, and the
underscore (_) are valid characters.

 Must begin with a letter of the alphabet.

 Cannot match any of the reserved words listed in Reserved Words in the
chapter “Report-Writer Expressions and Formats.”

Report Setup Statements

12–28 Character-based Querying and Reporting Tools User Guide

The parameters for the QUEL .query statement are listed below:

Parameter Description

range_statement(s) Valid QUEL range statements used to identify the
tables used in the query.

target_list A valid QUEL target list that creates data for the
report. The retrieve into form of the retrieve
statement is not used.

qual A valid QUEL qualification to a query.

sort_list A valid set of sort columns according to the rules for
constructing QUEL retrieve statements. Note that you
cannot use both a .sort statement and a sort by or
order by clause in the same report specification.

Variables in the Query You can use variables as runtime substitutes for any part of a query (that is,
field names, table names, or even where clauses). You indicate variables in
a query by preceding the name with a dollar sign ($). For example, you can
specify a query as follows:

.query
 range of e is emp
 retrieve (e.empname,e.salary,e.manager)
 where e.salary > $minsal

Subsequently, you can invoke the report with something like the following:

report mydb myrep (minsal = 20000)

If the parenthetical clause contains characters that are treated specially by
your operating system (such as parentheses in Windows NT and UNIX or
slashes in VMS), enclose it in double quotes:

report mydb myrep "(minsal = 20000)"

Report-Writer converts the query to:

... where e.salary > 20000

You can also assign an initial value for the variable using the with value option
in the .declare statement. Report-Writer initializes the variable with your
assigned value during the loading of the report specification.

If the value of a variable is not assigned on the command line or during the
loading of the report specification, Report-Writer prompts you for the value,
using the custom string specified in the with prompt option in the variable
declaration. If you did not specify a custom string prompt, Report-Writer uses
a default prompt.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–29

We strongly encourage you to define all variables with the .declare statement.
Although Report-Writer recognizes any name preceded by a dollar sign ($) as
a variable, undeclared variables assume default types and characteristics that
are often incompatible with their intended use. By defining variables with
.declare, there is no limit to the ways you can use the variable in your report.
You can assign a value to an undeclared variable only by using a command
line parameter or by entering a value in response to a runtime prompt. You
cannot specify a value for an undeclared variable with a .let statement. Also,
unless the variable has been declared, attempting to pass a parameter with a
null value to Report-Writer can produce incorrect results.

You can specify as many variables as needed in a query by defining a unique
name for each variable. If the same variable is to be substituted more than
once within the query, specify the name, prefixed by a dollar sign ($), at each
place where substitution is to be done.

You can specify variables anywhere in the query—for example, within the
column list for a retrieve statement or as a value to which the contents of a
column is compared. For example, the following query phrases are legal:

... where e.name = "$employee_name" ...

... retrieve (e.$var, ...) ...

When the variable is a character string used for comparison purposes in a
where clause, enclose the variable within quotes that are appropriate for your
query language (double quotes for QUEL), as shown in the preceding example.

If you actually want to include the dollar sign ($) as a literal part of the query,
precede it with a backslash (\). For example:

... where e.symbol = "\$" ...

You can also use variables specified in the .query statement in the body of the
report. Report-Writer prints the value of the variable if the variable name is
preceded by a dollar sign ($). For more information, see the Population
Example in the appendix “Report-Writer Report Examples.”

Examples

Example 1 You set up the query as:

.query
 range of e is emp
 retrieve (e.all)
 where e.salary > $sal
 and e.dept = "$dept"

You invoke the command:

report mydb myrep (sal = 50000, dept = 'toy')

Enclose toy within single quotes to identify it to Report-Writer as a string.
Report-Writer strips off these quotes before passing it to the query.

Report Setup Statements

12–30 Character-based Querying and Reporting Tools User Guide

Note: If your operating system requires it, enclose the parenthetical clause
within double quotes:

report mydb myrep "(sal = 50000, dept = 'toy')"

Report-Writer executes the following query:

range of e is emp
retrieve (e.all) where e.salary > 50000
 and e.dept = "toy"

Example 2 Consider a table called, account, with columns including custno, custname,
checking, and savings. You have separate fields for checking and savings
accounts on one row, because most customers have both a savings and a
checking account with the bank. To write one report specification that prints
either the savings or checking account balances with a single query, you can
code a .query statement similar to the following:

.declare account_type = c10 with prompt
 "Please enter the type of account:"
.quel
 range of a is account
 retrieve(a.custno, a.custname, val=a.$account_type)

You can invoke the query with the command:

report otherdb repname

At execution, Report-Writer issues the following prompt:

Please enter the type of account:

Suppose you respond with:

savings

The following query would be executed:

range of a is account
retrieve(a.custno, a.custname, val=a.savings)

To print the value of the savings column, use:

.println val

This query selects values from the database savings column, not the string
constant, savings.

.Setup

Embeds SQL statements that do not involve data retrieval into Report-Writer
sections. Report-Writer executes the statements before it processes the main
report query.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–31

Syntax .setup SQL_statement; {SQL_statement;}

For a complete explanation of all available SQL statements, see the SQL
Reference Guide.

Description Use the optional .setup statement to embed groups of SQL statements to
perform tasks such as creating and qualifying temporary tables for use in the
report and setting up lock modes. Report-Writer executes the .setup
statement after substituting variables into the SQL statements. You can use as
many lines as you need to specify the .setup. You can also include embedded
declared variables within an SQL statement. The end of .setup is indicated by
the start of a new Report-Writer statement. For information on embedding
groups of SQL statements after the report is processed, see the .Cleanup
statement.

If you are running reports with an Ingres database and you are not updating
the data in your report, we recommend that you set up your report to be read
only. To do this, provide the following statement in the .setup section:

set lockmode session
 where readlock=nolock;

Note: Keep in mind that when you set the lockmode to be read only, other
users can still update the table used to produce the report. In this case, your
report can not always match actual database values. If it is critical to keep the
table consistent throughout the printing of the report, lock the table. For
details on using lockmodes, see the Database Administrator Guide.

The parameter for the .setup statement is listed below:

Parameter Description

SQL_statement One or more action SQL statements that do not involve
data retrieval, separated by semicolons (;). (Note that the
select statement cannot be used.)

The following rules apply to the .setup section:

 The .setup section only supports SQL statements. The language of your
.query section determines the query language of the report. If you have a
QUEL .query section, the query language is QUEL; otherwise it is SQL. It is
acceptable to have a QUEL query and SQL .setup and .cleanup sections.

 If the report query language is SQL, the default value of autocommit is off.
If it is QUEL, the default is on. To override the default commit behavior,
simply set autocommit off or on as the first statement in your .setup
section.

Report Setup Statements

12–32 Character-based Querying and Reporting Tools User Guide

 Only statements that are compatible with execute immediate are
permitted in a .setup section. For a list of compatible statements, see the
SQL Reference Guide. Neither the select statement nor any statement
requiring embedded semicolons (;) or colons (:), such as create
procedure, are allowed. Semicolons within quoted strings are allowed.
Therefore, you can specify a table for selection by using the expression:

create table tablename as select...

 In the .setup section, Report-Writer evaluates variables only once, before
running the report. Therefore, you can set the value of the variable only at
report initiation time as follows:

– On the command line in a variablename=valuestring clause

– On the command line in response to a prompt

– In the with value or with prompt clause of a .declare statement
associated with the variable

 In the .setup section, Report-Writer evaluates variables before sending
them to the Database Management System (DBMS) and evaluates SQL
statements at report runtime. It generates error messages at runtime
from the DBMS. If it has detected no errors in the report or in the .cleanup
and .setup sections and autocommit is off, Report-Writer executes an
explicit commit at the close of report processing.

 Use the -d flag with the report command to run the report as if there were
no errors. This flag causes Report-Writer to ignore DBMS errors in the
.setup and .cleanup sections. The failure of the.setup statement, however,
can affect data availability in the .query. For example, if you run the report
on a temporary table created improperly in the .setup section, the report
fails.

 If you specify the -d flag, error messages continue to display on the
screen. Although it is not recommended, you can run the report with the
-s flag if you do not want error messages to display.

 If you do not use the -d flag, errors and transaction handling follow these
rules:

– If there is an error in the .setup section, neither the report nor the
.cleanup section runs. The transaction is rolled back if autocommit is
off.

– If there is an error in the .cleanup section, the .setup section (if it
existed) and the report have already run. The transaction is rolled
back if autocommit is off.

– If there is an error in the query or a fatal error in the report, neither
the .cleanup section nor the report runs. The transaction is rolled back if
autocommit is off.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–33

Example

.NAME books2

.OUTPUT books2.out

.LONGREMARK
 The BOOKS2 report demonstrates using setup
 and cleanup to produce temporary tables.
.ENDREMARK
.SETUP
 set lockmode session where readlock=nolock;
 create view tempbooks as
 select b.id, b.title, a.name, '' as subject,
 1 as code
 from book b, author a
 where b.id = a.id
 union
 select b.id, b.title, '' as name, s.subject,
 2 as code
 from book b, subject s
 where b.id = s.id;
 create table subj_count as
 select id, count(subject) as num_sub
 from tempbooks
 where code = 2
 group by id;
 create table auth_count as
 select id, count(name) as num_auths
 from tempbooks
 where code = 1
 group by id;
.CLEANUP
 drop tempbooks;
 drop subj_count;
 drop auth_count;
.QUERY
 select b.id, b.title, b.name, b.subject, b.code,
 a.num_auths, s.num_sub
 from tempbooks b,subj_count s,auth_count a
 where b.id = a.id and b.id = s.id

.Shortremark

Specifies a one-line remark describing the report.

Syntax .shortremark | .srem remark_text

Description The .shortremark statement is an optional statement that specifies a one-line
description of the report. You can use this short description to help document
your report specifications, but its primary purpose is to provide information
that appears on the Catalog and Save frames of RBF.

There can only be one .shortremark statement in a program. The second
.shortremark statement is flagged with a syntax error. Only the first 60
characters of the descriptive text are stored in the database. All characters
past 60 are ignored.

Report Setup Statements

12–34 Character-based Querying and Reporting Tools User Guide

The parameter for the .shortremark statement is listed below:

Parameter Description

remark_text A string of characters on the same line as the statement
keyword.

Examples

Example 1
.shortremark Monthly Accounts Receivables

Example 2
.srem customized emp & dept report tables

.Sort

Specifies the ordering of rows to be reported.

Syntax .sort | .srt {columnname[:sortorder] {, columnname[:sortorder]}}

In the preceding syntax, columnname and sortorder can be expressed as a
variable. The colon (:) and the comma (,) must be explicitly stated and cannot
be part of the sortorder variable.

Description The optional .sort statement specifies the ordering that applies to the rows of
data to be reported. Report-Writer initially sorts rows on the first column in
the list. If several rows have the same value in the first sort column, Report-
Writer then sorts them on the second column in the list, and so forth. If there
is exactly one sort column, and there are duplicate values for the sort column,
all rows with that value appears together, but in an undetermined order
relative to each other.

By default, the .sort statement also specifies the columns used as break
columns in the report. You can specify break headers and footers for each
column, using the .header and .footer statements. A break on one column in
the sort list produces a break on all subsequent columns in the sort list.

If you want, you can use the .sort statement to order rows for appearance in
the report only, without specifying these columns as break columns. To
override the default break specifications in the .sort statement, specify break
columns in a .break statement.

An SQL language report specification includes duplicate rows in the data for
reports that use the .sort statements. To specify distinct rows, you can specify
the -6 flag on the report command line.

If you specify variables as the columnname and/or sortorder parameters,
Report-Writer evaluates these variables during the loading of the report
specification, before retrieving the data.

Report Setup Statements

Chapter 12: Report-Writer Statements 12–35

You can have either a .sort statement or an order by clause in a .query
statement but not both in a report specification.

Note: When using a variable for columnname, specify the same variable
identically in corresponding .break, .header, and .footer statements.

The parameters for the .sort statement are listed below:

Parameter Description

columnname The name of a column in the table to be reported, or the
label for a column in the result column list of the specified
query. You can express columnname as a delimited
identifier by enclosing it in double quotes ("), if you have
previously specified the .delimid statement.

sortorder Either ascending (also a or asc or ascend) or descending
(also d or desc or descend), depending on how you want
the rows to be ordered. If neither is specified, the default
is ascending.

$columnvariable The variable whose value is the name of a column.
Precede the variable with a dollar sign ($).

$sortorder The variable whose value is a sort order that evaluates to
an acceptable sort direction. For more information, see
the description of sortorder in this table. Precede the
variable with a dollar sign ($).

Examples

Example 1 Sort two columns of a table (whose names are specified by delimited
identifiers), with both columns in ascending order:

.sort "last name","first name"

Example 2 Sort three columns of a table, with first and last columns in descending order,
and the second column in ascending order.

.sort dept:descending,
 jobcode,
 name:d

Page Layout and Control Statements

12–36 Character-based Querying and Reporting Tools User Guide

Example 3 Sort the column specified by the value of the variable sort_col in the order
specified by the value of the variable sort_order. For example, the value of
sort_col might be last_name and the value of sort_order might be for
ascending.

.sort $sort_col:$sort_order

...

.header $sort_col

...

.out \direct\subdirect\myreport.lis

.include \direct\subdirect\otherrep.rw

Page Layout and Control Statements
You can specify the layout of report pages with the following statements:

 The .formfeeds statement instructs Report-Writer to insert formfeed
characters to force a page break at the start of the report and at the end
of each page.

 The .leftmargin statement sets up a left margin as the default start of all
new lines and for use with the .left and the .center statements.

If the left margin is not explicitly specified, Report-Writer determines this
default automatically from an analysis of the other report formatting
statements. For details, see Automatic Determination of Default
Settings in the chapter “Using Report-Writer.”

 The .need statement tests for a given number of lines on a page to see if a
page break is appropriate.

 The .newpage statement skips to a new page, and optionally sets a page
number.

 The .noformfeeds statement suppresses the addition of formfeed
characters to the end of pages in the report.

 The .pagelength statement defines the page length, in lines.

 The .pagewidth statement defines the page width, in characters.

 The .rightmargin statement sets the right margin of the report for use with
the .right and the .center statements.

 If the right margin is not explicitly specified, Report-Writer determines this
default automatically from an analysis of the other report formatting
statements, For details, see Automatic Determination of Default
Settings in the chapter “Using Report-Writer.”

Page Layout and Control Statements

Chapter 12: Report-Writer Statements 12–37

.Formfeeds/.Noformfeeds

Force or suppress the addition of formfeed characters to the end of each page
written in the report.

Syntax .formfeeds | .ffs | .ff

.noformfeeds | .noffs | .noff

There are no parameters to either statement.

Description For printers that support formfeeds, it is often most convenient to use the
ASCII formfeed character to support pagination. You can use the .formfeeds
and .noformfeeds statements to override the default setting for formfeeds,
which is determined by the operating system.

The default for formfeeds is:

Windows

.formfeeds

UNIX

.formfeeds

VMS

.noformfeeds

You specify the .formfeeds or .noformfeeds statement at the start of your
report specification statements, before any .header or .footer statements.

Specify .formfeeds to override a .noformfeeds default. This forces Report-
Writer to send formfeed characters at the start of the report and at the end of
each page in the report. You can suppress the initial formfeed by specifying
the .nofirstff statement in your report specification or by including the
-nofirstff flag when using the report command. For more information, see
.Nofirstff and Report.

If the report contains page footer formatting statements, Report-Writer sends
the formfeed character after the page footer. Otherwise, Report-Writer sends
the formfeed character after the last line of the page, as determined from the
default or specified page size. For details on specifying page size, see the
.Pagelength statement. When writing to a screen, Report-Writer ignores the
.formfeeds statement.

Specify .noformfeeds to override a .formfeeds default and suppress formfeeds.

You can override these statements and the formfeed defaults at runtime by
specifying the -b|+b flag on the report command line.

Page Layout and Control Statements

12–38 Character-based Querying and Reporting Tools User Guide

Examples

Example 1 To turn on formfeeds and override a .noformfeeds default, specify:

.formfeeds

Example 2 To turn off formfeeds and override a .formfeeds default, specify:

.noformfeeds

.Leftmargin

Sets a left margin for the report.

Syntax .leftmargin | .lm [[+|-] n | expression]

In the preceding syntax, expression evaluates to a numeric value that is the
position of the left margin for the report. The optional plus sign (+) or minus
sign (-) must be stated explicitly and cannot be a part of the expression.

Description The .leftmargin statement sets the left margin of the report to a specific
position or a position that is the value of a numeric expression. Subsequently,
when new lines are written, new text output begins at the left margin position.
To set the left margin for the entire report, place the statement in the .header
report section. The .leftmargin value is also used by the .left and .center
statements to determine the default position for those statements.

Report-Writer evaluates any expressions used as parameters to the .leftmargin
statement during runtime.

Note: If you do not specify a left margin position, Report-Writer determines the
default value for the left margin from your other specifications for the writing
of the report, as discussed in Automatic Determination of Default
Settings.

The value specified for the .leftmargin statement must be greater than or
equal to zero (0), less than the specification for the right margin and less than
the page width (as specified with the -l flag on the report command, or with
the .pagewidth statement).

Page Layout and Control Statements

Chapter 12: Report-Writer Statements 12–39

The parameters for the .leftmargin statement are listed below:

Parameter Description

+ | - If sign is present, the new position is calculated relative to
the current position. If no sign is present, it is set to the
absolute position.

n The position of the new left margin of the report. The
default value is discussed in Automatic Determination
of Default Settings .

expression A numeric expression that evaluates to the position of the
new leftmargin of the report. All variables that are part of
the expression must be preceded by a dollar sign ($).

Examples

Example 1 Have new lines begin at position 5 (the sixth character position).

.lm 5

Example 2 Move the left margin to the right by the number of characters specified by
the value of the variable width.

.lm +$width

Example 3 Set the left margin to be the sum of the value of variable width and 3.

.lm $width+3

.Need

Ensures that a specified number of text lines is printed together on the same
page.

Syntax .need | .ne nlines| expression

In the preceding syntax, expression evaluates to a numeric value that is the
total number of lines in the text block to remain together.

Description The .need statement allows you to ensure that groups of text lines are not
broken across pages of the report. Report-Writer performs conditional page
breaks, to keep the specified or variable-specified lengths of text blocks
together. You can use this statement to make sure that Report-Writer keeps
all lines of text in the headers, and such, on the same page. For examples of
placing the .need statement, see the appendix “Report-Writer Report
Examples.”

Report-Writer evaluates any expressions used as parameters to the .need
statement during runtime.

Page Layout and Control Statements

12–40 Character-based Querying and Reporting Tools User Guide

The parameters for the .need statement are as follows:

Parameter Description

nlines The number of lines in the text block to remain together.

expression A numeric expression that evaluates to the total number
of lines in the text block to remain together. Precede all
variables that are part of the expression by a dollar sign
($).

Examples

Example 1 Make sure that the break header is on the same page.

.need 3

.print 'Header for account:',acct

.newline

.print '------ --- -------'

.newline 2

Example 2 In this example, the report ensures the label information can be printed on
varying sized label forms. The value of label_size is the number of lines per
label. The printing of the company name is dependent on a record meeting
the criteria of the condition.

.need $label_size

.if company != '' .then
 .println company
 .let address_lines = 4
.else
 .let address_lines = 3
.endif
.println name
.println address
.println city, state, zip
.newline $label_size - $address_line.

.Newpage

Initiates an immediate page break, with an optional change in the page
number.

Syntax .newpage | .np [[+|-] pagenumber | expression]

In the preceding syntax, expression evaluates to a numeric value that is the
pagenumber to be assigned as the next page in the report. The plus sign (+)
or minus sign (-) must be stated explicitly and cannot be a part of the
expression.

Page Layout and Control Statements

Chapter 12: Report-Writer Statements 12–41

Description You can place the .newpage statement at any point in your report
specification. Report-Writer performs an immediate page break by skipping
enough lines to get to the end of the page, then prints the page footer, sets
the new page number, and writes a page header at the top of the new page.
Report-Writer determines the new page number by incrementing the old page
number, or by setting, incrementing, or decrementing the old page number to
the specified value. If pagenumber is not specified, Report-Writer determines
the default page number by incrementing the current page number by one.

At the end of the report, Report-Writer performs a .newpage statement
automatically, if a page footer is specified (in this case, no page header
appears on the next page). Also, if Report-Writer encounters a .newpage
statement as the first printing action of the report, it does not print a page
footer for that page.

Report-Writer evaluates any expressions used as parameters to the .newpage
statement during runtime.

The parameters for the .newpage statement are listed below:

Parameter Description

+ | - If a sign is present, the new position is calculated relative
to the current position. If no sign is present, it is set to
the specified value.

pagenumber The page number to be assigned to the next page in the
report.

expression A numeric expression that evaluates to the page number
to be assigned as the next page in the report. All variables
that are part of the expression must be preceded by a
dollar sign ($).

Examples

Example 1 Skip to a new page, incrementing the current page number by 1.

.newpage

Example 2 Reset the page number to 22.

.newpage 22

Example 3 Reset the page number to the current page plus the value of skip_page.

.newpage +$skip_page

Page Layout and Control Statements

12–42 Character-based Querying and Reporting Tools User Guide

.Nofirstff

Suppresses the initial formfeed prior to the start of the report when formfeeds
are enabled.

Syntax .nofirstff

There are no parameters for this statement.

Description When ASCII formfeeds have been enabled by default, by the .formfeeds
statement, or by the +b flag for the report command, Report-Writer generates
an initial formfeed in addition to one at the end of each page of the report. The
initial formfeed is useful for printers with continuous-form paper. To avoid
generating this blank page at the beginning of your report, you can use the
.nofirstff statement in your report specification to suppress the initial form
feed.

You need only specify this statement once in your report source file, preferably
immediately after any .formfeed statement and prior to all statements that
generate printed text (such as .print, .println, .newline, and .newpage). This
statement should not appear in any .detail, .footer, or .header section other
than .header report.

If specified in an .include file, its placement in the file must follow the same
placement rules as in the report specification source file.

You can omit this statement and use the -nofirstff flag on the report command
line at runtime instead. You can also override the .nofirstff statement at report
runtime by specifying the -firstff flag. For more information, see the
description of the Report command.

Example To suppress the initial formfeed when formfeeds have been explicitly enabled:

.formfeeds

.nofirstff

.Pagelength

Sets a new default page length in number of lines per page.

Syntax .pagelength | .pl {nlines | expression}

In the preceding syntax, expression evaluates to a numeric value that is the
page length for the report.

Description The .pagelength statement controls where page breaks occur. The report
formatter subtracts the number of lines in the footer (specified in the .footer
page section of the specifications) from the total page length of nlines. Page
length is the total number of body text lines for the page.

Page Layout and Control Statements

Chapter 12: Report-Writer Statements 12–43

During the running of the report, Report-Writer checks to see if the total count
of body text lines has been written to the current page. If not, no action is
taken. If so, Report-Writer writes a page footer and header, and the report
continues. If the .formfeeds statement or formfeed default is in effect, Report-
Writer performs a formfeed at the end of each page footer.

The value used in the .pagelength statement should be greater than the
combined number of lines specified in the heading and footing for the page.

You can override the .pagelength statement at runtime by specifying the
-vpagelength flag on the report command line. If both the -v flag and the
.pagelength statement are present, the -v flag overrides the .pagelength
value.

Report-Writer evaluates any expression used as a parameter to the
.pagelength statement during runtime.

The parameters for the .pagelength statement are as follows:

Parameter Description

nlines The number of lines per page. The default is 61 lines per
page if the report is written to a file, or the length of your
screen if the report is written to the screen. To suppress
all pagination (eliminate all page breaks), specify
.pagelength as zero (0).

expression A numeric expression that evaluates to the new page
length of the report. Precede all variables that are part of
the expression with a dollar sign ($).

Examples

Example 1 Set a new page length for screens with 24 lines.

.pl 24

Example 2 Set the page length to be the value of variable page_size.

.pl $page_size

Example 3 Suppress report pagination.

.pl 0

Page Layout and Control Statements

12–44 Character-based Querying and Reporting Tools User Guide

.Pagewidth

Sets a new default page width in number of characters or positions per line.

Syntax .pagewidth | .pw width

In the preceding syntax, width can be expressed as a variable.

Description The .pagewidth statement controls where line breaks occur. With the
.pagewidth statement, you specify total number of characters specified per line
through a constant or variable.

If you specify a variable for width, Report-Writer evaluates the variable during
the loading of the report specification, before retrieving any data.

The value used in the .pagewidth statement must be greater than or equal to
the width determined from the .leftmargin and .rightmargin values. The
.rightmargin value must be greater than the .leftmargin value. If you are using
a .position statement in your specification, its value must be less than the
value of .pagewidth.

While running the report, Report-Writer checks to see if the total count of
characters goes beyond the .pagewidth value. If so, an error message appears
on the screen, or if possible, the report executes within the assigned width.

You can override this statement at runtime by specifying the -l flag on the
report command line. Otherwise, the report reflects the .pagewidth setting. If
there is no .pagewidth statement and the -l flag is not specified, Report-Writer
uses 132 as the default width, and tries to execute the report within that
width. If this is not possible, an error message appears on the screen.

All reports created and saved through RBF automatically generate a page
width comment that RBF uses to set the page width when you run the report.
Delete the page width comment from an archived RBF report specification and
add an explicit .pagewidth statement instead. If you fail to delete the page
width comment when specifying the page width explicitly, Report-Writer can
truncate the text.

The parameters for the .pagewidth statement are listed below:

Parameter Description

width The number of characters per line (n characters). The
default is 132 characters per line if the report is written
to a file, and the width of your screen if the report is
written to the screen.

$widthvariable Variable whose value is the report page width (n
characters). Precede the variable with a dollar sign ($).

Page Layout and Control Statements

Chapter 12: Report-Writer Statements 12–45

Examples

Example 1 Set a new page width for a printer.

.pw 132

Example 2 Set page width for a screen where the width is the value of variable
term_width.

.pw $term_width

.Rightmargin

Sets a right margin for the report.

Syntax .rightmargin | .rm [[+|-] n | expression]

In the preceding syntax, expression evaluates to a numeric value that is the
position of the right margin for the report. The plus sign (+) or minus sign (-)
must be stated explicitly and cannot be a part of the expression.

Description The .rightmargin statement sets the right margin of the report to a specific
position or a position that is the value of a numeric expression. To set the right
margin for the entire report, place the statement in the .header report section.
The .rightmargin value is used by the .right and .center statements to
determine the default position for those statements. If text would ordinarily go
beyond the right margin, it is wrapped around to the start of the next line.

Report-Writer evaluates any expressions used as parameters to the
.rightmargin statement during runtime.

If you do not specify a value, Report-Writer determines the default value for
the right margin by the printing statements in the report, as discussed in
Automatic Determination of Default Settings. The value specified for the
.rightmargin statement must be greater than the specification for the left
margin and less than the page width (as set by the -l flag on the report
command).

The parameters for the .rightmargin statement are listed below:

Parameter Description

+ | - If sign is present, the new position is calculated relative to the
current position. If no sign is present, it is set to the absolute
position n.

Report Structure Statements

12–46 Character-based Querying and Reporting Tools User Guide

Parameter Description

n The position of the new right margin of the report. If signed,
the new position is calculated relative to the current position. If
unsigned, it is set to absolute position n.

expression A numeric expression that evaluates to the position of the new
rightmargin of the report. All variables that are part of the
expression must be preceded by a dollar sign ($).

Examples

Example 1 Specify margins such that the default position used by .center is 50.

.leftmargin 10

.rightmargin 90
 ...
.center
.print 'This title is centered on column 50'

Example 2 Move the right margin left by the number of characters specified by the value
of the variable width.

.rm $width

Example 3 Set the right margin to be the sum of the value of variable width and 3.

.rm $width+3

.noformfeeds

Report Structure Statements
These statements are used in setting up the structure of the report:

 The .detail statement designates a group of formatting statements for
each data row in the report.

 The .footer statement designates a group of formatting statements for the
report footer, for the page, for one of the break or sort columns.

 The .header statement designates a group of formatting statements for
the heading of the report, for the page, or for one of the break or sort
columns.

.Detail

Specifies the start of action to be taken when each data row is processed.

Syntax .detail | .det

The .detail statement has no parameters.

Report Structure Statements

Chapter 12: Report-Writer Statements 12–47

Description The .detail statement signifies the start of a group of report formatting
statements that Report-Writer executes each time it processes a data row for
the report. Report-Writer executes these formatting statements after any
break headers that can be caused by the data row, but before any break
footers.

Report-Writer also uses the formatting statements specified in the .detail block
as the basis for determining the default margins of the report and the default
positions of columns. For more information, see Automatic Determination
of Default Settings in the chapter “Using Report-Writer.”

.detail
 .print acctnum(b16), tdate(b16),
 .tab +8
 .print transnum ('nnnn'), deposit, withdrawal
 .tab +5
 .print cum(acctnum), sum(amt.balance)
 .newline

.Footer

Identifies the start of a block of formatting statements that are executed at
the end of a break.

Syntax .footer | .footing | .foot
 report | page | columnname

In the preceding syntax, columnname can be expressed as a variable.

Description The .footer statement starts the block of text formatting statements that
define the action to be taken at the end of a break in the report. The following
table shows the results obtained by specifying each of the options in the
.footer statement:

Option Result

report Prints the footer at the end of the report.

page Prints the footer at the bottom of each page.

columnname
(or a variable as the
column)

Prints the footer at the end of a group of data rows with
identical values for that break column.

If you specify a variable for columnname, Report-Writer evaluates the variable
during the loading of the report specification, before retrieving any data.

Report-Writer considers all statements between one .footer statement and any
subsequent .header, .footer, or .detail statement to be part of the first footer
action.

Report Structure Statements

12–48 Character-based Querying and Reporting Tools User Guide

Note: When using a variable for columnname, specify the same variable
identically in corresponding .break, .sort, and .header statements.

The parameters for the .footer statement are listed below:

Parameter Description

columnname A break column name specified in the list of the .sort or
.break statement. Specify the column name as a
delimited identifier by enclosing it in double quotes ("),
if you have previously specified the .delimid statement.

$columnvariable Variable whose value is the name of a column. Precede
the variable with a dollar sign ($).

Examples

Example 1 Specify printing a page number at the bottom of each page

.footer page
 .newline
 .center
 .print '-,' page_number (f2), '-'
 .newline

Example 2 Print the sum of column named “wholesale cost” (a delimited identifier), at
the end of the report

.footer report

.tab 10

.print 'TOTAL COSTS: ', sum("wholesale cost"),
 ('$------.zz')
.newline

.Header

Identifies the start of a block of formatting statements to be executed at the
top of a break.

Syntax .header | .heading | .head
 report | page | columnname

In the preceding syntax, columnname can be expressed as a variable.

Description The .header statement starts the block of text formatting statements that
define the action to be taken at the start of a break in the report. The
following table shows the results obtained by specifying each of the options in
the .header statement:

Report Structure Statements

Chapter 12: Report-Writer Statements 12–49

Option Result

report Prints the header before the start of the report.

page Prints the header at the top of all pages except the first
page.

columnname
(or a variable as the
column)

Prints the header before a new value of a break
column.

If you specify a variable for columnname, Report-Writer evaluates the variable
during the loading of the report specification, before retrieving any data.

When you create a report header, put the .header report statement and the
formatting statements associated with it before any other .header statements.
Report-Writer considers all statements between one .header statement and
any subsequent .header, .footer, or .detail statement as part of the first
header action.

Note: When using a variable for columnname, specify the same variable
identically in corresponding .break, .sort, and .footer statements.

The parameters for the .header statement are listed below:

Parameter Description

columnname A break column name specified in the .sort or .break
statements. Specify the column name as a delimited
identifier by enclosing it in double quotes ("), if you
have previously specified the .delimid statement.

$columnvariable Variable whose value is a name of a column specified in
a .sort or .break statement. Precede the variable must
with a dollar sign ($).

Examples

Example 1 Specify a page header.

.header page
 .tab 10
 .print 'Accounts Receivable Aging
 Report by Client'
 .newline

Column and Block Statements

12–50 Character-based Querying and Reporting Tools User Guide

Example 2 Specify a report header that prints the current date, the current time and the
name of the report at the start of the report.

.header report
 .leftmargin 10
 .rightmargin 70
 .left
 .print current_date
 .right
 .print current_time
 .newline 2
 .underline
 .center
 .print 'Annual Costs'
 .nounderline
 .newline

Example 3 Specify a break header for the column “last name.”

.delimid

.query
 select "last name", "first name"
 from names_tbl
.sort "last name"
.header "last name"
 .newpage

Column and Block Statements
You can use column and block statements to set up an explicit print position,
column width, and format for the values contained in the named database
column or for a report block (as defined by a .block statement).

Use the .position and .width statements to assign the starting print position
and column width for a column or block, which are used in conjunction with
text positioning statements such as .tab and .right justification. For more
information, see Text Positioning Statements. If you do not explicitly specify
column print positions, column widths, and column formats with these
statements, then Report-Writer assigns defaults automatically from an analysis
of the other report formatting statements. For more information, see
Automatic Determination of Default Settings in the chapter “Using
Report-Writer.”

Use the following column and block statements:

 The .block and .endblock statements allow you to treat sections of the
report as blocks.

This allows you to refer to positions on previous as well as on subsequent
lines in the report. These statements can be used in conjunction with the
.top and .bottom statements to align blocks of data horizontally adjacent
to each other rather than in vertical sequence.

Column and Block Statements

Chapter 12: Report-Writer Statements 12–51

 The .bottom statement, used while in block mode, moves the current
position to the bottom line of the current block.

 The .format statement explicitly specifies a print format (such as character
string or standard decimal notation) for a column.

 The .position statement sets up an explicit starting print position for a
column, which can be used with the .tab, .right, .left or .center
statements.

 The .tformat statement temporarily changes the print format for a column,
only for the next value to be printed.

This statement is used for such functions as printing a value of a column
on the first line of a page or of a group only, or including a currency
symbol only on the first printing of a column value.

 The .top statement, used while in block mode, moves the current position
to the top line of the current block.

 The .width statement sets up an explicit width for a column, to be used
with the .right or .center statements.

 The .within and .endwithin statements allow you temporarily to set the
report margins to the confines of a specific column, using its position and
width.

.Block/.Endblock

Sets Report-Writer into and out of block mode, which allows you to refer to
positions on previous as well as subsequent lines in the report.

Syntax .block | .blk
 other formatting statements
.endblock | .endblk | .end block

There are no parameters to either statement.

Description The .block and .endblock statements switch Report-Writer into and out of
block mode, allowing you to use advanced capabilities of Report-Writer in
formatting complex reports. While in block mode, you can move not only
across the page (through the .tab statement) and down the page (through the
.newline statement), but also back up the page (through the .top statement).

Block mode gives you the capability of logically printing information in your
report, and then putting summary information ahead of the detailed
information. Do this by switching Report-Writer into block mode, printing out
some number of lines, moving to the top of the block to add summary
information, and then printing out the entire block by leaving block mode.

Column and Block Statements

12–52 Character-based Querying and Reporting Tools User Guide

By using this statement in conjunction with the .within and .endwithin
statements, described later in this chapter, you can describe column headings
and subtotaling in a more natural and convenient fashion than is possible if
you had to describe each line completely before going to the next line.

All formatting statements are allowed within block mode, except for the
.newpage and .need statements. Additionally, you can use the .top and
.bottom statements only while in block mode to move the current position
within the block.

Report-Writer permits a default maximum of 310 explicit .newline statements
within any one block, as protection against misspecified columns. You can
override this default by setting the -wmxwrap parameter in the report
command.

Examples

Example 1 Assume the following sequence of Report-Writer statements:

.block
 .print 'Line 1' .newline
 .print 'Line 2' .newline
 .top
 .tab 10 .pr 'more line 1' .newline
.endblock

You would get the following output:

Line 1 more line 1
Line 2

Example 2 Assume the following sequence of Report-Writer statements:

.sort region, state

.header region
 .need 4
 .block
 .print 'Region: ', region .nl
.detail
 .tab 5
 .print state(c15)
 .tab 30
 .print tot_18to65('n,nnn,nnn')
 .newline
.footer region
 .top
 .lineend
 .tab + 5
 .print 'Count of states: '
 .println count(state) (f3)
.end block

Column and Block Statements

Chapter 12: Report-Writer Statements 12–53

You would get the following output:

Region: East South Central Count of states: 4
Alabama 2,528,938
Kentucky 2,971,232
Mississippi 1,393,283
Tennessee 3,283,432
Region: Mountain Count of states: 8
Arizona 1,604,948
Colorado 2,112,352
Idaho 0,698,802
Montana 0,663,043
Nevada 0,448,177
New Mexico 0,915,815
Utah 1,031,926
Wyoming 0,323,024

.Bottom

Changes the current output line to the bottom line in the current block.

Syntax .bottom | .bot

There are no parameters to this statement.

Description You can use the .bottom statement only while block mode is in effect (that is,
after a .block statement, but before the corresponding .endblock statement).
It moves the current output line to the current bottom line in the block. The
character position on that line is one space beyond the last character printed
on that line.

Example Assume the following sequence of Report-Writer statements:

.block
 .print 'Line 1' .newline
 .print 'Line 2' .newline
 .top
 .tab + 2 .pr 'more line 1' .newline
 .bottom .lineend
 .print 'Last line in block' .newline
.endblock

You would get the following output:

Line 1 more line 1
Line 2 Last line in block

.Format

Sets up a default printing format for a column or set of columns.

Syntax .format | .fmt columnname{, columnname} (format)
 {, columnname{, columnname} (format)}

Column and Block Statements

12–54 Character-based Querying and Reporting Tools User Guide

In the preceding syntax, columnname and format can be expressed as
variables. The comma (,) and the parentheses () must be stated explicitly and
cannot be part of the columnname or format variable.

Description The .format statement sets up a default format associated with a column to be
used whenever Report-Writer prints the column or an aggregation of a column.

If you specify variables for the column and/or format, Report-Writer evaluates
columnvariable and formatvariable during the loading of the report
specification, before retrieving any report data.

Because the format for a column can determine the default width for that
column (used in the .center, .right, and .left statements), you can use the
.format statement to control the default width of a column. Report-Writer uses
this statement to determine the default width only in the absence of the .width
or .position statements, which also specify the default width for a column. You
can use .tformat to override the format of a column during the run of the
report.

If you do not specify a .format statement for a column, Report-Writer
determines the print format by scanning the printing statements in the report.
For more information about this process, see Specifying Report
Specifications in the chapter “Using Report-Writer.” If the printing
statements do not specify a format, Report-Writer determines the default
format as described in Automatic Determination of Default Settings of the
chapter “Using Report-Writer.”

By default, breaks use the formatted values for any column whose format has
been specified in a .format statement. That is, a break occurs for such a
column only when the formatted value changes. Otherwise, no break occurs,
even if the unformatted value changes. To force Report-Writer to use the
actual, rather than the formatted, values to determine breaks, specify the -t
flag on the report command line. For more information, see the chapter “Using
System Commands for the Forms-based Tools.”

The parameters for the .format statement are listed below:

Parameter Description

columnname The name of a column in the report. You can specify the
column name as a delimited identifier by enclosing it in
double quotes ("), if you have previously specified the
.delimid statement.

format A valid printing format, as described in Format
Specifications. The format must be the correct type for
the column(s).

Column and Block Statements

Chapter 12: Report-Writer Statements 12–55

Parameter Description

$columnvariable Variable whose value is a name of a column. Precede the
variable with a dollar sign ($).

$formatvariable The variable whose value is a name of a printing format
described in Format Specifications. The format must
evaluate to the correct type for the column(s). Precede
the variable with a dollar sign ($).

Examples

Example 1 This example shows a .format statement that declares formats for several
columns, followed by a .print statement that uses the formats specified in the
.format statement to print the information.

.format trans, balance ('$$$,$$$,$$$.nn')

.print trans,balance

.newline

Example 2 This example shows a .format statement that declares formats for date
columns where date_fmt evaluates to a date format and column names are
delimited identifiers.

.format "trans date", "cur date" ($date_fmt)

.Position

Sets a default output position and optional width associated with a column.

Syntax .position | .pos columnname {, columnname} (position [,width])
 {, columnname{, columnname} (position [, width])}

In the preceding syntax, columnname, position, and width can be expressed
as variables. The comma (,) and parentheses () must be explicitly stated and
cannot be part of the columnname, position, or width variable.

Description The .position statement sets a default position in the output line associated
with a column name for use with statements such as:

.left

.right

.center

.tab

You can also use this statement to set an optional default width (the total
number of characters in a column) when calculating positions in the .center
and .right statements.

If you specify a variable for columnname, position, and/or width, Report-
Writer evaluates the variable during the loading of the report specification,
before retrieving any report data.

Column and Block Statements

12–56 Character-based Querying and Reporting Tools User Guide

Normally, you do not need this statement because Report-Writer determines
default positions and widths by analyzing the report formatting statements.
For a full description of how Report-Writer determines the default settings, see
Automatic Determination of Default Settings in the chapter “Using
Report-Writer.” If the determined default position for a column is not
convenient, or you would like a different position associated with a
columnname, you can override the default with the .position statement.
Subsequently, you can use the .tab, .right, .left, or .center statements with a
columnname to refer to this position.

If you do not specify a .position statement for a column, and columnname is
not printed in the report, the default position is zero (0). If you specify a
position, but no width is specified or evaluated for a column, Report-Writer
determines the default width by looking at the default format for the column.
You can optionally use the .width statement to specify the width of a column.

The parameters for the .position statement are as follows:

Parameter Description

columnname Name of a column in the report. You can specify the
column name as a delimited identifier by enclosing it in
double quotes ("), if you have previously specified the
.delimid statement.

position Numeric location on the output line where the default
column position should be. This value must be less than
the maximum line size (as set by the .pagewidth
statement in the report specification or by the -l flag on
the report command line) and greater than or equal to
zero (0).

width The default width which is the total number of characters
in the column to be used when calculating the positioning
for .center and .right statements. If not specified, Report-
Writer determines this numeric by looking at the default
format for the column.

$columnvariable Variable whose value is the name for a column in the
report. Precede the variable with a dollar sign ($).

$positionvariable Variable whose value is the numeric location on the output
line where the default column position should be. This
variable must evaluate to a position less than the
maximum line size (as set by the .pagewidth statement in
the report specification or by the -l flag on the report
command line) and greater than or equal to zero (0).

$widthvariable Variable whose value is the default width, which is the
total number of characters in the column to be used when
calculating the positioning for .center and .right

Column and Block Statements

Chapter 12: Report-Writer Statements 12–57

Parameter Description
statements. If not specified or evaluated, Report-Writer
determines this value by looking at the default format for
this column.

Examples

Example 1 The following example sets up default positions for columns, and prints out
the data. The column “acct num” is a delimited identifier.

.position "acct num"(5), transact(20), balance(35)

.format transact, balance ('$,$$$,$$$.nn')

.format "acct num"('nn-nnnnn-n')
 ...
.tab acct .print acct
.tab transact .print transact
.tab balance .print balance
.newline

This results in a printout like this:

01-02234-4 $1,345.24 $11,429.32
02-41989-1 $876.24 $10,553.08

Example 2 To vary the column positions and widths, use variables:

.position "acct num"($acct_pos, $acct_width),
 transact ($transact_pos, $transact_width),
 balance ($balance_pos, $balance_width)

.Tforma

Changes the format temporarily for the output of a column.

Syntax .tformat | .tfmt columnname{, columnname} (format)
 {, columnname{, columnname} (format)}

In the preceding syntax, columnname and format can be expressed as
variables. The comma (,) and the parentheses () must be stated explicitly and
cannot be part of the columnname or format variables.

Description The .tformat statement temporarily changes the format used to print out the
value of a column. After Report-Writer prints the column using this format, the
effect of the temporary format is discarded, and when Report-Writer prints the
next value in the column, it uses the default format.

Column and Block Statements

12–58 Character-based Querying and Reporting Tools User Guide

For example, reports often include columns containing currency data. If you
want to print a leading dollar sign for the currency figure only the first time it
appears on a page, you could use the .tformat statement to specify a format
of $$$,$$$,$$n.nn for the column in the header action for page breaks. If the
normal format for printing the column is zzz,zzz,zzn.nn, then Report-Writer
prints the column with a leading dollar sign only the first time it is printed on
each page.

Another common use of the .tformat statement is for blanking out the
unchanged values of break columns in the detail action for a report. You use
the B type format (described in the Blanking Format B section of the chapter
“Report-Writer Expressions and Formats”) to accomplish this. Specifying a B
format, with an appropriate field width as the standard format for printing a
column in the detail section, causes Report-Writer to print blanks instead of
the value of that column as the default action.

To ensure that Report-Writer prints each new value in the column, specify a
printing format in a .tformat statement in the break header for that column.
Refer to the use of the .tformat statement for the date column in Account
Example or the examples in this section.

If you specify a variable for columnname, position, and/or width, Report-
Writer evaluates the variable during the loading of the report specification,
before retrieving any report data.

The parameters for the .tformat statement are as follows:

Parameter Description

columnname The name of a column in the report. You can specify the
column name as a delimited identifier by enclosing it in
double quotes ("), if you have previously specified the
.delimid statement.

format A valid printing format, as described in Format
Specifications. The format must be the correct type for
the column(s).

$columnvariable Variable whose value is a name of a column in the
report. Precede the variable with a dollar sign ($).

$formatvariable Variable whose value is a name of a printing format
described in Format Specifications. The format must
evaluate to the correct type for the column(s). Precede
the variable with a dollar sign ($).

Examples

Example 1 Print out the value of a break column only when it changes. The acct num
column is a delimited identifier.

Column and Block Statements

Chapter 12: Report-Writer Statements 12–59

/*
** In the detail section, blank out the
** account number. When the account number
** changes, print it.
 */
.header report
 .format "acct num"(b10),
 transact('$$$,$$$,$$$.nn')
.heading "acct num"
 .tformat "acct num"(c10)
.detail
 .print "acct num"
 .tab +2
 .print transact
 .newline

This is the sample report output for the above specification:

01-34567-8 $345.21
 $14.10
 $1,143.23
04-35999-2 $1.99
 $177.00

Example 2 Print dollar sign at top of page only. The variable thous_dollar evaluates to
'$$$,$$n' and thous evaluates to 'ZZZ,ZZn':

.declare thous_dollar = c8 with value '\'$$$,$$n\'',
 thous_dollar = c8 with value '\'zzz,zzn\''
.header page
 .print 'Top of page' .nl 2,
 .tformat salary($thous_dollar)
.detail
 .print name(c14), salary($thous)
 ...

This is the sample report output for the above specification:

Top of page
Jones, A. $23,145
Jones, B. 16,145
Jost, C. 32,143

.Top

Changes the current output line to the top line in the current block.

Syntax .top | .tp

There are no parameters to this statement.

Description You can use the .top statement only while block mode is in effect (that is, after
a .block statement, but before the corresponding .endblock statement). It
moves the current output line to the first (topmost) line in the block.

Column and Block Statements

12–60 Character-based Querying and Reporting Tools User Guide

The character position on the topmost line is the same as its previous position
on the line when the last .newline statement affected the topmost line. To get
to the left margin of the top line, use the .tab statement with no parameters.
To get to the last nonblank character on the line, use the .lineend statement.

Example Assume the following sequence of Report-Writer statements:

.block
 .print 'Line 1' .newline
 .print 'Line 2' .newline
 .top
 .tab + 2 .pr 'more line 1' .newline
.endblock

You would get the following output:

Line 1 more line 1
Line 2

.Width

Sets a default output width associated with a column.

Syntax .width | .wid columnname{, columnname} (width)
 {, columnname}{, columnname} (width)}

In the preceding syntax, columnname and width can be expressed as
variables. The comma (,) and parentheses () must be explicitly stated and
cannot be part of the columnname or width variable.

Description The .width sets the default width, which is the total number of characters in a
column when calculating positions in the .center and .right statements.
Alternatively, you can specify the default width for a column as a parameter to
the .position statement. If you specify variables for columnname and width,
Report-Writer evaluates the variables during the loading of the report
specification, before retrieving any report data.

Normally, you do not need the .width statement because Report-Writer
determines default widths by analyzing the report formatting statements. For
a full description of how Report-Writer determines the defaults, see
Automatic Determination of Default Settings in the chapter “Using
Report-Writer.”

If the determined default width for a column is not convenient, or you would
like a different width associated with a columnname, you can override the
default with the .width statement. Subsequently, you can use the .right or
.center statements with a columnname to use this width, in conjunction with
the default position for this column, in calculating the placement of text.

Column and Block Statements

Chapter 12: Report-Writer Statements 12–61

If no width is specified for a column, Report-Writer determines the default
width by looking at the default format for the column. The parameters for the
.width statement are listed below:

Parameter Description

columnname The name of a column in the report. You can specify the
column name as a delimited identifier by enclosing it in
double quotes ("), if you have previously specified the
.delimid statement.

width The width which is the total number of characters in the
column to be used when calculating the positioning for
the .center and .right statements. If not specified,
Report-Writer determines this numeric by looking at the
default format for the column.

$columnvariable Variable whose value is the name for a column in the
report. Precede the variable with a dollar sign ($).

$widthvariable Variable whose value is the default width, which is the
total number of characters in the column to be used
when calculating the positioning for .center and .right
statements. If not specified or evaluated, Report-Writer
determines this value is determined by looking at the
default format for this column.

Example To print the following columns of salaries, set up desired position, formats and
widths:

 New Salary Old Salary
$50,000.00	$45,000.00
$32,000.00	$28,800.00
$35,000.00	$31,500.00
$100.00	$90.00
$35,000.00	$31,500.00
$25,000.00	$22,500.00
$5,000.00	$4,500.00

.declare salary_fmt = c14 with value '''$$$,$$$.nn'''
.declare salary_wid = integer with value '12'
.header report
 .position sal1(0), sal2(13)
 .format sal1, sal2 ($salary_fmt)
 .width sal1, sal2 ($salary_wid),
 .underline
 .center sal1 .print 'New Salary'
 .center sal2 .print 'Old Salary'
 .newline
 .nounderline
.detail
 .left sal1 .print '|'
 .right sal1 .print sal1
 .print ' |'
 .right sal2 .print sal2
 .print ' |'
 .newline

Column and Block Statements

12–62 Character-based Querying and Reporting Tools User Guide

.Within/.Endwithin

Sets Report-Writer into (and out of) column formatting mode.

Syntax .within | .wi columnname{, columnname} | all
 other formatting statements
.endwithin | .endwi | .end within

In the preceding syntax, columnname or all can be expressed as a variable.
The comma (,) must be stated explicitly and cannot be part of columnname
variable.

Description The .within and .endwithin statements switch Report-Writer into and out of
column formatting mode. In column formatting mode, Report-Writer
temporarily sets the margins of the report to the left and right margins for a
given column, determined either by default (as described in Automatic
Determination of Default Settings) or through the use of the .position,
.width, and .format statements.

If you specify a variable as columnname, Report-Writer evaluates the variable
during the loading of the report specification, before retrieving data.

Report-Writer processes all statements between the .within and the
corresponding .endwithin statement using the margins for the specified
column, rather than the margins for the report. If more than one column is
specified or evaluated on the .within statement, or if the keyword all is used,
Report-Writer applies the set of statements to each of the columns in turn.

These are the parameters for the .within and .endwithin statements:

Parameter Description

columnname The name of a column in the report within which other
formatting statements are to be used. You can specify
the column name as a delimited identifier by enclosing it
in double quotes ("), if you have previously specified the
.delimid statement.

all Indicates that all columns in the report are to be used.

$columnvariable Variable whose value is a column name or all. Precede
the variable with a dollar sign ($).

Column and Block Statements

Chapter 12: Report-Writer Statements 12–63

When using the .within and .endwithin block of statements for a set of
columns, you can invoke a slightly different set of formatting statements
within each column, differing only in the column referenced by a formatting
statement. To accomplish this, two special names are available for use in
formatting statements while in column formatting mode. You can use them to
refer to the column that is currently being used.

Parameter Description

w_column Can be used anywhere columnname would normally be
used on a formatting statement, such as in .print
w_column or .print sum(w_column).

w_name Refers to the name of the column currently being used in
the within block. You can use it to print out the actual
column names.

When used in a .within block, these special names can also be values of
variables where appropriate. For instance, the value of the variable colname is
w_name in the following example:

.tab $colname

In another example, the value of the variable colval is w_column:

sum($col)

For examples of the use of these special names, see the examples in this
section or the appendix “Report-Writer Report Examples.”

Because Report-Writer temporarily changes the margins of the report to the
margins for a column while the .within statement is in effect, the positions
referred to by the default values for the .left, .right, and .center statements
are those of the column, rather than the full width of the report.

If the text you want to print spans more than one line per column in the
.within section—that is, the text has more than one .newline command—then
surround the .within section with the .block and .endblock statements. Report-
Writer automatically executes a .top statement immediately before the
.endwithin statement to simplify this type of specification.

Once you start to use the .within and .endwithin statements, you can find that
the .position, .width, and .format statements take on additional usefulness.

Column and Block Statements

12–64 Character-based Querying and Reporting Tools User Guide

Examples

Example 1 Assume the following sequence of Report-Writer statements, where two of
the column names are delimited identifiers:

.position "last name"(0), "first name"(16), address(32)
 ...
.within "last name", "first name", address
 .pr w_name
.end within

Report-Writer prints the names of the three columns similar to this:

last name first name address

Example 2 In the following example, the .within statements allow Report-Writer to print
each column of the report in a similar format.

In the report header and footer section, a .block statement allows the centered
titles and sums to use more than one line. In the detail section, only one line
is used so a .block statement is not necessary. In the detail and the footer
section for the report, the special name w_column is used.

 Total
 Population 18 to 65
 11,113,976 9,600,381
 5,193,669 4,820,324
 8,875,083 7,833,474
 10,652,017 9,646,997
 712,567 698,802
 694,409 663,043
 19,953,134 17,761,032
 [detail omitted]
 ----------- -----------
203,165,702 177,612,309

Text Positioning Statements

Chapter 12: Report-Writer Statements 12–65

The following report example was used to create the two columns:

.name withinex

.query select tot_18to65 + tot_under18 + tot_over65
 as totpot, tot_18to65
 from pop
.header report
 .position totpot (2,15), tot_18to65(20,15)
 .format totpop, tot_18to65 ('zzz,nnn,nnn')
 .block
 .within totpop
 .right .println 'Total'
 .underline
 .right .println 'Population'
 .nounderline
 .endwithin
 .within tot_18to65
 .newline
 .underline
 .right
 .println '18 to 65'
 .nounderline
 .endwithin
 .endblock
.detail
 .within totpop, tot_18to65
 .right . println w_column
 .endwithin
.footer report
 .block
 .within totpop, tot_18to65
 .right . println '-----------'
 .right . print sum(w_column)
 .endwithin
 .endblock

Text Positioning Statements
You can use text positioning statements to specify a print position—absolute or
relative to other positions—for any text to be printed. Most of these
statements also accept as a value the name of a column for which a print
position or column width has been set with the .position or .width statements.
For a description, see Column and Block Statements.

Use the following text positioning statements:

 The .center statement centers text around the center of the page or
around a specified alternate position.

It can be used with the name of a column to center the text within the
specified or default margins for that column.

 The .left statement left justifies text to the left margin or to a specified
position.

It can be used with the name of a column to left justify text within the
specified or default margins for that column.

Text Positioning Statements

12–66 Character-based Querying and Reporting Tools User Guide

 The .lineend statement tabs to the end of the text on the current line
before continuing to print.

 The .linestart statement tabs to the left margin before continuing to print.

 The .newline statement prints out the current line and skips to the start of
a new line.

 The .right statement right justifies text to the right margin or to a specified
position.

It can be used with the name of a column to right justify text within the
specified of default margins for that column.

 The .tab statement tabs to an exact or relative position before continuing
printing.

It can be used with the name of a column to tab to the specified or default
print position for that column.

.Center

Centers the next text to be printed.

Syntax .center | .cen | .ce [[+|-] n | columnname | expression]

In the preceding syntax, expression evaluates to the next print position where
the text is right justified on a line or to the name of a column in the report.
The plus sign (+) and minus sign (-) must be explicitly stated and cannot be
part of the expression.

Description The .center statement centers the text printed in the next .print statement.
Report-Writer removes all leading and trailing blanks from the text before it
places it in the output line.

Report-Writer evaluates any expressions that are used as parameters to the
.center statement during runtime.

The parameters for the .center statement are listed below:

Parameter Description

+ | - If sign is present, the position is moved n positions
relative to the last output position. If unsigned, the
position is the absolute position in the output line.

n The position around which the next block of text is
centered. The default value is the halfway point between
the left and right margins of the report.

Text Positioning Statements

Chapter 12: Report-Writer Statements 12–67

Parameter Description

columnname The name of a column in the report. You can specify the
column name as a delimited identifier by enclosing it in
double quotes ("), if you have previously specified the
.delimid statement.

columnname
(continued)

Report-Writer determines the position for the column
either explicitly through the use of the .position
statement, or implicitly as described in Automatic
Determination of Default Settings in the chapter
“Using Report-Writer.” Report-Writer positions the text in
the next .print statement around the center for the
column. For more information, see the discussion
following this table.

expression A numeric or string expression. If the expression is
numeric, it must evaluate to the position around which the
next block of text is centered. If the expression is a string,
it must evaluate to the name of a column in the report.
Precede all variables that are part of the expression with a
dollar sign ($).

If you specify n (either relative or absolute), Report-Writer centers the text
around that position. If you specify nothing, Report-Writer calculates the
center of the page as the halfway point between the left and right margins of
the report. If you specify .leftmargin and .rightmargin statements, you can
calculate the center by the same method. However, if you are using the
default values for the right and left margins (the right in particular), see
Automatic Determination of Default Settings in the chapter “Using
Report-Writer” for a discussion of how Report-Writer determines the margins.

If you specify centering with the columnname parameter or with an expression
that evaluates to a columnname, Report-Writer centers the text in that
column. Report-Writer determines the center of the column through both of
the following:

 Default position of the column, as determined by the .position statement
or by default

 Width of the column, as determined by default or by the width of the
format specified in the .format statement, or as specified in the .width or
the .position statements

The .center statement centers text around a position calculated as:

centering position =
default column position + (default format width / 2)

Report-Writer rounds the position to the next highest number if there is any
fraction.

Text Positioning Statements

12–68 Character-based Querying and Reporting Tools User Guide

The .center statement has a somewhat different meaning when executed in
column formatting mode (that is, inside a .within statement with default
column widths and positions assumed). Because the .within statement
temporarily resets the report margins to the left and right margins of a
specified column’s width and position, a .center statement so executed centers
a text string within the column width, not within the report page margins. For
more information about column formatting mode, see the .within/.endwithin
statements in Column and Block Statements.

Examples

Example 1 Output the date centered on the page.

.center

.print 'Report Executed On:', current_date

Example 2 Output a heading for a column centered above the value of that column,
where the column is the delimited identifier, bank balance.

.position "bank balance" (20)

.format "bank balance"('+++,+++.nn')
 ...
.center "bank balance" .print 'Balance'
 ...
.detail
 ...
 .tab "bank balance" .print bal ...

.Left

Left justifies the next text to be printed.

Syntax .left | .lft [[+|-] n | columnname | expression]

In the preceding syntax, expression evaluates to the next print position where
the text is left justified on a line or to the name of a column in the report. The
plus sign (+) and minus sign (-) must be explicitly stated and cannot be part
of the expression.

Description The .left statement left justifies the text printed in the next .print statement to
one of the following locations:

 Specified position

 Position corresponding to a specified column

 Value of a numeric expression that evaluates to a specified position

 Value of a string expression or variable that evaluates to a column name

Report-Writer evaluates any expressions that are used as parameters to the
.left statement during runtime.

Text Positioning Statements

Chapter 12: Report-Writer Statements 12–69

You can specify all the values for these parameters as either absolute or
relative to the last output position. Report-Writer removes all leading and
trailing blanks from the text before placing the text in the output line.

The .left statement is the same as the .tab statement for all output except for
text that contains leading blanks, such as formatted numbers.

The meaning of the .left statement is slightly changed when executed in
column formatting mode (that is, when the .within statement is in effect and
default column widths and positions are assumed). When executed under
these circumstances, the .left statement positions text at the left margin of the
column indicated in the .within statement. For more information about column
formatting mode, see the .within/.endwithin statements in Column and Block
Statements.

The parameters for the .left statement are as follows:

Parameter Description

+ | - Optional sign that moves the output position n positions
relative to the last position output. If sign is not present,
the position is the absolute position in the output line.

n Position to which the next text is left justified. The default
value is the left margin of the report (set by the .leftmargin
statement).

columnname Name of a column in the report. You can specify the column
name as a delimited identifier by enclosing it in double
quotes ("), if you previously specified the .delimid
statement.

The position for the column is determined either explicitly
through the use of the .position statement, or implicitly as
described in Automatic Determination of Default
Settings. If columnname is specified, Report-Writer left
justifies the next output text and places it at the position
associated with the named column.

expression Numeric or string expression. If the expression is numeric,
it must evaluate to the next print position on the line. If the
expression is a string, it must evaluate to the name of a
column in the report. Precede all variables that are part of
the expression with a dollar sign ($).

Text Positioning Statements

12–70 Character-based Querying and Reporting Tools User Guide

Example Output the title as centered and the value of balance as left justified to
position 40.

.position balance (40, 10)
 . . .
.center balance
.print 'Balance'
 . . .
.detail
 .left balance
 .print balance (f10.2)

.Lineend

Begins the next text to be printed following the last non-blank character on
the current line.

Syntax .lineend | .lnend

There are no parameters to this statement.

Description The .lineend statement changes the current position in the output line so that
Report-Writer places the text in the next .print statement immediately after
the last non-blank character on the line. This is useful in some advanced
reports that use the .tab statement extensively. The .lineend statement always
moves the current position marker to a position within the current margins of
the report.

Example To print a list of items across the page on the first line of a block:

.block
 .println 'ITEMS:'
 ...
.detail
 .top
 .lineend
 .println ', ', item

Text Positioning Statements

Chapter 12: Report-Writer Statements 12–71

.Linestart

Begins the next text to be printed at the current left margin.

Syntax .linestart | .lnstart | .linebegin

There are no parameters to this statement.

Description The .linestart statement changes the position of the current marker for the
output line so that the next text printed by the .print statement appears at the
current left margin. The left margin is set either by the .lm statement, by
default, or by the left edge of the column currently in use while in a .within
block. The .linestart statement is useful in reports that use the .tab statement
extensively. The .linestart statement always restores the current position
marker to a known position, at the beginning of the line.

Example With .linestart you can return to the beginning of the current line.

.center

.print 'Accounts Receivable for', dept_name

.linestart

.print '(', dept_code, ')'

.Newline

Writes out the current line and optionally advances a number of lines on the
output page.

Syntax .newline | .nl [nlines | expression]

In the preceding syntax, expression evaluates to a numeric value that is the
number of lines to advance from the current line in the report.

Description The .newline statement must be specified to advance to a new line on the
output page. Unlike some programming languages (for example, Fortran), a
.print statement does not imply a new line at its completion. However, you can
use the .println statement for this purpose. If you do not specify nlines or a
numeric expression that evaluates to nlines, the default value of nlines is one
(advance to the next line).

After Report-Writer executes .newline, it begins the next text output at the left
margin, unless another text positioning statement overrides the default.

Report-Writer evaluates any expressions that are used as parameters to the
.newline statement during runtime.

Text Positioning Statements

12–72 Character-based Querying and Reporting Tools User Guide

The parameters for the .newline statement are as follows:

Parameter Description

nlines The number of lines to advance. If you are advancing to
the next line, you can specify the .newline statement
without the nlines parameter.

expression A numeric expression which evaluates to the number of
lines to advance from the current line. Precede all variables
that are part of the expression with a dollar sign ($).

If the output of a new line reaches the end of the current page, or if there are
fewer than nlines left on the current page, Report-Writer prints the page footer
and page header, if they have been specified.

If the current line includes multi-line format strings, (Cn.w), the .newline
statement advances to the bottom of the longest column printed during the
formation of the line. For the Dictionary Example in the appendix “Report-
Writer Report Examples,” the .newline statement in the footer for “word”
causes an advance to the line following the end of the definition.

When you invoke column formatting mode, .newline causes an advance to the
next line at the left margin, as determined by the .within statement. For more
information on column formatting mode, see the .within/.endwithin statements
in Column and Block Statements.

Examples

Example 1 Print out one line of text:

.print 'This is a line'

.newline

Example 2 Print out a variable number of newlines:

.println name

.println address

.println city, state, zip

.nl $label_size - 3

Text Positioning Statements

Chapter 12: Report-Writer Statements 12–73

.Right

Right justifies the next text to be printed.

Syntax .right | .rt [[+|-] n | columnname | expression]

In the preceding syntax, expression evaluates to the next print position where
the text is right justified on a line or to the name of a column in the report.
The plus sign (+) and minus sign (-) must be explicitly stated and cannot be
part of the expression.

Description The .right statement right justifies the text printed in the next .print statement
to one of the following locations:

 Specified position

 Position corresponding to a specified column

 Value of a numeric expression that evaluates to a specified position

 Value of a string expression or variable that evaluates to a column name

Report-Writer evaluates any expressions that are used as parameters to the
.right statement during runtime.

You can specify all the values for these parameters as either absolute or
relative to the last output. Report-Writer removes all leading and trailing
blanks from the text before placing the text in the output line.

The parameters for the .right statement are as follows:

Parameter Description

+ | - If sign is present, the position is moved n positions relative
to the last output position. If no sign is present, the position
is the absolute position in the output line.

n The position to which the next block of text is right justified.
The default value is the right margin of the report (set by the
.rightmargin statement).

Text Positioning Statements

12–74 Character-based Querying and Reporting Tools User Guide

Parameter Description

columnname The name of a column in the report. You can specify the
column name as a delimited identifier by enclosing it within
double quotes ("), if you have previously specified the
.delimid statement.

Report-Writer determines the column’s position either
explicitly through the use of the .position statement, or
implicitly as described in Automatic Determination of
Default Settings in the chapter “Using Report-Writer.”
Report-Writer right justifies the text in the next .print
statement to the right edge of that column, as determined
from the default position and width of that column. For more
information,see the discussion following this table.

expression A numeric or string expression. If the expression is numeric,
it must evaluate to the next print position on the line. If the
expression is a string, it must evaluate to the name of a
column in the report. Precede all variables that are part of
the expression with a dollar sign ($).

If you specify n or a numeric expression that evaluates to n (either relative or
absolute), Report-Writer right justifies the text to that position. If you specify
nothing, Report-Writer right justifies the text to the right margin of the report.
Report-Writer determines the right margin either from the .rightmargin
statement, if specified, or by default as described in Automatic
Determination of Default Settings in the chapter “Using Report-Writer.”

If you specify right justification with the columnname parameter or through a
string expression that evaluates to a columnname, Report-Writer right justifies
the text to the right edge of that column, as determined from the following:

 Default position of the column, as determined from the .position statement
or by default

 Width of the column, as determined by the default width or the width of
the format specified in a .format statement for that column, or by the
width specified in .width or the .position statements

The .right statement justifies to a position calculated as:

justification position =
default column position + default width

Text Positioning Statements

Chapter 12: Report-Writer Statements 12–75

The meaning of the .right statement is slightly changed when the .right
statement is executed within column formatting mode (that is, when the
.within statement is in effect and default column widths and positions are
assumed). When the .right statement is so executed without a parameter, the
current position becomes the right margin as defined by the .within statement,
not the right margin of the report. For more information about column
formatting mode, see the .within/.endwithin statements in Column and Block
Statements.

Examples

Example 1 Output a page number, right justified on the right margin.

.right

.print 'Page ', page_number('zn')

Example 2 Output a heading for column “bal,” right justified to the right edge of the
column.

.position bal (20)

.format bal('+++,+++.nn')

.right bal .print 'Balance'
 ...
.detail
 ...
 .tab bal .print bal ...
 ...

 .Tab

Specifies the position on the line where the next text is printed.

Syntax .tab | .tb | .t [[+|-] n | columnname | expression]

In the preceding syntax, expression evaluates to the next print position on a
line or to the name of a column in the report. The plus sign (+) and minus sign
(-) must be explicitly stated and cannot be part of the expression.

Description The .tab statement moves the current position marker to one of the following
locations:

 Specified position

 Position corresponding to a specified column

 Value of a numeric expression that evaluates to a specified position

 Value of a string expression or variable that evaluates to a column name

Report-Writer evaluates any expressions that are used as parameters to the
.tab statement during runtime.

You can specify numeric values for these parameters as either absolute or
relative to the last output position.

Text Positioning Statements

12–76 Character-based Querying and Reporting Tools User Guide

The parameters for the .tab statement are listed below:

Parameter Description

+ or - If sign is present, the new position or column is calculated
relative to the current position. If sign is not present, it is
set to the evaluated position n.

columnname The name of a column in the report. You can specify the
column name as a delimited identifier by enclosing it
within double quotes ("), if you have previously specified
the .delimid statement.

Report-Writer determines the position for the column
either explicitly through the use of the .position
statement, or implicitly as described in Automatic
Determination of Default Settings. If columnname is
specified, Report-Writer begins the next output text at the
position associated with the named column.

expression A numeric or string expression. If the expression is
numeric, it must evaluate to the next print position on the
line. If the expression is a string, it must evaluate to the
name of a column in the report. Precede all variables that
are part of the expression with a dollar sign ($).

If you do not follow the .tab statement with n, a columnname, or an
expression, then the .tab statement works like a .linestart statement, with the
next text beginning at the left margin of the report. The .linestart statement is
described further in this chapter.

The .tab statement takes on a slightly different meaning when executed in the
column formatting mode sections of a report (that is, when the .within
statement is in effect and default column widths and positions are assumed).
When the .tab statement is executed without a parameter in column
formatting mode, Report-Writer moves the current position to the left margin
of the current line. The left margin is determined by the .within statement.

For more details on column formatting mode, see the .within/.endwithin
statements in Column and Block Statements.

Examples

Example 1 To output “HERE” in character position 12 on a line, use:

.tab 12

.print 'HERE'

Example 2 To output Summary in column position $title_col, use:

.tab $title_col

.println 'Summary'

Print Statements

Chapter 12: Report-Writer Statements 12–77

Example 3 To output the value of the daily balance column (a delimited identifier) in
position 30, use:

.position "daily balance"(30)
 ...
 .tab "daily balance"
 .print "daily balance"('+++++.NN')

Example 4 To print two columns of figures separated by a bar:

.tab credit_sum

.right salary1

.print salary1,' |'

.right salary2

.print salary2

Example 5 To tab forward the amount specified by the value of $col_width, use:

.tab +$col_width

.print

Print Statements
Use these statements to print text or data values in a report:

 The .nullstring statement specifies a string of characters you want to print
in the report whenever a null value is encountered in the data.

 The .print and .println statements print text or values at a default position,
or at a position that was previously specified with the column and block
and/or text positioning statements.

 The .ulcharacter statement sets up a different underline character than the
default, for use with Report-Writer underlining statements.

 The .underline and .nounderline statements control underlining for
sections of text.

Use an expression in the .print statement syntax to specify the text or value
you want to print. Expressions can include any (or any combination) of the
following:

 Column names from the data retrieval statement

 Variables

 Constants

 Functions

 Aggregates

 Special report variables, such as the current_time, current_date, or
page_number

Print Statements

12–78 Character-based Querying and Reporting Tools User Guide

You can optionally indicate the print format within the syntax of the .print
statement, or you can specify it in a separate .format or .tformat statement
for column values. For more information, see Column and Block Statements.

.Nullstring

Specifies an alternate null string.

Syntax .nullstring | .nullstr 'null_string' | expression

Description The .nullstring statement allows you to specify a string to print whenever a
null value is to appear on the report. The string can be an expression that
evaluates to a string at runtime. Because a data value of null means that there
is really no data present to print, you can use the .nullstring to print a
designated string that signifies the absence of the data.

The parameters for the .nullstring statement are as follows:

Parameter Description

null_string Any string of characters. Enclose the string in single
quotes, so Report-Writer can properly handle leading and
trailing blanks, which are important in some format
specifications.

expression A string expression that evaluates to any character string.
Precede all variables that are part of the expression with a
dollar sign ($). For more information, see the chapter
“Report-Writer Expressions and Formats.”

Note: Ensure that the length of the null_string is less than or equal to the
width of printed nullable columns. If a column is not wide enough to contain
the null_string, then the empty string is printed instead.

If you do not specify a .nullstring statement, Report-Writer uses the default
value of the II_NULL_STRING environment variable/logical, if defined. If not
defined, it uses a default of the empty string (a string with no characters) to
print a null value. You can specify several .nullstring statements in a report
specification. The system uses the current .nullstring until another .nullstring
statement is executed.

Example Suppose phone_number is a nullable integer column whose value is null. If
you issued the following print statements:

.nullstring 'N/A'

.print ' Phone number = ', phone_number .nl

.nullstr '?'

.print 'Phone number = ', phone_number .nl

Print Statements

Chapter 12: Report-Writer Statements 12–79

Report-Writer would print the following if the value of phone-number were
null:

Phone number = N/A
Phone number = ?

.Print and .Println

Prints literal text strings, columns from the database, or expressions on the
report.

Syntax .print | .pr | .p expression[(format)]{, expression[(format)]}

.println | .prln | .pln expression[(format)]{, expression[(format)]}

In the preceding syntax, format can be expressed as a variable
($formatvariable). The parentheses () must be stated explicitly and cannot be
part of the format variable. The comma (,) must be stated explicitly and
cannot be part of the expression.

Description The .print statement specifies text to be included in the body of the report.
Text can be character strings printed directly, data items from the data table,
variables, aggregates, or a combination of these. Report-Writer includes the
text at the place in the report where it encounters the .print statement. By
preceding the .print statement with the positioning statements such as
.newline, .tab, .center, .right, or .left, you can specify the location of the text.
By default, Report-Writer includes the text immediately after the last text
output with the .print statement.

Report-Writer evaluates any print expressions that are used as parameters to
the .print statement during runtime. You can include as many expressions as
you want in the .print statement; Report-Writer adds them to the report in the
order specified.

If the expression is a runtime variable for a column name (for example, .print
$account_type), Report-Writer prints the name of the column as entered at
runtime, rather than its data. To print the data rather than the column name,
you use the select column_list as resultcolumn_list construct in the query and
reference the resultcolumn_list name in the .print statement. For more
information, see the .Query statement description in Report Setup Statements.

If you use the optional .println form of the statement, the current print
position advances to the next line after the specified text is printed.

Data that formats into a single logical line can wrap to yield a default
maximum of 310 physical lines as protection against omitted explicit .newline
and/or .newpage statements. You can override this limit by specifying the
-wmxwap parameter in the report command.

Print Statements

12–80 Character-based Querying and Reporting Tools User Guide

Important! Embedding tabs in a string can truncate the string if it is printed
with a default format or with a format that is not large enough to allow the tab
to be expanded into spaces. To print string sthat contain tabs, use a specified
format wide enough for the expanded tab(s).

The parameters for the .print statement are as follows:

Parameter Description

expression Any legal expression. For more information, see the
chapter “Report-Writer Expressions and Formats.” You can
specify a column name in an expression as a delimited
identifier by enclosing it in double quotes ("), if you have
previously specified the .delimid statement.

format An optional printing format for the expression, as
described in Format Specifications. The format must be
the correct type for the expression. If you do not specify a
format, Report-Writer uses one of the default formats
listed in the chapter “Report-Writer Expressions and
Formats.”

$formatvariable Variable whose value is the name for a printing format
described in Format Specifications. The format must
evaluate to the correct type for the column(s). Precede
the variable with a dollar sign ($). Report-Writer evaluates
$formatvariables, but not expressions, at load time.

Examples

Example 1 Assume a report specification with the following literals:

.print 'Text may'
 ' span several lines.'

It would print the following output:

Text may span several lines.

Because there was no specification statement such as a .tab or a .newline to
separate the fields, the two text strings printed immediately adjacent to each
other on the same line of the output.

Example 2 In this example, assume that page_numberis equal to 3.

.pr 'Page number:', page_number(zz)

Report-Writer would print the following text:

Page number: 3

Print Statements

Chapter 12: Report-Writer Statements 12–81

Example 3 The following example shows the specifications you need to print a data
value (represented by a delimited identifier for the column name) and an
aggregate, using a numeric template for the aggregate where the value of
millions_fmt is 'nnn,nnn,nnn.nn':

.print "acct bal", sum("acct bal")($millions_fmt)

Example 4 A complex .print statement that displays a large number of data items can
look like the following:

.print 'Values of the data are: ', var1,
 var2(e20.4) cvar1(c40), ' and finally',
 lastvar (' $$$,$$$,$$$.nnCR')

Note that in the previous example, the field, var1, was listed without a format.
Report-Writer prints the value with the default format for the data type,
according to the table in Default Formats, in the chapter “Report-Writer
Expressions and Formats.” It is acceptable to mix the default data formats
with extremely complex templates. Using an acceptable default format saves
you the time and effort of specifying every format in detail.

.Ulcharacter

Sets the underlining character to any single character when output is to a file
or printer.

Syntax .ulcharacter | .ulchar | .ulc 'c' | expression

Description With the .ulcharacter statement, you can specify an alternate underlining
character or an expression that evaluates to an underlining character during
report runtime. Underlining occurs only in reports written directly to a file or
printer. Report-Writer ignores underlines when displaying a report on the
screen and in reports sent to a file or printer from the screen.

The parameters for the .ulcharacter statement are as follows:

Parameter Description

c Any single character, subsequently used as the
underlining character. The default underlining character is
the underscore (_) for reports written to a file or printer,
and none for reports written to the screen.

expression A character expression that evaluates to any single
character, subsequently used as the underlining character.
Precede all variables that are part of the expression with a
dollar sign ($). For more information, see the chapter
“Report-Writer Expressions and Formats.”

Print Statements

12–82 Character-based Querying and Reporting Tools User Guide

The character c must be a single character enclosed in quotes. That character
remains in effect until Report-Writer encounters another .ulcharacter
statement in the report.

Report-Writer prints underscoring (_) on the same line as the text. If any
other character, such as a hyphen (-), is specified with the .ulcharacter
statement, Report-Writer prints underlining as a second line immediately
below the underlined text.

Example To produce the following:

Underline me
--------- --
and me
=== ==

Use the following specifications:

.underline
 .ulcharacter '-' .pr 'Underline me' .newline
 .ulcharacter '=' .pr 'and me' .newline
.nounderline

.Underline and .Nounderline

Underlines text.

Syntax .underline | .ul | .u
 any printing statements
.nounderline | .noul | .nou

There are no parameters to either statement.

Description To underline text in a report, put an .underline statement immediately before
the spot where underlining begins, and .nounderline at the spot where it stops.
You can underline anything that can be printed, including character strings,
column values, parameter values, or aggregate values. Underlining occurs only
in reports written directly to a file or printer. Report-Writer ignores underlines
when displaying a report on the screen and in reports sent to a file or printer
from the screen. By default, the underlining character is an underscore (_).
This can be changed with the .ulcharacter statement.

When underlining is in effect, only letters and digits are underlined. The
.underline statement ignores all other characters, such as blanks, commas,
and periods. Underscores print on the same line as the text. If the underlining
character is anything other than an underscore, Report-Writer prints the
underlining on the line below the one containing the text to be underlined.

Conditional and Assignment Statements

Chapter 12: Report-Writer Statements 12–83

Note: Printers that interpret carriage returns as a combination of both a
carriage return and a line feed is not able to use the underscore (_) as the
default underlining character. If your printer is configured this way, you should
use the .ulcharacter command to reset the underline character to a hyphen (-)
or some other character; otherwise, if you use the underscore as the
underlining character, Report-Writer prints the underline above the text
instead of below it.

Example To produce the following line:

Numbers - 123,456 are underlined,

but punctuation is not!

Use the following specifications:

.underline

.print 'Numbers - 123,456 are '

.print 'underlined,'

.newline

.println 'but punctuation is not!'

.nounderline

Conditional and Assignment Statements
Use these statements to specify alternative blocks of statements or to assign
values to variables:

 The .if, .then, and .else statements specify alternative blocks of
statements to be executed under specified conditions.

 The .let statement assigns a value to a variable, which can be used in
subsequent computations.

Conditional and Assignment Statements

12–84 Character-based Querying and Reporting Tools User Guide

.If

Specifies alternative blocks of statements to be executed under specified
conditions.

Syntax .if condition .then {statement}
 {.elseif condition .then {statement}}
 [.else {statement}]
.endif

Description The .if statement specifies alternative blocks of statements to be executed
depending upon the value of the specified condition.

Report-Writer evaluates the conditions in the .if and .elseif clauses one after
another. When a condition is met, Report-Writer executes the statements
following the subsequent .then statement. If none of the specified conditions is
met, Report-Writer does nothing. If none of the conditions is met and there is
an .else clause included in the .if statement, Report-Writer executes the
statements following the .else statement.

The parameters for the .if statement are as follows:

Parameter Description

condition A boolean expression that evaluates to true or false.

statement Any action statement, including the .if statement (this
excludes the setup and structure statements in the
sections, Report Setup Statements and Report Structure
Statements).

Both the expression in the condition and/or the parameters to statement can
contain column names that are delimited identifiers enclosed in double quotes
("), if you have previously specified the .delimid statement.

Examples

Example 1 This example illustrates the use of the .if statement to take different actions
based on the current condition of the Report-Writer environment. It tests the
current character position, and starts a new line if the current position is past
the end of a line:

.if position_number > 80 .then
 .newline
.endif

Example 2 This example tests the data and prints different things, depending on the value
of some of the report data:

Conditional and Assignment Statements

Chapter 12: Report-Writer Statements 12–85

.if balance < 0 .then
 .print '(',-balance, ')'
.else
 .tab +1
 .print balance
.endif

Example 3 This example tests a column value and uses .if statements to translate a
numeric code number from the database to a text string for the report, and to
selectively print column values accordingly. Notice that both the conditional
expression and the .then statements reference column names that are
delimited identifiers.

.if "dept code" = 1 .then
 .print 'Books: ', "book sales"
.elseif "dept code" = 2 .then
 .print 'Furniture: ', "furniture sales"
.elseif "dept code" = 3 .then
 .print 'Jewelry: ', "jewelry sales"
.else
 .print 'Misc: ', "misc sales"
.endif

.Let

Assigns the value of an expression to a declared variable.

Syntax .let variablename [:] = expression

Description The .let statement evaluates the expression and assigns its value to the
declared variable. You can place it in any .header, .footer, or .detail section.

Report-Writer evaluates the .let statement after the query. Therefore, if you
initialize a variable in a .declare statement and then change the value with a
.let statement, the initialized value remains active until after the query,
regardless of where the .let statement occurs in your report specification.

The data type of the expression must be coercible to the data type of the
variable to which it is assigned. For example, an integer expression can be
assigned to a floating point variable, and a legal date expression string to a
date variable; however, a date expression cannot be assigned to an integer
variable. When in doubt, use an explicit coercion function. For a list of
functions available to Report-Writer, see Built-in Functions.

When the data types in an assignment are incompatible, Report-Writer
displays an error message and retains the previous value of the variable. The
report continues to run.

Conditional and Assignment Statements

12–86 Character-based Querying and Reporting Tools User Guide

The parameters for the .let statement are as follows:

Parameter Description

variablename A variable name declared in a .declare statement. The
variablename cannot be a special report variable, column, or
delimited identifier.

expression An expression. The expression cannot be a Boolean or
conditional one, because there cannot be variables of data type
Boolean. The expression can contain column names that are
delimited identifiers enclosed in double quotes ("), if you have
previously specified the .delimid statement.

 Examples

Example 1 The following .declare statement defines two data variables, age and
birthday. These are then used in .let statements showing a number of
possible assignments that could be made.

.declare
 age = integer,
 birthday = date
.let age := 6.2
.let age = $age+1 /* one year older*/
.print $age .n1
.let birthday := '29-jul-1954'
.let age := interval ('years',
 date ('9-jul-1987') - $birthday)
.print $age .n1

If these assignments were made in sequence, as shown, the output would be
as follows:

 7
32

Example 2 The following example prints the age in the current row of a column whose
name is the delimited identifier, age at retirement.

.let age = "age at retirement"

.print $age .n1

Statements Syntax Summary

Chapter 12: Report-Writer Statements 12–87

Statements Syntax Summary

Statement Category Accepts
Variables or
an Expression*

Default,
If Not Specified

.block | .blk other formatting statements

.endblock | .endblk | .end block
No None

.bottom | .bot No None

.break | brk columnname {, columnname} No None

.center | .cen | .ce [[+|-] n | columnname |expression] Expression Page center**

.cleanup SQL_statement; {SQL_statement;} No None

.data | .dat | .table | .view [schema.]
tablename | viewname | synonym

Variables None

.declare variablename = datatype
 [with null | not null]
 [with prompt 'promptstring']
 [with value 'valuestring'] {, variablename =
datatype...}

No None

.delimid No Delimited identifiers not
recognized

.detail | .det No None

.footer | .footing | .foot
 report | page | columnname

Variables None

.format | .fmt columnname{, columnname}
 (format) {columnname{, columnname} (format)}

Variables Determined by data
type of column

.formfeeds | .ffs | .ff

.noformfeeds | .noffs | .noff
No

.if condition .then {statement}
 {.elseif condition .then {statement}}
 [.else {statement}]
.endif

No None

.include filename No None

.left | .lft | .lt [[+ | -] n | columnname | expression] Left margin**

.leftmargin | .lm [[+ | -] n | expression] Expression 0

.let variablename [:] = expression Expression
(right of the
equal sign)

None

Statements Syntax Summary

12–88 Character-based Querying and Reporting Tools User Guide

Statement Category Accepts
Variables or
an Expression*

Default,
If Not Specified

.lineend | .lnend No None

.linestart | .lnstart | .linebegin No None

.longremark | .lrem remark_text

.endremark | .endrem
No None

.header | .heading | .head
 report | page | columnname

Variables None

.name | .nam reportname No None

.need | .ne nlines | expression Expression None

.newline | .nl [nlines | expression] Expression 1

.newpage | .np [[+ | -] pagenumber | expression] Expression Current page number +
1

.nullstring | .nullstr 'null_string' | expression Expression None

.output | .out filename Variables Screen

.pagelength | .pl {nlines | expression} Expression Files: 61 lines
Screens: screen length

.pagewidth | .pw width Variables Files: 132 characters
Screens: screen width

.position|.pos columnname{, columnname} position[,
width])
 {, columnname{, columnname} (position[,width])}

Variables None

.print | .pr | .p expression [(format)]
 {, expression [(format)]
or
.println | .prln | .pln expression [(format)]
 {, expression [(format)]

Expression
(Note: Formats
can only take
variables)

None

.query | .quer /* for SQL users * /
 select [all | distinct] column_list
 [as resultcolumn_list]
 from [schema.]table |view|synonym [corr_name]
 {, [schema.]table |view|synonym [corr_name]}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 {union select ...}
 [order by ...]

Variables None

.query | .quer /* for QUEL users * /
{range_statement(s)}

Variables None

Statements Syntax Summary

Chapter 12: Report-Writer Statements 12–89

Statement Category Accepts
Variables or
an Expression*

Default,
If Not Specified

 retrieve [unique] (target_list) [where qual]
 [sort by | order by ...] sort-list

.right | .rt [[+ | -] n | columnname | expression] Expression Right margin**

.rightmargin | .rm [[+ | -] n | expression] Expression 100 or determined by
detail statement

.setup SQL statement; {SQL statement;} No None

.shortremark | .srem remark-text No None

.sort | .srt {columnname[:sortorder]
 {, columnname[:sortorder]}}

Variables None

.tab | .tb. | .t [[+ | -] n | columnname | expression] Expression None

.tformat | .tfmt columnname{, columnname}
 (format) {, columnname{, columnname} (format)}

Variables None

.top | .tp No None

.ulcharacter | .ulchar | .ulc 'c'|expression Expression Files: underscore (_)
Screens: hyphen (-)

.underline | .ul | .u any printing statements

.nounderline | .noul | .nou
No No underline

.width | .wid columnname{, columnname} (width)
 {, columnname}{, columnname} (width)}

Variable Determined by format

.within | .wi columnname{, columnname} | all
 other formatting statements
..endwithin | .endwi | .end within

Variable None

* If an expression is used, it must evaluate to the type of object indicated in the statement; for
example, a number or column name. Variable names must be preceded by a dollar sign ($) to
evaluate them. Any punctuation must be explicitly stated and cannot be a part of the expression.
Statements that take variables only (not expressions) are evaluated during the load of the report
specifications, while those that take expressions are evaluated each time the statement is executed.

** The default value if the statement is specified with no parameter.

Chapter 13: Using VIFRED 13–1

Chapter 13: Using VIFRED

The VIFRED is a visually oriented tool for creating or modifying the appearance
of forms. With VIFRED, you can create custom forms or edit and enhance
default forms in the following ways:

 Set the default display style to full-screen or pop-up, or change the
dimensions of a form, field, or data area

 Specify the order in which fields appear in the window or are accessed

 Create lines, boxes, and other trim, as well as instructions and information
for the end user that make the form more attractive or easier to
understand

 Edit a field’s default title to more accurately describe its purpose, or
specify color, underlining, blinking, or other attributes for a field

 Define fields that scroll horizontally, are display-only or query-only

 Make entry in a field mandatory, specify an automatic default value, or
establish validity checks to verify that the information entered into a field
meets certain criteria

 Change error messages that appear if a user enters incorrect data

Use these customized forms with QBF to display, add, or modify data in your
database, or in applications that you design using ABF, Vision, or an
embedded query language.

The three chapters on VIFRED provide information as follows:

 This chapter provides instructions for starting VIFRED, creating default
forms, managing forms, and creating QBFNames.

 The chapter “VIFRED Form Components” explains how to create and edit
individual form components.

 The chapter “VIFRED Field Specifications” provides details on specifying
field attributes.

VIFRED Frames and Operations

13–2 Character-based Querying and Reporting Tools User Guide

VIFRED Frames and Operations
When you choose Forms from the Ingres Menu, the Forms Catalog frame
appears. From this primary forms frame, you can access all other VIFRED
frames. The following two figures contain maps of the various VIFRED frames
and operations:

Ingres Menu

Tables

Queries

Forms

Applications

Reports

JoinDefs

Create

Destroy

Edit

Rename

MoreInfo

Utilities

Go

Creating a
Form
(pop-up)

VIFRED
Forms
Catalog

see
“Form
Layout
Menu Map”

Compile
Print
QBFNames

Next
Previous
Save

Create

Destroy

Edit

Rename

MoreInfo

Go

Next
Previous
Save

QBF
Execution
Phase

Next
Previous
Save

Blank

Duplicate

Table

JoinDef

Edit

Creating a form
based on a form
Table, or Joindef
(pop-up)

Form Layout frame

see
“JoinDefs
Operation
Menu Map”

(see “Form Layout
Menu Map”)

Starting VIFRED

Chapter 13: Using VIFRED 13–3

For a menu map of the JoinDef Edit frame’s menu options, see the chapter
“Using JoinDefs in QBF.” The following figure is a menu map of the Forms
Layout frame:

FORMS LAYOUT frame

Create

Delete

Edit

Move

Undo

Order

Save

FormAttr

Location

Groupmove

Rulers

Trim
Field

TableField

NewLine
Box/Line

DuplicateField

Title
DIsplayFormat
Attributes
Cancel

Insert
Delete
EditAttr
Move
GetTableDef
Cancel

Next
Previous
MoreEdit
ListChoice

Attributes
Trim

Edit
DefaultOrder
Cancel

EditInfo
Save
Cancel

VisuallyAdjust
ListChoices

Resize
Move

Title
DisplayFormat
Attributes

(table field)

(trim)

(simple field)

Starting VIFRED
You can start VIFRED from the operating system or from the Ingres Menu.

Starting VIFRED from the Operating System

You use the vifred command to start VIFRED from the operating system. For
more information, see the chapter “Using System Commands for the Forms-
based Tools.”

Starting VIFRED

13–4 Character-based Querying and Reporting Tools User Guide

Starting VIFRED from the Ingres Menu

To start VIFRED from the Ingres Menu, choose Forms. VIFRED displays the
Forms Catalog frame, shown below, which provides access to all other
forms-editing frames in VIFRED.

Starting VIFRED in Expert Mode

Expert mode allows you to enter VIFRED without displaying the full list of
existing forms in the Forms Catalog frame. Instead, you type the name of the
form you want to work with in the Name column of a blank Catalog frame.

You can also use expert mode with pattern matching to have VIFRED retrieve
a range of forms from which you can choose. For example, to retrieve and
display a list of all the forms that begin with the letter s you would type s* in
the Name column.

To start VIFRED in expert mode:

1. From the operating system enter the command:

vifred [dbname | v_node::dbname] [/server-type] -e

2. VIFRED displays an empty Forms Catalog frame.

3. In the Name column, type the name of the form you want to work with, or
pattern-matching characters to select several forms at once.

4. Choose the operation that you want to perform.

If you entered a single form name in the Name column, VIFRED performs
the chosen operation. If you used pattern matching, VIFRED displays all
the forms that match your specification. To select from the displayed list:

h. Place the cursor on the name of the form to select it.

i. Choose the operation to perform.

VIFRED Forms Catalog Frame

Chapter 13: Using VIFRED 13–5

VIFRED Forms Catalog Frame
The Forms Catalog frame lists all VIFRED forms owned by the user or the DBA
and stored in the current database. It displays a menu of operations that you
can perform on these forms.

The Forms Catalog frame in the following figure displays the owner (creator)
and a brief description of the form beside the name of each form.

To locate the name of a form, scroll through the list or type the first letter of
the form that you are searching for. If you type the first letter, VIFRED places
the cursor on the next form in the list that begins with that letter.

This table shows the operations on the Forms Catalog frame:

Operation Description

Create Displays a pop-up form showing the sources for creating a
new form.

Destroy Destroys the form highlighted by the cursor. You can only
destroy forms that you own.

Edit Displays the Form Layout frame for editing or viewing the
form selected by the cursor.

Rename Renames the form selected by the cursor. You can only
rename forms that you own.

MoreInfo Obtain more information about the selected form. The
additional information includes the time the form was
created and a short and long description of the form.

Creating New and Duplicate Forms

13–6 Character-based Querying and Reporting Tools User Guide

Operation Description

Utilities Provides access to the following forms management
operations:

Compile - Compiles a form
definition for use with an embedded
query language as a C source file (or
VMS macro).

Print - Creates a picture of the form
that can be printed on a line printer.

QBFNames - Creates, renames, or
deletes QBFNames.

Go Starts QBF using the form highlighted by the cursor. For
more information, see Running QBF from VIFRED.

Help, End, Quit Standard operations.

In addition to these operations, you can also use system-level commands such
as copyform, compform, delobj, and printform to manage VIFRED forms.

Creating New and Duplicate Forms
Create a new form with the Create operation on the Forms Catalog frame. The
Create operation offers you the choice of duplicating an existing form (which
you can then edit), beginning with a completely blank form, or creating a
default form from a table or JoinDef.

 To create a form:

1. Choose the Create operation on the Forms Catalog frame. VIFRED displays
a pop-up. This table lists the choices available on the pop-up:

Operation Description

Duplicate Creates a form from an existing form.

Blank Creates a form starting with a blank window.

Table Creates a default form based on a table.

JoinDef Creates a default form based on a JoinDef.

2. Choose one of the operations on the pop-up menu. For additional
instructions, see the appropriate section that follows.

Creating New and Duplicate Forms

Chapter 13: Using VIFRED 13–7

Duplicating Forms

Create a new form by duplicating an existing form in the current database.
Modify it with the Duplicate operation on the Forms Catalog frame, following
the same steps used to create a default form. For details, see Creating Default
Forms.

To duplicate a form from another database, use the copyform system-level
command to copy the form into the intended database. This command also
allows you to change the name and ownership of the form.

Creating Blank Forms

You can create blank forms that:

 Do not access data, but rather act as logo windows, information windows,
and help windows.

 Are interactive forms linked to procedures written in a database
programming language such as 4GL and embedded SQL. An example of
this is an application login window in which users enter their name and
password.

 Access and display database data through procedures written in
programming languages.

To create a blank form:

1. Choose Blank from the Creating a Form pop-up menu.

2. Choose the Select operation on the Forms Catalog frame.

VIFRED displays a blank form in the Form Layout frame, which is described
in the next section.

3. Choose the Save operation on the Form Layout frame to save and store
the form under a name you give it.

After creating the form, you can modify it, as discussed later in this chapter, or
add components to it, as discussed in the chapter “VIFRED Form
Components.”

Creating Default Forms

To create a default form based on a table or JoinDef, or a form that duplicates
an existing form in the current database:

1. Choose Duplicate, Table, or JoinDef from the Creating a Form pop-up.

Creating New and Duplicate Forms

13–8 Character-based Querying and Reporting Tools User Guide

After making your selection, another pop-up similar to the one shown here
appears.

2. Chose one of the following procedures:

 If necessary, use the ListChoices operation to display a list of available
choices and select an item from the list.

 If you are basing the default form on a JoinDef, enter the JoinDef
name on the appropriate pop-up. This pop-up contains the additional
menu option, Edit. If you want to edit or create the JoinDef, choose
the Edit operation to access QBF. VIFRED returns you to the default
form creation process when done.

 If you are basing the default form on an existing form or table, enter
the form or table name on the appropriate pop-up. You can specify
more than one table by separating the table names with spaces or
commas.

3. In addition, if you are basing the form on a table, specify one of the
display formats listed in the following table:

Creating New and Duplicate Forms

Chapter 13: Using VIFRED 13–9

Selection Description

tablefield Displays several rows on a form that can be scrolled
horizontally or vertically if all columns and rows do not
fit in the window at one time.

simplefields Displays one record at a time.

4. Choose the OK operation. VIFRED displays the appropriate form in the
Form Layout frame, which is described in the next section.

If you based the form on a table or JoinDef, VIFRED displays a default
form, with one field on the form for every data column in the table or
JoinDef. The titles, internal names, and data display formats of these fields
are based on the underlying data columns. For special issues regarding the
long varchar, byte, byte varying, and long byte data types and delimited
identifiers, see the note following this procedure.

5. Choose the Save operation on the Form Layout frame to save and store
the form under a name you give it.

After creating a form you can modify it, as described in this chapter, or add
components to it.

Note: VIFRED does not create fields or table field columns on a default form for
columns of data types long varchar, byte, byte varying, and long byte in the
associated database table or tables.

If your table uses delimited identifiers, column-to-field name conversions in
default forms can result in form field name collisions. This is because VIFRED
allows delimited identifiers for column names, but not for field names. It must
strip out certain characters in the database column name to make the new
field name conform to regular identifier rules. For example, if the database
table has separate columns named Column1 (regular identifier) and "Column
1" (delimited identifier), VIFRED converts both column names to the same
default field name, Column1.

Creating Forms that Use Multiple Tables

To create a form that uses columns from multiple database tables, use one of
the following techniques:

 Create a default form based on an existing table. When the Create a Form
Based on a Table pop-up appears, enter more than one table name,
separated by spaces or commas. VIFRED automatically creates fields with
the appropriate internal names and data display formats.

Form Layout Frame

13–10 Character-based Querying and Reporting Tools User Guide

 Use a query language to create a multi-table view or use QBF to create a
JoinDef; then create a default form for that view or JoinDef. VIFRED
automatically creates the fields with the appropriate internal names and
data display formats.

 Create a blank form and create the fields you want, specifying appropriate
data display formats; then use a programming language to link those
fields to data columns in multiple tables by way of the fields’ internal
names.

You can use the GetTableDef operation to create a table field on the form
that contains internal names and data display formats automatically
corresponding to the columns in the database tables. You cannot use
GetTableDef to create simple fields.

Form Layout Frame
After you create a form with the Create operation on the VIFRED Forms
Catalog frame, VIFRED places you on the VIFRED Form Layout frame. You can
also access the Form Layout frame by placing the cursor on the name of a
form listed in the VIFRED Forms Catalog frame and choosing the Edit
operation.

The Form Layout frame is the basic frame for modifying and enhancing an
existing form.

Alignment Guides

You can use the following alignment guides on forms displayed in the Form
Layout frame:

 Ruler marks in the form’s margins

Form Layout Frame

Chapter 13: Using VIFRED 13–11

 Straight edge alignment guides

 Location operation

An example of the alignment guides are shown here.

Margin Rulers

The right and bottom margins of your form contain optional ruler marks every
fifth column or row, and a decimal digit every tenth column or row, to help you
determine the coordinates of components on your form. The margins
containing the rulers are initially positioned off the screen on fullscreen forms.
To see them, you need to scroll the form by moving the cursor to the edge of
your window, or use the Move operation to move the form’s margins. For
instructions on moving the margins, see Moving the Margins of a Form.

You can turn ruler marks on or off by choosing the Rulers operation on the
Form Layout frame. On the pop-up menu, set Rulers to y (yes) or n (no). The
default is n (no).

Straight Edges

The Form Layout frame contains optional horizontal and vertical straight edge
alignment guides to help you line up the components on your form. The
vertical and horizontal straight edges appear initially in the last column and
row of the form. If the form is larger than your window, you must scroll the
form by moving the cursor off-screen to gain access to them. If a straight
edge is touching a form component, such as trim or a field, the form
component temporarily takes precedence and obscures that part of the
straight edge.

Form Layout Frame

13–12 Character-based Querying and Reporting Tools User Guide

You move straight edges with the Move operation, as you would a piece of
trim or other form component. For best results, use a monitor with a line
graphics character set.

You can turn straight edges on or off by choosing the Rulers operation on the
Form Layout frame. On the pop-up menu, set Straight edges to y (yes) or n
(no). The default is n (no).

Location Operation

When working with forms, you sometimes need to know the precise row and
column location of a place in your window. For example, to specify a fixed
position for a pop-up form with the StartRow and StartColumn attributes, you
must know the row and column designation of that place in your window.

The Location operation on the Form Layout frame displays the current row and
column location of the cursor, relative to the boundaries of your window,
regardless of the placement and orientation of the form.

To find the row and column location of any place in your window:

1. On the Form Layout frame, place the cursor at the chosen spot.

2. Choose the Location operation.

VIFRED marks the cursor location with a plus sign (+) and displays a
message giving the row and column location.

Layout Frame Menu Options

This table summarizes the operations that you can use on the Form Layout
frame:

Operation Description

Create Displays a new menu that enables you to create new
components on a form.

Delete Deletes the component where the cursor is positioned.

Edit Displays another menu that enables you to edit the trim or
field component where the cursor is positioned.

Move Moves a component or changes the margin. This operation
displays a new menu. For more information on changing the
overall margins of a form, see Setting Form Size and
Position.

Specifying a Form’s Display Attributes

Chapter 13: Using VIFRED 13–13

Operation Description

Undo Reverses the results of the last operation you performed.
Undo does not reverse the FormAttr operation on the Form
Layout frame or the EditAttr operation on the Edit submenu.

Order Changes the order in which the form’s fields are accessed
when an end user presses the Tab key. This operation
displays a new menu for ordering fields.

Save Displays a new menu that allows you to save your new or
updated form in the database. The Save operation is
independent of exiting. You can save one form and begin
work on another without leaving VIFRED. For more
information, see Saving Forms.

FormAttr Changes the default attributes of the form as a whole, such
as fullscreen or pop-up display style. For more information,
see Specifying a Form’s Display Attributes.

Location Displays a message giving the current row and column
position of the cursor, relative to your window boundaries,
and marks the cursor location with a plus sign (+). For
details, see Location Operation.

Groupmove Moves an entire group of components on a form at once.

Rulers Turns rulers and straight edges on or off. For more
information, see Margin Rulers and Straight Edges.

Help, End, Quit Standard operations.

Specifying a Form’s Display Attributes
Form attributes are specifications that apply to the form as a whole (in
contrast to field attributes, which are specifications that apply to individual
fields). All form attributes are related to the following form characteristics:

 Display style

 Size and screen position

You designate a form’s attributes with the Form Layout frame’s FormAttr (form
attribute) operation. When you choose the FormAttr operation, VIFRED
displays the Form Attributes pop-up frame. Use this frame to specify attributes
for the form currently displayed in the Form Layout frame.

Specifying a Form’s Display Attributes

13–14 Character-based Querying and Reporting Tools User Guide

The display style of your current form determines which attributes appear on
the Form Attribute pop-up frame. VIFRED provides two basic display styles for
forms:

 Fullscreen

 Pop-up

For more information on display styles, see Choosing a Form’s Display Style.

This figure shows the Form Attributes frame for a fixed-position pop-up style
form.

The following table lists and summarizes all of the attributes that appear on
Form Attributes frames for both fullscreen and pop-up forms. Only those
attributes that apply to the style of your form appears on your Form Attributes
frame.

Attribute Description For

Style The display style of the form, either
fullscreen or pop-up

All forms

Size Size of the form in rows and columns All forms (display-
only)

Screen Width Displays the screen in the terminal’s
current width (default), narrow width
(usually 80 columns), or wide width
(usually 132 columns)

Fullscreen forms

Position How the pop-up form is positioned
(either fixed position or floating
position)

Pop-up display-style
forms

Choosing a Form’s Display Style

Chapter 13: Using VIFRED 13–15

Attribute Description For

Border Whether the pop-up form has an
automatic border

Pop-up display-style
forms

StartRow The row containing the form’s upper
left corner

Fixed-position pop-up
display-style forms

StartColumn The column containing the form’s
upper left corner

Fixed-position pop-up
forms

The following sections provide more detailed information about the attributes
in the Form Attributes table.

Choosing a Form’s Display Style
You use the FormAttr operation on the Form Layout frame to choose a form’s
display style. Display style determines whether the form appears alone in the
window or as a pop-up form, which can overlay another form.

Fullscreen

Forms in normal or fullscreen display style appear one at a time on your
screen. Each time VIFRED displays a new form, it removes the previous form
from the screen. The term fullscreen refers to the fact that only one form can
be displayed at a time, not the size of the form. A fullscreen form can be any
size you want, either larger or smaller or the same size as your screen. The
default size is the width of your screen, at form-creation time.

Pop-up

Forms in pop-up display style can be displayed without removing previously
displayed forms from the window. A pop-up style form temporarily covers over
some or all of the previous form. Thus, by using pop-up style forms you can
have multiple forms, or portions of forms, visible at the same time. The cursor
is only active in one form at a time—always the last form activated.

You can make pop-ups any size up to the size of your window, but they are
most useful when you make them small enough to be displayed without
completely obscuring previous forms. When specifying the size of a pop-up
form, allow space for a border, if you choose to use one. For more information,
see Setting Form Size and Position.

Choosing a Form’s Display Style

13–16 Character-based Querying and Reporting Tools User Guide

You can specify that a pop-up style form appear at a specific window location
or automatically float to a position near to but not obscuring the field in the
previous form that contains the cursor.

Pop-up style forms can be used for a wide variety of purposes:

 To display information such as messages and prompts.

 To display lists of acceptable values during data entry. For example, if a
user is not sure of the values that go into a particular field, a pop-up form
can be invoked to show those values.

 To display lists of currently existing tables, reports, JoinDefs, QBFNames,
and other objects.

 To allow users to easily interrupt one operation, perform another operation
on a pop-up form, and then return to the first operation without having to
load and traverse many different menus.

For example, suppose you are appending records to a table and someone
asks for information contained in another table. You can code an
application so that, by invoking a pop-up retrieval form for the other table,
the user can perform a query (on the pop-up form) and then return to the
original task by removing the pop-up form.

When using pop-up forms in an application, the application code controls the
appearance and disappearance of the pop-up. When your application code
displays a normal fullscreen form, it clears the previous form from the screen.
When your application code displays a pop-up form, the previous form remains
in your window.

Changing a Form’s Style

To change a form’s style:

1. Choose the FormAttr operation on the Form Layout frame. VIFRED displays
the Form Attributes pop-up frame.

2. Type an f for fullscreen or a p for pop-up in the Style field and press the
Return key.

VIFRED automatically displays the attributes on the Form Attributes pop-
up that are available for the new style.

Specifying Borders for Pop-up Forms

Chapter 13: Using VIFRED 13–17

If you change a fullscreen form to a pop-up form, VIFRED sets the default
value of the Border attribute to Y (yes) and the Screen Width to the default
setting, Current, which is the default width as set at run time.

If you started with a form that was as large or larger than your screen—for
instance, a default fullscreen form—you must delete some lines from the form
to make room for the pop-up form’s border, which requires two lines, before
changing it to a pop-up. If you change the Border attribute to N (no) for a
form that occupies your entire screen, you still need to reduce its size by two
lines to change it to a pop-up, in case a user turns on the borders at run time.

Specifying Borders for Pop-up Forms
The Border attribute tells VIFRED whether to include an automatic border
around a pop-up display-style form. The Border attribute is not available for
fullscreen forms.

By default, a border is specified. To change the specification, enter n for no
border or y for yes to include a border in the Border attribute field on the Form
Attributes pop-up.

Allow space for the border when sizing your pop-up, or when creating a pop-
up by changing the style of a fullscreen form that occupies the entire screen. A
border requires two lines and two columns in addition to the other components
on your form. A borderless pop-up requires the same allowance, in case a user
turns on borders at run time.

You cannot specify display attributes such as brightness, inverse video, or
color for borders created with the Border attribute. If you want to define your
own border, you can use the Box/Line operation to draw a box around the
inside edges of the form. This allows you to specify display attributes for the
box.

Setting Form Size and Position
You can use the FormAttr operation on the Form
Layout frame to:

 Determine the size of your form with the Size attribute.

 Change the spacing or size of characters for a fullscreen form when
displayed on your screen, by setting the Screen Width attribute.

 Position a pop-up form with the Position, StartRow, and StartColumn
attributes.

Setting Form Size and Position

13–18 Character-based Querying and Reporting Tools User Guide

 Position a pop-up form with the VisuallyAdjust operation on the Form
Attributes frame.

You can also use the Move operation on the Form Layout frame to change the
size of your form by moving its margins.

Setting Size and Position Attributes

To change a form’s size or the position of a pop-up form:

1. Choose the FormAttr operation on the Form Layout frame. VIFRED displays
the Form Attribute pop-up frame.

5. Enter the change in the appropriate field on the Form Attribute frame, as
described in the following subsections, and press the End key.

In most cases, you do not need to type the entire word or words for the option
you want. The first one or two letters suffice.

Size

The Sizefield on the Form Attributes frame is a display-only field and reflects
the current size of the form, as determined by editing on the Form Layout
frame, or in the case of pop-up display-style forms, by the VisuallyAdjust
operation.

When using this information to plan the location of a pop-up form, remember
to account for the additional lines and columns required for a specified border.
The pop-up and its border must be small enough to entirely fit within the
window.

Screen Width

You can display a fullscreen form in one of the following widths, with
accordingly larger or smaller character fonts and spacing:

 Current width

 Narrow width (usually 80 columns)

 Wide width (usually 132 columns)

The default is current screen width, as specified in the termcap entry
corresponding to your TERM_INGRES setting. The narrow width is typically 80
columns, and the wide width is typically 132 columns, depending on your
screen size and type.

To create forms wider than 80 columns, or to otherwise adjust the size of a
form, see Moving the Margins of a Form.

Setting Form Size and Position

Chapter 13: Using VIFRED 13–19

Position Mode

The Position mode attribute is only displayed for pop-up display-style forms.
Use this attribute to specify whether the pop-up style form is fixed or floating
when it appears in the window.

Mode Description

Fixed If you specify this mode, you also can fill in the StartRow and
StartColumn attribute fields, which specify the row and column
position of the pop-up form’s upper left corner. The form always
pops up at that location regardless of which field is current or
where the cursor is.

Floating Whenever you invoke the pop-up display-style form, VIFRED
positions the form in the window relative to the current field (the
field containing the cursor). VIFRED places the pop-up form as
close to the current field as possible without obscuring it.

To change the Position mode attribute:

1. Put the cursor in the Position mode field on the Form Attributes frame.

2. Type in fi for Fixed or fl for Floating and press End.

If you choose Fixed mode, you must set the size and position of the form, as
discussed in the following sections.

StartRow and StartColumn

The StartRow and StartColumn attributes only display for fixed-position pop-
up display-style forms.

Use the StartRow and StartColumn attributes to specify the location of a
fixed-position pop-up style form. You use these two attributes to specify the
screen row and column of the upper left corner of the form. For example, to
place the upper left corner of the form at the 10th column of the 5th row,
enter 5 in the StartRow field and 10 in the StartColumn field.

Both StartRow and StartColumn are screen-relative, not form-relative. That is,
they refer to locations on the user’s screen regardless of the position of any
underlying forms or the position of the cursor. When you use fullscreen-style
forms that are larger than your screen, you must scroll around the fullscreen
form. Fixed-position pop-up style forms always appear at the same place in
the window no matter how the underlying fullscreen form is displayed.

By default, the initial StartRow and StartColumn specifications are set to Row
1, Column 1.

Setting Form Size and Position

13–20 Character-based Querying and Reporting Tools User Guide

Moving the Margins of a Form

You can use the Form Layout frame Move operation to create forms wider than
80 columns or to change the boundaries or margins of the form. When you use
forms that are larger than your window, the form scrolls when you move the
cursor to the edge of your window.

To use the Move operation:

1. Place the cursor on the right margin marker and choose the Move
operation. A new set of menu operations appear. The new operations are
listed in the following table:

Operation Description

Place Moves (contracts) the margin to a specified location
within the current boundaries.

Expand Expands (increases) the current form boundaries by
moving the form’s margin outward to the right or
further down.

Help, End Standard operations.

2. Use the Place and Expand operations in conjunction with each other:

a. Use Expand to extend the right or bottom margin in large increments.

b. Use Place to fine-tune the new margin setting, positioning the margin
at the specific point you want, within the confines of the expanded
margins.

Each time you use Expand or Place, the Move operation is completed and
VIFRED returns you to the previous menu. You must then use the Move
operation again to perform another expand or place operation.

Expanding the Right Margin

To create a form wider than the default width (determined by the column
width of your screen):

1. Place the cursor on the margin of the form. The margin is a vertical broken
line containing ruler marks, if rulers have been turned on.

Typically, VIFRED uses the entire column width of your screen, which
places the right margin immediately off-screen to the right. If the right
margin is off-screen, you can move the cursor to it with your cursor keys.

2. Choose the Move operation on the Form Layout frame.

3. Choose the Expand operation on the Move submenu to extend the margin.

Setting Form Size and Position

Chapter 13: Using VIFRED 13–21

The Expand operation adds one-fourth of your monitor’s current screen width
to the form. If you use Expand once on an 80-column screen, you extend the
right margin to column 100. Using it a second time extends the margin to
column 120. You can choose the Expand operation as often as you like.

Expanding the Bottom Margin

Follow the same procedure to expand the bottom margin as you do to expand
the right margin, except that you start by placing the cursor on the bottom
margin. Each time you expand the bottom margin, the margin moves down by
one quarter of your monitor’s screen height in lines. If you use Expand once
on a 24-line screen, you extend the bottom margin down by 6 lines.

Placing the Margin of a Form

The Place operation moves the margin inward to a position within the confines
of the current margins. You cannot use the Place operation to move a margin
outward from its current position, nor can you use it to move the margin so far
towards the center of the form that some portion of a form component
extends outside of the margins. In this case, the Place operation moves the
margins as close to the desired location as possible, without having any form
components extending past the margins. Under no circumstances does the
Place operation squeeze components closer together.

To use the Place operation:

1. Place the cursor on the margin.

2. Choose the Move operation on the Form Layout frame.

3. Relocate the cursor to the spot where you want the margin to be, within
the boundaries of the current margins.

4. Choose the Place operation to move the margin to the new location.

For example, to position the margin at column 110 on an 80-column screen,
use the Expand operation to extend the margin to column 100, and again to
extend the margin to column 120. Then position the cursor at column 110 and
choose Place.

Visually Adjusting a Form

You use the VisuallyAdjust operation on the Form Attributes frame with pop-up
display-style forms only. You can:

 Preview the way a pop-up form looks in the window.

 Expand or shrink the size of a pop-up form by moving the cursor.

 Move a fixed-position pop-up to a place you designate with the cursor.

Setting Form Size and Position

13–22 Character-based Querying and Reporting Tools User Guide

If you want, you can use this operation to change the size of a fullscreen form
by changing its style to a pop-up first. You can then use the VisuallyAdjust
operation to alter the form’s size. When done, change the form’s style back to
fullscreen.

When you choose the VisuallyAdjust operation, VIFRED displays the Visual
Adjust frame.

The operations on the Visual Adjust frame vary according to whether the pop-
up style form is fixed-position or floating:

 Fixed-Position - When displayed for a fixed-position pop-up style form,
such as the one shown in the above figure, the Visual Adjust frame
includes the Move operation, and the pop-up form is positioned at its
specified window location.

 Floating - When displayed for a floating pop-up style form, the Visual
Adjust frame does not include the Move operation (because the floating
pop-up has no fixed position), and VIFRED positions the pop-up style form
in the center of the window.

These operations are summarized in the following table:

Operation Description

Resize Use anchor point and cursor to expand or contract the
outer margins of the form.

Move Applies to fixed-position pop-up style forms only. Moves
the upper left corner of the pop-up form to the cursor
location, using the Place operation on the Move submenu
(same as the Move submenu on the Form Layout frame).

Help, End Standard operations.

Setting Form Size and Position

Chapter 13: Using VIFRED 13–23

Adjusting Pop-up Form Size

You can use the Resize operation on the Visually Adjust frame to change the
size of a pop-up style form. Using the Resize operation is easier if the form has
a border, because the pop-up form margins are not displayed during the
VisuallyAdjust operation. You can specify a border for the form on the Form
Attributes frame, and then remove it after adjusting the size.

You can move the cursor in any direction to adjust the size of a form.

To change the size of a pop-up style form:

1. Choose the VisuallyAdjust operation on the Form Attributes frame. Choose
the Resize operation on the Visual Adjust frame. VIFRED marks one of the
form corners with a plus sign. This is the anchor point. The cursor
automatically shifts to the diagonal corner.

2. Move the cursor to a new location and then press the Menu key. VIFRED
redraws the form boundaries using the anchor point and the cursor’s new
location as the diagonal corners of the form.

If necessary, you can rotate the anchor point and cursor to different
corners of the form so as to change the orientation of your modifications.

3. To shift the anchor point, press the Tab key. Each time you press the Tab
key, the anchor point and cursor rotate clockwise to a new corner of the
form. By shifting the cursor and anchor point to new corners, you can
expand or contract the form in any direction, provided you maintain the
basic orientation of the cursor to the anchor point. VisuallyAdjust does not
allow you to invert the form by moving the cursor to the opposite side of
the anchor point.

4. When you have adjusted the form to the correct size, press the Menu key
to return to the Visual Adjust frame menu.

5. Choose the End operation to return to the Form Attributes frame. VIFRED
shows the form’s new margins as dashed lines. These are the margins of
the form’s usable area, not counting any form border.

When you are adjusting a pop-up form’s size, the form’s margins must enclose
all of the form’s components without truncating any of them. If you attempt to
reduce a form’s margins in such a way that a form component would be
partially or entirely outside of the form margin, VIFRED draws the new margin
as close to the component as possible while still keeping the component
entirely within the boundary. If VIFRED does not let you make a form as small
as you want because a component is in the way, you must use the Form
Layout frame’s Move operation to move the form’s components closer
together. Then, return to the Form Attributes frame and finish adjusting the
form’s size.

Saving Forms

13–24 Character-based Querying and Reporting Tools User Guide

Moving a Fixed-Position Pop-up Style Form

To reposition a fixed-position pop-up style form:

1. Choose the VisuallyAdjust operation from the Form Attributes frame to
display the Visual Adjust frame.

2. Choose the Move operation. This highlights the four corners of the form
and places the cursor at the upper left corner.

3. Move the cursor to the spot where you want to locate the new form’s
upper left corner.

4. Choose the Place operation to redraw the form in the new location.

5. Return to the Form Attributes frame by choosing the End operation. The
form’s new row and column location are displayed in the StartRow and
StartColumn fields.

Saving Forms
The Save operation on the Form Layout frame and other VIFRED editing
frames instructs VIFRED to save a form you created or modified with VIFRED.

The Save operation is independent of exiting VIFRED. You can save a form and
begin editing the same form or a different form without having to exit and
reenter VIFRED.

To save a new form:

1. Choose Save on the Form Layout frame. VIFRED displays the Save frame.

The following table details each of the operations available the Save
frame:

Saving Forms

Chapter 13: Using VIFRED 13–25

Operation Description

Save Saves the form under the specified name with optional
Short and Long Remarks.

Cancel Cancels the Save operation.

Help, End Standard operations.

2. To save the form, enter a form name (up to 32 characters) in the space in
the main window of the Save frame. The first character must be a letter or
an underscore; case is not significant.

3. After entering the form’s name, choose the Save operation on the Save
frame.

You can save the same form under different names. Each time you save a
form under a different name, VIFRED creates a copy of that form and retains
the original form as it was before you began to edit it. You can then edit the
different copies. However, if you enter a name that is already in use, VIFRED
asks for confirmation before overwriting the old form.

VIFRED stores forms in the system catalogs. VIFRED and other programs can
recall forms from the data dictionary for later use.

When you save the form, VIFRED creates a QBFName linking the form to its
underlying table or JoinDef. The QBFName is the same as the name you give
the form. Thus the form, in its default state or as modified by you, is available
as a query target in QBF. You can assign several different QBFNames to the
same form and use it with different tables or JoinDefs. For more information
on QBFNames, see QBFNames Operation.

You can use the default QBFName for a default form to perform QBF queries
on the table or JoinDef without additional programming.

Save Submenu

Once a form has been saved the first time, choosing the Save operation on the
Form Layout frame displays a submenu rather than the Save frame. Choose
one of the operations listed in the following table:

Operation Description

EditInfo Displays the Save frame so you can change the form’s name or
Short or Long Remarks before saving the form again.

Save Saves the form under its current name with current Short and
Long Remarks.

Cancel Cancels the Save operation.

Help Standard operation.

Destroying Forms

13–26 Character-based Querying and Reporting Tools User Guide

Save Changes Pop-up

If you try to end or quit without saving a new or changed form, VIFRED
displays a pop-up form like the one shown in the following figure.

Select Yes to save the new or changed form or No to end or quit without
saving the changes.

Destroying Forms
You can only destroy (delete) forms that you own.

To destroy a form from within VIFRED:

1. In the VIFRED Forms Catalog frame, position the cursor on the name of
the form you want to delete.

2. Choose the Destroy operation and enter y when VIFRED prompts you for
confirmation.

You can also use the delobj command on the operating system command line
to delete a form or other objects.

Editing Existing Forms
The Edit operation on the VIFRED Forms Catalog frame allows you to modify
an existing VIFRED form. The Edit operation on the Form Layout frame allows
you to edit the individual components, such as trim or field attributes, of the
form displayed in the Form Layout frame.

Renaming Forms

Chapter 13: Using VIFRED 13–27

To edit an existing form:

1. In the VIFRED Forms Catalog frame, place the cursor on the name of the
form you want to edit.

2. Choose the Edit operation.

VIFRED displays the form to edit in the Form Layout frame. The operations
available on this frame are summarized in a table in The Form Layout
Frame. The table includes references to where the operation is discussed
in this guide in more detail.

Renaming Forms
You rename forms in the VIFRED Forms Catalog frame. You can only rename
forms that you own.

To rename a form:

1. In the VIFRED Forms Catalog frame, place the cursor on the name of the
form you want to rename.

2. Choose the Rename operation.

3. Enter the new name for the form when VIFRED prompts you for it.

Compiling Forms
The Compile operation on the Utilities submenu generates a form definition for
use with embedded SQL or other embedded query languages. Alternatively,
you can use the compform system-level command to compile a form.

The Compile operation reduces start-up time when you use the form in an
embedded SQL program. Consult the appropriate embedded language guide
for more information.

To use the Compile operation:

1. In the Forms Catalog frame, place the cursor on the name of the form to
be compiled and choose the Utilities operation.

2. Choose the Compile operation from the Utilities submenu.

VIFRED prompts you for a file name under which to store the compiled
form in your current directory.

3. Enter the file name and press Return.

Printing Forms

13–28 Character-based Querying and Reporting Tools User Guide

VMS

This procedure results in a C language data structure describing the form,
stored in the file under the name you provide.

For VMS this produces VMS macro code.

Printing Forms
You can print a form by using the Print operation on the Utilities submenu, or
the printscreen or printform commands at the operating system prompt.

The Print operation creates a picture of the form, which you can then print on
a line printer. Follow these steps to perform the print operation:

1. Place the cursor on the row containing the name of the form in the Form
Catalog frame and choose the Utilities operation.

2. Choose the Print operation from the Utilities submenu.

3. At the prompt, type the name of a file.

VIFRED then places a picture of the form in that file, and appends a
description of each field and the trim to the form.

4. Use your operating system print commands to print the file.

The Print operation prints all fields, including those that have been assigned
the Invisible field attribute.

The FRS printscreen command sends a copy of the form currently displayed
(including any character representation of data in the form) to a file or printer,
depending on how the II_PRINTSCREEN_FILE environment variable/logical has
been set. (For more information, see the System Administrator Guide for the
system on which your database resides). Because the FRS printscreen
command prints the current screen display, it does not print fields which have
been assigned the Invisible attribute.

The printform command lets you print a form without entering VIFRED. It
works like the Print operation on the Utilities submenu.

QBFNames Operation

Chapter 13: Using VIFRED 13–29

QBFNames Operation
A QBFName is a special identifier that links a customized VIFRED data display
or entry form with a particular database table or JoinDef. Choosing a
QBFName as a query target in QBF allows you to automatically display and use
the customized form when accessing its associated table or JoinDef.

When you use VIFRED to create a new form based on a database table or
JoinDef, VIFRED automatically assigns a default QBFName to the new form
that associates it with this table or JoinDef. The default QBFName is the same
as the name of the form. Using the QBFNames operation on the Utilities
submenu, you can change this default to another name, if you want. You can
also create additional QBFNames for this same form that link it to additional
tables and JoinDefs for use in QBF. This process does not create additional
copies of the form, but rather allows you to use one form with many similar
tables and JoinDefs through use of its various QBFNames.

If you archive a table containing outdated information and create a new table
to use instead, you can continue to use the VIFRED form created for the old
table by linking it to the new table through a different QBFName. For example,
suppose a form called taskform was given the QBFName taskform1 when it
was assigned to the Tasks table. You can now give it the new QBFName
taskform2 when you assign it to the Newtasks table.

A single table or JoinDef can be associated with many different forms through
the use of QBFNames. For example, if you are using the same table or JoinDef
for more than one application, you must create a separate form in each
application that differs from the others in the way the fields are displayed and
arranged, the assignment of mandatory fields, and the instructions displayed
in the window. VIFRED assigns a different QBFName to each separate form
and links it to the common table or JoinDef.

QBFNames Catalog Frame

The QBFNames operation applies only to the form that is currently highlighted
by the cursor in the VIFRED Forms Catalog frame. To display the QBFNames
Catalog for a particular form, choose the QBFNames operation after choosing
Utilities on the Forms Catalog frame.

The QBFNames Catalog frame contains a list of QBFNames associated with the
form identified at the top of the frame.

QBFNames Operation

13–30 Character-based Querying and Reporting Tools User Guide

You can use the operations available in this window to manipulate QBFNames
on the list.

Operation Description

Create Assigns an additional QBFName to the selected form.

Destroy Removes the QBFName in the row containing the cursor.

Edit Edits the QBFName in the row containing the cursor.

Rename Renames the QBFName selected by the cursor.

MoreInfo Obtains more information about the selected QBFName.
The additional information includes the time the QBFName
was created and a long description of the QBFName.

Go Runs QBF using the QBFName.

Help, End Standard operations.

Assigning Additional QBFNames to Forms

To assign additional QBFNames to a form, follow these steps:

1. Choose Create from the QBFNames menu. VIFRED prompts for the new
name to use with QBF.

2. Enter a name between 1 and 32 characters long and press Return. The
first character must be a letter or an underscore. VIFRED displays a new
menu.

3. Choose Table to link the form to a table, or JoinDef to link the form to a
JoinDef. VIFRED prompts for the name of the table or JoinDef to which you
want to link the form.

Running QBF from VIFRED

Chapter 13: Using VIFRED 13–31

4. Type the name of the table or JoinDef and press Return. You can optionally
enter a table as schema.tablename. If you omit the schema name, VIFRED
assumes the owner is the same as the current user ID.

VIFRED displays the QBFName Save frame.

5. Fill out the frame with information about the new QBFName and then
choose the Save operation. The new QBFName appears in the table of
QBFNames.

Running QBF from VIFRED
You can test default forms by running QBF from within VIFRED. To run QBF
from within VIFRED:

1. On the VIFRED Forms Catalog frame, place the cursor on the name of the
form that you want to use as a QBF query target.

2. Choose the Go operation.

VIFRED checks to see if a QBFName with the same name as the form exists. If
one already exists, it starts QBF using that QBFName as the query target.

If VIFRED does not find a QBFName, it prompts you for the name of a table.
Enter the table name and press Return to start QBF. If you press the Return
key without entering a table name, VIFRED cancels the operation.

When you exit QBF you automatically return to VIFRED.

Exiting VIFRED
The Quit operation exits the VIFRED. If you started VIFRED from the Ingres
Menu, you return there automatically. If you started VIFRED from the
operating system, you return to the operating system prompt.

You can select the Quit operation from the Form Layout frame or from the
Forms Catalog frame.

If you are in the Form Layout frame, the Quit operation does not automatically
save the work done in VIFRED. If you have made any changes to the form
since the last save, VIFRED displays a pop-up form asking you if you want to
save the changes. Select Yes to save the changes or No to exit without saving
the changes.

If you are in the VIFRED Forms Catalog frame, enter Quit or End (which exits
the current frame) to exit VIFRED immediately.

Chapter 14: VIFRED Form Components 14–1

Chapter 14: VIFRED Form Components

This chapter describes the parts of a form and how to use the VIFRED Form
Layout frame operations to:

 Create and edit trim, boxes, and lines

 Create and edit simple fields and table fields

 Delete form components

 Change the tabbing order of fields on the form

 Move form components

Parts of a Form
VIFRED forms have two basic components:

 Fields—Used for entering or displaying data.

 Trim—Everything on the form other than fields. Trim can include
instructions, general information, and lines or other decoration. Trim plays
no direct part in data entry or manipulation.

Fields

A field is a space for data entry or display on a form. It usually corresponds to
a column in a database table, but also can be used for other purposes in an
application, such as displaying instructions or the results of computations, or
for entry of user names and passwords.

There are two kinds of fields:

 Simple fields—In which data is displayed one item at a time.

 Table fields—In which multiple rows and columns of data are displayed
simultaneously.

If you create a form for a table, you choose one of these formats. On forms
associated with JoinDefs, the JoinDef specification determines which data is
displayed in simple fields and which is displayed in table fields.

Both simple fields and table fields consist of an internal name, data window,
attributes, and an optional title, as described in the following sections.

Parts of a Form

14–2 Character-based Querying and Reporting Tools User Guide

Internal Name

The internal name of a field is the name by which VIFRED identifies the field.
This does not have to be the same as the field’s title that users see on the
form. The internal name of the field identifies the field to application
procedures written in a programming language or created with Vision or
Applications-By-Forms. The application code uses the field’s internal name to
move values to and from the field.

Data Window

The data window is the space in a field where data is entered or displayed. The
display format of the data window controls how the data appears when
displayed on the form. For a data entry field, you can specify a data input
template as the display format to control the way in which the user enters
data in that field. If a field corresponds to a data column in a table, the display
format for that field must be appropriate for the data type and length declared
for the column in the database table. While data type and data display format
are related, they are distinct and different entities. Data type identifies the
kind of data. Display format refers to how the data is presented or entered on
a form.

A single data type can have many different display formats, and some display
formats can be applied to more than one type of data. For example, numeric
type data can be displayed as whole integers, decimal numbers, and in
scientific notation. The scientific notation display format can be used with both
numeric and monetary data types.

Attributes

Attributes are screen effects such as color, blinking, underlining, and
uppercase and lowercase changes, as well as other information about each
field.

Title

The field’s title, which is optional, is the name of the field that appears on the
form. The title provides a short description of the data that appears in the
field’s corresponding data window. A field’s title can be different from its
internal field name.

On a default form created by VIFRED from a table or JoinDef, VIFRED initially
creates a field title that is similar to the field’s internal name, with these
exceptions: VIFRED capitalizes the first letter of every word in the title,
removes any underscores to create multiple words, and adds a colon (:) at the
end of the field title. You can change the field’s title if you want.

Using Operations on the Form Layout Frame

Chapter 14: VIFRED Form Components 14–3

Using Operations on the Form Layout Frame
You create, edit, or otherwise manipulate the individual components of a form
from within the Form Layout frame. The chapter “Using VIFRED” provides an
example of the Form Layout frame and discusses the frame in detail,
including:

 Use of form alignment guides

 Use of the FormAttr operation for making changes to the form as a whole

The following table summarizes the operations on the Form Layout frame that
you use for creating and manipulating individual form components:

Operation Description

Create Displays a new menu that enables you to create new
components on a form.

Delete Deletes the component where the cursor is positioned.

Edit Displays another menu that enables you to edit the trim or
field component where the cursor is positioned.

Move Moves a component on a form. This operation displays a new
menu. You can also use this operation to move a form’s
margins.

Undo Reverses the results of the last operation you performed.
Undo does not reverse changes made with the EditAttr,
FormAttr, or GroupMove operations on the Table Field frame.

Order Changes the order in which the form’s fields are accessed
when an end user presses the Tab key. This operation
displays a new frame.

Save Displays a new menu that allows you to save your new or
updated form in the database. The Save operation is
independent of exiting. You can save one form and begin
work on another without leaving VIFRED. For more
information, see Saving Forms.

FormAttr Available only for making changes to the form as a whole.

Location Displays a message giving the current row and column
position of the cursor, relative to your window boundaries,
and marks the cursor location with a plus sign (+).

GroupMove Moves an entire group of components on a form at once.

Rulers Turns rulers and straight edges on or off.

Help, End, Quit These are standard operations.

Create Operation

14–4 Character-based Querying and Reporting Tools User Guide

For detailed instructions on using these operations to manipulate the contents
of forms, see the sections that follow.

Create Operation
Choosing the Create operation while you are in the Form Layout frame
displays another menu with the following choices:

Operation Description

Trim Creates a new trim element.

Field Creates a simple field.

TableField Creates a table field.

NewLine Inserts a blank line.

Box/Line Creates a box/line feature at the cursor’s location.

DuplicateField Creates a field based on an existing field in the current
form or in another form in the database.

Help, End These are standard operations.

The following sections discuss each of these operations in detail.

Creating and Editing Trim

With the exception of boxes, each trim element is contained in a single line,
which is treated as a single unit of trim. For multi-line trim elements, use the
Create and Trim operations for each separate line of trim you want to create.

After creating trim, you can change the way it displays in the window by giving
it attributes. For instance, you can make it blink, display in reverse video, or
heighten its brightness. For instructions, see Specifying Display Attributes for
Trim.

Creating Trim

To create new lines of trim:

 Position the cursor where you want a new trim element to be inserted.

 Choose the Create operation on the Form Layout frame. The original
cursor location appears in your window with a flashing plus sign (+).

 Now choose the Trim operation from the Create submenu.

Create Operation

Chapter 14: VIFRED Form Components 14–5

 VIFRED displays the message:

Enter trim (press <MENU KEY> when done)

 Type the desired trim. Use text or any other printable character.

 The trim begins at the cursor position and continues as far as you type, up
to the right margin of the form. If you need to extend the right margin,
use the Move operation on the Form Layout frame.

 Press the Menu key to complete the operation.

Editing Trim

To edit the text of trim:

1. Position the cursor on the trim element you want to modify.

2. Choose the Edit operation on the Form Layout frame

3. Choose the Trim operation on the Create submenu.

4. Enter your corrections.

When you choose the Edit Trim operation, you enter overstrike mode. In
this mode, the characters you type replace the existing character (if any)
at the cursor position.

You can switch to insert mode by pressing the Mode key as defined for
your keyboard. In insert mode, characters entered at the cursor position
push existing characters to the right. Pressing the Mode key toggles you
back and forth between insert and overstrike mode.

5. When you are finished editing the trim element, press the Menu key to
return to the original menu.

Specifying Display Attributes for Trim

To specify display attributes for trim:

1. Position the cursor on the trim you want to modify.

2. Choose the Edit operation on the Form Layout frame.

3. Choose the Attributes operation from the Edit submenu. VIFRED displays
the Attributes for Trim frame.

Create Operation

14–6 Character-based Querying and Reporting Tools User Guide

You can set most of the following attributes for boxes and lines, as well as
for trim, unless otherwise noted:

Attribute Description

Reverse
Video

Reverses screen contrast from bright characters on
dark background to the opposite, or vice versa.

Blinking Makes the trim, box, or line blink on and off.

Underline Underlines the selected trim (not for boxes or lines).

Brightness Change Toggles the brightness for the trim, box, or line.

Color Specifies the color of the trim, box, or line.

Except for color, these attributes are either on or off, as indicated by y or
n in the column labeled Set. The default condition is n (off).

4. To change an attribute in the Set list, position the cursor on the line for
that attribute and type y (yes) or n (no).

5. If you have a color display, type the appropriate color code in the Color
field.

Color capabilities vary widely among monitors and can be customized by
changing the color specifications in the termcap file entry for your
TERM_INGRES setting. Check the appropriate termcap file entry or your
monitor documentation for color code assignment information.

6. Select End to return to the Form Layout frame.

Create Operation

Chapter 14: VIFRED Form Components 14–7

Creating New Blank Lines on the Form

You can add new blank lines to your form to make room for additional
components or to improve the form’s appearance. To insert new blank lines in
your form, use the Create NewLine operation.

This operation inserts new lines at the cursor location. When you create a new
line, you push all components on lines below the cursor position down one
line. This can have the effect of expanding the bottom margin of the form.

New blank lines are created on the Form Layout frame. To create a new line:

1. Place the cursor at the location on the form where you want the new blank
line inserted. You cannot create a new line if the cursor is positioned inside
a multi-line field.

2. Select the Create operation.

3. Select the NewLine operation. This inserts a new line at the cursor location
and pushes all components below the new line down by one line.

Creating and Editing Boxes and Lines

You can draw boxes and lines on your form for informational and aesthetic
purposes. You can use boxes and lines to visually group form components, to
provide borders for both normal and pop-up style forms, and to add color and
graphic design elements.

You draw boxes and lines with the Create Box/Line operation. Vertical lines are
actually boxes that have a vertical length of any amount and a horizontal
width of only one column. Horizontal lines are boxes that have a horizontal
width of any amount and a vertical length of only one column.

While you can also draw horizontal lines on your form with the Create Trim
operation using keyboard keys such as the underscore character or dash, the
effect is different than that achieved by using the Box/Line operation. The
Box/Line operation allows you to set line attributes (described in Enhancing
Boxes and Lines) and also allows you to correctly create intersecting lines.
Boxes and lines have the following characteristics:

 Boxes can be of any size up to the size of your form.

 Boxes and lines are the only trim components that can occupy more than
one line on your form.

 Boxes can enclose other form components.

 Boxes can be nested within each other and overlap each other.

Create Operation

14–8 Character-based Querying and Reporting Tools User Guide

 If a box line intersects some other form component, the other component
overwrites that portion of the box or line that it overlaps. It appears as if
the component is lying on top of part of the box. The form is not harmed
by having a component overlap part of a box line.

Box/Line Operation or Attribute Boxes

The Simple Fields Attributes operation allows you to automatically place a box
around a simple field. Similarly, the FormAttr operation allows you to
automatically place a box around a pop-up style form. These automatic box
operations have no connection to creating a box with the Create Box/Line
operation.

You can use the Create Box/Line operation instead of the automatic operations
to place boxes around simple fields or pop-up style forms if you want. By using
the Box/Line operation, you are able to specify the display attributes of the
box; the automatic operations do not have that capability.

You can also use the Create Box/Line operation to place a box around a field
that has been automatically enclosed by a box already, or to place a box
immediately inside the border of a pop-up style form. In this case the field or
form would then be displayed with two boxes, one nested within the other.

Creating a Box or Line

To create a box or line:

1. Place the cursor where you want one of the corners of the box to be.

2. Choose the Create operation. The original cursor location that marks one
corner of the box is displayed with a flashing plus sign (+).

3. Now choose the Box/Line operation, and the following message displays:

Move cursor to position the opposite
corner (press <MENU KEY> when done)

The NewLine operation inserts a new blank line into the form at the cursor
location. To create a visible line, choose the Box/Line operation.

4. Move the cursor to where you want the diagonally opposite corner of the
box to be. For example, if the plus sign marks the upper left corner of the
box, move the cursor to where you want the lower right corner to be. The
locations of other form components do not matter, with one exception. If
you position the diagonal corner so that part of the box’s line passes
through another component, that portion of the box line is hidden behind
the other component.

Create Operation

Chapter 14: VIFRED Form Components 14–9

To form a vertical line, place the cursor directly above or below the original
cursor mark. This creates a box that has vertical length and a horizontal
width of 1. To create a horizontal line, place the cursor to the right or left
of the original cursor mark. This creates a box that has horizontal width
and a vertical height of 1.

5. Now press the Menu key. Lines connecting the two corners of the box
appear on your form.

To set display attributes of the box, or to change its size, see the following
section.

To move a box or line, use the Move operation, described in Moving
Components on a Form. To delete a box or line, use the Delete operation,
as described in Deleting Form Components.

Enhancing Boxes and Lines

Use the Edit operation to change the size and shape of a box or line, or to
specify display attributes.

To edit a box or line:

1. Place the cursor anywhere on the box or line. The cursor must be on one
of the lines that forms the box, not inside the box.

On terminals that use an underscore character as a cursor, you cannot get
the cursor exactly on a horizontal line or horizontal side of a box because
the line is drawn in the center of that row’s character cell and the
underscore is at the bottom of the cell. In this case, make sure that the
cursor is in the same character cell (that is, the proper row).

Place the cursor at a point on the box or line that is unique to that box or
line to clearly indicate which component you want to change. For example,
if you place the cursor at the point where two boxes intersect, the Edit
operation cannot tell which box you must change, and arbitrarily chooses
one.

2. Choose the Edit operation. The four corners of the box (at each end of a
line) display in reverse video and the Edit menu for boxes displays the
following choices:

Operation Description

Resize Expands or contracts one or more sides of the box, or
horizontal or vertical line.

Attributes Specifies display attributes for the box, or horizontal or
vertical line.

Help, End These are standard operations.

Create Operation

14–10 Character-based Querying and Reporting Tools User Guide

Resizing a Box or Line

To change the size of a box:

1. Choose the Resize operation on the Edit submenu.

The upper left corner is marked with a flashing plus sign (+). This is the
anchor point. The cursor automatically shifts to the diagonally opposite
corner.

2. Move the cursor to a new location. You can move the cursor in any
direction.

3. Press the Menu key to redraw the box, using the anchor point and the
cursor’s new location as the diagonally opposite corners of the box.

4. When finished resizing the box, press the End key to return to the Form
Layout frame.

5. To save your changes, choose the Save operation.

There are no restrictions on where you can move the cursor in the form. For
example, you can flip a box by moving the cursor from the lower right corner
(relative to the anchor point) to a new position above and left of the anchor
point.

By rotating the anchor point to a different corner of the box you can change
the orientation of your changes. To shift the anchor point, press the Tab key.
Each time you press Tab, the anchor point and cursor rotate clockwise to a
new corner of the box. By shifting the cursor and anchor point to new corners,
you can expand or contract the box in any direction.

Specifying Display Attributes for Boxes and Lines

You specify display attributes for a box or line the same way you do for trim:

1. Position the cursor on the box or line you want to modify.

2. Choose the Edit operation from the Form Layout frame.

3. Choose the Attributes operation from the Edit submenu. VIFRED displays
the Attributes for Box/Line frame, with the same choices as on the
Attributes for Trim frame.

For details, see Specifying Display Attributes for Trim.

When boxes with different display attributes overlap each other, the most
recently created attribute overwrites the older attribute at the intersection.

Create Operation

Chapter 14: VIFRED Form Components 14–11

Creating and Editing Simple Fields

If you are working with a default form, VIFRED automatically places a field on
the form for every data column in the associated table or JoinDef and creates
the appropriate link between the field and its data column. If you prefer to
create your own simple fields, you can do so with the Create Field operation.
However, the only way you can link such a user-created field to a data column
in a table is to write application code that links the field’s internal name to a
data column in the table. If you are not familiar with this type of
programming, we recommend that you work with default forms created from
JoinDefs or tables, rather than creating your own fields.

Creating a New Simple Field

To create a simple field, you must create the following components:

 Internal name of the field

 Display or input format of the field

 Attributes of the field (or leave them in their default state)

 Optional field title

If you create a field title, VIFRED automatically creates a default internal name
for the field. If you do not create a field title, you can use the Attributes
operation to create an internal field name.

For more information on internal field names, see Parts of a Form and Creating
Field Titles and Default Internal Names.

To create a simple field on a form, follow these steps:

1. Position the cursor where you want to insert a new field.

2. Choose Create from the Form Layout frame and then choose Field from
the Create submenu.

VIFRED displays another menu with the following operations:

Operation Description

Title Creates a title for the field (optional).

DisplayFormat Creates the data window and data display or input format
for the field.

Attributes Sets the attributes of the field.

Cancel Cancels field creation and returns to the Form Layout
frame.

Help, End These are standard operations.

Create Operation

14–12 Character-based Querying and Reporting Tools User Guide

3. On the Field submenu, choose Title (if you are creating a field title),
DisplayFormat, and Attributes in sequence to create the field’s
components.

For specific instructions, see the following sections.

4. After creating the field’s optional title, display or input format, and
attributes, select End to complete the creation of a field.

VIFRED displays the field on the form with the specified components.

5. Use the Save operation to permanently keep a form definition. If you exit
without saving the form, all your changes are lost. For more information,
see Saving Forms.

Creating Field Titles and Default Internal Names

When you create a title for a simple field, VIFRED automatically creates an
internal name for the field. The field title on the form has no significance other
than display. The internal field name is the code name for the field that you
use when writing application code in a programming language or with
Applications-By-Forms or Vision to manipulate the form. For more information
on internal field names, see Parts of a Form.

If you do not want to create a field title, you can use the Attributes operation
to create only an internal name for a field, as described in Creating Your Own
Internal Field Names.

The title and internal name of a field are initially similar (up to the legal limits
of internal names), but can be changed separately. This enables you to change
the name of the field on a form without changing its underlying internal name
or the application code that controls activity in the field. It is common practice
in VIFRED to change a form’s field titles, but not its internal field names. If you
need to do so, you can change the internal name with the Attributes operation
as described in Creating Your Own Internal Field Names or in the chapter
“VIFRED Field Specifications.”

To create a title and default internal name for a new simple field:

1. Choose Create on the Form Layout frame; then choose Field on the Create
submenu.

2. Place the cursor where you want the first character of the field’s title to
appear on the form.

3. Choose the Title operation. VIFRED displays the message:

Enter title (press <MENU KEY> when done)

4. Enter the title, and press the Menu key to return to the previous menu.

Create Operation

Chapter 14: VIFRED Form Components 14–13

This creates a field title, which is displayed on the form, and a field internal
name (with non-legal characters automatically removed) that is not visible on
the form.

Creating Your Own Internal Field Names

You must not attempt to create your own internal field name unless you are a
programmer familiar with the ramifications of doing so. An alternative would
be to create a field title with the Title operation and let VIFRED create a
default internal field name for you. For more information, see Creating Field
Titles and Default Internal Names.

To create your own internal field name, you use the Attributes operation, as
follows:

1. Choose the Attributes operation on the Create Field submenu of the Form
Layout frame. The Attributes for Field frame appears.

2. Enter the internal name in the Internal Name field.

The name you enter must comply with VIFRED naming conventions. For
more information, see Naming and Name Use Conventions.

Creating Data Windows and Display Formats

The data window is the part of the field where data is displayed or entered. For
a more detailed explanation, see Parts of a Form.

To create a data window when creating a new field:

1. Position the cursor at the point on the form in the Form Layout frame
where you want the new window to be.

2. Choose the DisplayFormat operation on the Create Field submenu. VIFRED
displays the message:

Enter format (press <MENU KEY> when done)

3. Enter a display or input format. For example, type in c10 to create a
character field that can display a maximum of 10 characters, or type in a
format template. For more information, see the discussion following this
procedure.

4. When done, press the Menu key.

If the field is to correspond to a data column in a table, make sure that the
data window display format you specify is appropriate for the data type and
length declared for that column when the table was created.

Note: You cannot create a field with a display format that can display data
from a column of long varchar, byte, byte varying, and long byte data types.

Create Operation

14–14 Character-based Querying and Reporting Tools User Guide

If the field is to be a data entry field, you can specify a data input template for
the display format. The data input template indicates to the user how the data
must be entered and causes VIFRED to check the input, character by
character, to see if it matches the template. If the user’s entry does not match
the template format, VIFRED disallows the entry, and requires the user to
either re-enter the character in that position or re-enter the data from the
beginning of the field, depending on the particular input template. For more
information, see Input Masking in Data Entry Fields.

The following table gives some simple examples of data display and input
formats. Keep in mind that some of the display format symbols are the same
as data type symbols, yet they perform very different functions.

Display Description

i8 Numeric data, whole numbers only. Up to 8 digits can be
entered or displayed.

f10.2 Numeric data with decimal numbers. Field can display 10
characters including the decimal point, with two places
shown to the right of the decimal point.

c10 Character data. Field is 10 characters wide.

s'aa\-zzzzzz' Data input template for a part number, where a indicates
an alphabetic character, z represents a numeric character,
and \- is a dereferenced hyphen (-).

Input Masking in Data Entry Fields

VIFRED provides optional input masking for data entry fields. Input masking
allows VIFRED to check a user’s entry, character by character as it is being
entered, against a specified data input format template. If any character does
not match the template requirements, VIFRED beeps and does not put that
character into the field. The user must type a valid character to continue.

To specify input masking, you need to use one of the following format
templates:

 Absolute date and time templates

 Numeric templates

 String templates

Create Operation

Chapter 14: VIFRED Form Components 14–15

You must also ensure that input masking has been turned on for that field. Do
this by setting the Input Masking attribute to y (yes) in the Attributes for Field
frame. Turning on input masking affects how the field interacts with the user
when the application is executing and the kind of data the user can enter. If
input masking is off, VIFRED uses the template to check a user’s entry only
upon exiting the field. Turning on input masking has no effect on fields that do
not contain input templates.

Creating Multi-line Character Fields

You can create character fields that contain more than one line. When you
enter data or display it in a multi-line field, it wraps around to the next line
each time a line is filled.

To specify a multi-line character field, enter the display format as follows:

 The letter c for character data

 The total number of characters that can be entered in the field, followed
by a period (.)

 The maximum number of characters that can be entered on any given line

VIFRED automatically figures the number of lines needed to meet your
specification. For example, the display format, c100.20, creates a field of five
lines, each of which are 20 characters long.

When creating display-only fields, you can use the following parameters with
the c format to specify different types of justification:

 The f parameter wraps text to the next line without breaking the line in the
middle of a word (it breaks between words instead). For example,
cf100.25 creates a field of four 25-character lines with text wrapped to the
next line, with breaks between words.

 The j parameter right justifies text. For example, cj100.25 creates a field
of four 25-character lines with spaces entered between the words to right
justify each line.

When used with either the cf or cj format, the e parameter preserves trailing
blanks in multi-line fields; for example, cje100.25 is the same as cj100.25,
except that trailing spaces are preserved.

Note: The f and j parameters are primarily intended for use with display-only
fields. If you use them for data entry fields, VIFRED justifies the text only after
the user exits the field. Therefore, spaces between words are lost or added
after the user has finished typing the entry and exits the field, which can cause
some text to be truncated.

Create Operation

14–16 Character-based Querying and Reporting Tools User Guide

Specifying Simple Field Attributes

Attributes control the features of a field, such as:

 How the field looks on the form

 How, and if, data must be entered in the field

 Default values

 Whether data shown in the field can be changed

 Validation checks for new data

 Field scrolling

 Internal field name

While creating a new simple field, specify field attributes by choosing the
Attributes operation on the Create Field submenu of the Form Layout frame.
You can also specify attributes for a simple field at a later time by placing the
cursor in the field and choosing the Edit operation on the Form Layout frame,
followed by the Attributes operation on the Edit submenu. VIFRED then
displays the Attributes menu.

For instructions on setting the Name attribute for a new field’s internal name,
see Creating Your Own Internal Field Names. For more information on
changing an existing internal field name or specifying other field attributes,
see Specifying Field Attributes.

Editing Simple Fields

To edit a simple field from within the VIFRED Layout frame, position the cursor
on the field you want to edit and choose the Edit operation. The menu contains
the following choices, corresponding to the elements of the field:

Operation Description

Title Changes the title of the field

DisplayFormat Changes the data window and data display or input
format of the field

Attributes Sets or changes the attributes of the field

Help, End These are standard operations

Editing Field Titles

If you choose Title while editing a simple field, the cursor moves to the first
character of the title. Type the new title over the existing text in the window.

Create Operation

Chapter 14: VIFRED Form Components 14–17

By default, you are in overstrike mode so that the characters you type replace
the characters at the cursor position. To insert characters without overstriking,
press the key defined as the Mode key on your keyboard to change to insert
mode.

When in insert mode, move the cursor with an arrow key to where you want to
insert characters, and type the insertions. Increasing the width of a
component shifts existing components to the right.

Editing the Data Window

Basic data window display formats are indicated on a form by a single letter
followed by underscore (_) characters showing the width of the field. The data
window of each field on a form begins with the first letter of the display
format, as follows:

 c = character format

 d = date template

 f = floating-point format

 g = floating-point format

 n = floating-point format

 i = integer format

 e = scientific notation format

The underscore line following these letters represents the number of
characters allowed in the field. For example, c_________ denotes a character
display type that is 10 characters wide. For long character fields, wraparound
lines can be shown by multiple lines of underscoring.

For floating-point numbers, the underscores also indicate how many decimal
places to display. For example, f___.__, denotes a floating-point display type
with a maximum of four digits to the left of the decimal point and two digits to
the right of the decimal point.

For date, numeric, and string input templates, the entire template appears in
the field.

To edit the data display format in the data window:

1. Place the cursor on the field and choose the Edit operation; then, choose
the DisplayFormat operation.

Create Operation

14–18 Character-based Querying and Reporting Tools User Guide

Any single-letter display format identifier changes to the more specific
letter-number-parameter display format identifier. For example, if the
cursor is on a field shown as c_________, the display format identifier can
change to +c10______.

2. Type the new format over the existing format. For example, to change a
display format from 10 alphanumeric characters to 15, type c15 over c10.

3. When you are finished, press the Menu key.

If you change a field’s data display format to a type that is not compatible with
the field’s data type, VIFRED automatically changes the field’s data type to
match the display format. This can create problems if you use the field to
access data in tables. If you do not also change the data type of the
underlying table, a mismatch results between the field data type and the table
data type.

Editing the Attributes of a Field

To view or change attributes in one field on an existing form:

1. Position the cursor on the field and choose the Edit operation.

2. Choose Attributes. VIFRED displays the Attribute menu.

For more information on attributes, see Specifying Field Attributes.

Creating and Editing Table Fields

You can create a table field on your form that contains:

 Default columns corresponding to the columns in an existing database
table or tables

 Default columns that you modify

 Columns that you specify from scratch

To create a table field, start with the instructions in Creating a New Table
Field, which follows. The remaining topics in this section include information on
creating and editing the columns for the table field.

Creating a Table Field

To create a new table field on a form:

1. In the Form Layout frame, place the cursor where you want the upper left
corner of the table field to be.

2. Choose the Location operation to mark the location of the cursor with a
plus sign (+).

Create Operation

Chapter 14: VIFRED Form Components 14–19

3. Choose the Create operation; then choose the TableField operation on the
Create submenu.

VIFRED displays the Table Field frame.

You can enter the following information on the Table Field form:

Options Description

Name of Table Field The internal name of the table field.

Display Lines?
(y/n)

Displays or suppresses lines between rows of the
table field. The default is to display lines.

Number of Rows to
Display

The number of rows to display in the table field.
The default is 4.

Highlight Current Row?
(y/n)

Displays or suppresses highlighting of current
row when cursor is in a table field. The default is
no highlighting.

Display Column Titles?
(y/n)

Displays or suppresses appearance of column
titles. The default is to display column titles.

Invisible Field?
(y/n)

Prevents on-screen display of the entire table
field. You cannot place the cursor in this field
with the Tab or Return keys.

Title of a Column The title of the column that the user sees when
the form displays.

Column Internal Name The internal name by which VIFRED identifies the
column. By default, the internal name is the
same as the column title (with non-legal
characters removed).

Display Format The display format for the column’s data.

Create Operation

14–20 Character-based Querying and Reporting Tools User Guide

The following table summarizes the operations available on the Table Field
frame. These operations are discussed in detail in the sections following
this procedure.

Operation Description

Insert Inserts a new column into the table field.

Delete Deletes an existing column from the table field.

EditAttr Displays the Attribute menu of a specific column
for viewing or changing attributes.

Move Changes the order of columns in the table field.

GetTableDef Retrieves the description of a table for use in
defining table-field columns.

Cancel, Help, End These are standard operations.

4. In the field, Name of Table Field, type a name of up to 32 characters. For
more information, see Naming and Name Use Conventions.

5. In the field, Number of Rows to Display, type the number of rows that you
want displayed in the new table field or press Tab to keep the default
value of 4. A table field can display up to 99 rows.

6. In the Display Lines field, choose whether to display lines between the
rows of the table field. Type n (no) if you do not want to display lines or
press Tab to keep the default value of y. Displaying separation lines leaves
less room for data rows.

7. In the Highlight Current Row field, choose whether to highlight the current
row the cursor is on whenever the cursor is in the table field. The
highlighted row moves with the cursor. This Highlight Current Row function
is only available through VIFRED; it cannot be turned on and off
dynamically from an application.

8. In the Display Column Titles field, choose whether to display column titles.
Choosing n turns off the display of column titles. If you turn off the display
of column titles, you can create column titles as trim and use the Box/Line
capability to create lines on the form, or you can omit column titles on
your form.

9. In the field, Invisible Field, choose whether you want to prevent the
on-screen display of the entire table field. Invisibility applies to the entire
table field. You cannot place the cursor on an invisible field with Tab or
Return.

10. To create the columns in your table field, you can either use the
GetTableDef operation to create default columns, or create your own
columns, as follows:

Create Operation

Chapter 14: VIFRED Form Components 14–21

 If you are creating a table field that corresponds to one or more tables
in the database, you can choose the GetTableDef operation to create
default columns based on the database tables, as discussed in
Creating Default Table Field Columns with GetTableDef.

 When you have created the columns for your Table Field, use the
Insert, Delete, EditAttr, and Move operations on the Table Field frame
to edit them, as you want. For more information, see the discussions
following this procedure.

11. When you finish entering specifications for the new table field:

 Select the End operation to return to the Form Layout frame. Your new
table field appears.

 To cancel the creation of a new table field, choose the Cancel
operation instead of the End operation.

12. Use the Save operation to permanently retain the form definition. If you
exit without saving the form, all your changes are lost.

Creating Default Columns with GetTableDef

If the table field you are creating corresponds to an existing table or tables in
the database, you can use the GetTableDef operation to create default
columns. VIFRED automatically creates internal names and data display types
that match the columns in the corresponding table or tables.

You can then use the default columns as is, or as a starting template, rather
than individually entering column titles, display formats, and internal names
on the Table Field form.

To use the GetTableDef operation:

1. Place the cursor in the table field on the Table Field frame.

2. From the Table Field frame, choose GetTableDef from the menu. VIFRED
prompts you for a table name.

3. Enter the name of the table or tables, including the schema name, if
appropriate.

To enter multiple table names, separate the names by a comma; for
example, staff, managers, tasks. VIFRED lists all columns from each table
in the table field in the order that they appear in the table, and in the
order of table names that you specify.

The specifications for the table appear on the Table Field frame.

4. If you want to, edit the specifications with the Insert, Delete, EditAttr, and
Move operations on the Table Field frame. For more information, see the
discussions following this procedure.

Create Operation

14–22 Character-based Querying and Reporting Tools User Guide

Creating Columns

If you do not want to use the GetTableDef operation to create default columns
for your table field, as explained in the previous discussion, you can create
your own columns by entering an optional title and a mandatory internal name
and display format for each column to be included in the table field.

The order in which you list columns in the Table Field frame is the order in
which the columns appear across the form’s table field from left to right when
you are finished creating it. To change the order, see Changing the Sequence
of Columns.

You must enter values for the Column Internal Name and Display Format
columns on the Table Field frame. Titles of columns are optional.

To create your own columns for the table field:

1. If you want to enter an optional title, position the cursor at the first blank
line in the Title of a Column section of the Table Field frame and type a
title for the first column.

2. Use the Tab key to move the cursor to Column Internal Name. If you leave
this column blank, VIFRED uses the column title you entered in step 1 as
the internal name (excluding non-legal characters). For more information
on the distinction between the internal name and the field title, see Parts
of a Form.

3. Press Tab to move the cursor to Display Format. The display format
controls how data is displayed or entered in the field. Specify the column
display or input format by typing in the appropriate format code and
optional parameters.

4. When done, press the Menu key.

If the field is to correspond to a data column in a table, the display format you
specify must be appropriate for the data type and length declared for that
column when the table was created. For more information on how display
formats and data types are related, see Parts of a Form.

If the field is to be a data entry field, you can specify a data input template as
the display format. The data input template indicates to the user how the data
must be entered, and causes VIFRED to check the input, character by
character as it is entered, to see if it matches the template. If the user’s entry
does not match the template format, VIFRED disallows the entry, and the user
must either re-enter the character in that position or re-enter the data from
the beginning of the field, depending on the particular input template. For
more information, see Input Masking in Data Entry Fields.

Create Operation

Chapter 14: VIFRED Form Components 14–23

The following table gives some simple examples of data display and input
formats. Keep in mind that some of the display format symbols are the same
as data type symbols, yet they perform very different functions.

Display Description

i8 Numeric data, whole numbers only. Up to 8 digits can be
entered or displayed.

f10.2 Numeric data with decimal numbers. Field can display 10
characters including the decimal point, with two places
shown to the right of the decimal point.

c10 Character data. Field is 10 characters wide.

s'aa\-zzzzzz' Data input template for a part number, where a indicates
an alphabetic character, z represents a numeric character,
and \- is a dereferenced hyphen (-).

Editing a Table Field

To edit a table field, position the cursor anywhere in the table field and choose
the Edit operation. VIFRED displays the Table Field frame.

The operations on the Edit menu are the same as those in creating a table
field. To edit a table field, type new information over the existing field
contents. For specific information on the components of table fields, see the
table, Table Field Form Options.

When you are finished editing the table field, select the End operation to
return to the Form Layout frame. VIFRED displays the changed table field.

To cancel your changes, choose the Cancel operation. VIFRED returns you to
the Form Layout frame without recording your changes. The only exception to
this is if you have used the EditAttr operation to make changes in a table field.
In this case, because VIFRED has already recorded the attribute changes, you
must re-enter the original values and choose End to return to the Form Layout
frame with the equivalent of the original table field displayed.

Adding Columns

There are two ways to add columns to a table field on the Table Field frame:

 Use the GetTableDef operation to append columns from a table; then use
the Delete operation to remove any unwanted columns.

 Use the Insert operation to insert or append columns.

Create Operation

14–24 Character-based Querying and Reporting Tools User Guide

For more information on the GetTableDef operation, see Creating Default
Columns with GetTableDef.

When you choose the Insert operation on the Table Field frame, VIFRED
inserts a new row before the row on which the cursor is currently resting.
VIFRED then fills this row with the following default column specifications:

 NEW1 for column title, c1 for display format

 new1 for column internal name

Type the new title, column internal name, and display format over these
default values.

Additional rows added using Insert are given successively numbered titles and
internal names. NEW1/new1 are followed by NEW2/new2, NEW3/new3, and so
on.

New data columns created with the Insert operation are not linked to and do
not affect the data columns in the underlying table.

You can only link new data columns on the VIFRED form to data columns in
tables by writing application code in a programming language, or with Vision
or Applications-By-Forms, that links the field’s internal name to the database
table column. If you are not familiar with this sort of programming, we
recommend that you work with default forms created from JoinDefs or tables,
or add columns with the GetTableDef operation. With these methods VIFRED
automatically creates the appropriate links between field and data column.

Deleting Columns

To delete columns from a table field in the Table Field frame, position the
cursor on the row for the column you want to delete and choose the Delete
operation. VIFRED only removes the deleted column from the form, not from
the database table.

Editing Column Titles and Internal Name

To edit column titles and internal names, position the cursor on the title or
internal name in the table field on the Table Field frame. Then type over any
current entries you want to change.

Changing a field’s internal name affects data transfer to and from the field. We
recommend that you change an internal field name only if you are an
experienced programmer familiar with the ramifications of such a change.

Create Operation

Chapter 14: VIFRED Form Components 14–25

Changing Column Attributes

You can change any column attribute for one column at a time. To change one
column’s attributes, follow these steps:

1. In the Table Field frame, position the cursor on the name of the column
whose attributes you want to change.

2. Choose EditAttr. VIFRED displays the Attributes for Field frame.

3. Change the desired attributes. Display attributes for a table-field column
apply to the entire column. For example, if you set the Blinking attribute,
the entire column blinks. For more information, see Specifying Field
Attributes.

VIFRED changes the attributes for the column immediately.

4. When finished specifying attributes, choose the End operation to return to
the previous frame.

Once you have used the EditAttr operation, you cannot use the Cancel
operation to cancel the changes, because VIFRED has already made them
permanent. To change an attribute, choose the Edit operation on the Form
Layout frame and repeat this procedure.

Changing the Sequence of Columns

You can change the sequence of columns in a table field by using the Move
operation on the Table Field frame to change the order in which columns are
listed in the form.

Follow these steps to change the sequence of columns in a table field:

1. In the Table Field frame, position the cursor on the row containing the
specifications for the column you want to move.

2. Choose Move. A new menu appears.

3. Position the cursor to where you want to move the column specification.
The column specification currently at that location is pushed down one row
when the operation is completed.

4. Choose Place. VIFRED positions the column specification in the new
location.

Creating Duplicate Fields

You can create a simple field or table field that is based on an existing field.
The existing field can be from:

 The form being edited

 Another form in the database

Create Operation

14–26 Character-based Querying and Reporting Tools User Guide

To create a duplicate field:

1. On the Form Layout frame, place the cursor in the location where you
want to create the duplicate field.

2. Select the Create operation from the Form Layout frame menu.

A blinking plus sign (+) appears where you want to create the duplicate
field.

3. Select the DuplicateField operation from the Create submenu.

If the current form has fields, VIFRED displays a pop-up containing a list of
the fields. If the current form does not have fields, VIFRED displays a list
of the forms to which you have access.

The pop-up displays a maximum of 10 fields at a time. To see additional
field names, scroll through the list.

4. To select a field from the current form, proceed to Step 5.

To select a field from another form, select the ListForms operation (if the
pop-up listing the forms to which you have access is not displayed).

VIFRED displays the Forms in the Database pop-up.

Place the cursor on the desired form and choose the Select operation.

Deleting Form Components

Chapter 14: VIFRED Form Components 14–27

VIFRED displays a pop-up listing the fields on the selected form.

5. Place the cursor on the desired field and choose the Select operation.

If the internal name of the selected field is the same as the existing field,
VIFRED prompts you for a new name. Type an internal name for the new
field and press Return.

For an explanation of internal field names, see Parts of a Form.

Deleting Form Components
To delete any component, move the cursor to it and choose the Delete
operation. Note the following specific instructions:

 You cannot delete a line if it contains any components.

 To delete a box created with the Box/Line operation, place the cursor on
one of the box’s borders, not inside the box.

You can immediately use the Undo operation to reverse the Delete operation if
you change your mind about deleting a component.

Changing the Tabbing Order of Fields on a Form

14–28 Character-based Querying and Reporting Tools User Guide

Changing the Tabbing Order of Fields on a Form
The Layout frame editing operations include the Order operation. Use the
Order operation to specify the tabbing order on the form. Tabbing order is the
order in which the cursor moves from field to field on your form when
someone is using it in QBF or in an application. By default, the cursor tabs
from left to right across the screen. However, you can use the Order operation
to specify any tabbing order you want.

When you choose the Order operation, VIFRED displays the fields with their
current tabbing order. The following table lists the Order menu choices:

Operation Description

Edit Enables you to type a new sequence number over the
current one.

DefaultOrder Restores the default order.

Cancel Cancels any changes you have entered and returns to
the Layout menu.

Help, End These are standard operations.

Default tabbing order is left to right, top to bottom. To change the tabbing
order, follow these steps:

1. Choose the Order operation on the Form Layout frame. A new menu
appears. A sequence number at each field indicates its position in the
tabbing order.

2. Move the cursor to the field you want to change.

3. Choose the Edit operation. VIFRED displays the message:

Change sequence number (press <MENU KEY> when done)

4. Type a new, unique sequence number over the current one and press the
Menu key.

5. Choose the End operation to return to editing.

If you attempt to exit the Order menu while two fields have the same
sequence number assigned, VIFRED issues the error message:

Non-unique field order number(s) found

If a field has no field order number, VIFRED assigns it the next available
number. VIFRED searches for fields with no field order number in the
default tabbing order, left to right, top to bottom.

To restore the default order, choose the DefaultOrder operation. To cancel
changes made since entering the Order menu, choose the Cancel operation.

Moving Components on a Form

Chapter 14: VIFRED Form Components 14–29

Moving Components on a Form
The Form Layout frame menu provides the following two operations that move
components on your form:

 Move

 GroupMove

The Move operation enables you to create forms wider than 80 columns,
change the margins of the form, or reposition trim elements, boxes, vertical
lines, fields, table fields, or field names on the form. This Move operation
affects entire components as a whole. For example, the Move operation moves
an entire table field as a unit. As an exception, you can specify that you only
want to move a simple-field title or simple-field data window independent of
the other part by using the Move submenu line. For more information, see
Moving Titles and Display Windows.

Depending on whether you choose to move trim, a simple field, a table field,
or the margin, various menus appear, as shown in the following table:

Operation Menu Options

Trim Place Left Center Right Shift

Box/Line Place

Simple Fields Place Left Center Right Shift Title Format

Table Field Place Left Center Right Shift

Margins Place Expand

Using the GroupMove operation, you can move several unrelated form
components at once.

Moving a Single Component

To move a form component:

1. Position the cursor on the component to be moved and choose Move from
the Form Layout menu.

The menu of Move operations appropriate for the selected component
appears with the component highlighted in reverse video:

 If the cursor is on a trim component, the entire component appears in
inverse video.

 If the cursor is on a table field or box, the corners of the field or box
appears in inverse video.

Moving Components on a Form

14–30 Character-based Querying and Reporting Tools User Guide

 If the cursor is on either a title or data field or a simple field, both
parts appears in inverse video.

2. To move the component to a specific place on the form, relocate the
cursor to the place where you want the component moved and choose the
Place or Shift operation, as described in the following sections.

To center or justify a component in relation to the form margin, select the
Center, Left, or Right operations, as described in Centering and Justifying
Components.

If you move a component to the bottom of the form and there is not enough
vertical space in the form to accommodate it, VIFRED automatically moves the
bottom margin of the form down enough rows to allow the component to fit.
The right margin, however, does not automatically move to the right to
accommodate a moved component.

If you are not satisfied with the results of any Move operation, choose the
Undo operation. Because Undo reverses the last operation performed, you
must use the Undo operation before performing any other operation.

Place

To use the Place operation:

1. Position the cursor on the component you want to move and choose Move.

2. Position the cursor where you want to place the beginning character of the
component and choose Place.

If you are moving a table field or a box, position the cursor where you want to
place the upper left corner of the component.

Except for boxes and lines, if the selected position for the component would
cause it to overlap another component on the form, VIFRED adjusts the
position of the other component, moving it to the right if possible, and moving
it down if necessary. Otherwise, the Place operation does not preserve spacing
between components.

The Place operation allows boxes and lines to overlap each other. However,
boxes that you create around fields as field attributes, rather than as part of
the Box/Line operation, cannot overlap.

Shift

The Shift operation works the same way as the Place operation, except that it
preserves spacing between components to the right.

Moving Components on a Form

Chapter 14: VIFRED Form Components 14–31

If you shift a component to a spot where it overlaps some other component,
you push the other component and all components to the right of it the same
amount of space to the right. If there is not enough space to push the
components to the right, VIFRED pushes one or more of them down.

Centering and Justifying Components

Use the Left, Center, and Right operations to position certain components to
the far left, the center, or the far right of the form, respectively.

To use the Left, Center, or Right operation:

1. Position the cursor on the component to be moved and choose the Move
operation.

2. Choose the Left, Center, or Right operation. If you do not see the Left,
Center, and Right operations when you choose the Move operation, they
are not available for the component on which the cursor rests.

Moving Titles and Display Windows

Normally a field’s title and display window move as a unit. However, you can
move them separately, if you want.

When you place the cursor on a simple field and choose the Move operation,
the menu displayed at the bottom of your window contains two operations not
found on Move menus for other components.

Operation Description

Title Moves only the title.

Format Moves only the format of the data window.

To move the field’s components separately:

 Choose the Title operation to move only the title of a simple field.

 Choose the Format operation to move only the format of the data display
window of a simple field.

Once you choose either Title or Format, the Place and Shift operations apply
only to the part of the field you have specified.

Moving Components on a Form

14–32 Character-based Querying and Reporting Tools User Guide

Moving a Group of Components at Once

You can use the GroupMove operation on the Form Layout frame to define a
bounding box around a group of unrelated form components and move them
as a unit to a new location on the form. The operation preserves relative
spacing between components and from each component to the upper left
corner of the defined bounding box.

Once completed, you cannot use the Undo operation to reverse a group move.
During the process, you can abandon the move as described within the
following procedure.

To move an entire group of form components at once:

1. Position the cursor where it defines the upper left corner of the group of
components you want to move. Then Choose the GroupMove operation on
the Form Layout frame menu.

VIFRED marks the current cursor position at the upper left corner of the
group with a blinking plus sign (+) and displays the following message:

Move cursor to position the opposite corner
press <MENU KEY> when done)

2. Position the cursor diagonally opposite the marked corner so that it defines
the lower right corner of the group of components to be moved. The
components to be moved must be contained within the area defined by the
upper left and lower right corners.

If you want to cancel the operation at this point, either:

 Move the cursor to its previously marked upper left corner, so that no
bounding box is defined

 Define a bounding box that encompasses none of the components
completely.

VIFRED highlights the group of components and displays this submenu:

Place Help End

3. Position the cursor at the upper left corner of the place to which you want
to move the components and select the Place operation on the submenu.

Otherwise, if you want to cancel the operation, select End.

If the location you specified is the same as the starting position, or if the
move would overlap other form components, VIFRED cancels the
operation.

Otherwise, VIFRED immediately moves the group of components. If
necessary, VIFRED expands the form to accommodate the move.

4. To preserve your changes, choose the Save operation on the Form Layout
frame.

Chapter 15: VIFRED Field Specifications 15–1

Chapter 15: VIFRED Field Specifications

This chapter describes how to use the VIFRED to specify field attributes for
simple fields and table field columns on a form. Attributes are features that
can be applied to a field’s data window. Attributes can affect both the visual
aspects of a field and the behavior of a field.

Specifying Field Attributes
When you create a default form or individual fields on a form, VIFRED assigns
certain default attributes to those fields. You can view or change these
attributes with the Attributes operation on the Edit menu.

Default Attributes

Fields on VIFRED forms assume these default attributes:

 Fields on default forms assume the data type and internal field name
attributes from the underlying column in the database table.

 Defaults for required attributes in fields on custom-created (non-default)
forms are set initially by VIFRED or by the user during form creation.

 Attributes in the Set list of the Attributes for Field frame are initially set to
n (no) for fields on custom-created (non-default) forms.

A field created with VIFRED on a default form assumes default attributes
according to the corresponding attributes of the underlying data column. For
example, if the underlying data column accepts nulls, the default attribute of
the field is set to accept nulls. By default, field attributes that have no
corresponding data column attribute are set to off, designated by n in the Set
list on the Attributes for Field form. The default for color is zero (0).

When you create a field with the Create Field operation, the default for each of
the attributes in the Set list is n (no). The default for color is zero (0). The
user sets other required attributes while creating the field.

When applied to a column in a table field, the Reverse Video, Blinking,
Underline, Brightness Change, and Invisible attributes affect the entire
column. For example, if a column has the Underline attribute set, every data
value displayed in the column is underlined.

Specifying Field Attributes

15–2 Character-based Querying and Reporting Tools User Guide

Setting Attributes for a Field or Column

To view or change attributes for a particular field:

d. Use one of the following, as appropriate:

 For a simple field, place the cursor on the name of the field in the
Form Layout frame and choose the Edit operation, and then choose
the Attributes operation on the Edit submenu.

 For a table field column, place the cursor on the row in the Form
Layout frame that identifies the particular column for which you want
to set attributes. Choose the Edit operation; then choose the EditAttr
operation on the Table Field frame.

The Attributes for Field frame displays the current attributes of the
selected field. The frame for a simple field varies slightly from the frame
for a table field.

The following figure shows the Attributes for Field frame for a simple field:

The Attributes for Field frame includes an Attribute Set list on the left side
of the frame. These attributes are either on or off, as indicated by y or n in
the column labeled Set. The default condition is n (off). The attributes in
this list vary slightly between simple fields and table fields.

This frame also includes some additional attributes that you set by typing
in values, or that apply only to certain types of fields. These attributes
appear on the right half of the frame. In this particular example, which
shows the attributes for a text field of data type varchar, the
Scrollable?(y/n) field appears near the bottom right half of the window.
This field applies only to fields created for character data, and does not
appear when you are setting the attributes of a numeric, date, or money
data type field.

Specifying Field Attributes

Chapter 15: VIFRED Field Specifications 15–3

The following figure shows the Attributes for Field frame for a column in a
table field:

e. To change an attribute in the Set list, position the cursor on the line for
that attribute, and type y (yes) or n (no) in the Set column. For a
description of each attribute in the Set list, see Attributes in the Set List.

f. To change an attribute that requires a text entry or that appears on the
right side of the Attributes frame, press the Tab key to reach the
appropriate field and type in the new value. For a description of each
attribute specification field, see Attributes in the Set List.

g. When done, choose the End operation to exit the Attributes for Field frame
and return to the Form Layout frame.

h. Save your form with the Save operation before exiting the Form Layout
frame; otherwise the attributes you specified are lost.

The following table lists the menu choices you can use to change the attributes
of additional fields without leaving the Attributes for Field frame:

Operation Description

Next Displays the attributes for the next field.

Previous Displays the attributes for the previous field.

MoreEdit Displays a pop-up form that allows you to edit validation
information or a derivation formula.

Attributes in the Set List

15–4 Character-based Querying and Reporting Tools User Guide

Operation Description

ListChoices Displays a pop-up form with the choices available for the
selected field. To make a selection, click on the choice or
place the cursor on your choice and choose the Select
operation.

Help, End These are standard operations.

Attributes in the Set List
The following table summarizes the attributes in the Set list on the Attributes
for Field frame for both simple fields and table field columns. Some of the
attributes apply only to simple fields or only to table field columns.

Attribute Description

Box Field Automatically encloses the field in a box (simple fields
only).

Keep Previous Value The last value entered in this field appears as a
default value (simple fields only).

Mandatory Field Data entry is required for this field.

Reverse Video Reverses screen contrast from bright characters on
dark background to the opposite, or vice versa.

Blinking Makes the field blink on and off. Microsoft Windows
does not support blinking. Instead, the background
color changes in intensity to represent the blinking
attribute.

Underline Underlines the characters in the field.

Brightness Change Toggles the brightness of a field.

QueryOnly Can enter data in this field only if form is in Query or
Fill mode.

ForceLower Case Changes any uppercase letters entered to lowercase.

ForceUpper Case Changes any lowercase letters entered to uppercase.

No Auto Tab Turns off automatic tabbing when the end of a field is
reached to prevent the user from accidentally typing
over the next field.

NoEcho Prevents on-screen display of data typed into this
field.

Attributes in the Set List

Chapter 15: VIFRED Field Specifications 15–5

Attribute Description

DisplayOnly Prevents entry of data into this field; allows only
display of data. You cannot place cursor in this field
with Tab or Return keys.

Invisible Prevents on-screen display of a simple field or table
field column. You cannot place cursor in this field with
the Tab or Return keys.

Inputmasking Turns input masking on or off for use with input
templates in data entry field display formats. Input
masking checks user input against a format template,
character by character, as the user enters the data.

An Alternative to the BoxField Attribute

Instead of using the BoxField attribute on the Attributes for Field frame to
automatically enclose a simple field in a box, you can use the Box/Line
operation on the Create submenu of the Form Layout frame to manually draw
a box around the field. This permits you to specify display attributes for the
box you draw.

Setting the Invisible Attribute

You can use the Invisible attribute to prevent a simple field or table field
column and the data in it from being displayed in the window.

There is a difference between making an entire table field invisible and making
a table field column invisible:

 Making a table field invisible prevents the entire table field from appearing
in the window. To make an entire table field invisible, enter y in the
Invisible Field?(y/n) field on the Table Field frame, which is described in
Creating and Editing Table Fields.

 Making a table field column invisible prevents only the column from
appearing in the window. To make a table field column invisible, type y
next to the Invisible attribute in the Set Attributes list of the Attributes for
Field frame.

When you use a form with invisible table field columns or invisible simple
fields, the invisible field does not appear in the window. However, the invisible
field or column does appear on the Form Layout frame in VIFRED and in
printform output.

As with the DisplayOnly attribute, you cannot place the cursor in invisible
fields with Tab or Return. The cursor skips over these fields to the next field.

Required and Other Attributes

15–6 Character-based Querying and Reporting Tools User Guide

Turning Input Masking On or Off

Input masking enables VIFRED to check a user’s input in data entry fields on a
character-by-character basis, as the user enters the data. If input masking is
set to off, VIFRED checks the entry only when the user attempts to exit the
field.

To turn on input masking, set the Inputmasking attribute to y (yes) in the Set
list on the Attributes for Field frame.

In addition to turning on input masking, you must also specify an allowable
input display format for the field or tablefield column. You can use only the
following display formats with input masking:

 Date template

 Numeric template

 String template

For more information on display formats and input masking, see the chapter
“Working with Data Types and Data Display Formats.”

Required and Other Attributes
In addition to those in the Set list, other field attributes appear on the
Attributes for Field frame, as summarized in the following table.

The following attributes require specifications:

 Internal Name

 Data Type

 Nullable

 Color

 Scrollable (if showing)

These attributes are discussed in more detail following the table:

Required and Other Attributes

Chapter 15: VIFRED Field Specifications 15–7

Attribute Description

Internal Name Specifies the name by which a field is known to
VIFRED. On a default form, the default internal name
is the table column name. On a form created by the
user, the default internal name is the title entered by
the user (with any non-legal characters removed).
The character limit is 32 (for databases compliant with
ANSI/ISO Entry SQL-92 standards, see Naming and
Name Use Conventions). A specification in this field is
required. You initially enter this specification during
the Create Field or Create Table Field procedure.

Data Type This specifies the data type of the column in the
database table that corresponds to the field on the
form. A specification in this field is required. VIFRED
automatically supplies an initial entry when the field is
created, for fields on a default form or table field
columns created with the GetTableDef operation.

Nullable A y indicates a NULL value is valid. An n indicates that
the NULL value is invalid. A specification in this field is
required.

Default Value Enters a specified value in a field automatically when
a form is used. The character limit is 50. This attribute
applies to simple fields only, and is required. Not
displayed for derived fields.

Validation Check
to Perform

Checks entered data to see if it meets the criteria
established for the field. The default is no validation.
The character limit is 240. Not displayed for derived
fields.

Validation Error
Message

Error message to be displayed when data entered is
not valid. The default is none and the character limit is
100. Not displayed for derived fields.

Derived If set to y, makes this field a derived field, whose
value is calculated from a derivation formula that you
specify.

Derivation Formula Contains the formula used to calculate the value of a
derived field. Displayed only if the Derived field is set
to y. This is a scrollable field, which can contain up to
240 characters and displays 50 characters at a time.

Color Changes current color (on color terminals and
monitors), using a numeric code. The default is zero
(0) or default color. A specification in this field is
required.

Required and Other Attributes

15–8 Character-based Querying and Reporting Tools User Guide

Attribute Description

Scrollable Y defines a text field as scrollable. The default is n
(non-scrollable). Displayed only for a character data
type (single line, non-justified format). A specification
in this field is required.

Scroll size Sets the length of the scrollable field. Displayed only
when the Scrollable field is set to y.

Changing the Internal Name of a Field

The field’s internal name is the name by which it is known to VIFRED. To
change this name, move the cursor to the space beside Internal Name for
Field, type the new name over the current name, and press Return.

Internal names can contain a maximum of 32 characters. For naming
conventions in databases compliant with ANSI/ISO Entry SQL-92 standards,
see Naming and Name Use Conventions.

Changing a field’s internal name affects data transfer to and from the field. We
recommend that you change an internal field name only if you are an
experienced programmer familiar with the ramifications of such a change.

Changing a Field’s Data Type

You can change a field’s data type by entering a new data type in the Data
Type field of the Attributes form.

Fields on your form that correspond to data columns in tables must have the
same data type as the data column in the table.

When you specify any of the character data types in the Attributes for Field
frame, you cannot specify the length (number of characters) of the field,
because VIFRED obtains the size of character fields from the field’s display
format. In this way VIFRED ensures that the data type size and format size are
always the same.

Keep in mind that while VIFRED changes a field’s data type to match a new
display format, the reverse is not true. Thus, if you change a field’s data type,
you must make sure that the display format matches. When you select the
Attributes for Field frame’s End operation, VIFRED checks the compatibility of
field data types and field display formats. VIFRED displays an error message if
it finds an incompatibility. You must correct the problem before you can leave
the Attributes for Field frame or edit the attributes of other fields or columns.

Required and Other Attributes

Chapter 15: VIFRED Field Specifications 15–9

Setting Nullable Data Types

You can specify that a data type is nullable or non-nullable by entering y for
nullable or n for non-nullable in the Nullable field. A nullable data type accepts
a null value. For more information on null values, see Nulls.

If the form field for which you are specifying attributes is to be linked to a data
column in a table, the null specification on the Attributes for Field frame must
match the null specification of the data column in the table.

Changing the Color

You can change the color of a field for displays that support color and have
been defined to Ingres as such in the termcap file entry designated by
TERM_INGRES. To change the color of a field, move the cursor beside Color on
the Attributes form and type the code number of your choice over the current
number. Color capabilities vary widely among monitors and can be customized
by changing your termcap file entry. To determine the color codes for your
monitor, check the termcap file entry or see your monitor documentation.

Scrollable Fields

In a scrollable field, only part of the data in a text field is displayed on a form.
The visible display window of a scrollable field is narrower than the underlying
field. VIFRED truncates the display to show only as many characters that fit in
the window. Access the entire field by scrolling horizontally with the left and
right arrow keys, or, if you are entering data, by continuing to type in data
beyond the end of the field.

Scrollable fields allow large amounts of data to be displayed in a small area of
a form. Only fields that have a data type of varchar, char, text, or c with
single-row, non-justified display formats can be designated as scrollable fields.

You can use the Attributes operation to make a field scrollable. You must
create the form and fields first with the Create operation, which establishes
the size of the display window. And then, access the Edit Attributes frame to
assign the width of the underlying field.

To create a scrollable field on a form:

1. Use the Create operation to create a form with a text field, single line, with
no justification. On the field you want to make scrollable, enter the text
data type and character size; for example, 5.

2. Select End. You have established that this is a text field and the size of the
display window of the scrollable field.

Setting Default Values for a Field

15–10 Character-based Querying and Reporting Tools User Guide

3. First, select the Edit and then the Attributes operation, for a simple field,
or the EditAttr operation for a table field in a column. The Edit Attributes
frame appears. For more information on these frames, see the preceding
two figures.

4. The field, Scrollable?(y/n), appears at the bottom. Enter y (yes) to indicate
that this is a scrollable field.

5. The field, Scroll size, appears. Type in the number of characters in the
scrolling size or underlying width of the field—for example, 20. The display
window of the resulting scrollable field shows five characters, while the
underlying field contains 20 characters.

You can change an existing scrollable field to a non-scrollable field at this point
by changing the value of the Scrollable(y/n) field to n.

You can also change a scrollable field to a non-scrollable field at this point by
changing the data type to a non-text type, as scrollable fields must be text
fields.

You can apply other field attributes at any point in this process. A scrollable
field can have any other attribute except NoEcho.

It is not recommend that you make a scrollable field DisplayOnly, because the
end user can only read the first section of the data that is displayed in the
window, and cannot access the rest of the information in the field. The only
exception to this is when all of the columns in a table field are unreachable
due to being DisplayOnly or QueryOnly. The end user can then place the
cursor on the fields in the first column, whether it is scrollable, and scroll up
and down, thus accessing all the rows in this column.

Setting Default Values for a Field
If you want a value to appear automatically in a field when a user sees a form,
you can set a default value. Default values can be character strings or simple
numeric values. For example, a point-of-sale application might contain a field
for the name of the store or branch office. You can set a default to
automatically enter the name of the store in that field at each location.

The default value must match the data type of the field. Default values can
contain up to a maximum of 50 characters.

You can enter a default value that enters the current date in a field with a date
data type when the end user tabs out of the field. There are two default date
values that can be used for this purpose:

 Today enters the current date when the end user tabs out of the field.

 Now enters both the current date and the current time when the end user
tabs out of the field.

Specifying a Validation Check

Chapter 15: VIFRED Field Specifications 15–11

Specifying a Validation Check
A validation check is set by the designer of a form. It instructs VIFRED to
evaluate the data entered in the field. If the data passes the validation check,
it is accepted; if it does not pass the validation check, VIFRED displays an
error message and asks the user to enter the correct data. You cannot specify
a validation check for derived fields.

If you leave the validation field empty (the default), no validation is
performed.

Note: If you are writing an application that is used with a mouse, keep in mind
that users can click randomly around the fields on the form. Set up field
validations accordingly.

Validation checks can contain a maximum of 240 characters.

You can specify a validation check in either of these two main styles for any
valid data type:

 Comparison operator validation checks

 Comparison to a set of values

To enter or change the validation criteria, move the cursor to the space beside
Validation Check to Perform on Field on the Attribute menu and type the new
string over the current one. This field displays 50 characters at a time, but is
scrollable. Use the MoreEdit operation to view or edit the entire validation
string.

VIFRED does not check the syntax of a validation check until you attempt to
save the form with the VIFRED Save operation. At that time, if VIFRED finds
that the validation check you specified is illegal, you must correct it before you
can save the form.

Note also that you can use Vision, Application-By-Forms, or an embedded
query language to create validations that are more sophisticated than those
you can specify with VIFRED.

Specifying a Validation Check

15–12 Character-based Querying and Reporting Tools User Guide

Comparison Operator Validation Checks

The format for a comparison operator validation check is a string containing
one or more comparison operators. Comparison operator validation checks
have the following conventional syntax:

fieldname comparisonoperator constant
fieldname comparisonoperator otherfieldname
fieldname IS NULL
fieldname IS NOT NULL

The fieldname is the internal name of the field being validated; otherfieldname
is the internal name of some other field containing a value to be compared
against. In a validation string for a table-field column, you use tablefieldname
instead of fieldname, as follows:

tablefieldname.internalcolumnname comparisonoperator constant

The following table lists valid comparison operators for SQL.

Operator Description

= Equal to

!= Not equal to

<> Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

LIKE SQL string equal to

Character String Comparisons

You can enter character strings as validation checks for fields designated as
character data types. Always enclose character string validation checks in
double quotation marks, except for the LIKE operator, which accepts strings
with single quotation marks.

Validation checks on character strings can include pattern-matching
characters. The following pattern-matching characters are valid for all
operators except the LIKE operator:

Specifying a Validation Check

Chapter 15: VIFRED Field Specifications 15–13

Character Description

* (Asterisk) Matches zero or more undefined characters. For
example, S* equals any character string beginning with
the letter S.

? (Question mark) Matches exactly one undefined character.
For example, T?P equals TAP, TIP, TOP, etc.

[...] Matches any characters between the brackets including
ranges. For example, [ACL]* equals any string that begins
with A, C, or L. ?[N-X] equals any two-character string
that begins with any letter and has any letter between N
and X as the second character.

% (Percent sign) Matches zero or more undefined characters
(similar to the * character described above).

_ (Underscore) Matches one undefined character (similar to
the ? character described above).

Example character string validations:

dept = "sales"
emptable.fname = "*son"

Date and Money Comparisons

Enter comparison constants for abstract data types such as date and money in
double quotation marks, as if they were character strings. For example:

date = "1-Jan-1988"
projecttable.budget > "$1000000"

The money data type is not supported by OpenSQL. For SQL, OpenSQL and
QUEL equivalents, see the appendix “Data Types.”

NULL Value Comparisons

To compare for the null value, use IS NULL. To compare for any value but the
null value, use IS NOT NULL. For example:

salary IS NOT NULL

The following rules govern null values in an expression:

 A NULL value in an expression with relational or arithmetic operators
causes the expression to evaluate to NULL.

 If you use the logical AND operator and either expression is FALSE, then
the result is FALSE. If one expression is TRUE and the other is NULL, then
the result is NULL. The result is only TRUE if both expressions are TRUE.

Specifying a Validation Check

15–14 Character-based Querying and Reporting Tools User Guide

 If you use the logical OR operator and either expression is TRUE, then the
result is TRUE. If one expression is FALSE and the other is NULL, the
expression is NULL. The result is FALSE only if both expressions are FALSE.

If you use the logical NOT operator with an expression that evaluates to a null
value, the result is still null.

Numeric Comparisons

Numeric constants do not have to be enclosed in quotes. The following
example requires that the number entered in the Salary field be larger than
zero:

salary > 0

This example requires that the number entered in the Age field be larger than
or equal to 18 and less than or equal to 70:

age >= 18 AND age <= 70

A complex numeric expression must be enclosed in parentheses to clarify the
way the expression must be evaluated.

The following example requires that the number entered in the Hourly_rate
field either equal 30 or fall within the range of 40 to 50:

hourly_rate = 30 OR (hourly_rate >= 40 AND
hourly_rate <= 50)

Comparisons Against Other Fields

You can compare a value against whatever value is currently contained in
another field. The following example requires that the name entered in the
Lastname field not be the same as the name entered in the Firstname field:

lastname!= firstname

This example requires that the date entered in the Duedate field be equal to or
greater than the date entered in the Orderdate field:

duedate => orderdate

Specifying a Validation Check

Chapter 15: VIFRED Field Specifications 15–15

Comparison to a List of Values

By using the keyword in, you can compare a value against an arbitrary list of
values using the following format:

fieldname in [list]

The fieldname parameter is the internal name of the field and list is the list of
valid values. The values in list must be of the same data type as values
admissible in the field. They must be separated by commas and enclosed in
mandatory brackets ([]).

If the field has a character data type, you must enclose the character string
values in double quotation marks and you can use valid pattern-matching
characters. Leading blanks are not significant.

The following example requires that the name entered in the Lname field be
either Jones, or Ortega, or Bridges:

lname in ["Jones", "Ortega", "Bridges"]

This example requires that the character string entered in the Address field
contain the characters Bl, or Av, or end in R plus one other letter, or end with
St:

address in ["*Bl*", "*Av*", "*R?", "*St"]

This example requires that the amount entered in the Salary column of the
Emptable table field be either 1000, 1100, 1200, 1300, 1400, or 1500:

emptable.salary in [1000, 1100, 1200, 1300, 1400, 1500]

Comparison to a Lookup Table

The keyword in can also be used to compare data entered in a field to a set of
stored values in a database table. This is the easiest way to compare against a
large number of values or against values that can be changed from time to
time.

When your form is initialized in QBF or your own application, the current set of
data from the lookup table is read into main memory. The column entries in
the lookup table at the time of form initialization represent the data values
used for comparison. Values added to, or deleted from, the lookup table
column after the form is initialized are not reflected in the set of data used for
comparison.

To compare against values in a lookup table, use the following format:

fieldname|tablefield.column in

[schema.]tablename.columnname

Specifying a Validation Check

15–16 Character-based Querying and Reporting Tools User Guide

If the schema, tablename, or columnname after the in keyword is a delimited
identifier, you must enclose it within double quotes:

fieldname|tablefield.column in

["schema name".]"table name"."column name"

Parameters in the preceding syntax are defined in the following table:

Parameter Description

fieldname Internal name of the field being validated

tablefield.column Internal name of the tablefield and column being
validated

schema Optional parameter identifying the schema to which the
table belongs and its implied owner

tablename Name of a table in the current database

columnname Name of a column in the specified lookup table

The following example requires that the value in the Zipprefix field match the
values found in the Prefix column of the Zip table:

zipprefix in zip.prefix

This example requires that the names entered in the Manager column of the
Emptable tablefield match names contained in the Name column of the
Employee table:

emptable.manager in employee.name

The user can place the cursor in a field that is validated by a lookup table or
by a fieldname in list validation check, as described in Comparison to a List of
Values. In either case, choosing the Help Field operation at this point displays
the acceptable values from the lookup table.

Boolean Operators in Validation Checks

This chapter has discussed the following validation comparison types:

 Simple relational operator comparisons

 Comparison to a list of values

 Comparison to a lookup table

Specifying a Validation Check

Chapter 15: VIFRED Field Specifications 15–17

You can create more complex validation checks by using Boolean operators to
connect any of these validating comparison types. The syntax for using the
Boolean operators is:

expression OR expression
expression AND expression
NOT expression

The parameter expression is any of the previously discussed validation
comparison types. For example, the following validation check forces a user to
enter a number into the Code field that is either less than 21 or is 25, 30, or
35:

code < 21 or code in [25, 30, 35]

To allow additional flexibility, you can use parentheses to group Boolean
expressions to achieve the desired semantics in the validation check. For
instance, the following example forces a user to enter a number into the code
field that is less than or equal to 20000 into the Salary field unless the Grade
field is greater than or equal to 7. In this case, the user can enter a number up
to 30000:

salary <= 20000 or (grade >= 7 and salary <= 30000)

Operator Description

AND Boolean conjunction

OR Boolean disjunction

NOT Boolean negation

Negation (NOT) has precedence over conjunction (AND) and disjunction (OR);
AND and OR have equal precedence.

Some example character strings with Boolean operators are:

manager = “Jones” OR manager = “Ortega” AND NOT manager = “Fisher”

Creating a Validation Error Message

You can specify the error message that a user sees when the user enters a
value in the field that does not pass the validation check.

To specify an error message for this field’s validation check, enter the text of
the message in the Validation Error Message field. A validation error message
can contain a maximum of 100 characters. The Validation Error Message field,
which is scrollable, displays 50 characters at a time.

Derived Fields

15–18 Character-based Querying and Reporting Tools User Guide

You can specify different validation error messages for each field that contains
a validation check. If no error message is specified for a field with a validation
check, VIFRED supplies a generic default message.

Derived Fields
A derived field is a field whose value is based on the value of another field,
called the source field, or constants. For example, your form could contain the
following fields:

 Price (price of an item)

 Quantity Sold (total number of items sold)

 Total Amount Sold (value in the Price field multiplied by the value in the
Quantity Sold field)

The Total Amount Sold field is a derived field, and the Price and Quantity Sold
fields are its source fields.

Both simple fields and table field columns can be derived fields. VIFRED
calculates the value of a derived field from a derivation formula, which you
specify. For details, see Guidelines for Specifying Derivation Formulas.

The derived field must be nullable when:

 One of its source fields is nullable

 The derivation formula contains an aggregate

Derived fields cannot have the following attributes:

 Default values

 Mandatory

 Force upper or lower case

 Display only

 Scrollable

Using Forms with Derived Fields

The derived fields on a form are active when you view, add, or modify rows.
You cannot place values directly into a derived field on a form. However, if the
value of a source field changes, VIFRED recalculates the value of the derived
field.

When you create a new row by moving the cursor down, the values for derived
columns automatically display, if they can be calculated.

Derived Fields

Chapter 15: VIFRED Field Specifications 15–19

Specifying a Derived Field

To specify a derived field:

1. On the Attributes for Field form, tab to the Derived field and type y (yes).

This figure shows the Attributes for Field frame for a simple field:

VIFRED displays the Derivation Formula field (as shown in the following
figure) and removes the Validation Check to Perform field and the
Validation Error Message field, because you cannot enter a validation
check and message for derived fields:

2. Using the guidelines given in Guidelines for Specifying Derivation
Formulas, which follows, enter a derivation formula up to 240 characters
long.

The Derivation Formula field, which is scrollable, displays 50 characters at
a time. Use the MoreEdit operation to view or edit the entire derivation
formula.

When you save the form, VIFRED checks for data type compatibility, including
nullability, between the various sources, operators, and the derived field itself.
If it finds incompatibilities, VIFRED displays an error message and does not
save the form. At this time, VIFRED also checks for circular references, as
described in Circular References in Derivation Formulas.

Derived Fields

15–20 Character-based Querying and Reporting Tools User Guide

Guidelines for Specifying Derivation Formulas

The derivation formula provides the calculation for determining the value of a
derived field. When specifying a derivation formula, follow these guidelines.

A simple field can be derived from:

 Other simple fields, including other derived fields

 Aggregates of table field columns (cannot be derived directly from a table
field column)

 A table field column can be derived from other columns in the same table
field. A table field column cannot be derived from a simple field or
aggregate value.

 You can use arithmetic operators, aggregates, and constants in derivation
formulas, as explained in the following sections.

Arithmetic Operators in Derivation Formulas

You can use the following arithmetic operators in derivation formulas (in
descending order of precedence) for both simple fields and table field columns:

- (minus sign)

** (exponentiation)

*, / (multiplication, division)

+, - (addition, subtraction)

You can use parentheses () to change the order of evaluation.

Aggregates in Derivation Formulas

You can use aggregate functions in derivation formulas for simple fields, but
not in derivation formulas for table field columns. To derive a value for a
simple field based on an aggregate of a table-field column, use the following
syntax:

aggfunction (tablefieldname[*].columnname)

This table lists the aggregates that can be used in derivation formulas, the
data types that can be used with each aggregate, and the data type of the
derived field:

Aggregate Data type of
source field:

Data type of
derived field:

count any integer

Derived Fields

Chapter 15: VIFRED Field Specifications 15–21

Aggregate Data type of
source field:

Data type of
derived field:

sum integer

float

money

date (intervals only)

same as source

avg integer

float

money

date (intervals only)

same as source except for integer

max any same as source

min any same as source

If a derivation formula contains a reference to an aggregate of a table field
column, and the table field contains invalid values or is empty (has no values),
the value of the aggregate is:

 Zero (0), if the aggregate is count

 Null, if the aggregate is avg, sum, max, or min

If the formula contains references to other fields that contain invalid values,
VIFRED blanks out the derived field.

Constants in Derivation Formulas

You can use constants in derivation formulas for simple fields and for table
field columns. For example, you can specify the derivation formula for Field_A
as:

2 * field_b

Supported data types for constants in derivation formulas are char, varchar, c,
text, integer, floating point, date, and money. Specify dates, money, and
non-numeric strings in single quotation marks, as:

'3-6-90' + field_b

Derived Fields

15–22 Character-based Querying and Reporting Tools User Guide

Dates in Derivation Formulas

You can perform the following arithmetic operations on date data types in
derivation formulas:

 interval + interval = interval

 interval + absolute = absolute

 interval - interval = interval

 absolute - absolute = interval

 absolute - interval = absolute

Circular References in Derivation Formulas

A circular reference occurs when Field_A depends on Field_B which, in turn,
depends on Field_A. VIFRED does not allow circular references in derivation
formulas. VIFRED checks for circular references at form initialization and at
form save times. If it finds a circular reference, VIFRED displays an error
message. You must correct the problem before VIFRED can save the form.

Examples of Derivation Formulas

The following formulas are valid derivation formulas for simple fields:

Field_3 - Field_2
 (Field_3 - Field_1) * (Field_5 - Field_4)
 Field_2 + sum(TableField1[*].Column2)
 Lastname + ',' + Firstname
'today' + '30 days'
'today' - '1 yrs 2 mos 3 days 12 hrs 24 mins 14 secs'

The following formulas are valid derivation formulas for table fields:

(TableField_1.Column1 + TableField_1.Column2) /2
Order_items.price * Order_items.quantity
Order_items.price *.90

Improving Performance of Derived Fields

To improve performance in applications that use derived fields, follow these
recommendations:

 Use aggregates primarily to derive table field aggregates of approximately
50 rows or less.

 Avoid deep nesting of dependencies; that is, do not create a derivation
formula where Field_A depends on Field_B, which depends on Field_C, and
so forth.

Chapter 16: Interactive Query Language Terminal Monitor 16–1

Chapter 16: Interactive Query
Language Terminal Monitor

This chapter describes the Interactive Terminal Monitor. In the Interactive
Terminal Monitor, you enter query language statements on a blank form in a
window and then press a function key or make a choice from a menu to
execute the query.

The Interactive Terminal Monitor includes a full-screen editor for entering and
editing interactive query language statements. When you execute a statement,
the Interactive Terminal Monitor immediately displays the result in the
window. If the statement cannot be executed, a detailed error message
appears. Like other Ingres tools, the Interactive Terminal Monitor also includes
context-sensitive Help windows.

The Interactive Terminal Monitor gives you more direct and more extensive
control over data management functions than do other Ingres forms-based
tools, such as QBF or the Tables utility.

The Interactive Terminal Monitor supports interactive forms-based releases of
the query languages, Interactive SQL (ISQL) and Interactive QUEL (IQUEL).
Choosing one of the query languages from within Ingres Menu automatically
starts the Interactive Terminal Monitor.

Notes:

 On Windows, Ingres character-based utilities like the Terminal Monitor will
display characters correctly only if run under the supplied Ingres command
prompt, which has the correct code page and font settings.

 On UNIX, Ingres character-based utilities like the Terminal Monitor will
display characters correctly only if the console window on which they are
run has the correct code page set, which must match the character set
value set in II_CHARSETxx for the database.

Capabilities of the Interactive Terminal Monitor

16–2 Character-based Querying and Reporting Tools User Guide

The map in the following figure illustrates the access path and the available
Terminal Monitor operations:

Go
Resume
Complete
Blank
Edit
File
OnError

Read
Write

Ingres Menu

Tables

Queries

Forms

Applications

Reports

JoinDefs

SQL

QUEL

QBF

Graphs Go
Resume
Complete
Blank
Edit
File
OnError

Print
File FilePartial

Read
Write

Print
File

FilePartial

Capabilities of the Interactive Terminal Monitor
Using a query language in the Interactive Terminal Monitor, you can:

 Define data structures in your database

 Manipulate data in your database

Data definition includes the creation of tables, views, and indexes. Views are
virtual tables that provide alternative ways to access the data in database
tables. Indexes contain keys to speed access to data in other tables. Data
definition statements define the structure of data. For example, you can use
query language statements in the Interactive Terminal Monitor to create a new
table, naming its columns, and specifying the data type and length of each
field. Or you can create a table based on an existing table, copying certain
data from the old table into the new.

You can use the Interactive Terminal Monitor to manipulate data in the
following ways:

 Insert (add) data

 Update data

Starting the Interactive Terminal Monitor

Chapter 16: Interactive Query Language Terminal Monitor 16–3

 Delete data

 Retrieve data

These activities can be performed on one or more tables with a single
statement. You can also perform global operations on a table. For example,
you can add several rows of new data to a table at once, or you can update
the value of a particular column in all the existing rows. In addition, you can
perform computations on existing data. For example, you can add 15 percent
to every employee’s hourly rate.

You can narrow the scope of an update or retrieval, or any other function, to
rows containing specific values in a column. You can also qualify the scope of a
function with various operators and set functions. For example, you can
retrieve records for employees whose names begin with S, display an average
hourly rate for the employees of a certain manager, or add 15 percent to the
hourly rates of everyone except managers.

For complete query language statement syntax and details of using a query
language for data manipulation, see your query language reference guide.

Starting the Interactive Terminal Monitor
You can start the Interactive Terminal Monitor from the operating system or
from the Ingres Menu. For information on starting the Interactive Terminal
Monitor from the operating system, see the chapter “Using System Commands
for the Forms-based Tools.”

Follow these steps to start the Interactive Terminal Monitor from the Ingres
Menu:

4. Choose the Queries operation from Ingres Menu.

5. Choose SQL or QUEL (if your system supports Interactive QUEL).

The Interactive Terminal Monitor frame displays in the window. See the figure
in the following section.

Entering Query Language Statements

16–4 Character-based Querying and Reporting Tools User Guide

Entering Query Language Statements
The Interactive Terminal Monitor frame’s input screen (in the following figure)
consists of a blank window and a menu of operations. Enter and edit your
query language statements in the frame’s window, which is your workspace.
The cursor initially appears in the upper left corner of the window.

The workspace is essentially a single-column table field, within which you have
access to all cursor movement keystrokes, forms-based operations, and
forms-based functions. You can also use the default editor on your computer
system to edit your work, by selecting the Edit operation from the main menu.
The default editor is determined by the ING_EDIT environment
variable/logical, as discussed in the System Administrator Guide for the
system on which your database resides.

The input window retains all the statements you enter in the workspace unless
you explicitly edit or clear them.

Menu Operations

The following operations are available on the Interactive Terminal Monitor
frame:

Operation Function

Go Executes the query language statements and immediately
begins displaying the results.

Resume Displays the results of the last query language statements
you executed (shows the previous output window, as it
appeared when you exited the output window).

Entering Query Language Statements

Chapter 16: Interactive Query Language Terminal Monitor 16–5

Operation Function

Complete Executes the statements in the workspace, but does not
display the results until all processing is completed. This
command displays the end of the query’s output.

Blank Clears the workspace of any statements you have
entered.

Edit Edits the statements in the workspace with the standard
system editor.

File Calls the submenu of file operations to write the
information in the window into a file or read information
from an existing file.

OnError Indicates whether errors terminate or continue the
processing of SQL statements, and lets you change the
setting.

LineEdit Displays a submenu to insert, delete, split, or join lines in
the input window.

Help Gets help about this frame, including help about the
syntax and usage of the interactive query language.

Quit Leaves the Interactive Terminal Monitor.

The Edit operation writes the workspace contents to a temporary file and
invokes your default system text editor on that temporary file. When you finish
editing the temporary file and exit from the editor, the newly edited text in the
workspace on the Interactive Terminal Monitor frame displays. You can then
execute the statements or continue editing or adding text in the input window.

The LineEdit operation enables you to insert, delete, split, or join lines in the
input window. When you select the LineEdit operation, you access a submenu
that displays the following line editing functions:

Operation Description

InsertLine Inserts a blank line above the line on which the cursor is
positioned.

DeleteLine Deletes the line on which the cursor is positioned.

SplitLine Divides a line into two lines at the point where the cursor
is positioned.

JoinLines Moves the next line to the end of the line on which the
cursor is positioned.

Help, End These are standard operations.

Entering Query Language Statements

16–6 Character-based Querying and Reporting Tools User Guide

The Help operation includes complete summaries of how to use statements in
the particular database language you have chosen. If available for your
terminal, you can use the key mapped to the string-search function (the
Windows Find operation) to search for database language keywords to find
helpful hints on syntax and usage.

Reading from and Writing to a File

In addition to statements that you type directly into the workspace on the
Interactive Terminal Monitor frame, you can enter database language
statements into the frame from existing text files. Similarly, you can preserve
a script you have written in the workspace by saving it to a file.

Entering Statements from a File

To enter query language statements from a file into the workspace:

1. Choose the File operation on the Interactive Terminal Monitor input frame.

2. Choose the Read operation on the File submenu, and the following prompt
displays:

Enter name of file to read:

3. Type the file name. If the file to be read is not in the current (working)
directory, you must include the full file name specification.

The contents of the file you named displays.

If you have already entered database language statements into the
workspace, the file contents are added above the current row, as designated
by the cursor location.

Writing Statements to a File

To write the contents of your workspace into a file:

1. Choose the File operation on the Interactive Terminal Monitor input frame.

2. Choose the Write operation on the File submenu, and the following prompt
displays:

Enter name of file to be written:

3. Type a file name. The workspace contents are written to that file and the
workspace contents are preserved for further editing.

Executing Query Language Statements

Chapter 16: Interactive Query Language Terminal Monitor 16–7

Executing Query Language Statements
After specifying query language statements in the workspace, execute them to
receive output.

For example, suppose you entered the following ISQL statement in your
workspace:

select * from staff

When you choose the Go or Complete operation, the following message
displays while retrieving the data:

Run the request

The resulting data displays in the output window for the Interactive Terminal
Monitor frame, as shown in the following figure. In this example, all rows from
the Staff table in the current database have been retrieved, but not all of the
data can fit in the window at the same time.

A Start of Output banner appears at the top of the output window if the data
extends beyond the first window:

Start of Output Column 1/80 Line 1

The Column and Line indicators in the Start of Output banner indicate the
portion of your output that is currently visible in the window, as determined by
a theoretical column and row grid. Each grid column is one character wide. The
first number in the Column indicator shows which output column currently
appears at the left margin of your window. The number after the slash
indicates the total width of the output. In this case, Column 1/80 indicates that
the first column of the output appears at the left margin and the total output is
80 columns wide. The Line indicator shows the current line, at the top of the
output area.

Executing Query Language Statements

16–8 Character-based Querying and Reporting Tools User Guide

The database language statements you entered in the input window appear on
the output window after the banner. Each statement line is preceded on the
same line by a number and a greater than (>) character. In the preceding
figure, the ISQL statement is preceded by 1>.

The rest of the output window contains the data and messages returned by the
request. You can scroll the rows of output up and down or left and right in the
output window, using your mouse or the keys mapped to the scrolling
functions. To go directly to the end of the output, use the key mapped to the
Bottom FRS key operation; to go to the top of the output, use the key mapped
to the Top FRS key operation.

This figure shows the frame contents at the end of the output.

If the query runs to completion, the Line indicator in the End of Output banner
at the top of the output shows the current line at the top of the output area (in
this case, Line 24), as well as the total number of lines in the output, including
trim, blank lines, and explanatory text (in this case, 42 lines).

An End of Request banner also appears if you:

 Execute the Go operation and all output from the request displays in one
window.

 Execute the Complete operation, which runs the request to completion and
displays the last portion of the output.

 Scroll the cursor to the last window of data in the output.

Executing Query Language Statements

Chapter 16: Interactive Query Language Terminal Monitor 16–9

The operations available in the output window are described in this table:

Operation Description

Print Sends the output to a default or named printer.

File Sends the output to a file.

Help, End These are standard operations. You use the End operation
to return to the input window.

The File operation in the output window differs from the File operation in the
input window. In the output window, the File operation sends the query output
results to a file; in the input window it sends the query language statements to
a file. For more information on the Print and File operations, see Printing or
Filing Output.

When you return to the input window, your original query reappears, as shown
in this figure.

To edit the current request or execute it again, use the Go or Complete
operations. To return to the point at which you last inspected the current
output, use the Resume operation. Or, clear the workspace with the Blank
operation and enter a new request.

Printing or Filing Output

16–10 Character-based Querying and Reporting Tools User Guide

Printing or Filing Output
To print or file the currently displayed window, use the printscreen function
key.

To print the results of your query or to store the results in a file, use the Print
or File operations in the output window of the Interactive Terminal Monitor
frame. These are the same operations you use with RBF. See the following
sections in the chapter “Producing a RBF Report:”

 Sending Reports from a Screen to a File

 Sending Reports from a Screen to a Printer

Error Messages
If a query language statement contains errors, an error message is displayed.
The error message includes information on statement syntax. The erroneous
part of the statement can be pointed out, as shown in the following figure. The
error message indicates that the statement select in line one was typed
incorrectly.

If the OnError setting is set to CONTINUE, the query continues after the error
message appears. If set to TERMINATE, then the remaining portion of the
query is terminated after the error message appears. Choose End to return to
the input window and edit your erroneous entry, or clear the frame with the
Blank operation and correctly retype your request.

Error Messages

Chapter 16: Interactive Query Language Terminal Monitor 16–11

To change the OnError setting:

1. Choose the OnError operation on the Interactive Terminal Monitor input
frame. A pop-up window appears, offering choices of CONTINUE and
TERMINATE.

2. Choose CONTINUE if you want queries to continue after an error message
appears. Choose TERMINATE if you want the remaining portion of a query
to terminate when an error message appear.

Chapter 17: Using System Commands for the Forms-based Tools 17–1

Chapter 17: Using System Commands
for the Forms-based Tools

System-level commands are provided for starting the Ingres forms-based
tools, and several other commands are provided that are useful for managing
reports, forms, and forms objects such as JoinDefs and QBFNames.

This chapter provides the syntax and comprehensive explanations of many
commands you can use in conjunction with the Ingres tools discussed in this
guide. For commands that apply to other Ingres tools, such as Report-Writer
or ABF, see Forms-based Application Development Tools User Guide or the
System Administrator Guide.

Syntax Conventions
Enter system-level commands at the operating system prompt or from the Run
dialog in Microsoft Windows. They consist of one or more required command
words, usually followed by one or more parameters or flags, as follows:

command [flags] dbname|v_node::dbname [/server_type]
 {[flags] [parameters]} [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host where the database resides. If you are accessing a distributed
database or a non-Ingres database through an Enterprise Access
product, specify the /server_type parameter.

VMS

Enclose the -Ggroupid parameter in double quotes ("-Ggroupid") to preserve
the case of the -G flag. For example, to invoke the Ingres Menu with a
groupid of sales, you must use double quotes around the -G designation:

ingmenu dbname "-Gsales"

If the username, groupid, or another command parameter is a delimited
identifier, enclose it in double quotes ("), dereference any embedded quotes,
and use the appropriate number and type of delimiting quotes to pass it
through your operating system. For more information, see the System
Administrator Guide.

Standard Flags and Parameters

17–2 Character-based Querying and Reporting Tools User Guide

Report-Writer Command Syntax

The following is an example of standard syntax for Report-Writer commands
that you enter on the operating system command line:

command dbname|v_node::dbname [/server_class] cmd_parameters
[-s] [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host where the database resides. If you are using an Enterprise
Access product, then specify /server_class.

UNIX

Execute commands from the Bourne shell. In some instances, the C shell
can be confused by parameters that contain double quotes. In addition, you
cannot escape the dollar sign ($) within double quotes in the C shell, if
necessary.

VMS

Enclose the -Ggroupid parameter in double quotes ("-Ggroupid") to preserve
the case of the -G flag.

If the username, groupid, or another command parameter is a delimited
identifier, specify it in its editable format. For more information, see Specifying
Delimited Identifiers. For instructions on passing the delimited identifier and its
quotes through your operating system, see the System Administrator Guide.

Standard Flags and Parameters
A flag is a letter preceded by a hyphen (-) that determines various options for
commands. Unless flags are indicated in uppercase letters within this chapter,
you can type them in either uppercase or lowercase. Flags that must be
entered in uppercase, such as -Ggroupid, need special input syntax if the host
operating system is case-insensitive.

A parameter can be a command, the name of an object, or a value that
specifies a particular use for a command. A parameter can follow a flag,
another parameter, or the system-level command itself. A parameter is
generally specified in syntax as a generic name, such as dbname, to indicate
that you must type a specific value (in this case, the name of a database). The
most common parameters are database names and table names.

The following table describes the parameters and flags that are used
consistently in the system-level commands for the forms-based tools. These
descriptions are usually not repeated under the individual command sections
in this chapter.

Parameter Description

cmd_parameters Report-Writer parameters specific to each command

Standard Flags and Parameters

Chapter 17: Using System Commands for the Forms-based Tools 17–3

Parameter Description

command Report-Writer command that you enter on the system
command line

dbname Name of an Ingres database. This parameter must
precede all other non-flag parameters (with the
exception of v_node in v_node::dbname).

-Ggroupid The -G flag associates the session with the specified
groupid (user group identifier). Each user group
identifier has permissions defined for it, such as the
permission to update a particular table. When you use
the -G flag, these permissions are applied to your
session. If the groupid is a delimited identifier, enclose
it in double quotes. For information on passing these
quotes through the operating system, see the System
Administrator Guide for the system on which your
database resides.

To use this flag, you must be a member of the specified
groupid’s user list, an system administrator, or a user
with the security privilege. If you are not, the session is
disconnected and displays a message.

 The system administrator establishes user groups and
assigns users to them. If you are assigned a default
user group identifier, you do not have to use this flag;
the user group permissions are automatically applied to
your session.

VMS

In VMS, enclose the entire -Ggroupid flag and
parameter within double quotes ("-Ggroupid").

If the groupid is a delimited identifier, enclose it in
dereferenced double quotes. For information on
dereferencing these quotes, see the System
Administrator Guide.

-s Report-Writer flag that suppresses status messages but
not prompts.

/server_class If applicable, the Report-Writer code to identify the
type of database or Enterprise Access product being
used on the remote host. A preceding slash (/) is
required.

Compform

17–4 Character-based Querying and Reporting Tools User Guide

Parameter Description

server_type Name of one of the servers or Enterprise Access
products (for example, db2, or the distributed
server_type, star). If you are accessing a database
through an Enterprise Access product, the server_type
is mandatory. For Ingres Enterprise Access product
server types, see the Enterprise Access
product documentation.

-uusername Recognizes you as the user with the login username.
The -u flag must be followed immediately by a valid
user login ID. If the user name is a delimited identifier,
enclose it in double quotes. For information on passing
these quotes through the operating system, see the
System Administrator Guide for the system on which
your database resides.

This parameter can only be used by the DBA for a
database or by a user with the security privilege.

VMS

In VMS, enclose the entire -uusername flag and
parameter within double quotes ("-uusername").

v_node Name of the computer on which your database is
stored, as known to Ingres Net. If you are accessing a
database on a remote node, the v_node is mandatory;
it must be followed by two colons (::) and the dbname
parameter, with no intervening space.

Compform
Compiles a form that is already stored in a database and places the compiled
form in a text file.

Syntax

compform dbname|v_node::dbname[/server_class]
 form filename [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Compform

Chapter 17: Using System Commands for the Forms-based Tools 17–5

Description

When you are developing applications, you often must compile a form for use
with embedded SQL or other embedded query languages. Compiling a form
reduces start-up time when the form is then used in an embedded query
language program.

To compile the form without starting VIFRED, use the compform command at
the operating system prompt, instead of the Compile operation on the VIFRED
Utilities menu.

To describe the form, the compform command produces a C language
structure, by default.

VMS

In VMS, compform produces macro code by default.

You can compile only one form at a time.

This table lists valid command flags and parameters:

 Parameter Description

 form Name of the form to be compiled.

 filename Name of the text file into which the compiled form is placed.

VMS

-m Flag that compiles a form into VAX/VMS macro code. This
flag is set by default and is normally included in the symbol
for the compform command on VAX/VMS machines. You
must remove this flag to compile the form into C language
code.

Compiling a Form into Object Code

Before you can link the compiled form to your application, you must translate
the compiled form into object code. The command for this operation depends
on whether the compiled form is in C programming language format or macro
format.

Windows

If the text file is in C language format and the file name is empform.c, the
following command translates the form into object code:

 cl -c empform

The compform command automatically generates the correct header file
include statement for a compiled form in C language format.

Copyform

17–6 Character-based Querying and Reporting Tools User Guide

UNIX

If the text file is in C language format and the file name is empform.c, the
following command translates the form into object code:

 cc -c empform.c

If the symbol for the C language compiler at your installation is not cc,
substitute the appropriate compiler symbol in place of cc.

The compform command automatically generates the correct header file
include statement for a compiled form in C language format.

VMS

The command for this operation depends on whether the compiled form is in
C programming language or macro format.

If the compiled form is in macro format in a text file named empform.mar,
the following command translates it into object code:

macro empform.mar

Example

The following example compiles the employees form, which is stored in the
projects database on a local node, into a C language data structure and places
it in the empform.c file:

compform projects employees empform.c

If your database resides on a remote system—for instance, the projects
database on the hq node—specify the database as hq::projects rather than
projects.

Copyform
Copies a form, QBFName, or JoinDef from one database to another.

Syntax

To copy the object from the database to a text file:

copyform dbname|v_node::dbname[/server_class]
 form {form} | -q qbfname {qbfname} |
 -j joindef {joindef} filename [-s]
 [-uusername] [-Ggroupid]

To copy the object from the text file to the database:

copyform -i dbname|v_node::dbname[/server_class]
 [-r] filename [-s] [-uusername] [-Ggroupid]

Copyform

Chapter 17: Using System Commands for the Forms-based Tools 17–7

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Description

Moving forms from one database to another can be useful, particularly if you
create a prototype application in one database and then move the application
to another database in production mode. The copyform command invokes a
VIFRED utility that copies a form, a QBFName, or a JoinDef from one database
to another in a two-step process, as follows:

1. Use the first syntax of copyform to copy one or more forms, QBFNames, or
JoinDefs from a database to a text file.

2. Use copyform with the -i flag, as in the second syntax, to copy the objects
from the text file into a database.

You can also use copyform to change the ownership of a form, QBFName, or
JoinDef. To do so, copy the desired object into a text file and then copy the
form back into the database under a new owner.

Only one type of object (form, QBFName, JoinDef) can be specified in a single
copyform statement.

When using copyform to copy a form, it does not copy any QBFNames or
JoinDefs associated with that form. Similarly, when you copy a JoinDef, it
copies only the JoinDef. When copying a QBFName, however, any forms and
JoinDefs associated with that QBFName are copied, because these are part of
the QBFName definition.

The following table lists valid flags and parameters:

Parameter Description

form Name of the form(s) to be copied. You can specify up to
100 forms.

-q qbfname Flag and parameter that copies the specified QBFName (or
multiple QBFNames), along with any forms and JoinDefs
associated with the specified QBFName. The space between
the -q flag and qbfname is required.

-j joindef Flag and parameter that copies the specified JoinDef (or
multiple JoinDefs). The space between the -j flag and
joindef is required.

Copyform

17–8 Character-based Querying and Reporting Tools User Guide

Parameter Description

filename Name of the text file to which the objects are copied, or the
name of the text file previously created by copyform
containing the objects to be copied into the database.

-i Required flag for the input step, indicating that the
contents of the named file are to be copied to the database.

-r Flag that suppresses the verification prompt for overwriting
existing objects. Overwrites any object in the database
having the same name and owner as the object in the file.

-s Status message flag. Suppresses status messages.

Copying Forms to a Text File

If you do not enter values for dbname or filename, the copyform command
prompts you for the missing values.

If you do not specify a form name on the command line, copyform issues the
following prompt:

Specify Forms? [y/n]

In response to this prompt, type y for yes. The copyform command then asks
you for form names:

Form? (end with Return)

In response to this prompt, type the form names one at a time. To end a list
of form names, press the Return key.

The copyform command begins to copy the forms from the database. At this
point copyform is only copying the form’s definition to a text file. The format of
this text file is not useful for determining what is actually in the form. Most of
the file consists of the entries from the system catalogs in text format.
Because these catalogs are interdependent, do not alter or edit this file, or you
can cause the irrecoverable destruction of the form.

Copying QBF Names and JoinDefs to a Text File

You can also use the copyform command to copy a QBFName or a JoinDef
definition from a database to a text file. The -q flag causes copyform to treat
any names typed on the command line as QBFNames or to prompt for only
QBFNames. The -j flag causes copyform to treat any names typed on the
command line as JoinDef names or to prompt only for JoinDef names.

Copyform

Chapter 17: Using System Commands for the Forms-based Tools 17–9

When using the copyform command, you can specify only one class of names
at a time. For example, you cannot specify a form name and a QBFName in
the same command. If you specify only the database name and the text file
name on the command line, copyform prompts you for the class of name that
you enter:

Specify Forms? [y/n]

If you answer no to this prompt, copyform asks:

Specify Qbfnames? [y/n]

If you answer no to the QBFName prompt, copyform then asks:

Specify Joindefs? [y/n]

If you answer no to this prompt, the copyform command does nothing. Specify
a form name, QBFName, or JoinDef name. To end a list of QBFNames or
JoinDef names, press Return, just as you end a list of form names.

If you specify the -q flag on the command line, copyform prompts you only for
QBFNames. If you specify the -j flag on the command line, copyform prompts
you only for JoinDef names.

When copyform copies a QBFName from a database, it copies the QBFName
definition, the form definition, and JoinDef (if applicable) referenced by the
QBFName.

Copying Forms, QBFNames, and JoinDefs to a Database

Use the copyform command with the -i flag to copy forms, QBFNames, and
JoinDefs from a file into the database. You can only copy in files that were
previously created with the copyform command. The -i flag is a required
parameter and tells copyform that this is an input operation.

The -r flag, if specified, suppresses the verification prompt for replacing
existing forms, QBFNames, and JoinDefs. If one of these objects (form,
QBFName, or JoinDef) exists in the database under the same name and
owner, the -r flag tells Ingres to automatically overwrite the object. If the -r
flag is not specified, you are prompted for verification before it overwrites any
object.

Examples

In the following examples, if your database resides on a remote system—for
instance, the projects database on the hq node—specify the database as
hq::projects rather than projects.

Example 1 The following command line copies out a form called employees from the
projects database into a text file called empform.txt:

Copyrep

17–10 Character-based Querying and Reporting Tools User Guide

copyform projects empform.txt employees

Example 2 The following command line copies out a JoinDef called emp_join from the
projects database into the empinfo.txt file:

copyform projects empinfo.txt -j emp_join

Example 3 To force copyform to prompt you for a list of QBFNames from the projects
database, use the following command line:

copyform projects empdata.txt -q

Example 4 The following command copies the text file empform.txt into the newemp
database:

copyform -i newemp empform.txt

Copyrep
Allows you to copy Report-Writer report specifications from one database to
another.

Syntax
copyrep dbname|v_node::dbname [/server_class] txtfile report {report}
 [-f] [-s] [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host where the database resides. If you are using an
Enterprise Access product, then specify /server_class.

VMS

The -Ggroupid parameter must be enclosed in double quotes ("-Ggroupid")
to preserve the case of the -G flag.

If the username or groupid is a delimited identifier, enclose it in double quotes
("), dereference any embedded quotes, and use the appropriate number and
type of delimiting quotes to pass it through your operating system. For more
information, see the System Administrator Guide.

Description

The copyrep command copies a report specification, or set of report
specifications, from a database to a text file. You can then save the report
specification in a different database with the sreport command.

Copyrep

Chapter 17: Using System Commands for the Forms-based Tools 17–11

The copyrep command also provides a method for externally storing the report
specifications in simple files. It allows you to copy any number of report
specifications to a single text file. The new copies of the reports are named
within the file, but now contain no owner restrictions. Therefore, you can copy
reports owned by one user from a database into a file and then copy them
back into the database from the file as another user, effectively changing their
owner.

If you omit any of the parameters except those preceded by a hyphen, the
copyrep command prompts you for the missing values. If you do not specify
any reports, the command prompts you for the reports to be copied. Enter the
report names one per line, and end the prompted list of reports by pressing
Enter or Return (without entering a report name on that line).

The following table contains the flags and parameters specific to copyrep
command:

Parameter Description

txtfile Name of a text file in which to write the report
specifications.

report Name of one or more reports that are to be written to the
text file.

-f Flag that writes the report out in the same format as the
RBF Archive operation. For reports created with RBF, this
strips out many of the RBF formatting instructions.

The file created by this command is almost the same as the file created with
the Archive operation accessed in the Reports Catalog frame of RBF. For
reports originally created outside of RBF and saved with the sreport command,
the output to the file created by the copyrep is identical to the RBF Archive
operation, except that comments are stripped out.

For reports created in RBF, the copyrep command differs from the Archive
operation in that it retains all information pertaining to RBF in the copied file,
rather than removing any RBF formatting statements as the Archive operation
does. However, although RBF statements are retained, once you have copied
the report specification to a text file, it cannot be edited in RBF.

Use the -f flag to mimic the Archive method, which strips many of the RBF
statements out of a RBF report, making it easier to edit in Report-Writer.
However, if you use the -f flag, or if you use Report-Writer to edit a RBF report
created by the copyrep command, you cannot edit the RBF report in future
RBF sessions.

Delobj

17–12 Character-based Querying and Reporting Tools User Guide

Example

Suppose you want to move a report that you own called emphours from the
emp database into the newemp database, and assign it a new owner. The
following statement performs the first part of the task, copying the report into
a text file called emphours.rw:

copyrep emp emphours.rw emphours

The next part of the task uses the sreport command to copy the report in the
text file emphours.rw into the database newemp under a different owner:

sreport newemp emphours.rw -uuser2

Note: You must be the DBA for the newemp database or have the security
privilege to use the -u flag.

Delobj
Deletes from the database a specified object or all objects owned by the
invoker or named user.

Syntax

delobj dbname|v_node::dbname [/server_class]
 [-report|-form|-joindef|-graph|-application|-qbfname]
 objectname{, objectname} [-wildcard] [-silent]
 [-include filename] [-uusername] [-Ggroupid]

or

delobj dbname|v_node::dbname [/server_class] -all
 [-silent] [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Delobj

Chapter 17: Using System Commands for the Forms-based Tools 17–13

Description

The delobj command deletes the specified object from the database. You can
use this command to delete:

 A named object

 A list of objects that you specify on the command line

 All objects that match a wild card specification

 Several objects whose names are listed in a file

If you use the -all option, you can use only those parameters and flags
specified in the alternative syntax for -all. Using any other parameters results
in an error.

If you use the -wildcard flag, you can include the SQL wild card characters,
underscore (_) and percent sign (%), in the objectname to specify pattern
matching. To specify an explicit underscore or percent sign in an object name
when the -wildcard flag is present, precede the character with a backslash (\)
to dereference it. You can also use brackets ([]) to specify a pattern match.
For more information on pattern matching, see the System Administrator
Guide.

Use the -include filename option to specify an ASCII file you have previously
created, which contains the names of objects to be deleted. This file can
contain a static list of objects, or it can contain object names generated as
output from a select statement that specifies date, value, or other criteria to
determine which objects must be included in the list.

The file must adhere to the following format rules:

 Lines must be terminated by ASCII CR, LF, or FF characters.

 Line length must be 256 bytes or less; exceeding this limit produces
unpredictable results.

 A line can contain any combination of object names, white space (tabs and
spaces), and comment text.

 Object names must be delimited by white space or comments.

 Comment text must be introduced by a number sign (#) and continue to
the end of the line. Nested comments and comments that span multiple
lines are disallowed.

Delobj

17–14 Character-based Querying and Reporting Tools User Guide

Parameter Description

objectname Name of an object to be deleted.

-wildcard Allows the use of SQL wild cards in objectname. The
default is to disallow wild cards.

-include Reads the names of objects to be deleted from the file
specified by the filename parameter.

filename Name of an ASCII file containing the names of objects to
be deleted. Must be used in conjunction with the -include
option, and must be preceded by a space.

-silent Suppresses status messages, but not prompts.

-all Deletes all reports, forms, joindefs, graphs, applications,
and QBFNames owned by the invoker or specified user.

Examples

In the following examples, if your database resides on a remote system—for
instance, the admin database on the hq node—you must specify the database
as hq::admin rather than admin.

Example 1 Deletes a JoinDef named emptasks from the admin database.

delobj admin -joindef emptasks

Example 2 Deletes all objects owned by the invoker from the admin database.

delobj admin -all

Example 3 Deletes all forms that begin with the letters old from the admin database.

delobj admin -form old% -wildcard

Example 4 Deletes all reports listed in the oldrpts.txt file from the admin database.

delobj admin -report -include oldrpts.txt

Example 5 Some examples of possible entries in the oldrpts.txt file are:

Example of a comment in an included file
oldrpt # Comment following a report name
oldrpt # Comment closely following a report name
sales_old # Deletes only the report, sales_old
sales_1 # Deletes salesA1, sales B1, and so on
sales% # Deletes reports beginning with "sales"
sales\[1-9\] # Deletes reports sales1 through sales9
proj3 proj7 # Example of reports separated by a space
rpt1 rpt2 # Example of reports separated by a tab

Ingmenu

Chapter 17: Using System Commands for the Forms-based Tools 17–15

Ingmenu
Starts the Ingres Menu.

Syntax

ingmenu dbname|v_node::dbname[/server-_class] [-e]
 [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Description

Invokes the Ingres Menu, a forms-based interface for accessing any Ingres
forms-based tool.

This table describes the flags and parameters you can use with the ingmenu
command:

Flag Description

-e Flag that invokes the command in expert mode, causing the
catalogs to be displayed empty initially. This allows you to
enter the name of a specific object directly, rather than select it
from a list.

Examples

Example 1 Invoke the Ingres Menu on the employee database:

ingmenu employee

Example 2 Invoke the Ingres Menu in expert mode with empty catalogs, on the projects
database on the hq node:

ingmenu hq::employee -e

Iquel

17–16 Character-based Querying and Reporting Tools User Guide

Iquel
Starts Interactive QUEL (IQUEL) in the Interactive Terminal Monitor.

Syntax

iquel [SQL option flags]
 dbname|v_node::dbname[/server-type]
 [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Description

The iquel command invokes the forms-based Interactive Terminal Monitor for
use with the IQUEL interactive query language. For more information on query
languages, see your query language reference guide.

For valid iquel command flags, see the Isql command. They are the same for
both commands.

Isql
Starts Interactive SQL (ISQL) in the Interactive Terminal Monitor.

Syntax

isql [SQL option flags]
 dbname|v_node::dbname[/server-type]
 [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Isql

Chapter 17: Using System Commands for the Forms-based Tools 17–17

Description

The isql command invokes the forms-based Interactive Terminal Monitor for
use with the ISQL interactive query language. For more information on query
languages, see the query language reference guide.

The following table lists valid SQL option flags that specify the format of output
or affect the behavior of the DBMS. You can specify a maximum of 12 flags.

 Flag Description

 -cN Set the minimum field width for printing character columns to
N. The default is 6.

 -fkxM.N Set floating point output column width to M characters (total),
including N decimal places, and (if warranted) e+|-xx and the
decimal indicator character itself. The value of k can be 4 for
float4 or 8 for float8. The value of x can be E, F, G or N
(uppercase or lowercase) to specify an output format. E
indicates exponential format. F or N indicates the floating point
format. G indicates the floating point format and guarantees
decimal alignment.

If you specify F, N, or G and the number is too large for the
format indicated by the flag, it is displayed in exponential
format. To prevent this format overflow, M must be greater
than or equal to N + 7.

The default display format for both float4 and float8 is n10.3,
unless your computer supports the IEEE standard for floating
point numbers, in which case the display format for float4 and
float8 is n11.3.

 -ikN Set integer output column width to N. The value of k can be 1,
2, or 4 for integer1, integer2, or integer4, respectively. The
default for N is 6 for integer1 and integer2 fields, and 13 for
integer4 fields.

 -tN Set the minimum field width for printing text columns to N. The
default is 6.

 -l Locks the database for your exclusive use so that no one else
can open the database while you are in it. If you attempt to
take an exclusive lock on a database that is in use, the system
informs you that the database is temporarily unavailable.

 -nM Sets modify mode on the index command to M. M must be one
of the following storage structures: isam, cisam, btree, cbtree,
hash and chash. The default is isam.

Isql

17–18 Character-based Querying and Reporting Tools User Guide

 Flag Description

 -Rroleid Specifies a role identifier for the session and applies the role
identifier’s permissions to your session. The system
administrator defines a role identifier; the DBA grants database
permissions to the role ID.

The roleid must be an existing role identifier. If the role
identifier requires a password, you are prompted for the
password. If you specify the -R flag but omit both the role
identifier and password, you are prompted for both. If no
password is defined for the specified roleid, press the Return
key when prompted for the password.

 Ingres does not validate either roleid or password if you are a
system administrator, DBA for the specified database, or a user
that has the db_admin privilege.

VMS

 This flag must be specified in double quotes: "-Rroleid"

 +U | -U Enables/disables user updating of the system catalogs and
secondary indexes. This flag takes an exclusive lock on the
database. To update system catalogs, you must have the
update system tables privilege obtained through accessdb.

VMS

 This flag must be specified in double quotes: "+U"|"-U"

 +w|-w Specifies wait/don’t wait for the database. If you specify +w,
Ingres waits, provided that certain processes are running (sql-l,
sql -U, verifydb, rollforwarddb or sysmod) on the given
database. Upon completion of those processes, Ingres
proceeds. If you specify -w and the database is not available, a
message is returned and execution is stopped. If you omit the
w flag and the database is unavailable, then an error message
is returned if Ingres is running in the foreground (more
precisely, if the standard input is from a terminal). Otherwise,
the wait option is invoked.

VMS

 This flag is not valid in batch mode. The flag defaults to -w.

 -xk Sets arithmetic handling mode. The value of k must be f or w.
An f indicates that all arithmetic exceptions (floating overflow
and underflow, integer overflow and divide by zero) must be
treated as fatal errors. In this mode, the detection of an
arithmetic exception terminates query processing. A w indicates
that warning messages must be generated for arithmetic
exceptions. In this mode, the query is run to completion, and a
summary of exceptions detected is generated. The default
condition is to ignore exceptions.

Printform

Chapter 17: Using System Commands for the Forms-based Tools 17–19

 Flag Description

 +Y|-Y Same as +U|-U flag, except does not take an exclusive lock on
the database.

VMS

 Specify this flag in double quotes: "+Y"|"-Y"

Examples

Example 1 Invoke ISQL in the Interactive Terminal Monitor on the employee database
on the hq remote node:

isql hq::employee

Example 2 Open the empdata database on a local node.

isql empdata

Example 3 Open empdata, display float4 columns in G format with two decimal places
and integer1 columns with three spaces.

isql -f4g12.2 -i13 empdata

Printform
The printform command places an image and description of a form and its
fields into a text file.

Syntax

printform dbname|v_node::dbname [/server_class] form
 filename [-uusername] [-Ggroupid]

 If your database resides on a remote system, specify v_node, the name of
the remote host. If you are using an Enterprise Access product,
specify /server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Qbf

17–20 Character-based Querying and Reporting Tools User Guide

Description

The printform command works like the Print operation on the Utilities submenu
of the Forms Catalog frame (described in the section, Printing Forms, of the
chapter “Using VIFRED”). It sends an image and a description of a single form
to a text file. To send a copy of the file to your printer, use your operating
system print commands.

The image sent to the text file contains all fields on the form, including those
that have been assigned the Invisible attribute.

Refer to Attributes in the Set List for an explanation of the Invisible attribute.

Parameter Description

filename Name of a text file to which the image of the form is
sent.

Example

The following example prints the employees form, which is stored in the
projects database on a local node, into the emp.prf file:

printform projects employees emp.prf

If your database resides on a remote system—for instance, the projects
database on the hq node—specify the database as hq::projects rather than
projects.

Qbf
Starts QBF.

Syntax

qbf dbname|v_node::dbname [/server-type] [-mmode]
 [-t] |-f | -j | -l [querytarget] [-e] [-s]
 [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Qbf

Chapter 17: Using System Commands for the Forms-based Tools 17–21

Description

The system-level qbf command starts QBF. QBF is an interactive, visually
oriented system for querying and manipulating data in tables in an Ingres
database.

The database name specified in a qbf command line must already exist.

If you specify a valid database but do not specify a query target, QBF starts in
the query definition phase at the Start-Up frame.

If you specify a valid database, a query target, and appropriate command line
flag, QBF starts in the query execution phase. A frame is displayed that is
appropriate for the query target you specified.

If you specify a query target on the command line, you must own all the tables
that underlie the query target or have the proper permissions to access them.
If you specify a JoinDef for the query target, you or the database
administrator must own it.

Use the qbf command with a specific mode flag (-mappend, -mupdate, or
-mretrieve) to enter and remain in a particular query execution function. In
this situation, you must also include a querytarget flag in the qbf command.

Use qbf without a mode flag to give yourself access to all query execution
functions (Append, Retrieve, Update), and the ability to switch query targets
or return to the Start-Up frame or query definition phase.

Use the -t query target flag to specify that data be displayed in table format.

Parameter Description

-mmode Mode flag. Bypasses the query definition phase of
QBF, going directly to a function of query execution,
where mode is retrieve, append, update, or all. The all
mode is the default mode, which allows you to
perform the Append, Retrieve, and Update functions.

If you use the -mmode flag, you must also specify a
query target. If you use the -mmode parameter and
fail to specify a query target on the command line,
QBF prompts you for the query target name.

-t Table flag. This is the default flag if no query target
flag is specified. It specifies that the query target is a
table, starts QBF with the specified table, and
specifies that the table-field format can be used to
query the table. If a query target is not specified,
using the -t flag causes QBF to begin operation by
displaying the Tables catalog.

Qbf

17–22 Character-based Querying and Reporting Tools User Guide

Parameter Description

-f Form flag. Specifies that the query target is a
QBFName and starts QBF with the specified custom
form. If a query target is not specified, using the -f
flag causes QBF to begin operation by displaying the
QBFName catalog.

-j JoinDef flag. Specifies that the query target is a
JoinDef and starts QBF with the specified JoinDef. If a
query target is not specified, using the -j flag causes
QBF to begin operation by displaying the JoinDef
catalog.

-l Look flag. Specifies that QBF must look for the query
target first among QBFNames, then among JoinDefs,
and last among tables. If you use the -l flag without
specifying a query target, QBF prompts you for the
query target name.

querytarget Starts QBF in the query execution phase and specifies
the table, view, synonym, JoinDef, or QBFName that
you want to query. If you do not specify a
querytarget, QBF starts in query definition phase. If
the query target is a table, view, or synonym, you can
qualify it with a valid schema name in the format,
schema.querytarget. If the table name, view name, or
synonym is a delimited identifier, enclose it in double
quotes.

-e Flag that invokes the command in expert mode,
causing the catalogs to be displayed empty initially.
This allows you to enter the name of a specific object
directly, rather than select it from a list.

-s Status message flag. Suppresses status messages,
but not prompts.

Examples

Example 1 Start QBF in append mode on a custom form in the newdb database on a
local node:

qbf newdb -mappend -f myform

Example 2 Retrieve rows from the projtasks JoinDef of the operations database on the
hq remote node:

qbf hq::operations projtasks -j -mretrieve

Query

Chapter 17: Using System Commands for the Forms-based Tools 17–23

Query
Starts the query execution phase of QBF.

Syntax

query dbname|v_node::dbname[/server-type] [-mmode]
 [-t |-f | -j] querytarget [-e] [-uusername]
 [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Description

The system-level query command starts the query execution phase of QBF.
The database name specified in a query command line must already exist.

The flags and parameters for the query command are the same as for the qbf
command, except that querytarget is a required parameter. Unless you specify
otherwise with the -t, -f, or -j flag, the query command uses the same order
for looking up the query target as the -l flag in the qbf command: QBFName,
then JoinDef, then table. Use the query or the qbf command with a specific
mode flag (-mappend, -mupdate, or -mretrieve) to enter and remain in a
particular query execution function. Use the query command without the
-mmode flag to access all query execution functions (Append, Retrieve,
Update) for the specified query target.

Examples

Example 1 Start QBF in append mode using the newdb database on a local node and a
query target that is a JoinDef:

query newdb -mappend -j staffinfo

Example 2 Update records with the projtasks JoinDef of the operations database on the
hq remote node:

query hq::operations projtasks -j -mupdate

Rbf

17–24 Character-based Querying and Reporting Tools User Guide

Rbf
Starts RBF.

Syntax

rbf dbname|v_node::dbname[/server-type]
 [reportname|[schema.]tablename|[schema.]viewname|
 [schema.]synonym|
 JoinDef] [-r] [-m[style]] [-lpagewidth] [-e] [-s]
 [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Parameter Description

reportname Name of an existing report specification, as saved
during a previous Reprt-By-Forms session.

schema Valid name of the schema to which the table, view,
or synonym belongs. If the schema name is a
delimited identifier, enclose it in double quotes. For
information on passing these quotes through the
operating system, see the System Administrator
Guide for the system on which your database
resides.

tablename

viewname

synonym

JoinDef

Name of the table, view, synonym, or JoinDef on
which you want to base the report. If you do not
specify a report, table, view, synonym, or JoinDef
name on the command line, RBF prompts for one. If
the table name, view name, or synonym is a
delimited identifier, enclose it in double quotes. For
information on passing these quotes through the
operating system, see the System Administrator
Guide for the system on which your database
resides.

Rbf

Chapter 17: Using System Commands for the Forms-based Tools 17–25

Parameter Description

-r Indicates that the name specified after dbname is a
report rather than a table or view.

If RBF finds a report specification for the specified
report, it places you in the Report Layout frame,
where you can edit the report specification. If RBF
does not find a report specification of the specified
name, it displays an error message.

-m[style] Indicates that the name specified after dbname is a
table or view name, rather than a report specification
name. RBF creates a default report specification for
the specified table or view.

To specify the style of your report, use the optional
style parameter. The style can be tabular, column,
block, labels, indented, or default. The column style
is the same as the tabular style. You cannot specify
the Master/Detail report style on the command line.

 If you do not specify a style or if you choose the
default style, RBF selects tabular or block, depending
on the width of your report. If all the report columns
fit on a page, it selects tabular; otherwise, it selects
block. When determining the default style, RBF uses
132 characters as the default report width. To
specify a wider report, use the -l flag.

If you do not use the -r or -m flag, RBF searches first
for a report specification, and then a table or view, of
the specified name. If it finds a report specification,
it places you in the Report Layout frame. If it finds a
table or view, it creates a report specification for it.
If RBF does not find a report, table, or view of the
specified name, it displays an error message.

-lpagewidth Directs RBF to use the page width (line length)
specified by pagewidth when generating default
reports. By default, RBF uses a page width of 132
characters for the labels style, and 80 characters for
the block style, 100 characters for the wrap style. All
other styles have no default page width. If you do
not specify a page width for these styles, RBF makes
the report as wide as necessary to accommodate the
data.

If you execute a report specification that contains a
Report-Writer .pagewidth statement, the report
width specified with the -l flag overrides it.

Rbf

17–26 Character-based Querying and Reporting Tools User Guide

Parameter Description

-e Flag that invokes the command in expert mode,
causing the catalogs to be displayed empty initially.
This allows you to enter the name of a specific object
directly, rather than select it from a list.

-s Status message flag. Suppresses informational
messages, but not prompts.

Examples

Example 1 Start RBF for the sales table in the newdb database on the hq remote node:

rbf hq::newdb sales

Example 2 Start RBF for the emp table owned by hr (Human Resources) in the personnel
database on a local node and create a default Tabular report that is 200
characters wide:

rbf personnel hr."perm emp" -mtabular -l200

For information on passing the delimited identifier’s surrounding quotes
through your operating system, see the System Administrator Guide for the
system on which your database resides.

Example 3 Start RBF for the emp table in the personnel database on a local node and
create a default report specification, letting RBF choose the Tabular or Block
style, depending on the width of the report:

rbf personnel emp -m

Example 4 Start RBF for emp table in the personnel database on a local node and create
a Labels report:

rbf personnel emp -mlabels

Example 5 Start RBF for the personnel database on a local node and display the emplist
report specification for editing:

rbf personnel emplist -r

or

rbf personnel emplist

If you do not use either the -r or -m flag, Rport-By-Forms searches for a
report specification first, and then a table or view, of the specified name.

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–27

Report
Executes a report specification for Report-Writer.

Syntax

report dbname|v_node::dbname [/server_class] reportname |
 [schema.]tablename | [schema.]viewname| [schema.]synonym
 [(variablename=value{, variablename=value})]
 [-foutputfile] [-oprinter [-ncopies]]
 [-r | -m[style] | -ireportspecfile]
 [-uusername] [-Ggroupid]
 [-lpagewidth] [-vpagelength]
 [-qmxquer] [-wmxwrap]
 [-d] [-s] [-h] [-5] [-6]
 [+b|-b] [-nofirstff | -firstff] [+t|-t]

If your database resides on a remote system, specify v_node, the name of the
remote host where the database resides. If you are using an Enterprise
Access product, then specify /server_class.

If the (variablename=value) parameter includes characters that are treated
specially by your operating system (such as parentheses in Windows NT and
UNIX or slashes in VMS), the entire parameter must be enclosed within double
quotes to pass it through the operating system. For details, see Passing
Parameters on the Command Line in this chapter.

Windows

Enclose the (variablename=value) parameter within double quotes.

UNIX

Execute this command from the Bourne shell and enclose the
(variablename=value) parameter within double quotes.

VMS

Enclose the -Ggroupid parameter in double quotes ("-Ggroupid") to preserve
the case of the -G flag.

If any parameter is a delimited identifier, specify it in editable format. For
more information, see Specifying Delimited Identifiers. Also, use the
appropriate number and type of delimiting quotes to pass it through your
operating system. For more information, see Passing Delimited Identifiers later
in this chapter.

Description

The report command executes the report specifications that correspond to the
reportname parameter in the .name statement or to a default report for a
table in the database.

Report

17–28 Character-based Querying and Reporting Tools User Guide

This command actually produces the report. When you type the report
command at your screen, the following actions occur:

1. Report-Writer checks the report system catalogs to see if a report of the
given name is stored in the database. If one is found, it reads the
specifications for the report and checks for errors. If errors occur, it does
not run the report.

 If no report with the given name is found, the name is assumed to be a
table name, view name, or synonym referring to a table. Report-Writer
formats a default report for the specified table and executes it. If no table
or report with the given name is found, an error message appears on the
screen.

2. If the specification is error-free, Report-Writer replaces variables for the
setup and layout statements with their specified values. Then it runs the
.query statement in your report specification (if specified) and extracts the
report data.

3. Finally, Report-Writer sorts the report data, if required, and formats and
outputs the report. If no report with the given name is found, the name is
assumed to be a table name. Report-Writer formats a default report for
the specified table and runs it. If no table or report with the given name is
found, an error message appears on the screen.

4. If any column in the table on which the report is based is of an
unsupported data type, such as long varchar, byte, byte varying, and long
byte, Report-Writer ignores and does not print that column when printing
the report.

Note: If Report-Writer encounters subsequent references to a column of an
unsupported data type, such as in sort operations, it issues an error message
and terminates the report.

Report-Writer prompts you for reportname, dbname, and values for any
variables declared with prompts or undeclared variables, if you have not
already specified their values on the command line. If specified, you must
place the dbname, the reportname, tablename, viewname, or synonym, and
any variablename=valuestring parameters in the order shown previously in
the Syntax section.

You can qualify the table, view, or synonym name as belonging to another
user by specifying it as schema.objectname.

You can specify the following parameters as delimited identifiers enclosed in
double quotes (") if recognition of delimited identifiers has been enabled in the
report specification with the .delimid statement:

 schema

 tablename, viewname, or synonym

 value in the variablename=value clause

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–29

The -r and -m flags are especially useful if you have reports and tables with
the same name and must be more specific about which you want. Use the -r
flag to force Report-Writer to only check for reports with the name you specify.
Use the -m flag to force Report-Writer to only check for tables with the name
you specify. For further details, see the following table.

Additionally, you can use the -m flag to specify the style of default report to be
produced.

The following parameters are specific to the report command:

Parameter Description

reportname Name of a report that appears in a .name statement in a
report specification that has been stored in the Reports
Catalog. A report name cannot be specified if you are
using the -i flag.

schema Collection of objects to which the table, view, or synonym
belongs. The schema also implies the user that owns the
object. Must be followed immediately by a period (.) and
the appropriate object name, with no intervening space. If
it is a delimited identifier, specify it in its editable format.
For more information, see Specifying Delimited Identifiers.
For instructions on passing the delimited identifier and its
quotes through your operating system, see Passing
Parameters on the Command Line.

tablename
viewname
synonym

Name of the table or view, or a synonym for a table, in
your database on which the report is based. If it is a
delimited identifier, specify it in its editable format. For
more information, see Specifying Delimited Identifiers. For
instructions on passing the delimited identifier and its
quotes through your operating system, see Passing
Parameters on the Command Line. A table, view, or
synonym name cannot be specified if you are using the -i
flag.

variablename Name of a variable used in the report specification. This
variable can either be used in the specified query or
referred to in a Report-Writer statement. Variable/value
combinations on the command line must be separated by
blanks, commas (,) or tabs. Specify a space (or tab)
before the opening parenthesis of the variable/value list.

Report

17–30 Character-based Querying and Reporting Tools User Guide

Parameter Description

value Value that replaces every occurrence of the corresponding
variable name in the report specification. If values is a
delimited identifier, specify it in its editable format. For
more information, see the Specifying Delimited Identifiers.
If value is a string, date, or delimited identifier, enclose
the entire value within single or double quotes (as
appropriate for your query language). Report-Writer
removes the quotes when it processes the string. For
more information about passing values to Report-Writer,
see Passing Parameters on the Command LinePassing
Parameters on the Command Line.

-foutputfile Flag that directs the formatted report to outputfile for
subsequent output. If you do not specify an output file
with this option, the -f flag writes the report to the file
specified in the .output statement in the report
specification file. If you specify neither outputfile nor a file
in the .output statement, the -f flag writes the report to
your screen.

-oprinter
[-ncopies]

Flag requesting that the report be sent to the specified
printer. If you do not specify a printer with this flag,
Report-Writer assumes the following default system print
command to send the report to the default printer: print

UNIX

The UNIX default system print command is lpr.

Because Report-Writer creates a temporary file to print
the report, additional memory can be required for printing
large reports. Report-Writer deletes the file as soon as it
prints the report.

VMS

We recommend that you initialize the printer queue to
print the job flag page, which includes the name of the
report. Otherwise, the flag page prints the temporary file
name. Because this file name has no connection to the
report name, it is difficult to distinguish a report by the
flag page. For ease of use, you can initialize a printer
queue specifically for reports.

-r Flag indicating that the name specified after dbname is a
report rather than a table, view, or synonym. If it does
not find a report with the given name, Report-Writer
displays an error message. If -r is not specified, it looks
for a report of the given name, and if none is found, and a
table, view, or synonym of the given name does exist,
Report-Writer sets up a report for the specified table.

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–31

Parameter Description

-m[style] Flag indicating that the name specified after dbname is a
table or view name, or a synonym for a table, rather than
a report. Report-Writer formats a default report for the
specified table and does not check first for a report of the
same name.

To specify the style of your report, use the optional style
parameter. The style can be wrap, tabular, column, or
block. The column style is the same as the tabular style.

 If you do not specify a style, Report-Writer chooses either
tabular or block, depending on the width of your report. If
all of the report columns fits on one page, it selects
tabular; otherwise, it selects block. When determining the
default style, Report-Writer uses 132 characters as the
default report width. To specify a wider report, use the -l
flag.

If neither the -r nor the -m flag is specified, Report-Writer
looks first for a report of the given name. If not found, it
looks for a table, view, or synonym of that name, and if
one exists, sets up a default report for the specified table.

-ireportspecfile Flag and parameter requesting that Report-Writer run the
report using the report specifications found in the
specified source file. When you use this flag,
Report-Writer does not save the specified source file in
the database. If you want to save the report specifications
in the database, use the sreport command to place the
report source file in the database.

The specified file can contain report specifications for only
one report; however, the report can contain .include
statements that include other files when saving the report.
This flag cannot be used in conjunction with the -m or -r
flag. Additionally, if you use this flag, a report, table,
view, or synonym name cannot be specified on the
command line.

-lpagewidth Flag and parameter that sets pagewidth as the maximum
number of characters for each line of output. The
pagewidth must be a positive integer. This flag overrides
the .pagewidth statement in the report specification file.
By default, Report-Writer uses a line length of 80
characters for the block style, and 100 characters for the
wrap style. The tabular and column styles have no default
line length. You need this option only if your report
contains unusually long lines.

Report

17–32 Character-based Querying and Reporting Tools User Guide

Parameter Description

-vpagelength Flag and parameter that sets pagelength as the number of
lines for each page of output. The pagelength must be a
positive integer. This flag overrides any .pagelength
statement in the report specification file. The default is 61
lines per page if the report is written to a file.

Windows

Add .formfeed to the header page, or start the report with
the +b option to control the lines per page.

UNIX

If written to a screen, the report defaults to your screen
length per page.

-qmxquer Flag and parameter that sets the maximum length of the
query specified in the .query statement, after all
substitutions for runtime parameters have been made. By
default, the maximum query size is 2048 characters. You
need this option only for particularly long queries.

-wmxwrap Flag and parameter that sets the maximum number of
lines allowed within an invocation of the .block statement.
By default, 310 .newline statements are permitted. This
maximum is provided as a protection against misspecified
columns, and is rarely needed.

To protect against omitted explicit .newline and/or
.newpage statements, data that formats into a single
logical line can wrap to yield a default maximum of 310 or
mxwrap lines.

-d Flag requesting that the report continue to run even if
.setup or .cleanup statement errors are detected by the
DBMS. However, the -d flag does not affect error
handling. For example, if Report-Writer is unable to access
a table required for the report, the report fails because it
could not find the table for the query.

The -d flag is particularly useful if you are required to run
reports iteratively for development or testing purposes. In
such cases, you can be aware of the errors, but choose to
bypass them for the time being.

For details on error handling and transactions, see the
rules for the .setup and .cleanup statements in the
chapter “Report-Writer Statements.”

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–33

Parameter Description

-h Flag providing a null set of data for a report that retrieves
no rows. Report-Writer executes all .header and .footer
sections, but suppresses the .detail section. This feature
allows you to include the following .if statement in the
report footer to output a positive acknowledgment that no
rows were found:

.if count(column) = 0 .then
 .println 'No data matched the
 query specifications.'
.endif

-5 Flag requesting report compatibility with Ingres release 5,
if available at your installation. The default is that the flag
is not specified.

If the -5 flag is set, the +|-t option defaults to +t to
ensure compatibility. The +t option requests that
Report-Writer use floating-point arithmetic in all
computations except those involving only integer-valued
columns. Report-Writer converts integer values to floating
point before using them in computation. For expressions
that involve only integer columns, convert the columns
explicitly to get floating point arithmetic.

The month part of the current_date function appears in
uppercase if no format is specified. Normally, the system
displays the month names in lowercase letters. For
example, if the -5 flag is set, what is now displayed as
“01-feb-1998” is displayed as “01-FEB-1998”.

-6 Flag requesting that Report-Writer report distinct rows
when executing SQL default reports or SQL reports that
contain .data, .table, .view, or .sort statements. Without
-6 specified, Report-Writer reports duplicate rows in the
SQL reports previously described. The -6 flag does not
apply to QUEL reports, which always retrieve distinct
rows.

-b | +b Flag that forces or suppresses formfeeds by overriding
any .formfeed or .noformfeed statement occurring in the
report specification file. If turned on (+b), it forces
formfeeds at the end of each page. If turned off (-b), it
suppresses formfeeds for the end of each page. For more
information on the -nofirstff and -firstff flags, see the
following description.

Report

17–34 Character-based Querying and Reporting Tools User Guide

Parameter Description

-nofirstff
-firstff

Mutually exclusive flags that specify whether an initial
formfeed is suppressed, only when formfeeds are enabled.
The -nofirstff flag suppresses the initial formfeed, if
formfeeds are enabled. The -firstff flag specifies an initial
formfeed only by overriding a .nofirstff statement in the
report specification when formfeeds are enabled; it cannot
enable an initial formfeed by itself. Specify only one of
these flags on the command line; specifying both
generates a fatal error.

-t | +t Flag that specifies whether actual or rounded values must
be used in aggregates. If turned on (+t), causes
aggregates to occur over rounded values for any floating
point column whose format has been specified in a
.format statement as numeric F or template. Each value in
the column is rounded to the precision given by its format.
If turned off (-t), aggregates use the actual underlying
values. The -t flag is the default.

Examples

Example 1 Run a default report based on the vendor table in the purchasing database,
using a default format and redefining the page width, and send the output to
the named printer:

report purchasing vendor -m -l80 -olaser2

Example 2 Run the report contained in the source file, po_rep.rw, against the
purchasing database and store the results in the po_sum.out file:

report purchasing -ipo_rep.rw -fpo_sum.out

Example 3 Run a default report in column format on the clients table owned by mktgmgr
in the sales database and eliminate duplicate rows:

report sales mktgmgr.clients -mcolumn -6

Example 4 Run the report named recpay against the accounting database and pass in
the value of the variable, title:

report accounting recpay
 (title = 'AccountsReceivable')

For more parameter passing examples, see the following section, Passing
Parameters on the Command Line.

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–35

Passing Parameters on the Command Line

This section describes how to pass parameters to Report-Writer from the
command line for reports based on SQL queries. You cannot pass parameters
that contain delimited identifiers on the command line if your report
specification contains a QUEL query.

If necessary, for details on debugging your query, see the section on the
II_EMBED_SET printqry option in your System Administrator Guide.

Passing Numeric Variables

Suppose your report specification contains the following code:

.declare deptno = integer

.query select firstname, lastname, deptid from employees
 where deptid = $deptno

To pass in a value for the numeric variable, $deptno, on the command line,
enclose the variablename=value clause in parentheses ():

Windows

VMS

report personnel emp (deptno=504)

UNIX

report personnel emp "(deptno=504)"

Note for QUEL Users Regardless of whether your report specification uses an SQL or a QUEL
query, you pass values for numeric variables in the same way. Your report
specification code would look like this for QUEL:

.declare deptno = integer

.query
range of e is emp
retrieve (e.firstname,e.lastname,e.deptid)
 where e.deptid = $deptno

Passing String and Date Variables

The report specification must enclose the string and date variables, $dname
and $ddate, in quotes that are appropriate for your query language (in this
case, single quotes for SQL), as shown in the following example:

.declare dname = varchar(20),
 ddate = date
.query select firstname, lastname, deptid from employees
 where deptname = '$dname' and hiredate >= '$ddate'

The previous example retrieves data for employees in the named department,
$dname, who were hired on or after a specified date, $ddate.

Report

17–36 Character-based Querying and Reporting Tools User Guide

If the variable is quoted appropriately for your query language (single quotes
for SQL or double quotes for QUEL) in the report specification, use the
following syntax for specifying a string or date value on the report command
line:

report dbname tablename (variablename='value')

Each string or date value must be enclosed in single quotes to identify it to
Report-Writer as a string. Report-Writer strips off these quotes before
assigning the value to the variable in the query. Additionally, enclose the
entire variablename=value clause in parentheses (). If it contains any
characters treated specially by your operating system (such as parentheses in
Windows NT and UNIX or slashes in VMS), the parenthetical clause must be
enclosed within double quotes to pass it through the operating system.

For example:

report personnel emp "(dname='BL', ddate='01/01/98')"

If the report specification omits the query language-specific quotes around the
variable (for example, where deptname = $dname instead of where deptname
= '$dname'), these quotes must be supplied to the query. To do so, include
them in the string or date value on the command line within the single quotes
required to identify the string to Report-Writer. You must dereference the
embedded single quotes required by SQL. To dereference single quotes within
a single-quoted string you double them (''). Additionally, if the parenthetical
clause contains characters special to your operating system, enclose the entire
parameter within double quotes. For example:

report personnel emp "(dname='''BL''',
 ddate='''01/01/98''')"

Note for QUEL Users The report specification must enclose the string and date variables, $dname
and $ddate, in double quotes for QUEL, as shown in the following example:
.declare dname = varchar(20),

 ddate = date

.query

range of e is emp

retrieve (e.firstname,e.lastname,e.deptid)

 where e.deptname = "$dname" and

 e.hiredate >= "$ddate"

This example retrieves data for employees in the named department,
$dname, who were hired on or after a specified date, $ddate.

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–37

If the report specification omits the query language-specific quotes around the
variable (for example, where e.deptname = $dname as opposed to where
e.deptname = "$dname"), these quotes must be supplied to the query by
including them within the string or date value on the command line, inside the
single quotes that identify the string to Report-Writer. Additionally, if the
parenthetical clause contains characters special to your operating system,
enclose the entire parameter within double quotes and escape any double
quotes within the parameter according to the rules for your operating system.

Windows

In Windows NT, you escape double quotes by preceding them with a
backslash (\). For example:

report personnel emp "(dname='\"BL\"',

 ddate='\"01/01/91\"')"

UNIX

In UNIX, you escape double quotes by preceding them with a backslash (\).
For example:

report personnel emp "(dname='\"BL\"',

 ddate='\"01/01/91\"')"

VMS

In VMS, you escape double quotes by preceding them with another double
quote. For example:

report personnel emp "(dname='""BL""',

 ddate='""01/01/91""')"

Passing an Entire Where Clause

In the following examples, the where clause itself is a variable for the report.
You pass the entire where clause to Report-Writer from the operating system
command line in the variablename=value clause. The .query section in the
report specification might look like this:

.QUERY select * from tablename where $wherevar

In this case, the value in the variablename=value syntax is a string containing
the search qualifications. Enclose valuestring in single quotes to identify to
Report-Writer as a string, as shown in the following example:

report accounting recpay (wherevar='valuestring')

If the parenthetical clause contains characters special to your operating
system, enclose the entire parameter within double quotes:

report accounting recpay "(wherevar='valuestring')"

The valuestring can include a variable and a value. If the value in the
valuestring is a character string or date, it must be enclosed in quotes that are
appropriate for your query language (single quotes for SQL). Dereference
single quotes within the single-quoted valuestring by doubling them ('').

Report

17–38 Character-based Querying and Reporting Tools User Guide

For instance, in the following example enclose the date string, 12/31/98, in a
double set of single quotes to dereference them inside the quotes surrounding
the valuestring:

report accounting recpay
 (wherevar='date = ''12/31/98''')

If your operating system requires it, enclose the entire parameter within
double quotes:

report accounting recpay
 "(wherevar='date = ''12/31/98''')"

The resulting valuestring is:

date = '12/31/98'

Note for QUEL Users The entire where clause is passed to Report-Writer from the operating
system command line in the variablename=valuestring clause. The .query
section in the report specification might look like this for QUEL:

.QUERY retrieve tablename.all where $wherevar

The valuestring can include a variable and a value. If the value in the
valuestring is a character string or date, it must be enclosed in quotes that are
appropriate for your query language (double quotes for QUEL). For instance, in
the following example enclose the date string, “12/31/93” in double quotes
within the single-quoted valuestring:

report accounting recpay
 (wherevar='date = "12/31/98"')

If your operating system requires it, enclose the entire parameter within
double quotes and escape any embedded double quotes.

Windows

To dereference double quotes in Windows NT, precede them with a
backslash (\). For example:

report accounting recpay
"(wherevar='date = \"12/31/98\"')"

UNIX

To dereference double quotes in UNIX, precede them with a backslash (\).
For example:

report accounting recpay
 "(wherevar='date = \"12/31/98\"')"

VMS

To dereference double quotes in VMS, double them. For example:

report accounting recpay
 "(wherevar='date = ""12/31/98""')"

The resulting valuestring is:

date = "12/31/98"

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–39

Passing Multiple Parameters

To pass multiple parameters in a where clause, you follow the same rules for
the use of parentheses and quotes as described in the Passing an Entire Where
Clause section. For example, suppose your report specification contains the
following code:

.declare wherevar = varchar(100)

.query select * from employees
 where $wherevar

You would enter the following command on the command line:

report personnel emp (wherevar='deptid=504 and
 mgr=''Jones'' and hiredate>=''01/01/95''')

If your operating system requires it, enclose the entire parameter within
double quotes:

report personnel emp "(wherevar='deptid=504 and
 mgr = ''Jones'' and hiredate >= ''01/01/95''')"

Note for QUEL Users To pass multiple parameters in a where clause, follow the same rules for the
use of parentheses and quotes as described in the Passing an Entire Where
Clause section. For example, suppose your report specification contains the
following code:

.declare wherevar = varchar(100)

.query range of e is emp
 retrieve (e.all)
 where $wherevar

You would enter the following command on the command line:

report personnel emp (wherevar='deptid=504 and
 mgr="Jones" and hiredate>="01/01/91"')

If your operating system requires it, enclose the entire parameter within
double quotes and escape any embedded double quotes:

Windows

report personnel emp (wherevar='deptid=504 and
 mgr="Jones" and hiredate>="01/01/91"')

UNIX

report personnel emp "(wherevar='deptid=504 and
 mgr="Jones" and hiredate>=\"01/01/91\"')"

VMS

report personnel emp "(wherevar='deptid=504 and
 mgr="Jones" and hiredate>=""01/01/91""')"

Passing Delimited Identifiers

Suppose the value in the valuestring is a delimited identifier. For example, you
want a list of employees with some other information about each employee
that is to be determined at runtime by entering a column name.

Report

17–40 Character-based Querying and Reporting Tools User Guide

To accomplish this, your report code looks like this:

.declare info = varchar (20)

.query select firstname, lastname, $info as otherinfo
 from emp

The information you want to select from the database is in a column whose
name is a delimited identifier.

To specify the delimited identifier as a value on the command line, you must:

1. Specify the column name as a delimited identifier in editable format. For
more information, see Specifying Delimited Identifiers.

"phone #"

2. Enclose the delimited identifier and its surrounding quotes within single
quotes to identify it to Report-Writer as a string value in the
variable=value clause:

info='"phone #"'

3. Enclose the variable=value clause in parentheses. If the parameter
contains any characters treated specially by your operating system (such
as parentheses in Windows NT), enclose the entire parameter within
double quotes and escape any embedded double quotes to pass them
through the operating system.

Windows
 Escape the double quotes surrounding a delimited identifier by preceding

them with a backslash (\):

report personnel emp "(info='\"phone #\"')"

UNIX
 Escape the double quotes surrounding a delimited identifier by preceding

them with a backslash (\):

report personnel emp "(info='\"phone #\"')"

VMS
 Escape the double quotes surrounding a delimited identifier by preceding

each with another double quote:

report personnel emp "(info='""phone #""')"

For more information on how to pass delimited identifiers on the command
line, see the System Administrator Guide.

Passing String Values with Embedded Quotes

Suppose the database value for which you are entering a comparison value
contains embedded single or double quotes, as for example:

"Big John's" Barbecue

Suppose the where clause is specified in the report as:

where $wherevar

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–41

You want to specify a value for the variable so that Report-Writer produces the
following SQL query:

where clientname='"Big John''s" Barbecue'

Follow this procedure:

1. Determine how the value appears in the database:

"Big John's" Barbecue

2. Enclose the string value in quotes that are appropriate for your query
language (single quotes in SQL). Dereference any embedded quotes
(including apostrophes) according to the rules of your query language (in
SQL, precede a single quote or apostrophe with another single quote):

'"Big John''s" Barbecue'

3. Enclose the entire valuestring within single quotes to identify it to
Report-Writer as a string. Dereference any embedded single quotes within
this string by preceding each single quote with another single quote. This
includes any single quotes (or apostrophes) from the original value, as well
as those required by your query language in the previous step.

'clientname=''"Big John''''s" Barbecue'''

4. Enclose the entire parameter within parentheses. If the parameter
contains any characters treated specially by your operating system (such
as parentheses in Windows NT and UNIX or slashes in VMS), enclose the
entire parameter within double quotes and escape any embedded double
quotes to pass them through the operating system.

Windows

report accounting receivables "(wherevar=
'clientname=''\"Big John''''s\" Barbecue"''')"

UNIX

report accounting receivables "(wherevar=
'clientname=''\"Big John''''s\" Barbecue"''')"

VMS

 report accounting receivables "(wherevar=
'clientname=''""Big John''''s"" Barbecue"''')"

Note for QUEL Users To specify a value for the variable so that Report-Writer produces the
following QUEL query:

where clientname="\"Big John's\" Barbeque"

Report

17–42 Character-based Querying and Reporting Tools User Guide

Follow this procedure:

1. Determine how the value appears in the database:

"Big John's" Barbeque

2. Enclose the string value in quotes that are appropriate for your query
language (double quotes in QUEL). Dereference any embedded quotes
according to the rules of your query language (in QUEL, precede a double
quote with a backslash):

"\"Big John's\" Barbeque"

3. Enclose the entire valuestring within single quotes to identify it to
Report-Writer as a string. Dereference any embedded single quotes (or
apostrophes) within this string by preceding each one with a single quote.

'clientname="\"Big John''s\" Barbeque"'

4. Enclose the entire parameter within parentheses. If the parameter
contains any characters treated specially by your operating system (such
as parentheses in Windows NT and UNIX or slashes in VMS), enclose the
entire parameter within double quotes and escape any embedded double
quotes to pass them through the operating system.

Windows

report accounting receivables "(wherevar= 'clientname=\"\\\"Big
John''s\\\"Barbeque\"')"

UNIX

report accounting receivables "(wherevar= 'clientname=\"\\\"Big
John''s\\\"Barbeque\"')"

VMS

report accounting receivables "(wherevar= 'clientname=""\""Big
John''s\""Barbeque""')"

Prompted Runtime Variables as Parameters

Use variables in your report specification that prompt the user for a value at
runtime. For string or date values, the report specification must be coded to
include quotes around the variable that are appropriate for the query
language. If these quotes are included in the report specification, the user can
enter the value, as is, without the surrounding quotes. For example, suppose
the report specification contains either the following statements:

.declare clientname with prompt 'Enter client’s name:'

.query select balance from receivables
 where name = '$clientname'

Or, these QUEL statements:

.declare clientname with prompt 'Enter client’s name:'

.query
range of e is receivables
retrieve (e.balance)
 where e.name = "$clientname"

At runtime, the user can enter:

report accounting receivables

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–43

Report-Writer displays the prompt:

Enter client’s name:

The user can respond:

Enter client’s name: Lakeside Inn

If the report specification omits the query language-specific quotes around a
string or date variable, the user must enter these quotes along with the value
on the command line. For example, suppose the report specification contains
the following where clause for an SQL or QUEL query:

where name = $clientname

The user must respond to the prompt:

Enter client’s name: 'Lakeside Inn'

If the value is a delimited identifier or contains embedded quotes, the user
must follow their query language’s rules for dereferencing quotes within the
string.

Sending Reports to and from a Screen

Instead of sending your report directly to a printer, you can send it to the
screen. From the screen, you can send the entire report to the printer or to a
file. Or, you can send only the contents of the current window to the printer or
to a file.

When you send a report to the screen, Report-Writer ignores any underline
characters. Similarly, if you send a report from the window to the printer or to
a file, underlining cannot occur in the printed or stored report output. To
preserve underlining, send the report to the printer or file directly, rather than
from the screen.

Sending a Report to a Screen

To send a report to your screen, you specify the -f flag, without specifying an
output file on the command line nor in an .output statement within the report
specification. When you send a report to your screen, Report-Writer displays
the first page of the report, as shown in the following figure. If the report
contains more than a single page, you can scroll through the report by using
the ScrollUp, ScrollDown, ScrollLeft, and ScrollRight keys.

Report

17–44 Character-based Querying and Reporting Tools User Guide

Note: Report-Writer creates a temporary file whenever you send a report to
the screen. If your report is large, your computer can require additional
memory. Report-Writer automatically deletes the file as soon as the report is
displayed.

The report window contains the following menu operations:

Operation Description

Print Sends the report to a printer.

File Sends the report to a file.

Help, End Standard Ingres operations.

After sending a report to a screen, you can:

 Use the Printer operation to send the report to a printer. For instructions,
see Sending Reports from a Window to a Printer.

 Use the File operation to send the report to a file. Ffor instructions, see
Sending Reports from a Window to a File.

 Use the printscreen FRS command to send the currently displayed portion
of the report to a file or printer. For instructions, see Sending the Current
Window to a File or Printer.

When sending a report from the window to a file or printer, you can send the
entire report or only the executed portion. The executed portion is the portion
that you have viewed in your window.

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–45

Sending Reports from a Window to a Printer

To send a report from a window to a printer:

1. Select the Print operation from the report menu. The Sending a Report to
a Printer pop-up appears.

2. To send the report to a printer other than the default, type the printer
name in the Printer field.

 To send the report to the default printer, tab past this field. The default is
to send the report to the default printer specified in the environment
variable or logical, ING_PRINT.

3. In the Copies field, type the number of copies to print.

 The default is 1 and the maximum is 999.

4. In the File Name field, type the name of a file to which Report-Writer must
send an interim copy of the report. After sending the report to this file,
Report-Writer sends the report to a printer and then deletes the file.

 Enter a file name or full directory path name. If you enter only a file name,
the report is sent to your working directory.

5. To print the entire report, choose the OK operation. (If you have not run
the report to completion, Report-Writer executes the entire report before
sending it to the printer.)

 To print only the executed portion of the report, choose the PrintPartial
operation.

Sending Reports from a Window to a File

To send a report from a window to a file:

Report

17–46 Character-based Querying and Reporting Tools User Guide

1. Select the File operation from the report menu. The Sending a Report to a
File pop-up appears.

2. In the File Name field, enter the name of the file to which you want to
send the report.

 Enter a file name or full directory path name. If you enter a file name only,
the report is sent to your working directory.

3. To file the entire report, choose the OK operation. (If you have not run the
report to completion, Report-Writer executes the entire report before
sending it to the file.)

 To file the executed portion of the report only, choose the FilePartial
operation.

Sending the Current Window to a File or Printer

The current window refers to the content displayed in a window at any one
time. For example, this might be one page of a report. Depending on whether
you have set the II_PRINTSCREEN_ FILE environment variable/logical,
Report-Writer either prompts you to direct the window contents to a file or to
the printer, or it automatically sends the window contents to a specified file or
to the printer. For more information on setting II_PRINTSCREEN_FILE, see the
System Administrator Guide.

To send the current window contents to a file or printer:

1. Press the key(s) mapped to the printscreen command.

2. If you have set II_PRINTSCREEN_FILE to a specific file name or to printer,
Report-Writer sends the current window contents to the specified file or to
the line printer, accordingly.

 If II_PRINTSCREEN_FILE has not been set, a file name prompt appears.
Enter the name of a file or the word printer, as in the following example:

Enter file name: distrpt

Report

Chapter 17: Using System Commands for the Forms-based Tools 17–47

 Report-Writer sends the window output to the file you specified or to the
line printer, if you specified printer.

Examples

Example 1 Run a default report based on the vendor table in the purchasing database,
using a default format and redefining the page width, and send the output to
the named printer:

report purchasing vendor -m -180 -olaser2

Example 2 Run the report contained in the source file, po_rep.rw, against the
purchasing database and store the results in the po_sum_out file:

report purchasing -ipo_rep.rw -fpo_sum.out

Example 3 Run a default report in column format on the clients table owned by mktgmgr
in the sales database and eliminate duplicate rows:

report sales mktgmgr.clients -mcolumn -6

Example 4 Run the report named recpay against the accounting database and pass in
the value of the variable, title:

Windows

VMS

report accounting recpay
 (title = 'Accounts Receivable')

UNIX

report accounting recpay
 "(title = 'Accounts Receivable')"

For more passing parameters examples, see Passing Parameters on the
Command Line.

Sreport

17–48 Character-based Querying and Reporting Tools User Guide

Sreport
Checks and stores a Report-Writer report specification in the database.

Syntax

sreport [v_node::]dbname [/server_class] txtfile [-s]
 [-uusername][-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host where the database resides. If you are using an Enterprise
Access product, then specify /server_class.

VMS
 The -Ggroupid parameter must be enclosed in double quotes ("-Ggroupid") to

preserve the case of the -G flag.

If any parameter is a delimited identifier, enclose it in double quotes ("),
dereference any embedded quotes, and use the appropriate number and type
of delimiting quotes to pass it through your operating system. For more
information, see the System Administrator Guide.

Description

The sreport command reads in a file of Report-Writer source code formatting
statements from a base text file, as well as from any files specified with an
.include statement. As it reads the files, sreport performs basic syntax error
checking, and, if error-free, stores the report specification in the Reports
Catalog of the database you specify.

Note: If you update the text file specified in an .include statement, you must
execute the sreport command against each report specification that contains
the .include statement. This procedure is required in order for the report
specification to reflect the changes in the text file.

The sreport command requires valid values for both filename and dbname. If
you do not enter these parameters, sreport prompts you for them.

If the report specification contains syntax errors, sreport prints appropriate
error messages. If a report in the text file has the same name as an existing
report in the Reports Catalog, the older report definition is replaced. If no prior
report exists, Report-Writer adds the report to the Reports Catalog. You can
then use the specifications to run a report using either the report command or
the Go option from the RBF catalog frame.

Sreport

Chapter 17: Using System Commands for the Forms-based Tools 17–49

If you use sreport to save a report created in RBF, it can strip out many of the
RBF formatting statements, which makes it easier to edit the report
specification in Report-Writer. However, you cannot edit the saved report
specification in RBF.

The following parameters are specific to the sreport command:

Parameter Description

txtfile Name of a text file from which report specifications are to
be read. You must specify the full path name of the file if
it is not in the current directory. If you do not explicitly
specify an extension for the file, sreport assumes the
default extension of .rw.

Examples

Example 1 The following sreport command stores report specifications in the repspec.rw
file in the Reports Catalog of a database named mydb:

sreport mydb repspec.rw

Example 2 The following sreport command specifies a database name of myowndb and
uses sreport’s prompting facility to store the report specification located in
the myrep.rw file:

sreport myowndb

Report-Writer prompts you for the file name:

Filename

Enter the name of a file containing report specifications:

myrep.rw

Example 3 This example uses sreport’s prompting facility to store the report
specification from the myrep.rw file in the Reports Catalog for the myowndb
database:

sreport

At the Database prompt, enter a database name:

Database myowndb

At the Filename prompt, enter a file name:

Filename myrep

Vifred

17–50 Character-based Querying and Reporting Tools User Guide

Vifred
Starts the VIFRED.

Syntax

vifred dbname|v_node::dbname [/server-type]
 [[-f] formname|-t tablename|-j joindef]
 [-e] [-uusername] [-Ggroupid]

If your database resides on a remote system, specify v_node, the name of the
remote host. If you are using an Enterprise Access product, specify
/server_class.

VMS

Enclose the -Ggroupid flag and parameter in double quotes ("-Ggroupid") to
preserve the case of the -G flag.

Description

The system-level vifred command starts the VIFRED, an Ingres forms-based
tool for editing forms.

Parameter Description

-f formname Displays the specified form for use with VIFRED. The
-f flag can be omitted, because by default any name
specified here is assumed to be a form name.

-t tablename Displays a default form based on the table indicated
by tablename or by a synonym specified as
tablename. If no flag is specified, the name is
understood to be a form. You can qualify the table
name or synonym with a valid schema name in the
format, schema.tablename. If the table name is a
delimited identifier, enclose it in double quotes.

-j Displays a default form based on the JoinDef
indicated by joindef. If no flag is specified, the name
is understood to be a form.

-e Flag that invokes the command in expert mode,
causing the catalogs to be displayed empty initially.
This allows you to enter the name of a specific object
directly, rather than select it from a list.

Vifred

Chapter 17: Using System Commands for the Forms-based Tools 17–51

Examples

Example 1 Start VIFRED at its initial Forms Catalog frame in the employee database on
a local node:

vifred employee

Example 2 Start VIFRED and display the finance form in the admin database on the hq
remote node for editing (equivalent to selecting a form and choosing the Edit
operation on the VIFRED Forms Catalog frame):

vifred hq::admin finance

Example 3 Start VIFRED and begin to create a default form for the lastname table in the
employee database on a local node (equivalent to choosing the Create
operation on the VIFRED Forms Catalog frame, and then choosing the Table
operation on the Create submenu):

vifred employee -t lastname

Example 4 Start VIFRED and begin to create a default form for the tasks JoinDef from
the employee database on a local node (equivalent to choosing the Create
operation on the VIFRED Forms Catalog frame, and then choosing the JoinDef
operation on the Create submenu):

vifred employee -j tasks

Chapter 18: Working with Data Types and Data Display Formats 18–1

Chapter 18: Working with Data Types
and Data Display Formats

This chapter explains the difference between data types and data display
formats, and provides important information about each. Data types determine
the way data is stored in the database. Data display formats determine the
way data is displayed on forms or in reports.

The first part of this chapter describes data types, including an overview of
some of the operations you can perform on data stored as different data
types.

The second part of the chapter describes data display and input formats. This
section explains the relationship between data types and data display formats.
It also provides the syntax and a brief description of each data display format,
as well as an overview of the different data display format categories. Lastly, it
contains a thorough discussion of data display format templates for use in
display-only and data entry fields, including the use of data input templates for
character-by-character validation.

Data Types
Data types control the type of information a column can contain and determine
how the Data Manager carries out particular operations. By assigning the
correct data type to each column in a table, you can implement and execute
many operations more easily.

Data types are significant in working with a relational database because when
you add or change data in a column, the new data must be of the type
specified for that column when the table was created. For example, you cannot
accidentally store a date in a salary field designated for the money data type.

There are four fundamental data types:

 Character (or text)

 Numeric

 Date

 Money

Data Types

18–2 Character-based Querying and Reporting Tools User Guide

These data types may not all be compatible with Enterprise Access products.
The character and numeric data types are broken into subsets. For example,
integers can be stored as 1-byte, 2-byte, and 4-byte integers. Data types are
named differently in SQL and QUEL. For more information, see the appendix
“Data Types” for OpenSQL and QUEL data types.

Data Type Description

c(n) Fixed-length string of up to n printable ASCII characters, with
non-printable characters converted to blank; n represents the
lesser of the maximum configured row size and 32,000.

char(n) Fixed-length string of up to n ASCII characters, including any
non-printable characters; n represents the lesser of the
maximum configured row size and 32,000.

varchar(n) Variable-length ASCII character string of up to n characters; n
represents the lesser of the maximum configured row size and
32,000.

text(n) Variable-length string of up to n ASCII characters; n
represents the lesser of the maximum configured row size and
32,000.

float(n) n-byte floating point; converted to a 4-byte or 8-byte floating
point data type.

float4 4-byte floating point; for numbers including decimal fractions,
from 0.29x10**-38 to 1.7x10**38 with 7 digit precision.

float8 8-byte floating point; for numbers including decimal fractions,
from 0.29x10**-38 to 1.7x10**38 with 16 digit precision.

decimal Exact numeric data type defined by its precision (total number
of digits) and scale (number of digits to the right of the
decimal point). Precision must be between 1 and 31. Scale
can be zero (0) up to the maximum scale.

integer1 1-byte integer; for whole numbers ranging from -128 to
+127.

integer2 or

smallint

2-byte integer; for whole numbers ranging from -32,768 to
+32,767.

integer4 or

integer

4-byte integer; for whole numbers ranging from
-2,147,483,648 to +2,147,483,647.

money 8 byte monetary data; from -$99999999999999.99 to
+$99999999999999.99.

date 12 bytes; dates ranging from 1/1/1582 to 12/31/2382 for
absolute dates and -800 years to +800 years for time
intervals.

Data Types

Chapter 18: Working with Data Types and Data Display Formats 18–3

A user-defined data type (UDT) is perceived and treated as a character string.

Some forms utilities do not support the long varchar, byte, byte varying, and
long byte data types. For more information, see each specific product for a
discussion of how long varchar, byte, byte varying, and long byte is handled.

Character

Four different data types define text:

 c

 char

 text

 varchar

You enter character data as alphanumeric strings. You must enclose the string
in single quotes ('). To include an explicit single quote (or apostrophe) within a
character string, dereference it by preceding it with another single quote. For
example:

'Enter your supervisor''s initials'

You can include double quotes within a single-quoted character string without
dereferencing them:

'according to the "experts"'

In displaying a query result, SQL displays character data as alphanumeric
strings without the surrounding single quotes. SQL differentiates between
uppercase and lowercase data in character strings. For example, suppose you
use this string in an SQL statement:

'Bee, Charles'

It is evaluated differently from any of the strings below:

'BEE, CHARLES'
'bee, charles'
'Bee, charles'

C

The c data type consists of a string of up to n printable ASCII characters. It
converts non-printable characters to blanks; n represents the lesser of the
maximum configured row size and 32,000. Blanks are ignored when
comparing strings of the c data type. For example, it treats the following two
examples identically:

newtable and oldtable
newtableandoldtable

Data Types

18–4 Character-based Querying and Reporting Tools User Guide

Char

The char data type consists of a string of up to n printing ASCII characters,
including any non-printable characters; n represents the lesser of the
maximum configured row size and 32,000. Between c and char, the char data
type is preferred, as it is compatible with ANSI SQL.

Text

The text data type consists of up to n characters in the ASCII extended set or
blanks; n represents the lesser of the maximum configured row size and
32,000. All ASCII characters except the ASCII null character (null) or the hex
\0 are allowed.

Varchar

The varchar data type consists of up to n characters in the ASCII extended set
or blanks; n represents the lesser of the maximum configured row size and
32,000. All ASCII characters are permitted, including non-printable control
characters, such as the NULL character. A varchar column is defined as
varchar(n) where n is the maximum number of characters stored in the
column. Between text and varchar, the varchar data type is preferred as it is
compatible with ANSI SQL.

Comparing Character Strings

When comparing two character strings, it is important to consider the range of
ASCII characters permitted by a given data type. Including non-printable
characters in varchar or char comparison strings affects the outcome of the
comparison.

Blanks are not ignored in comparisons by either text or varchar. However, the
way blanks are handled by the two data types differs. In comparing strings of
unequal length, varchar effectively adds blanks at the end of the shorter string
to bring it to the same length as the longer string. The text data type does not
add blanks; it considers a shorter string as less than a longer string if all
characters up to the length of the shorter string are equal.

As an example of the way this affects comparisons, consider the following two
strings:

abcd\001
abcd

Data Types

Chapter 18: Working with Data Types and Data Display Formats 18–5

Assume that \001 represents one ASCII character, Control-A. If these are
compared as text, the first string is greater than the second. However, if they
are compared as varchar, the first string is less than the second, because the
blanks added by varchar to the shorter string have a higher ASCII value than
001.

The following table summarizes the various character data types, where n
represents the lesser of the maximum configured row size and 32,000:

Aspect c char text varchar

Length 1-n 1-n 1-n 1-n

Nullable Yes Yes Yes Yes

Legal
characters

Printable
characters
only

All ASCII
characters

All ASCII
characters except
nul and \0

All ASCII
characters

Storage Fixed
length

Fixed
length

Variable length Variable length

Blanks
significant?

No Yes Yes Yes

Comparison
of short to
long

Blanks
ignored

Blank padding
of short
length to long

No padding;
blanks included

Blank padding
of short length
to long

Date

Date data type columns hold absolute dates, absolute times, or time intervals.
Date data types can contain any valid date between January 1, 1582 and
December 31, 2382. When used in database language commands, date data
types are enclosed in quotation marks as are text types.

An absolute date is a time, such as 12:30 on November 13. There are many
ways of expressing absolute dates and time.

Data Types

18–6 Character-based Querying and Reporting Tools User Guide

For example, you can express the date December 25, 1998, in any of the
following ways:

mm/dd/yy 12/25/98
dd-mmm-yyyy 25-Dec-1998
mm-dd-yyyy 12-25-1998
yyyy.mm.dd 1998.12.25
mm/dd 12/25
mm-dd 12-25
mmddyy 122598
mm/dd/yy hh:mm:ss ampm 12/25/98 10:30:30 am

You can express the time 10:30 a.m. as:

hh:mm:ss ampm tz 10:30:00 am pst

You can also use now or today to mean the current date and time (now), or
current date only (today).

Various conventions for date and time are recognized. For example, it assumes
a 24-hour clock unless you specify p or p.m. The program adjusts dates and
times to the designated time zone, such as Pacific Standard Time.

For information on how to specify various date display formats, see Data
Display and Input Formats.

International Conventions

International date and time conventions can also be adapted. For example,
dates in Sweden and Finland are expressed as a year, followed by the month,
followed by the day. The standard German date format can be expressed as
ddmmyy, ddmmyyy, dd.mm.yy, and dd.mm.yyyy. The date format is set by
the system variable II_DATE_FORMAT.

The time zone is set with the system variable, II_TIMEZONE_NAME. These
dates are stored in Greenwich mean time. The conversion between Greenwich
and your local time is a value set with II_TIMEZONE_NAME. For more
information, see the System Administrator Guide for the system on which your
database resides.

Relative Times and Dates

Relative time and date intervals are also handled, which are units of time not
fixed as absolutes. An example of a relative time interval is:

5 years 8 months 14 days

You can use the interval and date functions to carry out operations on dates in
SQL or in the Interactive Terminal Monitor. The interval function calculates the
difference between two dates. The date conversion function transforms strings
into dates.

Data Types

Chapter 18: Working with Data Types and Data Display Formats 18–7

Floating Point

The floating point data type consists of numeric data with decimal points
and/or exponents.

Floating point data can contain an integer portion, a decimal point, and a
fractional portion and/or scientific notation, in this format:

[+|-]{digit}[.digit{digit}][e|E[+|-]{digit}]

For example:

2.3e-02

You can change the default decimal point indicator, the period (.), to another
character, such as the comma (,), used in European decimal format, by using
the II_DECIMAL system variable. For more information, see the System
Administrator Guide and the set decimal command in your query language
reference guide.

On output, a mantissa of 1 is supplied when an exponent is missing a mantissa.

The floating point range and precision vary greatly among the various
operating systems and hardware.

Decimal

A numeric constant is considered to be a decimal data type if it has a decimal
point but no exponent, and you are working with Ingres.

Under the following circumstances, a decimal data type is treated as type float
if:

 The total number of digits exceeds 31

 You have set the II_NUMERIC_LITERAL environment variable/logical to
float

Integer

Integer data types are numbers containing no fractional part. For example,
ages can be designated as integer data types. Integers are classified as
1-byte, 2-byte, and 4-byte, depending on the range of numbers to be stored
within a given column.

If you enter integer data outside the range of an integer4 data type, the
integer is converted to floating point. For instance, an entry of 5000000000
exceeds the range of an integer4, and so is stored as float.

Data Types

18–8 Character-based Querying and Reporting Tools User Guide

Money

The money data type contains decimal currency data. Great flexibility is
provided with regard to the money data type. Using system variables, you can
adopt the conventions of your local currency. These include:

 Currency symbol

 Decimal separator

 Number of decimal places

For more information, see the System Administrator Guide for the system on
which your database resides.

On input and output, money data is rounded to dollars and cents, pounds and
pence, or other currency units. Arithmetic operations on money values retain
precision as established by the II_MONEY_PREC environment variable/logical.

You can enter up to 14 digits into a column specified for the money data type.
When displayed, money data can appear as up to 20 characters, allowing room
for commas, currency signs, and place holder symbols.

Nulls

Nullability is an attribute of stored data. A null represents inapplicable or
missing data. It is most useful when working with numeric data used in
aggregate computations such as totals and averages. An example of nullable
text is an unfilled Home Address field on a personnel form for a new employee
when not all information is known.

You can determine which of your tables’ columns are to be nullable. In this
way, missing data, default values, or empty strings cannot be assigned a value
of zero.

It is important to distinguish between ASCII NULL character and column
nullability. The NULL character, ASCII octal \000, is a value permitted in
certain character data types. Nullability is a condition or status that is available
to all the data types. A user assigns nullability to a specific column in a table
while creating the table.

Data Display and Input Formats

Chapter 18: Working with Data Types and Data Display Formats 18–9

Data Display and Input Formats
Data display formats offer alternative ways to display or enter data that is
stored in the database as a particular data type. The display format controls
the width of the data display window on a form or the width of a field or
column in a report.

In RBF, you specify the data display format for each column or field in a report
on the Report Layout Frame. In VIFRED, you specify the data display format
when you create the data window for a simple field or when you specify
columns on the Table Field frame. This section explains the relationship
between data types and data display formats, and describes data display and
input formats in detail.

Data Types and Display Formats

When you create a column in a database table, you assign a data type to
control the way data is stored in that column. Sample data types for Ingres
databases include char, integer, date, and money. When you create a report
or form, you can specify a display format to determine the way that data
appears on a form or in a report.

You can assign any one of several different display formats for data stored in a
database table as a given data type. For example, a number stored as an
integer data type can be displayed as a whole number, in decimal notation, in
scientific notation, or as a right-justified number. The data display format must
be of a type that is compatible with the data type for the corresponding
column in the database table.

Even though some data types and display formats have the same name and
abbreviated symbol, they perform different functions. For example, there is a
floating point (f) data type and a floating point (f) display format. You can
display a floating point data type in formats other than the floating point
format. You can also use the floating point display format for numeric data
stored as data types other than floating point.

Specify any display format that is appropriate for the data type in both
display-only and data entry fields. After the user enters data in a data entry
field as instructed by the application, the data is redisplayed in the specified
format. An input masking format, or input template, is a special display format
you can use in data entry fields only. It controls how a user enters data on a
form, character by character. Date, numeric, and string templates are allowed
as input masking formats in data entry fields.

Data Display and Input Formats

18–10 Character-based Querying and Reporting Tools User Guide

The following table lists the valid display and input formats for any data type
in each data type category. The letter in parentheses is the code or symbol by
which you specify the display format.

Data Type
Category

Valid Display and Input Formats

 Display Formats Input Masking Formats

Character Character (c) String template

Numeric Integer (i)
Floating Point (f)
Scientific (exponential) Notation (e)
Decimal or Scientific (g)
Numeric template

Numeric template

Money Right-justified decimal or scientific (n)
Numeric template

Numeric template

Date Character (c)
Date (d)

Date template (d), with
some restrictions

Display Format Syntax

The display format symbols are often combined with numbers designating the
character width of the field. For example, the display format f6 denotes a
floating point display format containing up to six digits. Similarly, f6.2 denotes
a floating point display format of up to six whole numbers and a maximum of
two decimal digits.

The following table shows the format symbol, compatible data types, and
syntax for each display format, and briefly describes the function of each:

Format
Symbol

Data Type Display Syntax Display Format Description

c character
date

[+|*|-]c[f|j]
 [e]n[.w]

Character format, which
determines the size and shape
of character fields.

d date [+|*|-]d
 'template'

Date template, specifying an
absolute date and time or time
interval.

Data Display and Input Formats

Chapter 18: Working with Data Types and Data Display Formats 18–11

Format
Symbol

Data Type Display Syntax Display Format Description

e decimal
float
integer
money

[+|*|-]ew[.d] Scientific (exponential)
notation format, which
displays numbers as
[-]m.dddddE|e[+|-]ppp
(or [-]m.dddddE|e[+|-]pp for
VMS), in which m represents
the mantissa, d represents a
digit in the fraction, and p is
an exponential digit. When
specifying the width of the
field (w), be sure to include
five spaces for E+ppp (or four
spaces for E+pp in VMS).

f decimal
float
integer
money

[+|*|-]fw[.d] Floating point format, which
displays a number in standard
decimal format.

g decimal
float
integer
money

[+|*|-]gw[.d] Displays the number in
floating point (f) format if
there is room; otherwise,
displays it in scientific
notation. In scientific notation,
it aligns data on the decimal
point and justifies it as
specified.

i decimal
float
integer
money

[+|*|-]iw Integer format, which displays
the number as an integer.

n decimal
float
integer
money

[+|*|-]nw[.d] Identical to g format except it
aligns all output on the
decimal point and right
justifies it, in both floating
point and scientific notation.

numeric
template

decimal
float
integer
money

[+|*|-}['{c}'] Numeric template containing
character codes indicating the
characters allowed in each
position.

string
template

c
char
text
varchar

 String character template
containing character codes
indicating the characters
allowed in each position.

Data Display and Input Formats

18–12 Character-based Querying and Reporting Tools User Guide

RBF and VIFRED can use the same data display formats as Report-Writer, with
two exceptions:

 B format is not allowed

 Variable length format c(0) is not allowed

You can use either uppercase or lowercase letters for symbols in most data
display formats. However, case can be significant in date, numeric, and text
templates. For details, see the sections on each of these template types later
in this chapter: Numeric Templates, Date and Time Templates, and String
Input Templates.

The following table describes the optional parameters you can use with the
data display formats shown in the preceding table:

Code Description

+|*|- Precedes the format letter to indicate right (+), center (*), or left (-)
justification. If no sign is used, the default is left justification for both
character and numeric columns.

c Any one of the special numeric or character template code
characters allowed in that type of template. For definitions of these
codes, see the sections on character and numeric templates later in
this chapter.

d Specifies the precision (the number of digits to display after the
decimal point) in any of the numeric formats. To allow room in the
display field for the decimal point and a plus (+) or minus (-) sign,
this number must be at least 2 less than the value of w (maximum
column width).

e When used with the wrapping character options (cfe and cje),
preserves trailing white space on every line of a multi-line text
string, which is otherwise trimmed by default. If you use it with the
cj format, the margin justification includes the significant white
space. In some instances, this makes the text appear unjustified. For
more information, see Creating Multi-line Character Fields.

f When used with the c format for multi-line text strings, wraps text to
the next line, with breaks occurring between words. Most useful in
display-only fields. Results in data entry fields can be unpredictable.
For additional information, see Creating Multi-line Character Fields.

j When used with the c format for multi-line text strings, right-justifies
the text, with breaks between words, and pads the line with blanks,
so that all lines end evenly at the right margin. Most useful in
display-only fields. Results in data entry fields can be unpredictable.
For additional information, see Creating Multi-line Character Fields.

n The maximum number of characters allowed in the data window.

Data Display and Input Formats

Chapter 18: Working with Data Types and Data Display Formats 18–13

Code Description

w When used in a character format (c) designation, specifies the
number of characters displayed on each line. If n is greater than w,
the data window occupies more than one line. The default of w is the
value of n.

When used in a numeric format (e, f, g, i, or n), specifies the
maximum column width, including all punctuation, symbols, decimal
points, and decimal digits. For example, to display $15.44 the w
value must be at least 6 (for example, f6.2). For columns in e, g or n
format, be sure that w is wide enough for representations in
scientific notation.

For example, i9 specifies an integer format nine characters wide, and +i9
specifies a right-justified integer format nine characters wide.

To specify a floating point format for a column that is a total of nine characters
wide, and for which you want to show two decimal places, enter f9.2. Allowing
for the decimal point and a plus or minus sign, a display format of f9.2 permits
a maximum of five digits to the left of the decimal point and two to the right of
it.

Default Data Display Formats

The following table lists default display formats for each SQL data type. For
more information, see the appendix “Data Types” for OpenSQL and QUEL data
type equivalents.

SQL Data Type For Forms and most
Reports

For Block Style
Reports

c1 - c35 c1 - c35 c1 - c35

c36 - cx cj0.35 cj0.35

char(1) - char(35) c1 - c35 c1 - c35

char(36) - char(x) cj0.35 cj0.35

text(1) - text(35) c1 - c35 c1 - c35

text(36) - text(x) cj0.35 cj0.35

varchar(1) - varchar(35) c1 - c35 c1 - c35

varchar(36) - varchar(x) cj0.35 cj0.35

integer1 f6 f10

smallint (integer2) f6 f10

Data Display and Input Formats

18–14 Character-based Querying and Reporting Tools User Guide

SQL Data Type For Forms and most
Reports

For Block Style
Reports

integer (integer4) f13 f10

decimal (31.31 - 31.0) Based on size. For example, decimal (5.1)
defaults to f7.1, allowing additional digits for
the decimal point and an optional plus (+) or
minus (-) sign.

float4 n10.3 f10.3

float (float8) n10.3 f10.3

date c25 c25

money $---------------.nn $---------------.nn

Note: 'x' represents the lesser of the maximum configured row size and
32,000.

Note: All character data types are fully supported in non-Ingres databases
accessed through Enterprise Access products, in which case the
column size limit can be greater than 2000 bytes. Other data types may not be
supported by all Enterprise Access products.

If your computer supports the IEEE standard for floating point numbers, the
range and accuracy of floating point numbers reflect that standard.

Displaying Character Data

Character data includes any of the character data types (varchar, char, c,
text). You can display character data types only in:

 Character (c) display format (in display-only and data entry fields)

 String template display format (in data entry fields only)

For the character (c) data display format, the default is left justification To
justify the contents of a single-line field to the right, left, or center, precede
the data display symbol with a plus sign (+), asterisk (*), or minus sign (-),
respectively. For example, entering +c5 specifies a right-justified text field of
five or fewer characters. You can use justification symbols with any data type.

Data Display and Input Formats

Chapter 18: Working with Data Types and Data Display Formats 18–15

If you specify a value for w as well as n, you can display text in column
format. When character fields contain more than one line, the first line of the
field is filled with characters and the second line is filled. This can produce line
breaks in the middle of a word. For display-only fields, you can use the f or j
option to specify that lines must break at the end of a word instead of in the
middle. For example, cf80.20 specifies a text field containing a total of 80
characters with no line containing more than 20 characters and with breaks
between words.

To right justify the contents of a display-only multi-line character field, use the
j flag. The j flag performs the same function as the f flag, except that it pads
the line with blanks between words to make the right margin of each line come
out even, like a column of text in a newspaper.

The f and j flags are most useful in display-only fields. If used in a data entry
field, the word wrap or justification operation is performed only after the user
has exited the field. This can cause truncated text or other unpredictable
results, because a word can wrap to the next line or the line is padded with
extra blanks after the user has already exited the field.

Displaying Numeric and Money Data

For the money and various numeric data types, a default display format and
field width is set that is appropriate for the data type and width of the
corresponding database column. If these defaults do not meet your needs, you
can edit the data display format accordingly.

However, if you make the width of a column on a report or a data window in a
form too small for the value that is to be printed or displayed there, the field is
filled with asterisks. For example, if you attempt to print or display the value
667298 in a field with a data display format set at i5, five asterisks are printed
or displayed in the field instead.

When you use Ingres programs to enter data into a table from a field that has
a numeric display format, such as integer (i), the value entered is checked to
make sure it can be stored correctly in the corresponding database column.
For example, the value for an integer1 column must be between -127 and
+127. In customized applications, this checking is not always automatic; you
may need to use your application code to perform the check.

For floating point and decimal numbers, which have decimal fractions, you can
specify the number of places to the right of the decimal point. When the data
is displayed, it rounds the value to fit the number of specified places, if
necessary. To specify scientific notation, use the format symbols e, g, or n.

Data Display and Input Formats

18–16 Character-based Querying and Reporting Tools User Guide

Make sure that the display format is wide enough to include symbols such as
plus (+) and minus (-) if your data uses them. When using a form for queries,
you can make the display window wider than the underlying column to allow
two extra spaces for comparison operators.

You can also use a numeric template for the specialized display of numeric
data. Specify characters in the template that tell Ingres what to do with each
digit in the data that is being displayed or entered. When using a numeric
template, the width of the field on a form or in a report is determined by the
number of characters in the template. For example, the template
$$$,$$$.nnDb allows for a maximum of 6 digits to the left of the decimal point
plus a comma, and 2 digits to the right of the decimal point plus a
two-character Credit/Debit symbol. For more information, see Numeric
Templates.

Displaying Date Data

A complete absolute date includes day, month, year, and time according to a
24-hour clock. The default display format for a date data type is c25, which
displays absolute dates in a field 25 characters wide, in the format:

Mon Apr 01 1988 22:50:43

If the date to be displayed does not include the time of day, you can specify a
correspondingly smaller display width for the field.

By using a date template such as d'SUN Feb 3 1901' to specify the display
format, you can display dates and times in a wide variety of formats. For more
information, see Date and Time Templates.

Data Display and Input Formats

Chapter 18: Working with Data Types and Data Display Formats 18–17

Using Format Templates

This section provides information about data display format templates,
including how the templates function when input masking is turned on.

Format Templates

A format template is a picture of how you want the data to look when it is
displayed or entered in a single-line field.

For numeric and string data types, a format template consists of character set
definitions and special characters. These represent the type and order of the
characters that are displayed, or the valid characters that the user can enter in
that field. To the system, each character set definition in the template
represents one or more characters to be displayed or validated, depending on
whether the field is a display-only or data entry field. To the user, the
template provides visual clues about the type and format of the data that must
be entered in a data entry field.

For date data types, a format template provides an actual date in a variety of
formats. In data entry fields, the user follows the form of the example date in
the field to enter the actual date that he or she wants to enter.

Input Masking with Format Templates

In data entry fields, you can optionally use input masking in conjunction with
format templates to ensure that the user always enters valid characters in the
correct order and position. The format template determines whether a
character is valid; what is valid in one template may be invalid in another.

Without input masking, the validity of the user’s entry is checked when the
user attempts to leave the field. However, if input masking has been turned on
for that field and its display format is a format template, the validity of the
input is checked as the user enters the data, character by character. The input
template is made up of special character codes that indicate what kind of input
is allowed for that position in the template. If the user enters an invalid
character for that position, the system beeps and requires the user to make a
correct entry before continuing. For input templates, data entry mode is
overstrike only; insert mode is not allowed. The user can correct entries with
the Backspace and Delete keys.

To turn on input masking, you specify a numeric, date, or string template as
the display format and set the Input Masking attribute for the field to y (yes)
on the VIFRED Attributes for Field frame.

Numeric Templates

18–18 Character-based Querying and Reporting Tools User Guide

When specifying format templates, you must enter an appropriate template for
the data type of the corresponding column in the database table. For example,
a numeric template is appropriate for a field corresponding to a column of data
type smallint, integer, float, or money, but is not appropriate for a field
corresponding to a column of date or character data. For date fields that
represent a fixed date value, you must select an absolute date/time template.
The following sections tell you how to specify a format template for numeric,
date, and string fields, including input masking for data entry fields.

Numeric Templates
In addition to other display formats for numeric columns, numeric templates
for specialized needs are provided.

The general syntax of a numeric template is:

'{c}'

The character c is one of the special template characters. Use one special
character for each space of the column width. For example, '$$$$' specifies
that the column is four digits wide and a dollar sign must be printed to the left
of whatever number is displayed in the field. You must delimit the template
with single (') or double (") quotation marks; single quotes are recommended
for consistency with requirements for quoting string constants.

You can include any printable character explicitly in a numeric template by
preceding it with a backslash (\). For example, to include the percent symbol
in a template, enter \%. The backslash is ignored and the character
immediately following the backslash is read or displayed.

When input masking is off, checking is only performed when you exit Ingres.

Input Masking with Numeric Templates

When input masking is on, 0.00 is displayed in the entry field for any numeric
template, including at least one zero to the left and two zeros to the right of
the decimal point. It displays as many zeros to the right of the decimal point
as are needed to match the template. The cursor is positioned at the decimal
point for input. Enter the number as you do on a calculator, with each digit
pushing previously entered digits to the left. Each digit is checked against its
corresponding position in the template as you enter it. After the user enters a
decimal point, digits are checked and displayed as entered, from left to right,
on the right side of the decimal point. Left-justification for numeric templates
is not supported with input masking.

Numeric Templates

Chapter 18: Working with Data Types and Data Display Formats 18–19

Note: Decimal data types are not supported with input masking.

When input masking is on, the user cannot enter a negative number unless
the format template includes a negative indicator.

Special Numeric Template Characters

The special template characters and the actions they specify are described in
the following table:

Code Description

n If a digit in the number corresponds to the position of n,
displays or accepts the digit. If no digits remain, displays or
enters zero (0) to the left of the preceding character. If a field
is specified without n in the numeric positions and a value of
zero (0) is encountered, enters blanks in the field.

z If a digit in the number corresponds to the position of z,
displays or accepts the digit. If no digits remain, displays or
enters a space to the left of the preceding character. This is
used for standard blank-padded numeric fields.

$ (Dollar sign) If a digit in the number corresponds to the
position of a dollar sign, displays or accepts the digit. If no
digits remain, displays a floating dollar sign immediately to the
left of the last evaluated digit. A dollar sign displays only once
in the output field. If a dollar sign has been displayed in a
previous position, a space is displayed in this position. This can
be used either to place a dollar sign directly to the left of the
number, or to place a dollar sign in a fixed position in the field
when used with other template characters.

- (Minus sign—preceding or trailing)

For preceding: If a digit in the number corresponds to the
position of a minus sign, displays or accepts the digit. If no
digits remain and the number is negative, a floating minus sign
displays immediately to the left of the last evaluated digit. A
minus sign displays only once in the output field. If a minus
sign has already been displayed in a previous position, or if the
number is positive and no digits remain, a space displays in
that position.

For trailing: Displays a minus sign in this position if the number
is negative; displays a space if the number is positive.

Numeric Templates

18–20 Character-based Querying and Reporting Tools User Guide

Code Description

+ (Plus sign—preceding or trailing)

For preceding: If a digit in the number corresponds to the
position of a plus sign, displays or accepts the digit. If no digits
remain, displays a floating sign (+ or -) to the left of the last
evaluated digit. A plus or minus sign displays only once in the
output field. If a sign has already been displayed in a previous
position, a space displays in that position.

For trailing: Displays a plus sign in this position if the number is
negative; displays a space if the number is positive.

, (Comma) Displays a comma if the number contains any digits
to the left of this position. If no digits remain, displays a space.
This is used for inserting commas to break up large numbers.

. (Decimal Point) Displays or accepts a decimal point in this
position. The template can contain only one decimal point.

* (Asterisk) If no digits remain, displays an asterisk. This is
useful to fill a number on the left with asterisks (for example,
for checks).

space Displays a blank space in this position. This is identical to
specifying a backslash followed by a space, and is provided for
convenience only. Do not use spaces as thousands separators
in place of commas and a decimal point if your template
contains floating characters (+ - $ [] () < > { }). Floating
characters work correctly only with commas and the decimal
point as separators.

\c (Backslash) Displays in the specified position any character c
preceded by a backslash. This allows you to insert hyphens,
slashes, or other characters into the number. (The backslash
itself is not displayed.)

CR (Two characters) If the number is negative, inserts the
characters CR (for credit). If positive, displays two blanks. You
can specify the characters in either uppercase or lowercase (or
one of each).

DB (Two characters) If the number is negative, inserts the
characters DB (for debit). If positive, displays two blanks. You
can specify the characters in either uppercase or lowercase (or
one of each).

()
[]
< >

(Parentheses, brackets, or angle brackets) If the number is
negative, displays it within the specified symbol.

Date and Time Templates

Chapter 18: Working with Data Types and Data Display Formats 18–21

Numeric Template Examples

The following examples demonstrate the use of numeric templates. This table
uses a caret (^) in the output column to represent a space, so that you can
better interpret the results:

Format Example Data Report Output
(^ indicates a blank space)

'zzzzzzzz' 123 ^^^^123

'zZzZz.Zz' 0 ^^^^^^^^

'zzzzzzzz.nn' 0 ^^^^^^^^.00

'+++,+++,+++' 23456 ^^^^+23,456

'---,---,---.NN' 23456.789 ^^^^^23,456.79

'---,---,---.zz' -3142.666 ^^^^^3,142.67

'$$$,$$$,$$$.nnCr' 235122.21 ^^^$235,122.21Cr

'$$$,$$$,$$$.nnDb' -235122.21 ^^^$235,122.21Db

'$zz,zzz,zzn.nn' 1234.56 $^^^^^1,234.56

'$**,***,***.nn' 12345 $****12,345.00

'+$$,$$$,$$$.nn' 54321 ^^^+$54,321.00

'nnn\-nn\-nnnn' 023243567 023-24-3567

'(zzzzz)' -123 (^^123)

Date and Time Templates
You can specify a date (d) format template for a field or column with a date
data type. The syntax of a date template is:

[+|-]d 'template'

Date and Time Templates

18–22 Character-based Querying and Reporting Tools User Guide

The d indicates this is a date template, and the template parameter indicates
exactly how a specific date is displayed or entered. You must delimit the
template with single (') or double (") quotation marks; single quotes are
recommended for consistency with requirements for quoting string constants.

The date is left-justified by default. You can right justify it by specifying the
optional plus (+) sign.

When input masking is off, the template can be a string of characters
specifying either the absolute date and time format or specifying a time
interval format, for either a display-only or data entry field.

Absolute Date and Time Templates

You can specify absolute date and time templates by entering an example date
that indicates exactly how you want each date and time element to be
displayed or entered. You can specify any one of many variations of the
following representative date and time for your date template:

Sunday, 1901 February 3 at 4:05:06 p.m.

You can use any or all parts of the representative date in your date template,
as in the following examples:

d'Sun, Feb 3, 1901'
d'02/03/01 16:05:06'
d'04:05:06p'
d'3/01

Note: For the output of these examples and others, see Absolute Date and
Time Examples.

An absolute date and time template overrides any date format specified by the
II_DATE_FORMAT environment variable/logical. For more information on
II_DATE_FORMAT, see the System Administrator Guide for the system on
which your database resides.

Specifying the Template

You can use the following representations of components in a date and time
template, with the exceptions noted in the table that follows:

 Sunday, Sun, or Su represents a day of the week

 1, 01, or 1901 represents the year

 2, 02, February, Feb, or Fe, represents the month

 3 or 03 represent the day of the month

 4, 04, or 16 (24-hour time) represent the hour

Date and Time Templates

Chapter 18: Working with Data Types and Data Display Formats 18–23

 5 or 05 represent minutes

 6 or 06 represent seconds

 p or p.m. represent the designations am or pm

This is easy to remember because Sunday is the first day of the week, and
arguments 1, 2, 3, 4, 5 and 6 are the year, month, day, hour, minute, and
second, respectively.

The following rules apply when using the representative date components to
indicate position and style:

Component Usage Rules

Day You can specify the day as an ordinal number by suffixing it
with the appropriate abbreviation: st, nd, rd, or th. For
example, the template 3rd day of February 1901 produces
a date such as 15th day of January 1998.

 If input masking is on, you cannot use the full name of the
day, Sunday, or ordinal numbers and their abbreviations. If
you use the single digit 3 for the day, you must precede it
with a space. For more information, see Input Masking for
Absolute Dates.

Month You can use either a single or double digit for the month.
Use a 2 (single digit) for the month to display the months
of January through September as a single digit and the
months of October through December as a double digit. For
example, if you specify 2 for the month, July appears as
month 7 and November appears as month 11. Use 02 for
the month to display or enter all months as two-digit
numbers. In this case, July appears or is entered as 07.

If input masking is on, you must precede the single digit 2
with a space in your template. You cannot use the full
name of the month, February. For more information, see
Input Masking for Absolute Dates.

Year If you use the single digit 1 in the template to indicate the
year, the years zero through nine are displayed or entered
with only one digit; double-digit years are displayed as two
digits. For example, specifying 1 for the year displays 2004
as 4 and 2014 as 14. If you use the four digits 1901, all
four digits of the year are displayed. Thus, 2004 is
displayed as 2004.

If input masking is on, you must precede the single digit 1
with a space in your template. For more information, see
Input Masking for Absolute Dates.

Date and Time Templates

18–24 Character-based Querying and Reporting Tools User Guide

Component Usage Rules

Time You can specify 24-hour (military) time by using 16 instead
of 4 for the hour. You cannot use p or p.m. with 24-hour
time.

Order You can arrange the arguments in various combinations in
any order. For example, 03/02/01 displays first the day (3),
the month (2), and the year (1), with each element
separated by slashes. The date January 15, 1998 appears
as 15/01/98. If your template is Sun 03/02/01, the date
January 15, 1998 appears as Saturday 15/01/98. Similarly,
1901.02.03 first displays the year, the month, and the day,
separated with periods, resulting in 1998.01.15.

Constant
characters

Separators and other constant characters in your template,
such as forward slashes (/) and periods (.), are displayed
exactly as indicated in the template.

Reserved
characters

If you want to use one of the special reserved template
characters or symbols as an explicit character in your
template, you must precede it with a backslash (\). For
example, if you want to use the numeral 2 in the date
template as a constant rather than as the template symbol
for the month number, you must enter it as \2.

If input masking is on, you cannot use the vertical bar (|)
as a special alignment character.

Ingres displays as a string constant any word you include in a date template
other than the month name of February (or its allowed abbreviations), the
weekday of Sunday (or its allowed abbreviations), and the time designation p
or p.m.

You can combine any of the values given to specify your template, but be
aware that some combinations of those values can lead to incorrect outputs.
For example, you can display the numeric day of the year by specifying the
day and year but leaving out the month. Therefore, 3/1901 in the template
results in dates like 9/1998 for January 9, 1998, and 121/1998 for April 30,
1998. Also note that you can display just the numeric representation for
month and year by leaving out the day-year and day-month. This results in
outputs such as 3 for March 6, 1998, when specifying the template 02, and 98
for April 4, 1998, when specifying the template 01. However, when you use
templates with 03, leaving out the month and the year, the template does not
return the day of the month; instead, it returns the number of days since
January 1, 1582 (Gregorian calendar), which leads to outputs like 151943 for
February 1, 1998.

Date and Time Templates

Chapter 18: Working with Data Types and Data Display Formats 18–25

Numbers requiring more than one digit use up preceding blanks or zeroes. If
there are no preceding blanks or zeroes left, the number expands to the right.
A succeeding number does not use up a single blank immediately following a
letter, word, or number. Columns of numbers can be lined up by preceding
them with an appropriate number of blanks or zeroes.

Because full month and weekday names (as well as numbers without
preceding blanks or zeros) are of differing lengths, date columns using these
components in the format do not usually line up when displayed in columns.
Follow February or Sunday with a vertical bar (|) to specify that for shorter
month names or weekdays, an appropriate number of blanks is substituted for
the vertical bar to line up the components. When you follow a single digit in
your template with a vertical bar, each single-digit entry is automatically
preceded with a space, to line up single and double-digit entries.

For example, the template Sunday,| February | 3,| 1901 produces dates like:

Friday, January 15, 1998
Wednesday, May 4, 1998
Saturday, November 20, 1998

Any character preceded by a backslash (\) is printed as it appears.

Absolute Date and Time Examples

The following table demonstrates the use of absolute date and time templates:

Format Template Example Data Output

d'2/3/1' 25-oct-1998 10/25/98

D'2/3/1' 5-jun-1909 6/5/9

d' 2/ 3/01' 25-oct-1998 10/25/98

d' 2/ 3/01' 5-jun-1909 6/ 5/09

d'03-02-01' 5-oct-1998
07:24:12

05-10-98

d'010203' 5-oct-1997 971005

d'1\|2\|3' 5-oct-1997 97|10|5

d'FEBRUARY, 1901' 1-sep-2134 09:13:02 SEPTEMBER 2134

d'FEBRUARY, 1901' 7-may-1962 13:08:42 MAY 1962

d'Sunday' 5-oct-1998 Wednesday

d'SUN Feb 3 16:05 1901' 13-oct-1998 07:24:03 THU Oct 13 07:24
1998

Date and Time Templates

18–26 Character-based Querying and Reporting Tools User Guide

Format Template Example Data Output

d'FEB 03 4:05:06 p.m.' 12-dec-1998 22:13:03 DEC 12 10:13:03
p.m.

d'04:05:06 PM' 5-oct-1998
14:08:45

02:08:45 PM

d'04:05:06 PM' 5-oct-1998
07:29:12

07:29:12 AM

d 16:05 pst 5-oct-1998
14:08:45

14:08 pst

d'3/01' 5-oct-1998 278/98

d'February 3rd' 29-jul-1954 July 29th

d'3rd day of 1901' 11-may-1999 131st day of 1999

Input Masking for Absolute Dates

With input masking turned on, the only valid date template is the absolute
date and time template. Input masking does not allow you to use date interval
templates. Other restrictions apply, as discussed in the table in the section,
Absolute Date and Time Templates.

There must be adequate room in the date input template for all the digits
required by the template. For example, you must provide enough space to
enter both single-digit and double-digit days of the month.

To use single digits for the day, month, or year in your input template, you
must either:

 Precede the digit with a space to allow space for possible double-digit
entries

or

 Be sure that the data consists only of a single digit for that component

For example, assume that you specify a format representing the
month/day/year with no leading blanks or zeros in front of the digits:

d'2/3/1'

Date and Time Templates

Chapter 18: Working with Data Types and Data Display Formats 18–27

If you turn input masking on, this template is unacceptable because all of the
entries can be at least two digits (00/00/00 or 00/00/0000) and the preceding
format only allows for the one digit in each part. To specify a format in this
manner that is acceptable when input masking is on, you can precede each
single digit with a space (d' 2/ 3/ 1') or with a zero (d'02/03/01'). Specifying d'
2/ 3/ 1' causes a blank-filled date to display in the field prior to user entry;
specifying '02/03/01' displays a zero-filled date prior to user entry.

If you specify a template that is incorrect for use with input masking and turn
on input masking, the template is used, if it is otherwise correct, without
activating input masking. It does not generate an error message. However, it
can compare the entered data to the template only when the user attempts to
exit the field. If you correct the template, and input masking is still on, input
masking is automatically activated or the next data entered.

You must enter data from left to right in a date field that has input masking
turned on. Only numbers in the numeric portions of the template and
alphabetic characters in the non-numeric portions (month and day names) are
accepted. If you try to enter an incorrect keystroke in a position, you hear a
beep and the keystroke is not entered. The entire date and time string is
validated only when you exits the field.

Time Interval Templates

Time interval templates show the amount of elapsed time rather than an
absolute date or time.

Note: You cannot use input masking with time interval templates.

As in the absolute date format, you specify a time interval with a quoted string
containing one of many possible representations of a sample time interval,
such as 1 year or 1 yr 3 day. The selection and arrangement of the time
interval elements within the template indicate the way you want time intervals
to be displayed or printed. You must use the following representative time
interval as the basis for your template:

1 year 2 months 3 days 4 hours 5 minutes 6 seconds

You can use all or only some of these units in your template, and arrange
them in any order. You can use the plural or singular form of any unit, as well
as the singular or plural form of the abbreviations, yr, mo, hr, min, and sec.

To specify a time interval, use the d'template', where template contains one or
more time interval keywords (for example, minutes) preceded by the
appropriate digit from the representative time interval string, as in:

d'5 minutes'

This format displays results followed by the keyword; for example:

Date and Time Templates

18–28 Character-based Querying and Reporting Tools User Guide

9 minutes

Format Example Data Report Output

d'1 year' 3 years 5 mos
16 days

3 years

d'2 MONTHS,
3 DAYS'

3 years 5 mos
1 days

41 MONTHS,
1 DAY

d'1 yr 3 day' 1 yrs 5 mos
16 days

1 yr 168 days

d'4 hours 6 seconds' 23 hrs 8 mins
53 secs

23 hours 533 seconds

d'04:05 \hours' 23 hrs 0 mins
53 secs

23:01 hours

d'3 days 4 hours' 23 hrs 8 mins
53 secs

0 days 23 hours

d' 1 yr 2 mos 3 days' 200 yrs 11 mos
28 days

200 yrs 11 mos
28 days

d' 1 yr 2 mos 3 days' 5 yrs 1 mos
3 days

5 yrs 1 mo 3 days

There are 30.4376875 days in a month and 365.2425 days in a year. When
calculating a date interval, the smallest unit of time is rounded up.

Numbers requiring more than one digit use up preceding blanks or zeroes. If
there are no preceding blanks or zeroes to the left, the number expands to the
right. A succeeding number does not use up a single blank immediately
following a letter, word, or number. You can line up columns of numbers by
preceding them with an appropriate number of blanks or zeroes (note the last
two examples).

The word immediately following a number is made singular if the number is
one, or plural if the number is zero or greater than one. You can prevent this
by preceding the word with a backslash (\). Any character preceded by a
backslash is printed as you enter it.

String Input Templates

Chapter 18: Working with Data Types and Data Display Formats 18–29

String Input Templates
String input templates allow you to specify the type, order, and number of
characters a user can enter in a data entry field. You can define string input
templates only on single-line character data entry fields. This template is not
available for display-only fields, multi-line character entry fields, or entry fields
with non-character data types.

The general syntax of a string input template is:

s'{c}'

The s indicates this is a string template and the c represents any of the special
template characters. You use one special character for each space in the field
or column width, up to a possible width of 100. For example, s'naaannn'
specifies that the field or column is 7 characters wide and that numbers (n)
must be entered in the first and fifth through seventh positions, with
alphabetic characters (a) in the second, third, and fourth positions.

You must delimit the template with single (') or double (") quotation marks;
single quotes are recommended for consistency with requirements for quoting
string constants.

Creating a String Template

To create a string template that suits your needs, you can use any
combination of special characters that are pre-defined by Ingres, constant
characters, and user-defined custom character sets. A custom character set is
a definition of allowable user input for one of the five special characters, i, j, k,
l, and m. You can define up to 12 different custom character sets in a single
template.

Special Characters

There are a number of special characters that you can use in a string
template. Each special character represents a set of characters from which the
user can choose, to enter at the specified position.

For example, the special characters a and z represent alphabetic characters
and digits, respectively. Assume that you enter a template that looks like this:

aaazz

With this template, users can make entries such as Afm35 or pRt44 but not
entries such as 2acm5 or C342d. They must enter alphabetic characters in the
first three places and numeric characters in the last two places.

String Input Templates

18–30 Character-based Querying and Reporting Tools User Guide

The following table describes the special characters that you can use in a
string template:

Special Character Description

a Represents any alphabetic character.

h Represents any hexadecimal digit.

n Represents any digit (the default is 0).

o Represents any printable character (only 7 bit).

p Represents any printable character.

q Represents any character that can be the first
character in an Ingres name.

r Represents any character that can be the second or
subsequent character in an Ingres name.

s Represents any character (only 7 bit).

t Represents any character.

x Represents both alphabetic and numeric characters.

z Represents digits (the default is a space).

i Represents a user-defined character.

j Represents a user-defined character.

k Represents a user-defined character.

l Represents a user-defined character.

m Represents a user-defined character.

Using templates, you can enforce mandatory entry (the user must make an
entry), force the case of an entry, and insert a default entry if the user fails to
make an entry.

All of the special characters support mandatory entry. For information about
using this feature, see Forcing Mandatory Entry. To force the case of a user’s
entry or insert a default if the user does not make an entry, use a user-defined
special character. The pre-defined special characters do not support forced
case or default entries.

Escape Character

In addition to the special characters, a template can also include constant
(literal) characters. To indicate that a character is to be read as a literal in a
template, precede the character with the escape character, a backslash (\).

String Input Templates

Chapter 18: Working with Data Types and Data Display Formats 18–31

Custom Character Sets

In some instances, you may want to limit a user’s entries to some set of
characters that are broader or narrower than those available using the
pre-defined special characters. To accommodate these needs, you can define
up to 12 custom character sets per template. If the set you want is small—for
example, one or two characters—you can use the following syntax:

[c{c}]

The c represents the valid character or characters. You can include any
number of valid characters. Simply use this syntax in the template in the
positions where you want the specified characters. You must include the
brackets. For example, the following template allows the user to enter only the
letters a, b, or c in the first position:

[abc]nnn

If you want to specify a range of characters, use the following syntax:

[c-c2]

The c represents the beginning character in the range and c2 represents the
ending character.

For either syntax, the user must enter one of the specified characters in the
specified position.

In either syntax version, the case of the characters is unimportant for
alphabetic characters. You can use an uppercase or lowercase character to
represent the character. To force the user’s entry to either case, use the
special formatting character that specifies forced case. For more information,
see Specifying Uppercase or Lowercase.

When defining a character set for a single position in this manner, you cannot
enforce mandatory entry in that position. To enforce mandatory entry, you
must define the character set with a user-defined special character. For
information on defining character sets with user-defined special characters,
see User-defined Characters.

If you are defining a large character set or are using the set in several places
in your custom template, it is probably more convenient to define a special
character to represent the set and use that character in the template. For
more information, see User-defined Characters.

String Input Templates

18–32 Character-based Querying and Reporting Tools User Guide

User-defined Characters

In addition to the predefined special characters for string templates, you are
given five special characters whose meaning you can define. This is done by
associating one of the user-defined special characters with a custom character
set. This feature makes it easy to define a custom character set and specify
that set in several positions in your custom template.

To use a user-defined special character, you define the special character at the
first instance of its use in the template and put the special character in the
template for subsequent occurrences.

The special characters reserved for user definition are i, j, k, l, and m.

In the same way that each of the predefined characters are defined to
represent some set of characters, you can define each of these special
characters to represent some set of one or more characters. To do this, use
the following syntax:

[c=c1{c2}]

The c is one of the five special characters (i, j, k, l, or m) and c1 and c2
represent the characters that you want to include in the set of characters
defined for the special character. You can include any number of characters in
the set.

You can also specify a range of characters for your special character:

[c=c1-c2]

In this case, c represents the special character, c1 represents the beginning of
the range, and c2 represents its end.

When you include a user-defined special character in a template, the first
instance of the character in the template must be its definition. For
subsequent occurrences, you just use the special character. For example,
assume that you want to build a template in which the special character j
represents the numbers 4 and 6. An example of such a template is:

[j=46]aazaj

The above template describes a field of six characters, of which the first and
last must be either a 4 or a 6. Another example is:

nn[j=46]njj

This example describes a field of six characters also, in which the third, fifth,
and sixth must be either a 4 or a 6.

String Input Templates

Chapter 18: Working with Data Types and Data Display Formats 18–33

Predefined Characters for Custom Character Sets

You are also given a set of predefined special characters that you can use in
the definition of a custom character set. These characters represent a
pre-defined set of characters and can appear only in a custom character set
definition. You cannot place them directly in a template definition. These
special characters are useful because you can force the case or apply a default
to any of the characters represented by these built-in special characters. (The
pre-defined special characters described in The Special Characters do not allow
you to apply forced case or a default to any of the characters that they
represent.)

The following table lists the predefined special characters that you can use in a
custom character set definition:

Character Description

The pound sign represents any digit.

@ The at sign represents any alphabetic character.

* The asterisk represents any printable character.

+ The plus sign represents any printable character (only 7
bits).

& The ampersand represents any character that can be the
first character in a name.

% The percent sign represents the second and subsequent
characters in a name.

: The colon represents any hexadecimal digit.

Use these characters when you want to force the case of an entry or provide a
default for the entry. For example, to specify a four-letter entry, use a
template that looks like this:

aaaa

However, assume that you want the first position to be an uppercase letter.
Because you cannot force case on the special character a, you must use the
special character @ instead:

[@/u]aaa

If you want to include any of these special characters as literals in the
template, use the escape character with the character. For example, you want
the user to enter a two-figure percentage value. A template looks like this:

nn\%

String Input Templates

18–34 Character-based Querying and Reporting Tools User Guide

Specifying a Default Character

To specify a default character for a position, include the following syntax in
your character set definition:

//c

The c is the default character. For example, assume that you want the user to
enter a 4-digit number. They must enter at least two numbers, but if they fail
to enter the final two numbers, you want the number 1 in each of those
positions. Your template looks like this:

nn[#//1][#//1]

The n forces entry of a digit in those positions. The other two positions allow
entry of a digit, but insert the specified default if the user does not make an
entry.

When you specify a default character for a position, with one exception, the
default character is inserted whenever the user inserts a space in that position
or fails to make an entry into that position. The exception occurs when the
space is a valid entry for that position. In such instances, the space is placed
in the position. If a space is not a valid entry, the default character is placed in
the position.

The specified default character is always considered to be a valid character for
the position, even if it is not part of the character set defined for that position
by the template.

Specifying Uppercase or Lowercase

To force the case of the user’s entry, use the following in the special character
definition:

 For uppercase
/U or /u

 For lowercase
/L or /l

You can only include one case specification in each special character definition.
For example, assume that you want the user to enter a part number that
consists of an uppercase letter, from A - D, followed by three numbers.

Your template looks like this:

[a-d/U]nnn

or

[a-d/u]nnn

String Input Templates

Chapter 18: Working with Data Types and Data Display Formats 18–35

The user can make entries in lowercase or uppercase, and the data appears in
the field in uppercase.

Forcing Mandatory Entry

You must use a special character, either built-in or user-defined, if you want to
enforce mandatory entry. Mandatory entry means that the user cannot leave
the field without supplying a valid entry for that position. If they attempt to
leave the field without providing a valid entry, they receive an error message
and the cursor is positioned at the beginning of the template.

To specify mandatory entry, you use an uppercase special character. For
example, assume that you want the user to enter a part number that has a
two-letter code followed by two numbers and one final letter, and that the first
two letters are mandatory. Your template looks like this:

AAnna

Perhaps the part number uses a restricted letter set, for example A-D. Your
template looks like this:

[K=a-d]Knnk

The user must enter one of the letters from A to D in the first two positions;
this is enforced by the uppercase K. Making an entry in the final position is
optional, but if done, must be a letter from A to D also.

Examples of User-Defined Character Sets

The following table shows some examples of user-defined character sets:

Example Description

[\#-*] All of the characters found between # and * in the ASCII
collating sequence.

[A0\[\]/u] The letter a, forced to uppercase, the digit 0 and brackets.

[#abc] Any character acceptable in your installation as a digit and
the letters a, b, and c

[&*\$] Any character acceptable in your system as the first
character in a name and the characters * and $.

[abc//a] The characters a, b, and c, with a default of a if the user
fails to make an entry or enters a space.

String Input Templates

18–36 Character-based Querying and Reporting Tools User Guide

Examples of String Templates

The following table shows some examples of string templates:

Example Description

nnn\-nn\-nnnn This template, with embedded dashes, lets the user enter
9 digits.

AA\-nnnn This template specifies two alphabetic characters and four
digits, a dash separating the alphabetic and numeric
characters. The alphabetic characters are mandatory.

nn\% This template specifies two digits and places a percent
following the digits.

[e/u][x/u]nnnn
\-[#//0][#//0]

This template specifies that the user enter an e and x in
the first and second positions, respectively, followed by
four digits and an additional two more digits. The
template forces uppercase on the first two positions,
inserts zeros by default in the last two positions if the user
does not make entries into those positions, and puts a
dash before the final two positions.

N\’[j=a-m/l]jjj\’ This template specifies a five-character entry. The first
position is a digit and is a mandatory entry. The final four
positions can be any character between a and m,
inclusive. The final four positions are set off by single
quotes and are forced to lower case.

Appendix A: Defining Your Terminal A–1

Appendix A: Defining Your Terminal

This appendix describes how to define your terminal and lists the names for
many commercially available terminals on which you can run Ingres.

Defining your terminal allows you to use the forms-based utilities and the
many features of Ingres. Your computer system can support a wide variety of
terminals, each with its own particular characteristics.

The Termcap File
The termcap file contains a description of all terminals supported by Ingres,
including their color capabilities and available function, control, and arrow
keys. Each supported terminal has a termcap description that is based on the
vendor’s specifications for that device. This appendix lists supported terminals.
For unsupported terminals, you must write your own termcap descriptions. For
more information, see the appendix “Writing Termcap Descriptions.”

When you start the Forms Run-time System, it uses the TERM_INGRES
environment variable/logical to determine the user’s terminal type and verifies
basic terminal attributes. The terminal type defined by TERM_INGRES tells the
Forms Run-time System, which terminal description to read from the Ingres
termcap file. The type is checked only once for each session, so the user must
exit the current session to reset TERM_INGRES to change terminal types.

Forms Run-time System key definitions can be changed dynamically by the
installation, terminal type, user, and application key mapping files. For more
information on key mapping, see the appendix “Defining Function and Control
Keys.”

How to Define Your Terminal

A–2 Character-based Querying and Reporting Tools User Guide

How to Define Your Terminal
To define your terminal to Ingres, you enter the setenv command at the
operating system prompt to define the TERM_INGRES environment
variable/logical. Once the forms system has started, TERM_INGRES cannot be
reset until the session has ended. It is a good idea to include the command
that defines TERM_INGRES in the automatic login procedures on your
individual account on the computer.

Defining Your Terminal: Windows

To define your terminal for Windows NT/95/98/2000, use the following
command:

ingsetenv TERM_INGRES termname

The parameter termname is the designation for your terminal type. For more
information, see Terminal Names.

For example, if you are working on an IBM compatible PC, Terminal Names
shows you that “IBMPC” is the correct termname designation.

Defining Your Terminal: UNIX

To define your terminal in UNIX, select the appropriate command for your
shell.

For the C shell:

setenv TERM_INGRES termname

For the Bourne shell:

TERM_INGRES=termname
export TERM_INGRES

The parameter termname is the designation for your terminal type. For more
information, see Terminal Names.

For example, if you have a VT100 terminal, and you want to be able to use the
arrow keys as cursor movement keys and the keypad keys as definable
function keys, consulting Terminal Names tells you that vt100i is the proper
designation.

How to Define Your Terminal

Appendix A: Defining Your Terminal A–3

To define your terminal accordingly to Ingres, enter one of the following
commands:

C shell:

setenv TERM_INGRES vt100i

Bourne shell:

TERM_INGRES=vt100i
export TERM_INGRES

Thereafter, you can use the VT100 default assignment of keys for cursor
movement and executing forms commands in Ingres.

The vt100nk is another terminal designation available for VT100 terminals.
This terminal designation is particularly suited to applications that require use
of the keypad for numeric input. This designation gives the user access to the
arrow keys and the top four function keys on the numeric keypad. The other
keys on the keypad are available for numeric input.

If your UNIX system provides full support for VT220 terminals, you can define
a VT220 terminal as vt220 and use the VT220 keystrokes. Some UNIX
systems do not provide full support for VT220 terminals. In this case, you
must set a VT220 terminal to emulate a VT100, using the VT100 keystrokes,
as discussed previously.

Defining Your Terminal: VMS

To define your terminal in VMS, use the following command:

define TERM_INGRES termname

The parameter termname is the designation for your terminal type. For more
information, see Terminal Names.

For instance, if you have a VT100 terminal, and you want to be able to use the
arrow keys as cursor movement keys and the keypad keys as definable
function keys, consulting Terminal Names tells you that vt100i is the proper
designation. To define your terminal accordingly to Ingres, execute the
following command:

define term_ingres vt100i

In most VAX/VMS installations, VT100 and VT220 terminals are prevalent. We
recommend the vt100i designation for VT100 terminals and the vt220i
designation for VT220 terminals.

How to Define Your Terminal

A–4 Character-based Querying and Reporting Tools User Guide

Terminal Names

The Forms Run-time System must function correctly on the terminals listed
here. However, not all of these terminals have been tested to determine the
functionality of the Forms Run-time System. If you have any problems with
the terminal designations, please notify technical support.

If you cannot locate your terminal on this list, look through the entries in the
termcap file to find an entry that meets your needs:

Terminal Type Menu
Key

Name

ADDRINFO ESC addrinfo

ADDS CONSUL 980 ESC a980

ADDS REGENT 100 ESC regent100

ADDS REGENT 20 ESC regent20

ADDS REGENT 25 ESC regent25

ADDS REGENT 40 ESC regent40

ADDS REGENT 60 ESC regent60

REGENT 60 w/no arrow keys ESC regent60na

ADDS REGENT SERIES ESC regent

AMPEX DIALOGUE 80 ESC ampex

ANN ARBOR ESC aa

ANN ARBOR AMBASSADOR 48 with destructive
backspace

ESC aaadb

ANN ARBOR AMBASSADOR/48 lines ESC aaa

ANSI PC console with function keys PF1 ansinf

ANSI PC console with no function keys PF1 ansif

BDS1 in Wyse-50 mode ESC bds1

BDS1 in Wyse-50 mode with function keys PF1 bds1f

BEEHIVE SUPER BEE ESC sb1

FIXED SUPERBEE ESC sb2

BEEHIVE IIIm ESC bh3m

BULL QUESTAR 210 ESC Q210

BULL QUESTAR 210 with function keys F1 Q210f

How to Define Your Terminal

Appendix A: Defining Your Terminal A–5

Terminal Type Menu
Key

Name

BULL QUESTAR 305/310 ESC Q310

BULL QUESTAR 305/310 in 132-column mode ESC Q310-w

BULL QUESTAR 305/310 with function keys PF1 Q310f

BULL QUESTAR 305/310 in 132-column mode with
function keys

PF1 Q310-wf

BULL X-TERMINAL running WindowView with function
keys

F1 bwvf

CONCEPT 100 ESC c100

CONCEPT 100 slow ESC c100s

CONCEPT 100 slow reverse video ESC c100rvs

C100 reverse video ESC c100rv

C100 with 4 pages ESC c1004p

C100 reverse video with 4 pages ESC c100rv4p

C100 with no arrows, reverse video, 4 pages ESC c100rv4pna

C100 with printer port, reverse video, 4 pages ESC c100rv4ppp

CDC ESC cdc456

CDC456tst ESC cdc456tst

CDI1203 ESC cdi

COMPUCOLORII ESC compucolor

CYBERNEX mdl-110 ESC mdl110

DATAMEDIA 1520 ESC dm1520

DATAMEDIA 1521 ESC dm1521

DATAMEDIA 2500 ESC dm2500

DATAMEDIA 3025a ESC dm3025

DATAMEDIA 3045a ESC dm3045

DATAMEDIA dt80/1 ESC dt80

DATAMEDIA dt80/1 in 132 character mode ESC dt80132

DATAPOINT 3360 ESC datapoint

DEC VT100 with function keys activated PF1 vt100f

DEC VT100 with function keys activated (3.0 release) PF1 vt100k

How to Define Your Terminal

A–6 Character-based Querying and Reporting Tools User Guide

Terminal Type Menu
Key

Name

DEC VT100 with numeric keypad PF1 vt100nk

DEC VT100 without function keys activated ESC vt100

DEC VT100 in 132-column mode with function keys
activated

PF1 vt100fw

DEC VT100 in 132-column mode with function keys
activated (3.0 release)

PF1 vt100kw

DEC VT100 in 132-column mode with numeric keypad PF1 vt100nkw

DEC VT100 with function keys activated and Return key
mapped to Nextitem instead of Clearrest (works like
vt100f, but Return does not clear to end of field)

PF1 vt100i

DEC VT100 in 132-column mode with function keys
activated and Return key mapped to Nextitem instead
of Clearrest (works like vt100fw, but Return does not
clear to end of field)

PF1 vt100iw

DEC VT100 in 132-column mode without function keys
activated

PF1 vt100w

DEC VT100 with no initialization ESC vt100n

DEC VT125 ESC vt125

DEC VT220 PF1 vt220

DEC VT220 with Return key mapped to Nextitem
instead of Clearrest

PF1 vt220i

DEC VT220 in 132-column mode PF1 vt200w

DECVT220 in 132-column mode with Return mapped to
Nextitem instead of Clearrest

PF1 vt220iw

DEC VT241 PF1 vt241

DEC VT50 ESC vt50

DEC VT50h ESC vt50h

DEC VT52 ESC vt52

DEC VT132 ESC vt132

DECTERM EMULATOR with function keys and mouse
support

PF1 decterm

DELTA DATA 5000 ESC delta

DIGILOG 333 ESC digilog

ENVISION PF1 envision

How to Define Your Terminal

Appendix A: Defining Your Terminal A–7

Terminal Type Menu
Key

Name

ENVISION with color PF1 envisionc

GENERAL TERMINAL 100A (formerly INFOTON 100) ESC i100

HAZELTINE 1500 ESC h1500

HAZELTINE 1510 ESC h1510

HAZELTINE 1520 ESC h1520

HAZELTINE 1552 ESC h1552

HAZELTINE 1552 reverse video ESC h1552rv

HAZELTINE 2000 ESC h2000

HEATHKIT h19 ESC h19

HEATHKIT h19 ansi mode ESC h19A

HEATHKIT with keypad shifted ESC h19bs

HEATHKIT with keypad shifted, underscore cursor ESC h19us

HEATHKIT with underscore cursor ESC h19u

HEWLETT PACKARD 2392 in hp mode, 80 columns PF1 hp2392

HEWLETT PACKARD 2393 in hp mode, 80 columns PF1 hp2393

HEWLETT PACKARD 2394 in hp mode, 80 columns PF1 hp2394

HEWLETT PACKARD 700/92 in hp mode, 80 columns PF1 hp70092

HEWLETT PACKARD 700/94 in hp mode, 80 columns PF1 hp70094

HEWLETT PACKARD 700/96 in hp mode, 80 columns PF1 hp70096

HEWLETT PACKARD 700/98 in hp mode, 80 columns PF1 hp70098

HEWLETT PACKARD 2621 ESC 2621

HEWLETT PACKARD 2621 with 45 keyboard ESC 2621k45

HEWLETT PACKARD 2621 with labels ESC 2621wl

HEWLETT PACKARD 2621 with no labels ESC 2621nl

HEWLETT PACKARD 2621 48 lines ESC big2621

HEWLETT PACKARD 2626 ESC hp2626

HEWLETT PACKARD 2640a ESC 2640

HEWLETT PACKARD 2648a graphics terminal ESC hp2648

HEWLETT PACKARD 264x series ESC 2640b

HEWLETT PACKARD 264x series ESC hp

How to Define Your Terminal

A–8 Character-based Querying and Reporting Tools User Guide

Terminal Type Menu
Key

Name

IBM 3101-10 ESC ibm

IBM PC ESC ibmpc

INFOTON 400 ESC i400

INFOTON KAS ESC infotonKAS

ISC modified owl 1200 ESC intext

ISC8001 ESC 8001

LSI adm2 ESC adm2

LSI adm3 ESC adm3

LSI adm3a+ ESC adm3a+

LSI adm31 ESC adm31

LSI adm3a ESC adm3a

LSI adm42 ESC adm42

MICRO BEE SERIES ESC microb

MICROTERM ACT IV ESC microterm

MICROTERM ACT V ESC microterm5

MICROTERM MIME1 ESC mime

FULL BRIGHT MIME1 ESC mimefb

HALF BRIGHT MIME1 ESC mimehb

MICROTERM MIME2A (emulating an enhanced SOROC
iq120)

ESC mime2as

MICROTERM MIME2A (emulating an enhanced VT52) ESC mime2a

MIME1 emulating 3A ESC mime3a

MIME1 emulating enhanced 3A ESC mime3ax

NETRONICS ESC netx

PERKIN ELMER 1100 ESC fox

PERKIN ELMER 1200 ESC owl

SOL ESC sol

SOROC 120 ESC soroc

SOUTHWEST TECHNICAL PRODUCTS CT82 ESC swtp

SUN CMDTOOL with function keys PF1 sun-cmdf

How to Define Your Terminal

Appendix A: Defining Your Terminal A–9

Terminal Type Menu
Key

Name

SUN CMDTOOL no function keys ESC sun-cmd

SUN CONSOLE ESC sun

SUN CONSOLE with function keys F2 sunf

SUN MICROSYSTEMS SUN TYPE5 keyboard for
shelltool/commandtool

PF1 suntype5

SUN TERMINAL EMULATER PF1 vt100te

SUNTOOLS CONSOLE emulator R11 sunm

SUPER BEE with insert character ESC superbeeic

TEKTRONIX 4105 PF1 tk4105

TEKTRONIX 4105 with color PF1 tk4105c

TEKTRONIX 4105 with 24 lines and color and function
keys

PF1 vt4105c

TEKTRONIX 4106 with function keys PF1 tk4106

TEKTRONIX 4107 with function keys PF1 tk4107

TEKTRONIX 4115 with function keys PF1 tk4115

TELERAY 1061 ESC t1061

TELERAY 1061 with fast PROMs ESC t1061f

DUMB TELERAY 3700 ESC t3700

TELERAY 3800 series ESC t3800

TELETEC DATASCREEN ESC teletec

NEW TELEVIDEO 912 ESC 912b

NEW TELEVIDEO 920 ESC 920b

OLD TELEVIDEO 912 ESC tvi912

OLD TELEVIDEO 920 ESC tvi920

VISUAL 200 no function keys ESC vi200f

VISUAL 200 reverse video ESC vi200rv

VISUAL 200 reverse video using insert character ESC vi200rvic

VISUAL 200 using insert character ESC vi200ic

VISUAL 200 with function keys ESC vi200

VT100f in 132 mode that supports 80/132 size change PF1 vt100fwc

How to Define Your Terminal

A–10 Character-based Querying and Reporting Tools User Guide

Terminal Type Menu
Key

Name

VT100f that supports 80/132 size change PF1 vt100fc

VT100f in Xterm with sizing on startup and mouse
support

PF1 vt100fx

VT100f with nextitem mapped and 80/132 size change PF1 vt100ic

VT100f in 132 mode with nextitem and 80/132 size
change

PF1 vt100iwc

VT200 in 7 bit with nextitem and reset to 8 bit PF1 vt200-8i

VT200 in 7 bit, 132 cols, nextitem and reset to 8 bit PF1 vt200-8iw

VT200 in 80 mode with nextitem and 80/132 support PF1 vt200ic

VT200 in 132 columns and reset to 8 bits on exit PF1 vt200-8w

VT200 in 132 mode with nextitem and 80/132 support PF1 vt200iwc

VT220 that resets to 8 bits on exit PF1 vt200-8

VT220 in 7 bit that supports 80/132 size change PF1 vt200c

VT220 in 7 bit 132 mode and supports 80/132
switching

PF1 vt200wc

VT240 with function keys PF1 vt240

VT241 terminal in 80 mode PF1 vt241

VT241 terminal in 132 mode PF1 vt241w

VT3XX running as a vt200 in 132 mode PF1 vt300w

VTU 0010 ESC hn10

VTU 0010 with function keys F1 hn10f

VTU 0040 ESC hn40

VTU 0040 with function keys F1 hn40f

VTU 0050 ESC hn50

VTU 0050 with function keys F1 hn50f

XEROX 1720 ESC x1720

XITEX sct-100 ESC xitex

ZENTEC 30 ESC zen30

Appendix B: Defining Function and Control Keys B–1

Appendix B: Defining Function and
Control Keys

This appendix explains how to define function and control keys in Microsoft
Windows (function, control, and arrow keys in UNIX and VMX) to the FRS for
use in user-designed applications or to customize your keyboard for use with
the Ingres forms-based tools. FRS is a built-in screen management system for
all forms-based tools, as well as for custom applications that use forms.

When designing custom applications, the actual keystrokes that you employ to
perform various functions can differ from those used with the Ingres forms-
based tools. If you want to maintain consistency with key definitions in these
forms-based tools, you can use Ingres conventions when programming menu
items, cursor movement, and other operations performed by users.

This appendix also describes how to define keys to the FRS to customize the
end user’s environment while the user is running either forms-based tools or
specialized Ingres applications. Ordinarily, such customizing is implemented by
the application developer, rather than by end users of applications.

Use mapping files to map menu item operations, cursor movement, and all
other operations, to function or control keys, and (in UNIX and VMS) arrow
keys on your keyboard. Once the mapping has been specified, you or the end
user can execute the operation by pressing the specified key. If the keyboards
at your installation do not support function keys, you can still map operations
to control keys or (in UNIX and VMS) arrow keys. The end user can enter a
control character to execute the operation.

This appendix includes environment-specific Key Mapping Overview and
Troubleshooting sections.

Key Mapping Overview (PC Environment)

Windows

These files define keyboard key usage in the FRS for Ingres on a PC:

 Termcap file

 FRS default key-mapping file (or personal variation of this file)

 Application key-mapping files

Key Mapping Overview (PC Environment)

B–2 Character-based Querying and Reporting Tools User Guide

The first two files define and map the overall use of keys in the FRS for a
standard PC. Application key-mapping files define and map the use of keys
within a specific application that an Ingres user can design.

Termcap File

The Ingres termcap file for the PC environment contains:

 Statements that define the basic capabilities of your PC to the FRS. For
more information, see the appendix “Writing Termcap Descriptions.”

 Escape sequences that associate keys on your keyboard with internal
program function, arrow, and control keys

Ingres defines physical keys and key combinations in the termcap file by
associating their escape sequences with a set of 40 internal program function
keys (pf1 through pf40), the arrow keys (up, down, right, and left), and some
ASCII control keys. For example, F1 on an IBM PC AT keyboard is assigned to
the internal function key, pf1, the Shift+F1 key combination is assigned to
internal function key, pf11, and the Insert key is assigned to the ASCII control
key, controlE. The internal function and control keys are then mapped to
Ingres operations in a mapping file. This makes it possible to map predefined
Ingres operations to many more physical keys than the standard set of
function keys on your PC keyboard.

ASCII control keys that have been mapped to operations but have not been
defined in the termcap file can be invoked by pressing the appropriate
Ctrl+key combination. However, the following control keys are reserved by the
operating system for its own use and must not be mapped to any operations in
any key mapping file:

 Ctrl+C

 Ctrl+P

 Ctrl+S

The termcap file supports the enhanced keyboard function keys, F11, F12,
Shift+F11, Shift+F12, Ctrl+F11, and Ctrl+F12. Depending on the key-mapping
file you use, these keys can or cannot be assigned to Ingres functions.

Key Mapping Overview (PC Environment)

Appendix B: Defining Function and Control Keys B–3

The following table shows the key assignments for your PC in the termcap file:

Internal Ingres Key Name PC Key

controlE Insert

controlH Backspace

controlY Home

controlZ End

Up arrow Up arrow

Down arrow Down arrow

Right arrow Right arrow

Left arrow Left arrow

pf1 F1

pf2 F2

pf3 F3

pf4 F4

pf5 F5

pf6 F6

pf7 F7

pf8 F8

pf9 F9

pf10 F10

pf11 Shift+F1

pf12 Shift+F2

pf13 Shift+F3

pf14 Shift+F4

pf15 Shift+F5

pf16 Shift+F6

pf17 Shift+F7

pf18 Shift+F8

pf19 Shift+F9

pf20 Shift+F10

pf21 Alt+F1

Key Mapping Overview (PC Environment)

B–4 Character-based Querying and Reporting Tools User Guide

Internal Ingres Key Name PC Key

pf22 Alt+F2

pf23 Alt+F3

pf24 Alt+F4

pf25 Alt+F5

pf26 Alt+F6

pf27 Alt+F7

pf28 Alt+F8

pf29 Alt+F9

pf30 Alt+F10

pf31 F11 and Ctrl+F1

pf32 F12 and Ctrl+F2

pf33 Shift+F11 and Ctrl+F3

pf34 Shift+F12 and Ctrl+F4

pf35 Alt+F11, Ctrl+F5, and Ctrl+F11

pf36 Alt+F12, Ctrl+F6, and Ctrl+F12

pf37 PgUp

pf38 PgDn

pf39 Delete

pf40 Escape

FRS Mapping File

A mapping file defines the use of the program function and control keys in the
FRS. The mapping file associates a pf or control key with a particular Ingres
function by mapping it to a FRS object. There are different types of FRS
mapping objects. A FRS object can be an:

 FRS command

 Menu item

 FRS Key

Key Mapping Overview (PC Environment)

Appendix B: Defining Function and Control Keys B–5

An example of a FRS object is the FRS command, menu. FRS commands are
built-in functions of the FRS, such as moving to the menu line or moving to
the next field, that enable the user to view and edit the data on a form. The
FRS defines the behavior of each FRS command. For instance, the menu
command moves the cursor to the menu line.

The FRS mapping file maps these functions to the pf keys and other internal
keys associated with the physical keys on your keyboard. The entire mapping
sequence in the FRS mapping file and the termcap file can be depicted as:

FRS mapping object = pf or control key = keyboard key

For example, the key mapping sequence for the menu command can be
represented as:

menu FRS command = pf2 program function key = F2 key

The actual mapping statement in the FRS mapping file would be:

menu = pf2 (F2) /* Menu (menu key) */

The key name shown in parentheses is a label that indicates to the user which
physical key to press. The functionality of each key mapping is shown as a
comment statement between the characters /* and */.

This mapping scheme provides flexibility in assigning functions to keyboard
keys, without requiring editing of the termcap file. You can easily assign any
FRS mapping object to a different key by changing the mapping statement in
the FRS mapping file, or by overriding it with a statement in a mapping file of
higher precedence. For more information, see Application Mapping Files.

You can also substitute your own personal key mapping file for the FRS
mapping file. To do so, set the Ingres_KEYS environment variable to the
substitute file in a batch file, such as your autoexec.bat file, using the
following syntax:

set INGRES_KEYS=fullpathname\filename

This can be useful if multiple users share the same PC and want to customize
their key map assignments individually.

Key Mapping Overview (PC Environment)

B–6 Character-based Querying and Reporting Tools User Guide

Mapping File Example

The following is an example of an FRS mapping file:

/* This is an example of a mapping file */
menuitem2 = pf3 (F3)
 menuitem3 = controlE (^E)
 frskey7 = pf8
previousfield = controlP (Sh-Tab)
 rubout = controlDEL (Backspace)
 controlA = off
/* this turns control-A off */
pf7 = off

The first line of this sample file is a comment. Comments can appear anywhere
in a mapping file. Their purpose is to provide information to someone looking
at the file; they are ignored by the FRS.

The next five lines are examples of mapping statements. All mapping
statements follow the same basic syntax. To the left of the equal sign is a
mapping object, which specifies the operation or function to which the key is
being mapped. To the right of the equal sign is the internal program function
key or control key that maps to, and activates, the mapping object. For
instance, the following statement specifies that the second item on each menu
line (menuitem2) map to program function key pf3:

menuitem2 = pf3 (F3)

The parentheses to the right of the internal function or control key contain a
label. The label tells the user what key to press to activate the menu selection
or operation. The label appears on the menu line, if appropriate, or in the Help
Keys operation display. If no label is specified in the mapping statement,
Ingres displays an appropriate default label. Although you can put any text
you want here, you must make sure the label indicates the physical key to
which the internal function key is mapped in the termcap file, so that the end
user presses the correct key to invoke the operation. In the preceding
example, a user invokes the operation specified by the second item on any
menu by pressing F3.

The following statement enables the user to move the cursor to the previous
field on a form by pressing Sh-Tab, which is mapped internally to the controlP
function:

previousfield = controlP (Sh-Tab)

The Ingres controlP function has been mapped internally to Sh-Tab, rather
than to the Ctrl+p key combination, because Ctrl+p is trapped by the
operating system. For more information, see The Termcap File.

Key Mapping Overview (PC Environment)

Appendix B: Defining Function and Control Keys B–7

The last two statements in the example are known as disabling statements. A
disabling statement is used to disable a control or function key. For example,
the following statement turns off the key mapped to the pf7 program function
key (which is associated with function key F7 in the termcap file):

pf7 = off

This means that the function key F7 has no effect in a forms program
governed by this map file, and merely beeps when pressed.

For more information on FRS objects and the syntax required to map them to
keys, see FRS Mapping Objects and Mapping File Syntax.

Standard FRS Mapping Files

Depending on your PC keyboard and environment, you can use the following
standard FRS mapping files provided with the forms-based tools:

 frs.map, for a PC without function keys

 ibmpc.map, for an ANSI standard PC

Ingres always reads and uses the frs.map file as the basic key mapping file.
You cannot change this by setting an environment variable. However, you can
point to an additional mapping file from within the termcap file by setting the
map= entry to the following file:

ibmpc.map

Mappings in the termcap-specified key map file take precedence over
mappings in the frs.map file. All other key mappings in the frs.map file remain
active.

The ibmpc.map mapping file is designed to accommodate PC computers with
older keyboards having only ten function keys. This mapping file assigns
functions to only ten PC function keys.

You can edit the mapping files or create an alternate mapping file. However,
keep in mind the physical key assignments in the termcap file, because the
label assigned to a pf key must match the physical key associated with that pf
key.

The following table depicts the FRS object-to-key mappings in the standard
FRS mapping files. For reference purposes, the table displays the mapping file
settings in tabular form and alphabetical order, within the three groups of FRS
objects (FRS keys, menu items, and FRS operations).

Key Mapping Overview (PC Environment)

B–8 Character-based Querying and Reporting Tools User Guide

FRS Object & Function frs.map ibmpc.map

frskey1

Help (invoke help facility)

N/A pf1
(F1)

frskey2

Quit (exit the system)

N/A pf6
(F6)

frskey3

End (return to previous frame)

N/A pf10
(F10)

frskey4

Go (execute function)

N/A pf9
(F9)

frskey5

Top (move to top of table field)

N/A pf37
(Home)

frskey6

Bottom (move to bottom of table field)

N/A pf38
(End)

frskey7

Find (search table field for specified string)

N/A pf5
(F5)

frskey8

Save object in database

N/A pf3
(F3)

frskey9

Undo or Forget (undo last action or forget
changes made in frame)

N/A pf7
(F7)

frskey10

List the available choices

N/A pf8
(F8)

menuitem1

Select first menu item

N/A pf11
(Sh+F1)

menuitem2

Select second menu item

N/A pf12
(Sh+F2)

menuitem3

Select third menu item - often edit

N/A pf4
(F4)

menuitem4

Select fourth menu item

N/A pf14
(Sh+F4)

menuitem5

Select fifth menu item

N/A pf15
(Sh+F5)

Key Mapping Overview (PC Environment)

Appendix B: Defining Function and Control Keys B–9

FRS Object & Function frs.map ibmpc.map

menuitem6

Select sixth menu item

N/A pf16
(Sh+F6)

menuitem7

Select seventh menu item

N/A pf17
(Sh+F7)

menuitem8

Select eighth menu item

N/A pf18
(Sh+F8)

menuitem9

Select ninth menu item

N/A pf19
(Sh+F9)

menuitem10

Select tenth menu item

N/A pf20
(Sh+F10)

clear

Clear remainder of field

controlX
(Ctrl-X)

controlX
(Ctrl+X)

clearrest

Clear remainder of field (and move to next
field?)

N/A

deletechar

Delete the character under the cursor

N/A pf36
(Delete)

downline

Move down one line

controlG
(down arrow)

duplicate

Auto-duplicate value while in fill mode

controlA
(Ctrl-A)

controlA
(Ctrl+A)

editor

Start default text editor on field

controlV
(Ctrl-V)

controlV
(Ctrl+V)

leftchar

Move left one space within a field

 controlR
(left arrow)

menu

Moves cursor to the menu (ring menus
require the Esc key)

 pf34
(Esc)

mode

Switch between insert and overstrike
mode

controlE
(Ctrl+E)

pf35 (Ins)

Key Mapping Overview (PC Environment)

B–10 Character-based Querying and Reporting Tools User Guide

FRS Object & Function frs.map ibmpc.map

newrow

Move to first column of next row in table
field

controlN
(Ctrl+N)

controlN
(Ctrl+N)

nextfield

Move cursor to next field

controlI
(Tab)

controlI
(Ctrl+I)

nextitem

Move cursor to next field without clearing
this field

N/A

nextword

Move to next word in this field

controlB
(Ctrl+right
arrow)

previousfield

Move cursor to previous field

controlP
(Sh+Tab)

controlP
(Sh+Tab)

previousword

Move to previous word in this field

controlR
(Ctrl+left
arrow)

printscreen

Sends a copy of the currently displayed
form to a file or the printer, depending on
how the II_PRINTSCREEN_FILE
environment variable/logical has been set.
For more information, see the System
Administrator Guide for the system on
which your database resides.

controlF
(Ctrl+F)

redraw

Redraw the screen

controlW
(Ctrl+W)

ControlW
(Ctrl+W)

rightchar

Move right one space within a field

controlL
(right arrow)

controlL
(right arrow)

rubout

Delete character immediately to left of the
cursor

controlH
(Backspace)

controlH
(Backspace)

scrolldown

Previous screen or set of rows in table
field

 pf39
(PgDn)

scrollleft

Scroll left on a form

controlO
(Ctrl+PgDn)

controlO
(Ctrl+O)

Key Mapping Overview (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–11

FRS Object & Function frs.map ibmpc.map

scrollright

Scroll right on a form

c ControlU
(Ctrl+U)

scrollup

Next screen or set of rows in table field

 pf40
(PgUp)

shell

Spawns a DOS shell

upline

Move up one line

controlK
(up arrow)

Application Mapping Files

An application created with 4GL or one of the embedded query languages can
use its own set of key mappings, invoked by the set_frs frs or set_forms frs
(for 4GL) statements. Applications developers can use these statements in an
application to read in a key-mapping file that is specific to that application or
to map a FRS key to a function or control key explicitly in the application code.

An application mapping file takes precedence over the FRS mapping file. When
an application starts up, the FRS merges all mapping files and resolves any
conflicts between mapping statements by giving precedence to the statement
in the mapping file of highest precedence. The FRS always honors the most
recent reference to any mappable key in the file with the higher level of
precedence.

For more information on application key mapping, see the Forms-based
Application Development Tools User Guide.

Key Mapping Overview (UNIX and VMS Environments)

Windows

VMS

Before you can take advantage of the function key feature, the terminal
must be defined to Ingres so that physical keys on the terminal become
associated with logical functions. Through this mapping, the physical keys
can execute various operations that are either built into the forms system or
programmed inside the forms-based tools and custom applications.

These files are involved in defining keyboard key usage in the FRS:

 Termcap file

 Key mapping files

Key Mapping Overview (UNIX and VMS Environments)

B–12 Character-based Querying and Reporting Tools User Guide

The locations (escape sequences) and availability of function (PF), control, and
arrow keys are unique to the type of terminal you are using. Control keys are
available on all ASCII terminals, but only certain types of terminals also
support function keys.

The termcap file contains a description of all terminals supported by Ingres,
including their available function, control, and arrow keys. When you start the
FRS, it reads the appropriate terminal type description from the termcap file.
Before using Ingres, make sure your terminal has been defined to the FRS in
the termcap file.

Once the terminal has been defined in the termcap file, you can change FRS
key definitions dynamically in the key mapping files at the installation,
terminal type, user, and application mapping levels. This appendix describes
the key mapping process in detail.

Role of the Termcap File

Fundamental changes to the FRS’s interpretation of keystrokes for a particular
terminal require modification of that terminal’s termcap description. For
example, if you want the FRS to permanently interpret a Down Arrow key as
nextfield for the VT100i, you must change the termcap description for VT100i.
Key map files cannot accomplish such changes directly.

Certain termcap files allow you to define the terminal to recognize function
keys. For example, to use function keys with a VT100 or VT100-like terminal,
the terminal must be defined as vt100i.

Key Mapping Overview (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–13

The vt100i definition turns the terminal’s keypad into a set of 18 function
keys, as shown in the following figure.

In the figure, the numbers correspond to the numbers that appear on the
keys, while those in parentheses correspond to which function key that key is
(for example, key #7 is the fifth function key (PF5).

VMS

Function keys do not work as expected if the user has issued the following
VMS command:

set term/uppercase

This is because this VMS set term command translates all characters
received from the terminal into uppercase characters. The escape sequences
for function keys are defined with lowercase characters in the termcap
description. To correct this situation, create a new termcap description to
define function key escape sequences with uppercase characters.

By default, a VT220 terminal uses function keys; therefore this terminal must
be defined as vt220i. A VT220 can also emulate a VT100 terminal. If the
terminal itself is set this way, it is appropriately defined to Ingres as vt100i.
Other types of terminals with function keys can be defined to accept function
key mappings by editing the termcap file descriptions for the terminal types.
For more information, see the appendix “Writing Termcap Descriptions.”

Key Mapping Overview (UNIX and VMS Environments)

B–14 Character-based Querying and Reporting Tools User Guide

Users of terminals defined as vt100i or vt220i can also use arrow keys to
move the cursor. For these terminals, the arrow keys are defined by default in
the Ingres code to perform standard arrow key actions; for example, uparrow
= upline and downarrow = downline. The use of arrow keys on any other
terminal type can require the editing of its termcap file description.

No special terminal definition is required for control keys. Certain control keys,
however, are reserved by the operating system for its own use and must not
be mapped to any operations. These can include, but are not limited to:

 Control-C

 Control-O

 Control-Q

 Control-S

 Control-T

 Control-X

 Control-Y

Also, if your terminal uses escape sequences to define function keys (the case
for terminals defined as vt100i and vt220i and most other terminals), you
must also consider Escape as reserved.

Mapping Files

Typically, entries within mapping files define a connection between logical FRS
mapping objects, which can be accessed by the forms system, and program
function (pf) keys, control keys, and arrow keys on a keyboard.

There are different types of FRS mapping objects. A FRS object can be any one
of the following:

 FRS command

 Menu item

 FRS Key

An example of an FRS object is the FRS command menu. FRS commands are
built-in functions of the FRS, such as moving to the menu line or moving to
the next field, that enable the user to view and edit the data on a form. The
FRS defines the behavior of each FRS command. For instance, the menu
command moves the cursor to the menu line.

A mapping file maps these functions to the function, control, and arrow keys
that are defined for your terminal in the termcap file. The key mapping
sequence in the mapping file and the termcap file can be depicted as follows:

In the mapping file as:

Key Mapping Overview (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–15

FRS mapping object = pf, control, or arrow key

In the termcap file as:

pf, control, or arrow key = escape sequence

For example, the key mapping sequence for the previous field command can
be represented as follows:

In the mapping file as:

menu FRS command = pf1

In the termcap file as:

pf1 = escape sequence for pf1

The actual mapping statement in the FRS mapping file is:

menu = pf1 (PF1) /* Menu (menu key) */

The key name shown in parentheses is a label that indicates to the user which
physical key to press. The functionality of each key mapping is shown as a
comment statement between the characters /* and */.

This mapping scheme provides flexibility in assigning functions to keyboard
keys, without requiring editing of the termcap file. You can easily assign any
FRS mapping object to a different key by changing the mapping statement in
the mapping file, or by overriding it with a statement in a mapping file of
higher precedence. For more information, see Levels of Mapping.

Mapping File Example

The following example of a mapping file illustrates the full range of statements
available to specify any sort of mapping:

/* This is an example of a mapping file */
menuitem2 = pf3 (Key 3)
 menuitem3 = controlE (^E)
 frskey7 = pf8
previousfield = controlP
nextfield = rightarrow
rubout = controlDEL
controlA = off
/* this turns control-A off */
pf7 = off

The first line in the mapping file sample is a comment. Comments can appear
anywhere in a mapping file. Their purpose is to provide information to
someone looking at the file; they are ignored by the FRS.

Key Mapping Overview (UNIX and VMS Environments)

B–16 Character-based Querying and Reporting Tools User Guide

The next five lines are examples of mapping statements. All mapping
statements follow the same basic syntax. To the left of the equal sign is a
mapping object, which specifies the operation or function to which the key is
being mapped. To the right of the equal sign is the internal designation for the
function, control, or arrow key that maps to, and activates, the mapping
object. For instance, the following statement specifies that the second item on
each menu line (menuitem2) maps to program function key pf3:

menuitem2 = pf3 (Key 3)

This mapping statement contains a label within parentheses to the right of the
internal program function key. The specified label appears next to the second
menu item on the user’s screen to indicate what key to press to activate the
menu selection (in this case, key 3). The label also appears in the Help Keys
operation display. If no label is specified in the mapping statement, an
appropriate default label is displayed on the menu line and in the Help Keys
display. If you specify the label explicitly, it must indicate the physical key on
the keyboard that generates the correct escape sequence, as defined in the
termcap file, for the specified program function key, control key, or arrow key.

The following statement enables the user to move the cursor to the previous
field on a form by pressing Control-P:

previousfield = controlP

This mapping statement does not contain a label.

The last two statements in the example are known as disabling statements. A
disabling statement is used to disable a function, control, or arrow key. For
example, the following statement turns off the key mapped to the pf7 program
function key:

pf7 = off

This means that the key has no effect in a forms program governed by this
map file, and merely beeps when pressed.

For more information on FRS objects and the syntax required to map them to
keys, see FRS Mapping Objects and Mapping File Syntax topics.

Levels of Mapping

The FRS allows you to define key mappings for function, control, and arrow
keys on four separate levels:

 Installation

 Terminal type

 User (environment)

 Application

Key Mapping Overview (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–17

This allows you to tailor key definitions to the specific requirements of the
environment, the terminal type, the user, and the application. The
installation-level mapping has the lowest precedence, and is overridden by all
other mappings. Through terminal type-level mapping, a default can exist for
all terminals of a given type, such as VT100s or VT220s. This default is
overridden by any conflicting user or application mappings. The user-level
mapping is next in precedence, allowing each individual user a good degree of
latitude in the use of function, control, and arrow keys. Application-specific
mappings have the highest precedence to provide the same environment to all
users of an application and to ensure data integrity both in the form and the
database.

When the FRS starts up, the four levels of mapping are merged and conflicts
are resolved based on the precedence outlined previously. Any additional
mapping specified by the program during the running of an application is
merged in the same manner and takes precedence over conflicting mappings.
While the four levels of mappings can coexist, any of the levels can be
omitted. Because it is possible that a function, control, or arrow key is defined
at more than one of the four levels, the FRS always honors the most recent
reference to any mappable key from a file of higher-level precedence.

The following sections discuss each of the various levels at which mapping
occurs and how to specify the mapping file for each level.

Installation-Level Mapping

As mentioned previously, installation-level mapping has the lowest
precedence. It provides an underlying default, common to all terminal types,
which can be overlaid with mappings for specific terminal types, as well as
individual users and applications.

A default installation-level mapping file is shipped with Ingres. Because this
default file references only control keys and not function keys, it must be
usable for all Ingres terminal types.

The complete file specification for this mapping file is:

UNIX

$II_SYSTEM/ingres/files/frs.map

VMS

II_SYSTEM:[ingres.files]frs.maps

Key Mapping Overview (UNIX and VMS Environments)

B–18 Character-based Querying and Reporting Tools User Guide

It contains the following statements:

/* Move cursor to next field */
 nextfield = controlI (Tab)
/* Move cursor to previous field */
 previousfield = controlP (^P)
/* Move up one word within field */
 nextword = controlB (^B)
/* Move back one word within field */
 previousword = controlR (^R)
/* Switch between insert and */
/* overstrike mode*/
 mode = controlE (^E)
/* Redraw the screen */
 redraw = controlW (^W)
/* Delete character under the cursor */
 deletechar = controlD (^D)
/* Delete character to left of cursor */
 rubout = controlDEL (Delete)
/* Start default text editor on field */
 editor = controlV (^V)
/* Move left one space within a field */
 leftchar = controlH (^H)
/* Move right one space within a field */
 rightchar = controlL (^L)
/* Move down one line */
 downline = controlJ (^J)
/* Move up one line */
 upline = controlK (^K)
/* Move to first column of next row */
/* in table field */
 newrow = controlN (^N)
/* Clear the field */
 clear = controlX (^X)
/* Clear out rest of field */
/* and move to next field */
 clearrest = controlM (Return)
/* Scroll up on the form */
 scrollup = controlF (^F)
/* Scroll down on the form */
 scrolldown = controlG (^G)
/* Scroll left on a form */
 scrollleft = controlO (^O)
/* Scroll right on a form */
 scrollright = controlU (^U)
/* Auto-duplicate value while in fill mode*/
 duplicate = controlA (^A)

While you can edit this file to customize your installation’s default mappings,
you must not change the name of this file. The FRS automatically looks for the
file when starting up. If you do modify this file, be sure to map only those keys
that are available for all terminal types at your installation.

Notice that the file does not specify a menu key. This is because the FRS
command menu automatically defaults to Escape.

Key Mapping Overview (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–19

Terminal-Type Level Mapping

The next higher level of mapping is terminal type. Each terminal type used at
your installation needs its own mapping file, because function key support
varies from terminal to terminal. Combined with the installation mapping, this
file provides a common terminal default for the function and control keys,
which can be altered by mappings at higher levels to fit the needs of an
application or an individual user. Arrow keys are defined by default in the
termcap file.

The terminal-type mapping file must be placed in the following directory:

UNIX

$II_SYSTEM/ingres/files/

VMS

II_SYSTEM:[ingres.files]

You can specify the terminal-type mapping file name with the mf capability in
the termcap file description for each terminal type in use at an installation.
You can also point to a termcap file by using the II_TERMCAP_FILE
environment variable/logical.

Default mapping files for VT100 and VT220 terminals are shipped with Ingres.
You can edit these files if desired. (The termcap file descriptions for the vt100i
and vt220i terminal definitions already have the names of their mapping files
specified; therefore, there is no need to edit those termcap descriptions.)

Terminal Type vt100i
Map File

For VT100 terminals defined as the vt100i terminal type, the mapping file
location is:

UNIX
 $II_SYSTEM/ingres/files/vt100i.map

VMS
 II_SYSTEM:[ingres.files]vt100i.map

It contains the following statements:

Key Mapping Overview (UNIX and VMS Environments)

B–20 Character-based Querying and Reporting Tools User Guide

/* Menu Key */
 menu = pf1 (PF1)
/* Help facility */
 frskey1 = pf2 (PF2)
/* Quit from program */
 frskey2 = pf4 (PF4)
/* End current screen and return */
/* to previous screen */
 frskey3 = pf3 (PF3)
/* Go or execute function */
 frskey4 = pf18 (Enter)
/* Put cursor on top of form or */
/* table field*/
 frskey5 = controlK (^K)
/* Put cursor on bottom of form or */
/* table field*/
 frskey6 = controlJ (^J)
/* Find next occurrence of string*/
/* in this column of table field */
 frskey7 = controlF (^F)
/* Save object in database */
 frskey8 = pf16 (0)
/* Cancel and undo */
 frskey9 = pf17 (.)
/* ListChoices */
 frskey10 = pf7 (9)
/* Scroll page or form left */
 scrollleft = controlL (^L)
/* Scroll page or form right */
 scrollright = controlH (^H)
/* Previous screen or set of rows */
/* in table field */
 scrolldown = pf8 (-)
/* Next screen or set of rows in */
/* table field */
 scrollup = pf12 (,)
/* Print contents of current screen */
/* to file or printer */
 printscreen = controlG (^G)
/* Select first menu item */
 menuitem1 = pf13 (1)
/* Select second menu item */
 menuitem2 = pf14 (2)
/* Select third menu item */
 menuitem3 = pf15 (3)
/* Select fourth menu item */
 menuitem4 = pf9 (4)
/* Select fifth menu item */
 menuitem5 = pf10 (5)
/* Select sixth menu item */
 menuitem6 = pf11 (6)
/* Select seventh menu item */
 menuitem7 = pf5 (7)
/* Select eighth menu item */
 menuitem8 = pf6 (8)
/* Move cursor to next field */
/* defined to controlI in frs.map */
/* Move cursor to previous field */
/* defined to controlP in frs.map */
/* Move up one word within field */
 nextword = controlU (^U)
/* Move back one word within field */
/* defined to controlR in frs.map */
/* Switch between insert and overstrike */
/* mode defined to controlE in frs.map */
/* Redraw the screen defined to controlW */ /* in frs.map */

Key Mapping Overview (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–21

/* Delete the character under the cursor */
/* defined to controlD in frs.map */
/* Delete character immediately to left */
/* of cursor--defined to controlDEL */
/* in frs.map */
/* Start default text editor on field */
/* defined to controlV in frs.map */
/* Move to first column of next row */
/* in table field defined to controlN */
/* in frs.map */

UNIX

VMS

/* Clear the field */

 clear = controlX (^X)
/* Clear the field */

 clear = controlB (^B) /* Move to nextitem in form. If on */

/* regular field, move to next field. */
/* If in table field, move to next column */
/* if NOT in last accessible column.*/
/* Move to next row if in last accessible */
/* column of table field. */
 nextitem = controlM (Return)
/* Auto-duplicate value while in */
/* fill mode defined to controlA */
/* in frs.map */

Terminal Type vt220i
Map File

The default file for VT220 terminals is located in:

UNIX

$II_SYSTEM/ingres/files/vt220i.map

VMS

II_SYSTEM:[ingres.files]vt220i.map

The VT220 mapping file contains these statements:

Key Mapping Overview (UNIX and VMS Environments)

B–22 Character-based Querying and Reporting Tools User Guide

/* Menu Key */
 menu = pf1 (PF1)
/* Help facility */
 frskey1 = pf15 (Help)
/* Quit from program */
 frskey2 = pf4 (PF4)
/* End current screen and */
/* return to previous screen */
 frskey3 = pf3 (PF3)
/* Go or execute function */
 frskey4 = pf16 (Do)
/* Put cursor on top of form or */
/* table field */
 frskey5 = controlK (^K)
/* Put cursor on bottom of form or */
/* table field */
 frskey6 = controlJ (^J)
/* Find next occurrence of string */
/* in this column of table field */
 frskey7 = pf21 (Find)
/* Save function */
 frskey8 = pf10 (PF10)
/* Undo and cancel */
 frskey9 = pf2 (PF2)
/* Bring Up ListChoices */
 frskey10 = pf20 (PF20)
/* Scroll page or form left */
 scrollleft = controlL (^L)
/* Scroll page or form right */
 scrollright = controlH (^H)
/* Previous screen or set of rows */
/* in table field */
 scrolldown = pf25 (Prev Screen)
/* Next screen or set of rows */
/* in table field */
 scrollup = pf26 (Next Screen)
/* Print contents of current screen */
/* to file or printer */
 printscreen = pf8 (PF8)
/* Select first menu item */
 menuitem1 = pf11 (PF11)
/* Select second menu item */
 menuitem2 = pf12 (PF12)
/* Select third menu item */
 menuitem3 = pf13 (PF13)
/* Select fourth menu item */
 menuitem4 = pf14 (PF14)
/* Select fifth menu item */
 menuitem5 = pf17 (PF17)
/* Select sixth menu item */
 menuitem6 = pf18 (PF18)
/* Select seventh menu item */
 menuitem7 = pf19 (PF19)
/* Remove character under cursor */
 deletechar = pf23 (Remove)
/* Switch between insert and overstrike */
 mode = pf22 (Insert Here)
/* Move cursor to next field defined */
/* to controlI in frs.map */
/* Move cursor to previous field */
/* defined to controlP in frs.map */
/* Move up one word within field */
 nextword = controlU (^U)
/* Move back one word within field */
/* defined to controlR in frs.map */
/* Redraw the screen defined to */

Key Mapping Overview (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–23

/* controlW in frs.map */
/* Delete character immediately to left */
/* of cursor defined to controlDEL */
/* in frs.map */
/* Start default text editor on field */
/* defined to controlV in frs.map */
/* Move to first column of next row in */
/* table field defined to controlN */
/* in frs.map */

UNIX

VMS

/* Clear the field */

 clear = controlX (^X)

/* Clear the field */

 clear = controlB (^B)

/* Move to nextitem in form. If on */
/* regular field, move to next field. */
/* If in table field, move to next column */
/* if NOT in last accessible column.*/
/* Move to next row if in last accessible */
/* column of table field. */
 nextitem = controlM (Return)
/* Auto-duplicate value while in fill */
/* mode defined to controlA in frs.map */

User-Level Mapping

Next higher in precedence are the individual user’s mappings. Of the four
levels, user-level mapping is probably the least frequently used; the
combination of mappings at the other three levels suffices for most users.

To make the user-level mapping file known to the FRS, the user must execute
the following command at the operating system level:

UNIX

For the C shell:

setenv INGRES_KEYS full_pathname/file_name

For the Bourne shell:

INGRES_KEYS=full_pathname/file_name
export INGRES_KEYS

The parameter full-pathname/file_name is the full pathname and file name for
the mapping file. To eliminate the need to invoke this command for each
terminal session, you can include this command in the file .login (C shell) or
.profile (Bourne shell).

Obtaining Information on Mappings

B–24 Character-based Querying and Reporting Tools User Guide

VMS

define INGRES_KEYS file_specificatio

The file_specification parameter is the full specification for the mapping file. To
eliminate the need to invoke this command for each terminal session, you can
include this command in the login.com file.

Application-Level Mapping

An application created with 4GL or one of the embedded query languages can
use its own set of mappings, invoked by the set_frs frs or set_forms frs (for
4GL) statements. Applications developers can use these statements in an
application to read in a key-mapping file that is specific to that application or
to map an FRS key to a function, control, or arrow key explicitly in the
application code.

Application-level mappings take precedence over all other mappings. For more
information on application key mapping, see the Forms-based Application
Development Tools User Guide.

Obtaining Information on Mappings
Within a forms-based system, such as QBF, a user can invoke the Help menu
operation to find out the current settings for function and control keys,
including (if UNIX or VMS) arrow keys. For more information, see online help.
Within an embedded query language or 4GL application, you can get
information about function, control, and arrow key mappings and other
information about the FRS by using the inquire_frs command (inquire_forms in
4GL).

You can use this command to find out which key is mapped to a specific
mapping object, the name of the application mapping file, or the current
setting (on or off) of the menu map (the display of key labels on the menu
line).

Windows

The button bar menu does not display associated function or control keys.
Use the Help Keys operation to see these key mappings, or use the Menu
and arrow keys to move the input focus bar to a menu item; the associated
key appears in the message window on the bottom line of the main window.

You can also obtain information about the user’s terminal type so that
application mapping can be coded conditionally, according to the particular
user’s terminal. (For complete information on inquire_frs and inquire_forms,
see the Forms-based Application Development Tools User Guide.)

FRS Mapping Objects

Appendix B: Defining Function and Control Keys B–25

FRS Mapping Objects
You can map function and control keys (and arrow keys in UNIX or VMS) to
several types of objects. These mappings allow the keys to be used to perform
menu item operations, cursor movement, and virtually any other functions
available in a forms application.

The three types of mapping objects are:

 FRS commands

 Menu items

 FRS keys

The following sections describe each type of mapping object in detail.

FRS Commands

FRS commands are built-in functions of the forms system that enable the user
to view and edit the data on a form. Because they are actually built into FRS,
they are available both in the Ingres forms-based tools, such as QBF, and in
customized forms applications built with Vision, ABF, or the embedded query
languages.

Through key mapping, you can link such capabilities as deleting a character,
moving to the menu line, or scrolling within a table field, to program function
and control keys (and arrow keys in UNIX or VMS), which are defined to
Ingres as specific keyboard keys. For example, the following statement maps
the redraw FRS command to controlW, which is defined to Ingres on most
keyboards as the physical key, Control-W:

redraw = controlW

FRS commands allow you to write terminal-independent application programs
while taking advantage of available mapping keys. The application does not
specify which control or escape sequences the user must generate at the
keyboard to run a block of code; it just specifies which FRS command runs
that block of code. FRS commands cannot be executed directly in program
code; they are only available to the user through key mapping. You can map
any function or control key to any FRS command. You can also map any arrow
keys to any FRS command.

Command Definitions

The following table lists the FRS commands and their definitions. When used
as a mapping object, an FRS command name must be typed exactly as shown:

FRS Mapping Objects

B–26 Character-based Querying and Reporting Tools User Guide

FRS Command Meaning

clear Clears field or menu input.

clearrest Clears rest of field, beginning from current cursor position.
Then moves to next field if cursor is not in a table field, to
next column if not in last column of table field, to first
column of next row if in last column of table field.

deletechar Deletes character under cursor.

downline Moves down one line in field or next row in table field.

duplicate Enters a value in a simple field that duplicates a value in
the previous row of a table. For more information, see
Duplicating Previous Entries.

editor Starts text editor on field.

leftchar Moves left one character within field.

menu Goes to the menu line (the Menu key).

mode Switches between insert and overstrike editing mode.

newrow Moves to first column of next row in table field.

nextfield Goes to the next field on the form.

nextitem Moves to next field if cursor is not in a table field, to next
column if not in last column of table field, to first column of
next row if in last column of table field. Unlike clearrest,
does not clear rest of current field.

nextword Moves forward one word within a field.

previousfield Goes to the previous field on the form.

previousword Moves backward one word within a field.

printscreen Sends a copy of the currently displayed form to a file or the
printer, depending on how the II_PRINTSCREEN_FILE
environment variable/logical has been set. For more
information, see the System Administrator Guide for the
system on which your database resides.

redraw Redraws the frame.

rightchar Moves right one character within field.

rubout Deletes character immediately to left of cursor.

scrolldown Scrolls down in current table field or form, leaving cursor
on same field.

scrollleft Scrolls form left, leaving cursor on same field.

scrollright Scrolls form right, leaving cursor on same field.

FRS Mapping Objects

Appendix B: Defining Function and Control Keys B–27

FRS Command Meaning

scrollup Scrolls up in current table field or form, leaving cursor on
same field.

Windows

upline Move up one line in field or previous row in table field.

UNIX

shell In UNIX and VMS, spawns (creates) a shell.

.In UNIX, spawns a Bourne shell only.

VMS

upline In VMS, creates a DCL process.

.In UNIX and VMS, move up one line in field or previous
row in table field.

Default mapping files are provided that assign keys to some or all of the FRS
commands. For default mappings in the PC environment, see Mapping a FRS
Key. For default FRS command mappings in the UNIX or VMS environment,
see the following section, Default Assignments.

Default Assignments

UNIX
VMS

Ingres provides several default mapping files that contain key assignments
for the FRS commands. The first is an installation-level mapping file, valid for
all terminal types. The other two are default-mapping files for the VT100 and
VT220 terminals. These mapping files assign default control or function keys
to the FRS commands. The installation file assigns control keys to most of the
FRS commands. The terminal-type files expand and, in certain instances,
override the installation mappings.

The following table lists the FRS commands and their default installation-level
and terminal-type level assignments for the vt100i and vt220i terminal types.
Consult your system administrator to determine whether the defaults listed in
the table are valid for your installation and terminal type. Check the files
directory for other mapping files supplied with Ingres.

Note: The system administrator has the ability to modify the default mapping
files provided with Ingres. If the files have been modified, the mappings for
the FRS commands can differ from the following table. The system
administrator can also create mapping files for other terminal types besides
vt100i and vt220i. These terminal-type files would then override the
installation-level file.

Mapping files for VT100 and VT220 terminals have been optimized to avoid
unnecessary remapping functions that are already designated in the
installation-level frs.map file. If you modify the frs.map file, be careful to
ensure the reliability of the mapping files for the VT100 and VT220 terminals.

FRS Mapping Objects

B–28 Character-based Querying and Reporting Tools User Guide

FRS Command Installation
(UNIX and VMS)

VT100i (VMS) VT220i (VMS)

Clear CONTROL-X CONTROL-B CONTROL-B

Clearrest RETURN N/A N/A

Deletechar CONTROL-D CONTROL-D REMOVE

Downline CONTROL-J down_arrow down_arrow

duplicate CONTROL-A CONTROL-A CONTROL-A

editor CONTROL-V CONTROL-V CONTROL-V

leftchar CONTROL-H left_arrow left_arrow

menu ESC PF1 PF1

mode CONTROL-E CONTROL-E INSERT HERE

newrow CONTROL-N CONTROL-N CONTROL-N

nextfield TAB TAB TAB

nextitem no default RETURN RETURN

nextword CONTROL-B CONTROL-U CONTROL-U

previousfield CONTROL-P CONTROL-P CONTROL-P

previousword CONTROL-R CONTROL-R CONTROL-R

printscreen (no default) CONTROL-G PF8

redraw CONTROL-W CONTROL-W CONTROL-W

rightchar CONTROL-L right_arrow right_arrow

rubout DEL DEL DEL

scrolldown CONTROL-G PF8 PREV SCR

scrollleft CONTROL-O CONTROL-L CONTROL-L

scrollright CONTROL-U CONTROL-H CONTROL-H

scrollup CONTROL-F PF12 NEXT SCR

shell no default no default CONTROL-B

upline CONTROL-K up_arrow up_arrow

Menu Items

You can also map a function or control key (or arrow key in UNIX or VMS) to
any of the items appearing on a menu line. This mapping occurs by position
within the menu line.

FRS Mapping Objects

Appendix B: Defining Function and Control Keys B–29

The syntax for specifying a menu item is:

menuitemN = internal_key_name (key _label)

The N indicates the position of the menu item in the line and is in the range 1
to 25. Alternatively, you can also designate menuitemN as menuN in a mapping
statement.

For example, the following statement maps the second item on the menu line
to function key 3:

Windows
 menuitem2 = F3

UNIX

VMS

menuitem2 = pf3

This statement causes F3 (Windows) or PF3 (UNIX or VMS) to perform the
operation indicated by the second menu item. As the end user moves to a new
frame and the menu changes, F3 or PF3 continues to correspond to the item in
the second position on the new menu line.

By default, the menu line or Help Keys operation automatically displays the
current mappings between the menu items and their associated function and
control keys (and arrow keys in UNIX or VMS). It uses either the label
provided in the mapping file, or a default label if none has been specified in
the mapping file.

For example, assuming such mappings have been specified, a menu can
appear like this:

Help(PF2) Add(PF3) Editor(control-E) End(PF4)

or

Help(F1) Add(F3) Editor(Ctrl-e) End(F4)

The button bar menu does not display associated function or control keys. Use
the Help Keys operation to see these key mappings.

In this example, pressing PF2 or F1 is equivalent to moving to the menu line
and typing Help. Similarly, PF3 or F3 substitutes for Add; Ctrl-E substitutes for
Editor; and PF4 or F4 substitutes for End.

The text in parentheses in the mapping statement and on the menu line shows
the corresponding function or arrow or control key and is known as a label.
The label is specified in the mapping file. For more information, see Mapping
File Syntax. An application can specify that the entire menu map, as the
collective set of labels is known, be turned off so that no labels appear. For
example, if the menu map for the preceding example were turned off, the
menu line appears like this:

FRS Mapping Objects

B–30 Character-based Querying and Reporting Tools User Guide

Help Add Editor End

However, the function and control keys still retain their correspondence with
the menu items, even though that correspondence is no longer displayed.

For more information on how to turn off the menu map, see the Forms-based
Application Development Tools User Guide. The relevant statements are
set_forms in 4GL and set_frs in the embedded query languages.

FRS Keys

FRS keys enable you to map function and control keys (including arrow
keys)directly to a program operation. While a function, control, or arrow key
can always map to a menu item operation by position, you can map the key
directly to the operation itself.

For instance, you might not want every operation to appear as a menu item,
particularly if the operation is available across all the frames in an application.
By requiring that certain repeated operations be invoked only through function
or control or arrow keys, you can shorten long menu lines and use the menu
primarily for operations that are unique to each frame.

Because not all keyboards have the same set of function keys, it makes little
sense to assign an operation directly to a particular key inside an application.
Instead, you equate operations with logical FRS keys. The FRS keys can then
be mapped to function, control, or arrow keys at any of the four mapping
levels.

FRS keys invoke operations only when specified in the application. A mapping
file, by itself, merely assigns the FRS key to a function or control or arrow key;
it cannot define the meaning of the FRS key. A FRS key must be equated with
an operation when you write the application. For instructions on how to do
this, see the Using Forms-based Application Development Tools User Guide.
The Ingres forms-based tools also use FRS keys extensively. For more
information, see Predefined FRS Keys.

You can define the same operation for both a menu item and a FRS key. The
end user can then activate the operation either with the key that is mapped to
the menu item’s position or with the key that is mapped to the FRS key. This
means the user is always be able to invoke the menu item with the same
function key, even if the item’s position on the menu line changes from frame
to frame. Whenever an operation has been associated with both a menu item
and an FRS key, the label for the menu item indicates the function or control
or arrow key that maps to the corresponding FRS key, not the function or
control or arrow key that maps to the item’s position on the line.

FRS Mapping Objects

Appendix B: Defining Function and Control Keys B–31

Mapping a FRS Key

For the end user to invoke an operation through an FRS key, two conditions
must be met:

 The application program must provide the operation code and specify that
it be invoked or activated by a FRS key.

 The FRS key must be mapped to a physical key on the user’s keyboard.

Mapping the FRS key to a function or control key is handled identically to
mapping a menu item or FRS command. If an FRS key defined in an
application is not mapped to a function or control or arrow key, the end user
has no way of accessing that FRS key’s operation, unless the operation itself
has also been defined for a menu item.

An FRS key is designated by the keyword frskey, followed by an integer in the
range 1 to 40. For example, the following statement maps FRS key 7 to
function key 2:

frskey7 = f2

By pressing PF2 or F2, the user invokes the operation to which FRS key 7 has
been defined, within the current frame.

Predefined FRS Keys

The Ingres forms-based tools consistently equate certain FRS keys with
standard menu item operations. Because of this, the end user can always use
the same function or control or arrow key to perform that operation, no matter
what its position on the menu line. Because the end user does not need to
refer to the menu item’s label, these operations are usually located at the end
of the menu line, allowing those operations that are unique to a particular
frame to appear first. For example, if frskey1 is mapped to controlH, the end
user can always get help by pressing Ctrl-h.

FRS key operations are predefined in the applications code for the Ingres
forms-based tools as shown in the following table. The terminal level
key-mapping files contain default key assignments for these FRS keys. For
more information, see FRS Mapping File (for Windows environment) and
Terminal-Type Level Mapping (for UNIX and VMS environments).

FRS Key Menu Item Meaning

frskey1 Help Accesses as help facility.

frskey2 Quit Exits the system.

frskey3 End Exits the frame, returning to previous frame.

frskey4 Go/Next Executes function.

Mapping File Syntax

B–32 Character-based Querying and Reporting Tools User Guide

FRS Key Menu Item Meaning

frskey5 Top Moves to top of table field.

frskey6 Bottom Moves to bottom of table field.

frskey7 Find Searches table field for specified string.

frskey8 Save Saves object in database.

frskey9 Undo/Cancel Undoes last action or cancels changes made in
frame.

frskey10 ListChoices Lists the available choices for the selected
field.

An application developed with an embedded query language or 4GL cannot
automatically have the same FRS key-menu item linkage. By using this table
as a model for associating FRS keys with program operations, an application
developer can help provide a consistent end-user interface for all custom
applications that is also consistent with key usage in the Ingres forms-based
tools.

Specifications written using the function key facility provided in earlier releases
of Ingres continues to operate correctly. If desired, such specifications can be
placed in a mapping file containing statements using the new
function/control/arrow key mapping facility. In a future release, however, the
function key facility is phased out; therefore, it is not documented here.

Mapping File Syntax
Mapping files are the main method for mapping function, control, and arrow
keys to menu items, FRS commands, and FRS keys. Mapping files can exist at
each level of mapping in your environment. For example, you can have an
installation-wide mapping file, terminal-type mapping files for every terminal
type in your organization, user mapping files for each user, and application
mapping files for every Ingres application.

In Windows, you can have several applications mapping files in addition to the
FRS mapping file.

The syntax for the mapping files is the same across all levels of mapping. A
mapping file can consist of three components:

 Mapping statements

 Disabling statements

 Comments

Mapping File Syntax

Appendix B: Defining Function and Control Keys B–33

Mapping statements designate the actual mappings. These are the most
commonly used. The mapping statements can also designate labels for menu
items, if you do not use the default labels.

Disabling statements disable the use of function or control keys (and arrow
keys in UNIX and VMS).

Comments provide explanatory text.

The statements in a mapping file can appear in any order, except for the
placement of disabling statements. For details, see Disabling Statements. Each
statement must fit entirely on one line. Alphabetic characters within a mapping
file can appear in either uppercase or lowercase, with no difference in
meaning. Blank lines are ignored.

Mapping Statements

A mapping statement has the following syntax:

 mapping_object = pfN|controlX|uparrow|downarrow|
 leftarrow|rightarrow [(label)]

Parameter Description

mapping_object A menu item, FRS command, or FRS key, designated
through mapping.

pfN Designates a function key. N must be in the range 1 to 40.
(Note that the maximum number of definable keys set in
the termcap file for your terminal can be less than 40. You
must raise this limit to set additional keys.)

controlX Designates a control key. X can be any single letter of the
alphabet, or the designations del to indicate the Delete key
as in controldel or esc to indicate the Escape key as in
controlesc (if the Escape key is not reserved on your
terminal). This guide designates control keys in user
instructions as Control-X, where X is the key used in
combination with the Control key.

 On most keyboards, pressing Control-I is equivalent to
pressing the Tab key, and pressing Control-M is equivalent
to pressing the Enter key in Windows or the Return key in
UNIX or VMS.

Mapping File Syntax

B–34 Character-based Querying and Reporting Tools User Guide

Parameter Description

uparrow
downarrow
leftarrow
rightarrow

Designates the up arrow, down arrow, left arrow, and right
arrow keys.

label Designates any alphanumeric string. It appears in place of
the default label for a menu item. It also appears in the
Keys operation of the Help facility.

A single mapping object cannot be mapped to be invoked by pressing either
two different function, control, or arrow keys on the same screen. Each
function or control key (and each arrow key in UNIX or VMS) can correspond
to only a single mapping object at a time. If you map one mapping object to
more than one physical key, or multiple mapping objects to the same key, one
mapping overrides the others.

If the conflicting mappings occur within the same mapping file, only the first
mapping within the file is considered to be valid. If the conflict occurs between
different mapping files, the key mapping in the file of higher precedence
overrides the other mappings. For a discussion of precedence in key mapping,
see Key Mapping Overview (PC Environment) or Key Mapping Overview (UNIX
and VMS Environments).

The appearance of an exception to this rule occurs when both of the following
conditions exist:

 A menu item is mapped to a function or control key (or arrow key in UNIX
or VMS) by the menu item’s position

 A FRS key that has the same function as the menu item is mapped to a
different function or control key (or arrow key in UNIX or VMS)

This only appears to be an exception, because the two mapping objects (the
menu item and the FRS key) perform the same function although they are
actually separate FRS objects that are mapped to two different function,
control, or arrow keys.

The following examples illustrate mapping statements:

Windows

frskey8 = pf16 (Sh+F6)
menuitem1 = pf13 (Sh+F3)
menuitem2 = pf3 (F3)
menuitem3 = controlE (^E)
previousfield = controlP (Sh+Tab)
nextfield = controlI (Tab)
menuitem4 = pf9 (F9)
rubout = controlDEL

Mapping File Syntax

Appendix B: Defining Function and Control Keys B–35

In this example, Sh+F6 on your PC keyboard maps to the operation associated
with frskey8, Sh+F3 activates the first item on the menu line, F3 activates the
second, Ctrl+E activates the third menu item, Sh+Tab moves the cursor to the
previous field on the form, and Delete deletes the character immediately to
the left of the cursor. Any previous mappings that do not conflict with these
statements remain in effect. (When mapping menu items, the action to be
taken after the key is pressed is determined by the application and can differ
between applications.)

Notice the effect of including an explicit label in a mapping statement. Assume
a frame’s menu includes the following operations:

Help Add Editor End

Assume, also, that the frame containing these menu items also specifies that
the Help operation be invoked either by selecting the Help menu item (in this
case, menuitem1) or by pressing the key mapped to frskey8. The preceding
mapping file example, with its labels, would result in the following key
associations:

Help(Sh-F6) Add(F3) Editor(^E) End(F9)

Note the case of the Help menu item, which the application also allows to be
invoked by frskey8. As shown in the mapping file example, two different keys
could be used to invoke this item—Sh+F3 (the key associated with the first
menu item) and Sh+F6 (the key associated with frskey8). In a case like this,
the label for the FRS key always takes precedence over the label for the menu
item for key assignments displayed on the menu line or in the Help Keys
operation. All other labels in the example are those associated with the menu
item’s position on the menu line.

UNIX

VMS

frskey8 = pf16 (0)
menuitem1 = pf13 (1)
menuitem2 = pf3 (PF3)
menuitem3 = controlE (^E)
previousfield = controlP
nextfield = rightarrow
menuitem4 = pf9 (4)
rubout = controlDEL

In this example, PF16 (the 0 on a VT100 keypad) maps to the operation
associated with frskey8, PF13 (the 1 on a VT100 keypad) activates the first
item on the menu line, PF3 activates the second menu item, Control-E
activates the third menu item, Control-P moves the cursor to the previous field
on the form, Right Arrow moves the cursor to the next field, and Delete
deletes the character immediately to the left of the cursor. Any previous
mappings that do not conflict with these statements remain in effect. (When
mapping menu items, the action to be taken after the key is pressed is
determined by the application and can differ between applications.)

Mapping File Syntax

B–36 Character-based Querying and Reporting Tools User Guide

Notice the effect that including an explicit label has on the appearance of a
menu line. Assume a frame’s menu includes the following operations:

Help Add Editor End

Assume, also, that the frame containing these menu items also specifies that
the Help operation be invoked either by selecting the Help menu item or by
pressing the key mapped to frskey8. The previous mapping file example, with
its labels, would cause the menu to appear as follows:

Help(0) Add(PF3) Editor(^E) End(4)

Note the case of the Help menu item, which the application also allows to be
invoked by frskey8. Two different labels from the map file could be used for
this item—1 (the label for the first menu item), or 0 (the label for frskey8). In
a case like this, the label for the FRS key always takes precedence over the
label for the menu item. All other labels on the menu are those associated with
the menu item’s position in the menu line.

Disabling Statements

Turn off any of the function or control keys (or arrow keys in UNIX or VMS) by
using one of the following methods:

 Replace the original mapping statement with a disabling statement in the
same mapping file

 Comment out the original mapping statement and place a disabling
statement in the same mapping file

 Place a disabling statement in a key map file of higher precedence than
the original mapping statement

If you do not want to edit or comment out the original mapping statement,
leave the original mapping statement as is and place the disabling statement
in a mapping file of higher precedence. For example, to disable a key mapped
to an object in an installation-level or terminal-type mapping file, put a
disabling statement in a user or application-level mapping file. To disable a
key mapped to an object in a user-level mapping file, put a disabling
statement in an application-level mapping file.

Once disabled, a key remains disabled until used in a mapping statement
within a mapping file of higher precedence. For a discussion of precedence in
key mapping, see Key Mapping Overview (PC Environment) or Key Mapping
Overview (UNIX and VMS Environments).

A disabling statement has the following syntax:

pfN|controlX|uparrow|downarrow|rightarrow|leftarrow = off

Troubleshooting (PC Environment)

Appendix B: Defining Function and Control Keys B–37

Windows

The following statements disable Control-A and PF7 when placed in a
mapping file or position of higher precedence than any assignment
statement for these keys:

controlA = off

pf7 = off

UNIX

VMS

The following statements disable Control-A, PF7, and the Right Arrow key
when placed in a mapping file or position of higher precedence than any
assignment statement for these keys:

controlA = off

pf7 = off

rightarrow = off

While these statements are in effect, using these disabled keys produces a
beep from the terminal.

To disable a FRS command in a UNIX or VMS environment, map the FRS
command to a control or function key (or to an arrow key), and then disable
that key.

Comments

Comments are delimited by /* and */. They can appear anywhere, including
on the same line as a statement. The whole comment must appear within a
single line, as shown:

/* This is a comment */
controlA = off /*this turns Control-A off*/

Mapping File Errors

When the FRS starts up, the mapping files for the various levels of mapping
are merged and conflicts between files are resolved based on a specific
precedence. When the FRS detects errors in a mapping file, you can find
detailed error messages in the ingkey.err file in the user’s current directory.
After exiting the application, the user can look at the error file to determine
the nature of the errors.

Troubleshooting (PC Environment)
Windows

This section describes some of the problems you can encounter when
defining function and control keys, and provides general hints about how to
solve them. Note, however, these are only general guidelines; this section is
by no means comprehensive.

Troubleshooting (PC Environment)

B–38 Character-based Querying and Reporting Tools User Guide

Restrictions and Limitations

When defining function and control keys, beware of the following restrictions
and limitations.

 The FRS has the following internal limitations: 40 program function (pf)
keys, 40 FRS keys, and 25 menu items.

 The following control keys are reserved by the operating system for its
own use and must not be mapped to any other operations: Ctrl+C, Ctrl+Q,
Ctrl+S, and Ctrl+P.

Although Ctrl+P is trapped by the operating system before it reaches FRS,
you can assign FRS objects to its internal designation, controlP, because
controlP is mapped to the Sh+Tab key combination in the termcap file.

 FRS commands cannot be mapped to an FRS key. This is syntactically
illegal because FRS commands and FRS keys both appear on the left side
of the equals sign in the mapping statement.

 Positional menu item mapping cannot be turned off. You can see this if you
look at the mapping file, for example:

 menuitem1 = pf13 (Sh-F3)

If you assign a FRS key to an activation block, that key’s label appears on
the menu line or in the Help Keys operation in place of the default key’s
label. The default key, however, still works.

 "Go", key frskey5 =
 begin
 ... [first menu item]
 end;

In the previous example, both Sh+F3 and whatever is mapped to frskey5
triggers the Go operation, even though you only see the frskey5’s label on
the menu or in the Help Keys display. To deactivate this, you must assign
another FRS function to the F key now assigned to menuitem1:

 frskey10 = pf13 (Sh-F3)

Normally, you must use an unused FRS key for this function.

 Currently, map files are the only way to turn off a function or control key
(for example, controlV = off). Keys cannot be turned off by the Ingres/4GL
or embedded query language set command.

Troubleshooting Checklist
i. Have you checked the contents of the map error files in the working

directory (ingkey.err or app_ingkey.err)?

The error messages written to this file indicate map file problems. For
example, if the same key is referenced twice, the warning error message
is written to this file. If this file is empty, an error occurred before the map
file was parsed, and an error message was sent to your screen.

Troubleshooting (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–39

For example, no forms statements can be executed prior to starting the
FRS. If a set mapfile statement preceded ## forms or exec frs forms in
the embedded query language program, the error message is written to
the screen.

6. Have any of the key map file path names become invalid?

For example, if the file system was moved to a new device, the file
pathnames referred to by INGRES_KEYS or set mapfile are now invalid or
perhaps file permissions were changed and the FRS cannot open the map
files.

7. Are lower-level key definitions showing through on the user’s menu line?

This is the result of the key map merging by the FRS. This most often
occurs when you forget to remap or turn off an intended key in the
application map file or do not realize that INGRES_KEYS is also pointing to
a map file.

Troubleshooting (UNIX and VMS Environments)
UNIX

VMS

This section describes some of the problems you can encounter when
defining function, control, and arrow keys, and provides general hints about
how to solve them. Please note, however, these are only general guidelines;
this section is by no means comprehensive.

Restrictions and Limitations

When defining function, control, and arrow keys, beware of the following
restrictions and limitations:

 The FRS has the following internal limitations: 40 function keys (PFn or
Fn), 40 FRS keys, and 25 menu items.

 The FRS imposes no restrictions on which function, control, or arrow keys
can be mapped or remapped; however, certain control keys can be
captured by the operating system before they reach the FRS. For example,
the operating system reserves: Control-C, Control-O, Control-Q, Control-S,
Control-T, Control-X, Control-Y.

 FRS commands cannot be mapped to a FRS key. This is syntactically illegal
because FRS commands and FRS keys both appear on the left side of the
equals sign in the mapping statement.

 TERM_INGRES cannot be reset dynamically by the application once the
Forms System has been initialized.

Troubleshooting (UNIX and VMS Environments)

B–40 Character-based Querying and Reporting Tools User Guide

 Positional menu item mapping cannot be turned off. In the vt100i termcap
description, the application key pad is assigned by default to positional
menu items. 1 on the key pad is assigned to the first menu item. You can
see this if you look at the mapping file, for example:

 menuitem1 = pf13

If you assign a FRS key to an activation block, that key’s label appears on
the menu line in place of the default key’s label. The default key, however,
still works.

 "Go", key frskey5 =
 begin
 ... [first menu item]
 end;

In the above example, both 1 and whatever is mapped to frskey5 triggers
the Go operation, even though you only see the frskey5’s label. To
deactivate this, you must assign another FRS function to the PF key now
assigned to menuitem1:

 frskey10 = pf13

Normally, you must use an unused FRS key for this function.

 Currently, map files are the only way to turn off a function, control, or
arrow key (for example, controlV = off). Keys cannot be turned off by the
4GL or embedded query language set command.

 Keyboard review for the DEC VT series:

TERM_INGRES Top Row Keys Alternate
Keypad

Menu Key

vt100 disabled disabled Escape

vt100k disabled disabled PF1

vt100nk disabled numerics PF1

vt100i disabled Functions (PFn) PF1

vt200i Functions (Fn) numerics PF1

 On a VT220, F1 through F6 are reserved by the terminal. These cannot be
mapped in map files.

 Escape is considered reserved for vt100, vt220, and all other terminals
that use Escape sequences to define function keys.

Troubleshooting (UNIX and VMS Environments)

Appendix B: Defining Function and Control Keys B–41

Troubleshooting Checklist
1. Have you checked the contents of the map error files in the working

directory (ingkey.err or app_ingkey.err)?

The error messages written to this file indicate map file problems. For
example, if the same key is referenced twice, the warning error message
is written to this file. If this file is empty, an error occurred before the map
file was parsed, and an error message was sent to the terminal screen.

For example, no forms statements can be executed prior to starting the
FRS. If a set mapfile statement preceded ## forms or exec frs forms in
the embedded query language program, the error message is written to
the terminal.

2. Are the terminal’s physical setup or emulation characteristics compatible
with the current TERM_INGRES and key map definitions?

For example if you are using a terminal, a problem occurs if a VT220
terminal is setup as a VT220 but TERM_INGRES is set to vt100i whose
map file references PF keys.

3. Is the user’s TERM_INGRES terminal type compatible with the active key
definitions?

If not, mapping can seem to be broken when an OpenIngres tool or
application starts up; for example, if TERM_INGRES is set to vt100nk but
INGRES_KEYS points to vt200.map.

4. Is the INGRES_KEYS environment variable/logical set unintentionally?

This often happens when applications are moved to a new machine where
INGRES_KEYS is defined, unlike the previous environment.

5. Have any of the key map file path names become invalid?

For example, if the file system was moved to a new device, the file
pathnames referred to by INGRES_KEYS or set mapfile are now invalid or
perhaps file permissions were changed and the FRS cannot open the map
files.

6. Are lower-level key definitions showing through on the user’s menu line?

This is the result of the key map merging by the FRS. This most often
occurs when you forget to remap or turn off an intended key in the
application map file or do not realize that INGRES_KEYS is also pointing to
a map file.

Appendix C: Writing Termcap Descriptions C–1

Appendix C: Writing Termcap
Descriptions

For various reasons, you must modify your termcap file. If you are using
Ingres in a UNIX or VMS environment, and your terminal is not defined in the
standard termcap file, you must provide information about the terminal’s
characteristics to use the forms system.

Whatever your environment, you can modify the termcap file to optionally
define some advanced features of your terminal that can make basic functions
easier to use.

This appendix describes how to:

 Write new termcap descriptions

 Add entries to an existing termcap description to take advantage of your
terminal’s additional capabilities

Modifying the Termcap File
The following read-only termcap file, which contains information about your
terminal’s characteristics, is supplied with Ingres:

Windows

%II_SYSTEM%\ingres\files\termcap

UNIX

$II_SYSTEM/ingres/files/termcap

VMS

II_SYSTEM:[INGRES.FILES]TERMCAP

The termcap file is based closely on the standard UNIX termcap file, except
that it contains extra commands that allow the terminal to work with the forms
system. A correctly written termcap description allows the forms programs to
work properly, although it does not support all of the advanced features that
the terminal provides, such as certain video attributes.

By following the guidelines in this appendix, you can:

 Edit an existing termcap description to define your terminal’s advanced
features to Ingres

Modifying the Termcap File

C–2 Character-based Querying and Reporting Tools User Guide

 Write a new termcap description for a terminal not currently described in
the termcap file

You can use terminals that are in the currently supported termcap file for UNIX
and VMS environments (listed in an appendix in this guide) without having to
do any of the special programming described here.

Windows

In a PC environment, the termcap file contains nine primary records, as
described in the following table:

Record Output

pccolor Color monitor

pcwin Microsoft Windows colors

pcfont Color monitor; similar to pccolor, but with multiple fonts

pcfonts Color monitor; same as pcfont, but with different fonts

pcgaudy Color monitor; similar to pccolor, but with gaudier colors

pc43 Color monitor with 43-line windows; same as pcgaudy, but
for 43-line windows

pcmono Monochrome monitor

pcansic Not for use with Microsoft Windows

pcansim Not for use with Microsoft Windows

Each record in the PC termcap file contains a number of command strings that
define terminal behavior. The only modifications you make to these records
are to define some of the advanced features of your PC or to define the size of
your monitor.

Setting the II_TERMCAP_FILE Variable

Whether editing an existing termcap description or writing a new one, you
must edit a copy of the termcap file that is not currently in use. You can set
the II_TERMCAP_FILE environment variable/logical to point to a working copy
of the termcap file. This allows you to edit a new version of the termcap file in
any directory that you want, without interfering with other users or the original
distribution copy of the termcap file.

Use the command appropriate to your system to tell Ingres to use an alternate
termcap file:

Windows
 set II_TERMCAP_FILE=fullpathname\filename

UNIX

For the C shell:

setenv II_TERMCAP_FILE = fullpathname/filename

Modifying the Termcap File

Appendix C: Writing Termcap Descriptions C–3

For the Bourne shell:

II_TERMCAP_FILE = fullpathname/filename
export II_TERMCAP_FILE

VMS
 define II_TERMCAP_FILE=file_specification

If this name is defined, any forms program starts up with that file instead of
the standard distribution file.

Format of a Termcap Description

Each termcap entry can be up to 2 KB long, including comment lines.

Consider the following sample termcap description for a fictitious terminal
called rti100:

R1|rti100|rti fictitious terminal:\
 :co#132:li#25:\
 :am:bs:\
 :is=\E[0m:cm=\E|%2;%2:

It has an abbreviated name R1 and a long name rti fictitious terminal. (To use
this with the forms system, set the TERM_INGRES environment
variable/logical to rti100.) The rti100 screen is 132 columns wide and 25 lines
high. It has automatic margins (am) and uses Control-H for the backspace
character (bs). The description contains an initialization string (is) and a cursor
positioning string (cm).

As shown in this example, the first line of a termcap description is the list of
names. All names must be separated by a vertical bar (|). There must be a
colon (:) between the last name and the first capability.

If the termcap description is more than one line (as it is for clarity), then each
line except the last must end with a backslash (\) to signify continuation.
Capabilities, which can be presented in any order, must be separated by
colons (:). The last line must end with a colon (:) to signify that it is the end of
the description. You can place tabs at the beginning of lines for readability.

Special Characters

The following table describes special symbols used in the termcap description:

Symbol Function

: Separates capabilities.

| Separates names.

\ Continues to next line (when at the end of line).

Modifying the Termcap File

C–4 Character-based Querying and Reporting Tools User Guide

Symbol Function

\E Is the Escape character.

100 Pauses for 100 milliseconds (when before a command).

Indicates that capability is a number that immediately follows.

= Sets capability to a string that follows

^X Is Control-X for any X; thus, ^g is Control-G,^h is Control-H, etc.

\n Is the Newline character.

\r Is the Return character.

\t Is the Tab.

\b Is the Backspace.

\f Produces a Formfeed.

\072 Is a colon (072 is the octal value for :). In general, any character
can be specified as a three-digit octal value of the ASCII character
by preceding it with a backslash.

@ When placed after a command, it means do not apply this
command. It is used in descriptions that have the tc command. For
more information, see the table in Eleven Basic Commands.

Names

Names have a special format that you must follow. The first name must be two
letters long. The second name is the common name to which you must set
TERM_INGRES. The last name can be a concise description of the terminal’s
brand and model number. The last name can contain blanks, though the other
names can not have blanks.

All names must be separated by a vertical bar (|). Additional names can be
placed between the second name and the last name. The additional names can
be used as alternative names for TERM_INGRES.

Note: Names must always be checked for uniqueness. You must check through
the termcap file before writing a new description to make sure that the names
you want to use have not already been selected. A duplicated name is not
recognized; only the first one is used.

Modifying the Termcap File

Appendix C: Writing Termcap Descriptions C–5

Capabilities

Capabilities are designated by commands, which must be separated by colons.
All commands are two letters long. String and numeric commands are followed
by additional information that is read by the forms system. The three types of
commands are:

 String

 Numeric

 Boolean

Strings contain sequences of characters. The command must be followed by an
equal sign. For example, up=\EA indicates that the command up (which stands
for the sequence to move the cursor up) is set to the sequence Escape-A.

Some string commands have to be preceded by a time delay, which is referred
to as padding. Padding is required in situations where the terminal can be
reading characters at a slower rate than they are being transmitted. Padding
ensures that the terminal has time to execute commands, such as moving the
cursor, without losing characters.

The two types of padding are nonproportional (or straight) padding, and
proportional padding (to the number of lines affected). To specify straight
padding, put the needed time of delay (in milliseconds) before the command.
To specify proportional padding, place an asterisk (*) after the amount of
time. For example, on the concept 100 terminal, the ta command (tab
character) takes a straight time delay of 8 milliseconds, and the cd command
(clear display) takes a proportional delay of 16 milliseconds. The termcap
entries look like this:

Straight padding:

ta=8\t

Proportional padding:

cd=16*\EarC

Numeric commands are followed by a number sign (#). For example, co#80
indicates that there are 80 columns on the screen. (co is the command which
specifies the number of columns on the screen.)

Boolean commands signify the existence of a capability by their presence.
They are not followed by any sequence or other symbols.

Writing New Termcap Descriptions

C–6 Character-based Querying and Reporting Tools User Guide

Writing New Termcap Descriptions
We recommend that you start by reading the terminal manufacturer’s
technical guide to find the information for the 11 basic capabilities described in
Eleven Basic Commands in this chapter. You must also have the terminal in
front of you so that you can check the operation of the terminal as you are
working on the termcap description. When you have included the 11 basic
capabilities in the description, try the terminal to see if it works. Once you get
it working, you can try adding additional features listed under Commands for
Advanced Features.

Note: Users not familiar with programming or lacking general knowledge about
terminals can find creating new terminal descriptions difficult. Terminal
programmer’s guides can be difficult to understand. Ask for help from an
experienced programmer to create new termcap entries. Our technical support
personnel can give only general guidance on creating termcap descriptions,
because they cannot have access to the terminal for checking out your
problems.

If you have problems, first check to make sure that you entered the sequences
from the guide correctly and that the format of the termcap description is
correct. If it still does not work, check to see if there are some additional
capabilities that need to be added to make it work. Also, certain terminals
require special initialization commands. Check the technical guide to see which
additional sequences you must add to the initialization string.

One way of preparing termcap descriptions is to examine the termcap entries
for similar terminals. If you are trying to write a description for a terminal that
is similar to one in the termcap file, you can use the tc command to indicate
that all attributes for the new terminal are to be taken from the description of
a terminal already in the termcap file. Then, you only need to specify the few
differences.

Alternatively, you can manually copy the capabilities from a similar terminal
and see if it works. Most terminals conform to a system of specifying escape
sequences called the ANSI standard. Thus, if you have an ANSI standard
terminal, you must be able to get about 90 percent of the capabilities by
copying them from another ANSI terminal. The VT100 is an example of an
ANSI terminal that has capabilities similar to many different terminals. For this
reason, this document contains numerous references to the VT100 sequences
in its examples.

Finally, if your terminal has a VT100 emulation mode, you can save time by
jumping to VT100 emulation mode and using the VT100 termcap description.
In most cases, it is necessary to make a termcap description. In other cases,
the terminal works with a termcap description that is identical to the VT100
except that it contains the VT100 emulation sequence in its initialization string.
If your terminal has VT100 emulation mode, we recommend that you try it, as
a VT100 supports the most advanced features of the forms system.

Eleven Basic Commands

Appendix C: Writing Termcap Descriptions C–7

Eleven Basic Commands
There are 11 commands that all terminals must have to work properly.
Termcap descriptions that have only these 11 basic descriptions usually work,
although they lack extra features such as function keys and video attributes.
These 11 descriptions form the core of the termcap description.

Windows
Although the Ingres forms-based tools are generally run on an 80 x 25
monitor, Ingres runs on a monitor larger than 80 x 25 (to a maximum of 200
x 100). Applications can be created to use the entire larger-size screen. To
enable use of a larger screen, change the co and li entries in the termcap file
to the correct values for your screen.

Command Description

co The number of columns on the screen. Without this command
there is no way to know how wide to make a form. This
command is numeric and must always be followed by a
number.

VT100 Example: co#80

li The number of rows down the screen. This command is numeric
and must always be followed by a number.

VT100 Example: li#24

bs This terminal can backspace using Control-H. This is a Boolean
command. Include it if your terminal can backspace using
Control-H.

bc Sequence to use if the terminal does not use Control-H. You
cannot use bc and bs together.

cd Clears to the end of the display. Sequences to clear everything
from the cursor down.

VT100 Example: cd=\E[J

ce Clears to the end of the line. Sequences to clear everything
from the cursor to the end of the line. (Not used in Windows
environment.)

VT100 Example: ce=\E[K

cl Clears the entire screen. (Not used in Windows environment.)

VT100 Example: cl=\E[;H\E[2J

cm Moves the cursor to an Ingres-specified location. For more
information and examples of this command, see the discussion
following this table.

Eleven Basic Commands

C–8 Character-based Querying and Reporting Tools User Guide

Command Description

nd Nondestructive space. This string specifies the command for
moving the cursor right one space without overwriting the
contents of the screen at that point.

VT100 Example: nd=\E[C

is Terminal initialization string. This includes any sequences
needed to set up the terminal prior to running a forms program.
(Not used in Windows environment.)

VT100 Example:

is=\E\E[?3l\E[?4l\E[?7l\E[?8h

The example terminal initialization string given under the
command is above does five things:

\E puts the terminal in keypad numeric mode.

\E[?3l puts terminal into 80-column mode.

\E[?4l puts terminal into jump mode.

\E[?7l turns wraparound off.

\E[?8h turns on autorepeat.

The command is not always needed. However, for most
terminals it is necessary for tailoring the setup to your needs.

tc Entry of a similar terminal. It allows you to use all the
capabilities listed for another terminal without rewriting them.
This command is actually optional, but is so useful that it has
been listed as one of the basic commands. This capability must
always be the last capability in the description. This rule, which
exists so that duplicated commands can be unambiguously
defined, is the only exception to the general rule that
commands can be presented in any order.

Example:

(tek4115):
dk|tk4115|tek-4115|tektronix4115:\:ld@:tc=vt100f:

In this example, the tek4115 is given all the commands from
the vt100f description, except the ld command to initialize the
boxing characters. Proper use of this command can make
writing termcap descriptions much easier.

Eleven Basic Commands

Appendix C: Writing Termcap Descriptions C–9

Cursor Motion Command

The cursor motion (cm) command sends the cursor motion string (called the
cursor position string in some guides) to the terminal when the cursor is
moved from one location to another. As such, the string must accept two
parameters: an x-coordinate and an y-coordinate, whose values are obtained
by counting the number of rows/spaces from the top-left corner of the screen.
Because these values must be sent along with the string at run time, special
place markers must be left in the string to tell the forms system where to
place the x and y coordinates.

To implement this, find the cursor-addressing scheme described in the guide
for your terminal. Then substitute the special place marker characters
(described below) in the spot where numbers are expected. Also, be sure to
include any special modifiers (described below) in the description if they are
needed.

The following tables list place markers and cursor-addressing options
(modifiers):

Place
Marker

Description

%2 Place marker for a decimal integer of two places.

%3 Place marker for a decimal integer of three places.

%. Place marker for a binary value character.

%+N Place marker for a binary value character, with the value of the
character N added to it.

%% Produces a single %.

%r Reverses the order of the coordinates. Normally the column
marker is substituted into the first place marker. If your terminal
cursor positioning string expects the row first, include a %r
before the first place marker in the cursor motion sequence.

%B BCD (16*(x/10)) + (x mod 10) Parameter values are
transformed according to this formula.

%n Perform an exclusive OR on the row and column values with the
octal value 0140 before generating the string for cursor motion.
(This is used only for the DM2500 terminal.)

%D Reverse coding (x-2*(x mod 16)) Parameter values are
transformed according to this formula. (This is used only for
Delta Data terminals.)

Eleven Basic Commands

C–10 Character-based Querying and Reporting Tools User Guide

Example 1: rti100, a
Fictitious Terminal

The cursor motion string listed in the user’s guide for the rti100 (a fictitious
terminal) is ESC|x;y, where x and y are two-digit integers specifying the
column and the row, respectively. The rti100 is an example of a terminal that
uses a (0,0) origin, so x and y must be one less than the whole number that
represents the position on the screen. Thus, to move the cursor to column 8
row 17 on the rti100, you would enter ESC|07;16. The termcap entry is:

cm=\E|%2;%2

The \E maps to ESC and %2 is the place marker that maps to a decimal
integer of two places.

Example 2: vt100 The cursor motion string for the VT100 is ESC[x;yH, where x and y are
two-digit integers specifying the column and row, respectively. The VT100, as
opposed to Example 1 above, positions the cursor relative to a origin of
(1,1). Thus, to move the cursor to column 8 row 17 on the VT100, enter
ESC[08;17H. The termcap entry is:
cm=\E[%i%2;%2H

The \E maps to ESC, %2 maps to a decimal integer of two places, and the %i
signifies that the VT100 uses a (1,1) origin. The default setting for the cm
string is for a (0,0) origin. If your terminal uses a (1,1), origin you must
explicitly state that by placing a %i somewhere inside the cm string.

Example 3:
Datamedia 3045

The cursor motion string for Datamedia 3045 is ESC Y y x; where y and x are
characters whose binary values are offset by 20 hex. (For this terminal, the
row must be given before the column.)

To move the cursor to the position (19,11) on this terminal, you must include
the sequence ESCY2*. The ESCY is the first part of the sequence. The 2 is the
ASCII character with hexadecimal value 32, which is the same as 12 hex plus
the 20 hex offset. Note that 12 hex corresponds to column 19 on the screen.
The * is the ASCII character with a hexadecimal value of 2A, which equals 0A
hex plus the 20 hex offset. Again, 0A hex corresponds to row 11 on the
screen.

The cm string for this terminal is:

cm=\EY%r%+%+

The \E maps to ESC, %r is a modifier that tells the forms system that the row
and column parameters are reversed, and %+ is the place marker for a
character offset by a blank (which has the ASCII value of 20 hex).

Commands for Advanced Features (PC Environment)

Appendix C: Writing Termcap Descriptions C–11

Example 4: Delta
Data 5000

The cursor motion string for the delta data 5000 is Control-Oxy, where x and
y are characters whose binary values must be offset by 3A hex, and
converted according to the reverse coding formula:

(x-2*(x mod 16))

The cm string for this terminal is:

cm=^O%D%+9%D%+9

The ^O stands for Control-O, %D indicates that the parameters must be
transformed according to the reverse coding formula, and %+9 is the place
marker for a character offset by 3A hex (ASCII character 9).

Terminal Entry Listed in
Guide

Example Usage
on Terminal
Mode

Example of the Termcap
Description

rti100 ESC|x;y ESC|02;07 cm=\E|%2;%2

vt100 ESC[x;yH ESC[03;08H cm=5\E[%i%2;%2H

dm3045 ESCYyx ESCY2* cm=\EY%r%+%+

delta Control-Oxy Control-ORS cm=^O%D%+9%

D%+9

Commands for Advanced Features (PC Environment)
Windows

The Ingres termcap commands included in this section are used to define
some of your PC’s advanced features to Ingres. These are features that
make your PC easier to use and more attractive, but they are not essential
for the basic functions of Ingres.

The commands listed here include:

 Video attributes such as inverse video and blinking

 Color attributes

Commands for Advanced Features (PC Environment)

C–12 Character-based Querying and Reporting Tools User Guide

Commands Used to Program Video Attributes

The four basic modes are: underscore, blinking, reverse video, and high
intensity (bold).

All the commands below are combinations of the four basic modes:

Command Description Direct
Screen
Write
Example

ANSI Example

rv Turns on reverse
video.

rv=71 rv=\E[0;34;47m

bl Turns on blinking
mode.

bl=9F bl=E[5m

bo Turns on high
intensity (bold)
mode.

bo=1E bo=\E[33;44;1m

us Turns on
underscore mode.

us=1F us=\E[0;35;44;1m

za Turns on reverse
video, blinking,
high intensity, and
underscore modes.

za=F0 za=\E[0;30;46;5m

zb Turns on high
intensity and
underscore modes.

zb=1E zb=\E[0;31;44;1m

zc Turns on high
intensity and
blinking modes.

zc=9E zc=\E[33;44;1;5m

zd Turns on high
intensity and
reverse video
modes.

zd=70 zd=\E[0;30;47m

ze Turns on
underscore and
blinking modes.

ze=9F ze=\E[0;35;44;1;5m

zf Turns on
underscore and
reverse video
modes.

zf=71 zf=\E[0m\E[35;47m

Commands for Advanced Features (PC Environment)

Appendix C: Writing Termcap Descriptions C–13

Command Description Direct
Screen
Write
Example

ANSI Example

zg Turns on blinking
and reverse video
modes.

zg=F1 zg=\E[0;34;47;5m

zh Turns on high
intensity, blinking,
and underscore
modes.

zh=9E zh=\E[0;31;44;1;5m

zi Turns on blinking,
underscore, and
reverse video
modes.

zi=F1 zi=\E[0;35;47;5m

zj Turns on high
intensity, blinking,
and reverse video
modes.

zj=F0 zj=\E[0;30;47;5m

zk Turns on high
intensity,
underscore, and
reverse video
modes.

zk=70 zk=\E[0;30;46m

ea Turns off all
special display
characteristics.

(Not used in
Windows
environment)

Not used for
direct screen
writes

ea=\E[0;37;44;1m

ue Turns off
underscore.

(Not used in
Windows
environment)

Not used for
direct screen
writes

ue=\E[0;37;44;1m

be Turns off blinking.

(Not used in
Windows
environment)

Not used for
direct screen
writes

be=\E[0;37;44;1m

Commands for Advanced Features (PC Environment)

C–14 Character-based Querying and Reporting Tools User Guide

Command Description Direct
Screen
Write
Example

ANSI Example

eb Turns off high
intensity

(Not used in
Windows
environment)

Not used for
direct screen
writes

eb=\E[0;37;44;1m

re Turns off reverse
video

(Not used in
Windows
environment)

Not used for
direct screen
writes

re=\E[0;37;44;1m

Commands Used for Color

The following commands are used to define color in monitors that support
color. They are mapped to the color codes, from 0 to 7, as defined for the
VIFRED form.

The ya command specifies the default colors for background and foreground
objects. The other color-related commands indicate colors for fields as
specified in the VIFRED attributes form. The following is an example of the
format in which you specify the background and foreground colors:

:ya=1F

In this example, the 1 specifies a background color of blue and the F specifies
a foreground color of white.

Alternatively, you can express these color specifications in the embedded
query language with the set_frs statement and in 4GL with the set_forms
statement. For more information, see your query language reference guide or
the Forms-based Application Development Tools User Guide.

For each color specification, you can also specify a default font. For more
information, see Specifying Fonts.

Commands for Advanced Features (PC Environment)

Appendix C: Writing Termcap Descriptions C–15

All the commands are strings and can have optional padding. The commands
are described in the following table:

Command Description Direct Screen
Write Example

ANSI Example

ya Default color (0) ya=1F ya=\E[0;37;44;1m

yb Alternate color #1 yb=1F yb=\E[0;37;44;1m

yc Alternate color #2 yc=1A yc=\E[0;36;44;1m

yd Alternate color #3 yd=1E yd=\E[0;33;44;1m

ye Alternate color #4 ye=30 ye=\E[0;37;44;1m

yf Alternate color #5

yg Alternate color #6 yg=0F:\ yg=\E[0;37;43;1m

yh Alternate color #7 yh=2F:\ yh=\E[0;37;42;1m

The following chart shows codes for color and monochrome displays:

Codes for
Background

Codes for
Foreground

Codes for
Monochrome

0 = black 0 = black 00 = nondisplay

1 = blue 1 = blue 01 = underscore

2 = green 2 = green 02 = dim

3 = cyan 3 = cyan 81 = underscore and blinking

4 = red 4 = red 82 = dim and blinking

5 = magenta 5 = magenta 78 = reverse video

6 = yellow 6 = brown 09 = underscore and high
intensity

7 = white 7 = light grey 0A = bold

8 = blinking black 8 = dark grey 89 = blinking, underscore and
high intensity

9 = blinking blue 9 = light blue 8A = blinking and high intensity

A = blinking green A = light green F8 = blinking and reverse video

B = blinking cyan B = light cyan

C = blinking red C = light red

D = blinking magenta D = light magenta

Commands for Advanced Features (PC Environment)

C–16 Character-based Querying and Reporting Tools User Guide

Codes for
Background

Codes for
Foreground

Codes for
Monochrome

E = blinking yellow E = yellow

F = blinking white F = white

For all systems, the ya entry is used for the normal attribute (that is, no
underscore, reverse video, high intensity, or blinking).

For all monochrome systems, entries yb through yh must not be defined.

For color systems, the us, rv, bo, bl and the za through zk entries are used
only with color 0 (entry ya). These attributes work for other colors as you
would expect if the flags are set for a field. For example, white on red
becomes red on white if reverse video is set, and light green on black becomes
green on black if change intensity is set.

Some of the termcap color commands that are used by Ingres forms are
shown in the following table:

Command Forms and Menus

ya Background for Ingres forms and the ring menu line when
the menu is active

yb Tablefields in Ingres forms

yc Some simple fields in certain Ingres forms

yd Some simple fields in certain Ingres forms

us Some simple fields in certain Ingres forms

bo Some simple fields in certain Ingres forms

Specifying Fonts

For each of the ya through yh termcap strings, Ingres allows you to set both a
color and a font. Wherever the specified color is used, the specified font is
used as well. You can specify a different font for each entry if you want. The
following fixed fonts are available:

 OEM (Windows OEM_FIXED_FONT)

 ANSI (Windows ANSI_FIXED_FONT)

 SYSTEM (Windows SYSTEM_FIXED_FONT)

Commands for Advanced Features (PC Environment)

Appendix C: Writing Termcap Descriptions C–17

You must use one of these three fixed fonts for both the ya and the yb entry.
For the other entries, you can use any fixed or proportional font loaded in your
Windows system. However, for data entry fields, it is best to use one of the
three fixed fonts provided, because the cursor placement is based on these
fixed fonts.

Note: Underlining in stock fixed fonts (OEM, ANSI, and SYSTEM) is not possible
on a PC monitor, due to a Windows font limitation. On form fields for which the
Underline attribute has been set, leading and trailing blanks display
underscore characters to indicate underlining for these fonts. Text appears
with full underlining, however, in fields with fonts that support it.

Specify fonts by adding a comma after the background/ foreground color
information in the ya through yh entries, followed by the font name. OEM is
the default if you do not specify a font. You can specify the point size for the
font by placing a comma after the font name, followed by the point size.
Following is a sample from the termcap file:

:ya=1F,ANSI:\
:yb=1F,OEM:\
:yc=1F,MS Serif,14:\
:yd=1F,Times New Roman:\
:ye=1F,Courier:\
:yf=1F,Courier new:\
:yg=1F,MS Sans Serif:\
:yh=1F,SYSTEM,15:\

The default point size for a proportional font is the largest size that fits on a
line, where the line size is determined by the font for the ya entry. The point
size specified for ya determines the spacing for all lines on a form. You must
increase the line size if you are using a taller font for an entry other than ya.

To do so, use a large enough point size for ya, as in the following example:

:ya=1F,SYSTEM,16:\
:yb=1F,OEM:\
:yc=1F,MS Serif,16:\
:yd=1F,Times New Roman:\
:ye=2F,Courier:\
:yf=4F,Courier new:\
:yg=0B,MS Sans Serif:\
:yh=1F,Courier,18:\

The default pixel and point sizes for the fixed fonts on a SVGA 800 x 600,
20-inch monitor are shown in the following table:

Font Pixels Points

OEM 12 9

ANSI 13 10

SYSTEM 15 11

Commands for Advanced Features (UNIX and VMS Environment)

C–18 Character-based Querying and Reporting Tools User Guide

Commands for Advanced Features (UNIX and VMS Environment)

UNIX

VMS

The termcap commands included in this section are used to define some of
the advanced features of your terminal. These are features that make the
terminal look good and make it easier to use but are not essential for the
basic functions.

The advanced features commands include:

 Video attributes such as inverse video and blinking

 Color attributes

 Boxing characters

 Commands to set up function and arrow keys

 Command to specify a default FRS key mapping file

 Commands to optimize cursor movement

Commands Used to Program Video Attributes

The four basic modes are: underscore, blinking, reverse video, and high
intensity. All the commands in the following table are combinations of the four
basic modes:

Command Description VT100 Example

rv Turns on reverse video. rv=1\E[7m

bl Turns on blinking mode. bl=1\E[5m

bo Turns on high intensity mode. bo=1\E[1m

us Turns on underscore mode. us=2\E[4m

ea Turns off all special display characteristics. ea=1\E[m

za Turns on reverse video, blinking high
intensity, and underscore modes.

za=1\E[1;4;5;7m

zb Turns on high intensity and underscore
modes.

zb=1\E[1;4m

zc Turns on high intensity and blinking
modes.

zc=1\E[1;5m

zd Turns on high intensity and reverse video
modes.

zd=1\E[1;7m

ze Turns on underscore and blinking modes. ze=1\E[4;5m

Commands for Advanced Features (UNIX and VMS Environment)

Appendix C: Writing Termcap Descriptions C–19

Command Description VT100 Example

zf Turns on underscore and reverse video
modes.

zf=1\E[4;7m

zg Turns on blinking and reverse video
modes.

zg=1\E[5;7m

zh Turns on high intensity, blinking, and
underscore modes.

zh=1\E[1;4;5m

zi Turns on blinking, underscore, and reverse
video modes.

zi=1\E[4;5;7m

zj Turns on high intensity, blinking, and
reverse video modes.

zj=1\E[1;5;7m

zk Turns on high intensity, underscore, and
reverse video modes.

zk=1\E[1;4;7m

Commands Needed for Boxing Characters

Not all terminals have special boxing characters. If your terminal does not
have them, hyphens (-) and vertical bars (|) are used instead. Using boxing
characters, however, greatly improves the appearance of forms using table
fields.

Command Description VT100 Example

ld Initializes terminal to draw solid
lines.

 ld=\E)0

ls Interprets subsequent characters
for drawing solid lines.

 ls=\016

le Interprets subsequent characters as
regular characters.

 le=\017

qa through qk Boxing characters; see the next
table.

The table below describes the boxing characters qa through qk mentioned in
the previous table:

Command Description VT100 Example

qa Lower right corner of a box qa=j

qb Upper right corner of a box qb=k

qc Upper left corner of a box qc=l

Commands for Advanced Features (UNIX and VMS Environment)

C–20 Character-based Querying and Reporting Tools User Guide

Command Description VT100 Example

qd Lower left corner of a box qd=m

qe Crossing lines qe=n

qf Horizontal line qf=q

qg Left T (stem points right) qg=t

qh Right T (stem points left) qh=u

qi Bottom T (like upside down T) qi=v

qj Top T (like a regular T) qj=w

qk Vertical line qk=x

Commands Needed for Function Keys

The following table describes the commands the termcap files use to activate
function keys:

Command Description

ke Takes the terminal out of keypad transmit mode.

ks Puts the terminal in keypad transmit mode.

kn The number of function keys available; for example,
this is specified as kn#18 on the VT100. You can have
a maximum value of 40 for the number of function
keys.

ky This terminal has cursor and function keys. This is a
Boolean command. It must be present if you want to
use function keys. Using it disables the ESC key and
sets the first function key, PF1, to the Menu function.

k0 through KD Strings sent by function keys; see the next table for
the specifics on each command.

The following table describes the commands that you can set to send strings
by using function keys:

Command Function Key Number VT100 Example

k0 function key 1 k0=\EOP

k1 function key 2 k1=\EOQ

k2 function key 3 k2=\EOR

Commands for Advanced Features (UNIX and VMS Environment)

Appendix C: Writing Termcap Descriptions C–21

Command Function Key Number VT100 Example

k3 function key 4 k3=\EOS

k4 function key 5 k4=\EOw

k5 function key 6 k5=\EOx

k6 function key 7 k6=\EOy

k7 function key 8 k7=\EOm

k8 function key 9 k8=\EOt

k9 function key 10 k9=\EOu

kA function key 11 kA=\EOv

kB function key 12 kB=\EOl

kC function key 13 kC=\EOq

kD function key 14 kD=\EOr

kE function key 15 kE=\EOs

kF function key 16 kF=\EOp

kG function key 17 kG=\EOn

kH function key 18 kH=\EOM

kI function key 19 none

kJ function key 20 none

kK function key 21 none

kL function key 22 none

kM function key 23 none

kN function key 24 none

kO function key 25 none

kP function key 26 none

kQ function key 27 none

kR function key 28 none

kS function key 29 none

kT function key 30 none

kU function key 31 none

kV function key 32 none

kW function key 33 none

Commands for Advanced Features (UNIX and VMS Environment)

C–22 Character-based Querying and Reporting Tools User Guide

Command Function Key Number VT100 Example

kX function key 34 none

kY function key 35 none

kZ function key 36 none

KA function key 37 none

KB function key 38 none

KC function key 39 none

KD function key 40 none

Commands Needed for Arrow Keys

The arrow key commands are all strings:

Command Description VT100 Example

ku Sent by terminal up arrow key ku=\EOA

kd Sent by terminal down arrow key kd=\EOB

kr Sent by terminal right arrow key kr=\EOC

kl Sent by terminal left arrow key kl=\EOD

Commands Used for Color

You can use these commands to turn on color in terminals or monitors that
support color. These are mapped to the color codes, from 0 to 7, as defined
for the VIFRED form. Some terminals, such as the VT2410, are capable of only
four colors.

The ya command specifies the default color for foreground objects, and the
other commands indicate colors for fields as specified in the VIFRED attributes
form. Alternatively, you can express these color specifications in the
embedded query language with the set_frs statement and in 4GL with the
set_forms statement. For more information, see your query language
reference guide or the Forms-based Application Development Tools User
Guide.

Commands for Advanced Features (UNIX and VMS Environment)

Appendix C: Writing Termcap Descriptions C–23

All the commands are strings and can have optional padding. The commands
are described in the following table:

Command Description Envision Example

ya Default foreground color (0) 2\Ea7

yb Alternate foreground color #1 2\Ea1

yc Alternate foreground color #2 2\Ea2

yd Alternate foreground color #3 2\Ea3

ye Alternate foreground color #4 2\Ea4

yf Alternate foreground color #5 2\Ea5

yg Alternate foreground color #6 2\Ea6

yh Alternate foreground color #7 2\Ea7

Example: Envision
E3|envisionc|envision230|this has the color definitions:\

:ya=2\Ea7:yb=2\Ea1:yc=2\Ea2:yd=2\Ea3:\

:ye=2\Ea4:\:yf=2\Ea5:yg=2\Ea6:\

:yh=2\Ea7:tc=vt100k:

Commands to Specify Display Width

The following commands define terminal display width:

Command Description VT100 Example

yn Number specifying narrow width
of terminal

yn#80

yo Number specifying wide width of
terminal

yo#132

yp Narrow cm string yp=\E[%i%2;%2H

yq Wide cm string yq=\E[%i%2;%3H

yr String to switch to narrow width yr=\E[?3l

ys String to switch to wide width ys=\E[?3h

Commands for Advanced Features (UNIX and VMS Environment)

C–24 Character-based Querying and Reporting Tools User Guide

Command to Specify FRS Mapping File for Terminal

You can use the mf command to specify a default FRS key mapping file for a
terminal. You must include the name of a file in the OpenIngres files directory
(not the full directory specification or path name of the file). This file contains
the default FRS key mapping for the terminal.

Example: vt100i

:mf=vt100i.map:

Commands to Optimize Cursor Movement

These commands generally improve the way the forms system moves the
cursor around the form. They are usually optional.

Command Description

am This terminal has automatic margins. This Boolean command
is important on forms that run to the edge of the screen.

do Down one line. Inclusion of this command helps the forms
system move the cursor faster.

sr Scroll reverse. This command makes the form scroll
backwards instead of jumping if you are moving up on a long
form.

cs Change scrolling region. This command improves the
appearance of the cursor movements when scrolling on a
long form. The forms system still works if this is not defined,
but it does not look as nice. This command is very similar in
form to the cm command; however, the cs command’s
parameters are the upper and lower limits of scrolling
instead of the position on the screen. Otherwise, all the place
markers and modifiers are the same. If you use the cs
command, you must also include the sr command.

Example: vt100 cs=5\E[%2;%2r

Commands for Special Situations

Appendix C: Writing Termcap Descriptions C–25

Commands for Special Situations
The termcap commands in this section are seldom, even rarely, required for
the forms system.

Commands from the UNIX Termcap File

Because the termcap file is based upon the UNIX release, some additional
UNIX entries have been included in the termcap file, but are usually not
needed by the forms system. The following table provides a list of these
additional UNIX termcap entries:

Name Type Description

bt str Back tab. Padding can be required on this command.

ho str Sequence to move the cursor to the home position. This
command is used if and only if the terminal does not
possess a cursor positioning string (cm).

ll str Last line, first column (if no cm).

ms bool Safe to move while in standout and underline mode.

pc str Pad character (rather than null).

sf str Scroll forward. Padding can be required on this
command.

ta str Tab, other than Control-I or with padding. Padding can
be required on this command.

te str String to end programs that use cm.

ti str String to begin programs that use cm.

ve str Sequence to end open/visual mode.

vs str Sequence to start open/visual mode.

hz str Hazeltine; cannot print apostrophes.

nc bool No correctly working carriage return (DM2500, H2000).

xb bool Beehive (f1=ESC, f2=Control-C)

xn bool A newline is ignored after a wrap (Concept).

xr bool Return acts like ce \r \n (Delta Data).

xs bool Standout not erased by writing over it (HP 264?).

xt bool Tabs are destructive, magic so character (Teleray 1061).

Examples of Termcap Descriptions

C–26 Character-based Querying and Reporting Tools User Guide

Examples of Termcap Descriptions
This section includes several examples of termcap entries that have been
tested. The examples illustrate the format of termcap entries and include
commentary on each description. If you want to learn more about the termcap
process, compare these descriptions with the guides for the particular
terminals.

DEC VT100 (All-Inclusive)

This description contains all the features previously described. This example is
longer than most termcap descriptions.

d7|vt100k|vt-100k|pt100k|vt100 with everything:\
 :co#80:li#24:cl=20\E[;H\E[2J:bs:cm=5\E[%i%2;%2H:\
 :nd=2\E[C:\
 :up=2\E[A:ce=3\E[K;cd=50\E[J:us=2\E[4m:ue=2\E[m:\
 :is=\E\E[?3l\E[?4l\E[?7l\E[?8h:ks=\E[?1h\E=:\
 :ke=\E[?1l\E:ku=\EOA:kd=\EOB:kr=\EOC:kl=\EOD:\
 :ld=\E)0:\
 :qa=j:qb=k:qc=l:qd=m:qe=n:qf=q:qg=t:qh=u:qi=v:\
 :qj=w:qk=x:\
 :ls=\016:le=\017:\
 :cs=5\E[%2;%2r:bl=1\E[5m:be=1\E[m:\
 :bo=1\E[1m:eb=1\E[m:rv=1\E[7m:re=1\E[m:ea=1\E[m:\

 :za=1\E[1;4;5;7m:zb=1\E[1;4m:zc=1\E[1;5m:\
 :zd=1\E[1;7m:\
 :ze=1\E[4;5m:zf=1\E[4;7m:zg=1\E[5;7m:\
 :zh=1\E[1;4;5m:\
 :zi=1\E[4;5;7m:zj=1\E[1;5;7m:zk=1\E[1;4;7m:\
 :kh=\E[H:ky:k0=\EOP:k1=\EOQ:k2=\EOR:k3=\EOS:pt:\
 :sr=5\EM:\
 :k4=\EOw:k5=\EOx:k6=\EOy:k7=\EOm:\
 :k8=\EOt:k9=\EOu:kA=\EOv:\
 :kB=\EOl:kC=\EOq:kD=\EOr:kE=\EOs:kF=\EOp:\
 :kG=\EOn:kH=\EOM:\
 :kn#18:mf=vt100k.map:

DEC VT100 (Simple)

Here is the VT100 using only basic features. This description lacks many of the
niceties found in the longer description above, but it illustrates that minimal
descriptions that provide basic functioning are relatively easy to write.

d8|vt100s|simple vt100 entry:\
 :co#80:li#24:cl=20\E[;H\E[2J:bs:\
 :cm=5\E[%i%2;%2H:nd=2\E[C:\
 :is=\E\E[?3l\E[?4l\E[?7l\E[?8h:\
 :up=2\E[A:ce=3\E[K:cd=50\E[J:

Examples of Termcap Descriptions

Appendix C: Writing Termcap Descriptions C–27

Envision 230

This termcap description illustrates the use of the tc command. This
description contains all the features of the VT100 except that it does not
employ the VT100 initialization string. Also note the large number of names;
this example covers three different varieties of Envision terminal. If you need
to write descriptions for terminals similar to known terminals, this example is
particularly pertinent.

E1|envision|envision230|envision220:\
 :is@:tc=vt100k:

Concept 100

This description was taken from the BSD UNIX termcap description. It is not
programmed for Ingres function keys or boxing characters. The Concept 100 is
an example of a terminal for which writing descriptions is particularly difficult.
It has several nonstandard features. Note the use of the xn command, a
command written specifically for terminals like the Concept 100.

c1|c100|concept100:\
 :is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
 :al=3*\EarR:am:bs:cd=16*\arC:ce=16\EarS:\
 :cl=2*arL:\
 :cm=\Ea%+:%+:co#80:dc=16\EarA:dl=3*\EarB:\
 :ei=\E\200:\:eo:im=\EarP:in:ip=16*:li#24:mi:\
 :nd=\E=:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:\
 :up=\E;:\
 :vb=\Ek\EK:xn:

Datamedia 3045

This description, which was also taken from the BSD UNIX termcap
description, contains the rather tricky cm string discussed in The Eleven Basic
Commands section. This description has not been programmed to use Ingres
function keys or boxing characters.

D4|3045|dm3045|datamedia 3045a:\
 :is=\EU\EV:\
 :am:bs:cd=2\EJ:ce=\EK:cl=2\EM:\
 :cm=\EY%r%+%+:co#80:\
 :dc=6\EB:dm=:ed=:ei=\EP:ho=\EH:ic=:\
 :im=\EP:ip=6:\
 :k0=\Ey\r:k1=\Ep\r:k2=\Eq\r:k3=\Er\r:\
 :k4=\Es\r:\
 :k5=\Et\r:k6=\Eu\r:k7=\Ev\r:k8=\Ew\r:\
 :k9=\Ex\r:\
 :kh=\EH:ku=\EA:kr=\EC:li#24:nd=\EC:\
 :pc=\177:pt:\
 :eo:ul:up=\EA:xn:

Appendix D: “Data Types D–1

Appendix D: Data Types

This appendix describes data types and their equivalents.

Data Types in SQL, OpenSQL, and QUEL
The following table gives equivalents for SQL, OpenSQL, and QUEL data types:

SQL OpenSQL QUEL Description

c(n) not used c(n) A fixed-length string of up
to n printable ASCII
characters, with
nonprintable characters
converted to blank; n
represents the lesser of the
maximum configured row
size and 32,000.

char(n) char(n) char(n) A fixed-length string of up
to n ASCII characters,
including any nonprintable
characters; n represents
the lesser of the maximum
configured row size and
32,000.

varchar(n) varchar(n) varchar(n) A variable-length string of
up to n ASCII characters; n
represents the lesser of the
maximum configured row
size and 32,000.

text(n) not used text(n) A string of up to n ASCII
characters (excluding
nonprintable characters); n
represents the lesser of the
maximum configured row
size and 32,000.

float4 not used f4 4-byte floating point; for
numbers including decimal
fractions, from 0.29x10**
-38 to 1.7x10**38
(7 digit precision).

Data Types in SQL, OpenSQL, and QUEL

D–2 Character-based Querying and Reporting Tools User Guide

SQL OpenSQL QUEL Description

float8 float f8 8-byte floating point; for
numbers including decimal
fractions, from
0.29x10**-38 to
1.7x10**38 (16 digit
precision).

decimal decimal not used Exact numeric data type
defined by its precision
(total number of digits) and
scale (number of digits to
the right of the decimal
point). Precision must be
between 1 and 31. Scale
can be 0 up to the
maximum scale.

integer1 not used i1 1-byte integer; for whole
numbers ranging from
-128 to +127.

integer2 or
smallint

smallint i2 2-byte integer; for whole
numbers ranging from
-32,768 to +32,767.

integer4 or
integer

integer i4 4-byte integer; for whole
numbers ranging from
-2,147,483,648 to
+2,147,483,647.

money not used money 8 byte monetary data from
-99999999999999.99 to
+99999999999999.99.

date not used date 12 bytes; dates ranging
from 1-jan-1582 to
31-dec-2382 for absolute
dates and -800 years to
800 years for time
intervals.

An SQL user-defined data type (UDT) is perceived and treated as a character
string. User-defined data types are not supported in OpenSQL or QUEL.

Some forms utilities do not support the long varchar, byte, byte varying, and
long byte data types. For more information, see the documentation for each
specific product for details about long varchar, byte, byte varying, and long
byte data types.

Appendix E: Calling Ingres Tools from Embedded SQL and OpenSQL E–1

Appendix E: Calling Ingres Tools from
Embedded SQL and OpenSQL

This appendix provides a listing of the parameters for each Ingres tool. Some
of these parameters correspond to arguments passed to the particular tool,
others to specific command line flags. For each call, the flags parameter can
be used to pass the values of all flags, including those that do not have
defined parameter names. Within the string containing the value for flags,
each distinct flag must be separated by a blank space.

Call Statement

The embedded SQL and OpenSQL call statement enables your applications to
call an Ingres tool (such as QBF) or the operating system. The syntax to call
an Ingres tool is as follows:

exec sql call subsystem (database = dbname {, parameter = value});

To call the operating system, the syntax is as follows:

exec sql call system (command = command_string);

The value for a particular parameter can be specified with or without quotes or
within a string variable. If there is no value for a particular parameter name,
specify an empty, quoted string.

Examples Following are sample calls to Ingres tools from embedded SQL and OpenSQL:

exec sql call qbf (database = 'empdb',
 table = 'employee');

exec sql call rbf (database = 'empdb',
 flags = '-s -mblock emptable');

exec sql call report (database = :dbvar,
 name = :namevar, mode = :modevar);

exec sql call system (command = 'mail');

In the third example, dbvar, namevar, and modevar are host language string
variables.

Tools and Parameters

E–2 Character-based Querying and Reporting Tools User Guide

Tools and Parameters
Each Ingres tool accepts parameters that are specified when the tool is called
from an embedded SQL or OpenSQL program. Many of these parameters have
the same effect as flags used when the tool is called from the operating
system command line.

The maximum number of parameters for the call statement is 29, and the
combined length of the parameters must not exceed 2043 bytes.

A parameter that does not take an argument must be set to an empty string,
specified by an empty pair of quotes. For example, the silent parameter of the
report call is equivalent to the -s flag on the report command line. Because -s
does not take an argument, specify the silent parameter in the following way:

exec sql call report
 (database = 'mydb', name = 'employee', silent = ' ');

These parameters are described in the following sections.

For more information on each command, see the chapter "Using System
Commands for the Forms-based Tools."

Abf Command

The abf command accepts the following parameters:

Parameter Description

application Name of the application.

flags Can be used for any flags on the command line. Flags must
be separated by a blank.

Ingmenu Command

The ingmenu command to call Ingres Menu accepts the flags parameter, which
can be used for any flags on the command line. Flags must be separated by a
blank.

Isql Command

The isql command to call the interactive Terminal Monitor for SQL accepts the
flags parameter, which can be used for any flags on the command line. Flags
must be separated by a blank.

Tools and Parameters

Appendix E: Calling Ingres Tools from Embedded SQL and OpenSQL E–3

Qbf Command

The qbf command accepts the following parameters:

Parameter Description

qbfname Equivalent to the -f flag. Invoke QBF using the specified
qbfname. If name is blank, start at Catalogs frame for
qbfnames.

joindef Equivalent to the -j flag. Invoke QBF using the specified
JoinDef. If the name is blank, start at Catalogs frame for
JoinDefs.

tblfld Equivalent to the -t flag. Invoke QBF on the specified table,
using a table field format to display the data. If the name is
blank, start at Catalogs frame for tables.

lookup Equivalent to the -l flag. Invoke QBF using the specified name.
QBF can look up the name in the following order: QBFName,
JoinDef name, table name.

silent Equivalent to the -s flag. Suppresses verbose messages.

mode Equivalent to the -m flag. Enter QBF directly in the specified
mode. Possible values for this parameter are retrieve, append,
update, or all.

table Name of the table on which QBF is being invoked. This
parameter must be omitted if one of the joindef, qbfname,
tblfld, or lookup parameters has been used.

emptycat Equivalent to -e flag. If set, catalogs are displayed empty, and
the user can enter names directly.

flags Can be used for any flags on the command line. Flags must be
separated by a blank.

Tools and Parameters

E–4 Character-based Querying and Reporting Tools User Guide

Rbf Command

The rbf command accepts the following parameters:

Parameter Description

silent Equivalent to the -s flag. Suppresses status messages.

report Equivalent to the -r flag. Indicates that a report, rather than a
table, is being specified. The name of the report is the value
for this parameter.

style Equivalent to the -m flag. Indicates that a table, rather than a
report, is being specified. Optional values for this parameter
are column, wrap and block. The name of the table is given as
the value for the table parameter.

table The name of a table or view for which a default report is to be
formatted.

emptycat Equivalent to -e flag. If set, the Catalog form is displayed
empty, and the user can enter names directly.

flags Can be used for any flags on the command line. Flags must be
separated by a blank.

Report Command

The report command of Report-Writer accepts the following parameters:

Parameter Description

file Equivalent to the -f flag. Directs the formatted report to the
specified file for output.

silent Equivalent to the -s flag. Suppresses status messages.

report Equivalent to the -r flag. Indicates that a report, rather than a
table, is being specified. The name of the report is the value for
this parameter.

style Equivalent to the -m flag. Indicates that a table, rather than a
report, is being specified. Optional values for this parameter
are column, wrap, and block. The name of the table is given as
the value for the name parameter.

name Name of a table or view in the database for which a default
report is to be formatted.

Tools and Parameters

Appendix E: Calling Ingres Tools from Embedded SQL and OpenSQL E–5

Parameter Description

param The list of parameters for the report. Each element in the list
must be of this form:

name =value

Blanks or tabs must separate Name/value combinations. The
entire list must be enclosed within quotes. In addition, if name
is a character report parameter, then value must be enclosed in
quotes. (Values of numeric report parameters cannot, however,
be quoted.) The inner quotes that surround value must then be
de-referenced according to host language rules so they can be
passed through to the report command.

For example, assume that you want to call the Report-Writer
from within embedded SQL or OpenSQL with the equivalent of
this system-level command:

report newdb -r myrpt (bin='f01'

wstation='u1' type=12 sect=11)

Note that bin and wstation are character parameters and that
type and sect are numeric parameters.

You could call the report by placing the parameters in a
program variable.

For example:

exec sql call report (database = 'newdb', report = 'myrpt',
param = :parmvar);

The variable, parmvar, must contain the value:

bin="f01" wstation="u1" type=12 sect=11

Double quotes must surround the constant string values within
the variable. If your host language requires the de-referencing
of double quotes, be sure to do so, according to the rules of
your host language.

forcerep Equivalent to the -h flag. Report-Writer can put headers and
footers, even if no data is found for the report.

formfeed Equivalent to the +b flag. Report-Writer forces formfeeds at
page breaks, overriding any settings in the report formatting
commands.

noformfeed Equivalent to the -b flag. Report-Writer suppresses formfeeds,
overriding any settings in the report formatting commands.

pagelength Equivalent to the -v flag. Sets the page length, in lines, for the
report, overriding any .PL commands in the report.

Tools and Parameters

E–6 Character-based Querying and Reporting Tools User Guide

Parameter Description

brkfmt Equivalent to the +t flag (default). If set, breaks and
calculations for dates and numbers are based on the displayed
data, rather than the internal database values.

nobrkfmt Equivalent to the -t flag. If set, breaks and calculations for
dates and numbers are based on the internal database values,
rather than the displayed values.

flags Can be used for any flags on the command line. Flags must be
separated by a blank.

Sql Command

The sql command accepts the flags parameter, which can be used for any flags
on the command line. Flags must be separated by a blank.

Sreport Command

The sreport command of the Report-Writer accepts the following parameters:

Parameter Description

file Name of a text file containing report formatting commands
for one or more reports.

silent Equivalent to the -s flag. Suppresses status messages.

flags Can be used for any flags on the command line. Flags must
be separated by a blank.

System Command

The system command has only one argument, command. It executes the
operating system level command specified by command_string. If
command_string is null, empty, or blank, then it transfers the user to the
operating system.

Tools and Parameters

Appendix E: Calling Ingres Tools from Embedded SQL and OpenSQL E–7

Vifred Command

The vifred command accepts the following parameters:

Parameter Description

form Equivalent to the -f flag. Invoke VIFRED on the
specified form.

table Equivalent to the -t flag. Invoke VIFRED with a
default form for the specified table.

joindef Equivalent to the -j flag. Invoke VIFRED with a
default form for the specified JoinDef.

emptycat Equivalent to -e flag. If set, an empty Catalogs
form is displayed, and the user can enter names
directly.

flags Can be used for any flags on the command line.
Flags must be separated by a blank.

Appendix F: Report-Writer Report Examples F–1

Appendix F: Report-Writer Report
Examples

This appendix contains five complete sample reports, as listed below. The
Population and Dictionary reports have two alternative sets of specifications.

 The POPULATION report demonstrates a common type of report with
subtotaling. POP2 shows an alternative set of formatting statements for
producing the same output.

 The ACCOUNT report demonstrates a complex report that might be used in
accounting applications.

 The DICTIONARY report demonstrates the use of character printing
options within Report-Writer. DICT2 shows an alternative set of formatting
statements for the same output.

 The LABEL report demonstrates the formatting of mailing labels that print
three across on a page, generated from a list of names and addresses.

 The BOOKS report demonstrates the use of joining tables for producing a
report.

Each report example contains the following information:

 Table definition for the report

 Data for the report

 Listing of the report formatting statements used in the report code

 Sample listing of the report itself

For the sake of clarity, the formatting statements appear in the examples as
uppercase letters, although they can actually be specified in either uppercase
or lowercase letters.

Population Example
The POPULATION example demonstrates the use of Report-Writer in
formatting a report of census data, by region and state, for the United States.
The base tables for this report are as follows:

 “Region” contains region names associated with region abbreviations

 “State” contains state names, as well as state abbreviations, and
associated region abbreviations

 “Pop” contains population data for each state for different census years

Population Example

F–2 User Guide

Additional details for each of these table layouts are provided in the tables that
follow:

Region Table Definition

Column Name Type Length Nulls Defaults

regabbrev char 3 yes no

region char 20 yes no

Region Data for the Sample Report

regabb region

ENC East North Central

ESC East South Central

M Mountain

MA Middle Atlantic

NE New England

P Pacific

SA South Atlantic

WNC West North Central

WSC West South Central

State Table Definition

Column Name Type Length Nulls Defaults

regabbrev char 3 yes no

stateabbrev char 2 yes no

state char 20 yes no

State Data for the Sample Report

regabb Statab state

ENC IL Illinois

ENC IN Indiana

ENC MI Michigan

ENC OH Ohio

ENC WI Wisconsin

ESC AL Alabama

Population Example

Appendix F: Report-Writer Report Examples F–3

regabb Statab state

ESC KY Kentucky

ESC MS Mississippi

ESC TN Tennessee

MA NJ New Jersey

MA NY New York

MA PN Pennsylvania

M AZ Arizona

M CO Colorado

M ID Idaho

M MT Montana

M NV Nevada

M NM New Mexico

M UT Utah

M WY Wyoming

NE CN Connecticut

NE ME Maine

NE MA Massachusetts

NE NH New Hampshire

NE RI Rhode Island

NE VT Vermont

P AK Alaska

P CA California

P HI Hawaii

P OR Oregon

P WA Washington

SA DE Delaware

SA DC District of Columbia

SA FL Florida

SA GA Georgia

SA MD Maryland

Population Example

F–4 User Guide

regabb Statab state

SA NC North Carolina

SA SC South Carolina

SA VA Virginia

SA WV West Virginia

WNC IA Iowa

WNC KS Kansas

WNC MN Minnesota

WNC MO Missouri

WNC NB Nebraska

WNC ND North Dakota

WNC SD South Dakota

WSC AR Arkansas

WSC LA Louisiana

WSC OK Oklahoma

WSC TX Texas

Population Table Definition

Column Name Type Length Nulls Defaults

year integer 4 yes no

stateabbrev char 2 yes no

tot_18to65 integer 4 yes no

tot_under18 integer 4 yes no

tot_over65 integer 4 yes no

Population Data for the Sample Report

year statab tot_18to65 tot_under18 tot_over65

1970 IL 9600381 1425674 87921

1970 IN 4820324 357464 15881

1970 MI 7833474 991066 50543

1970 OH 9646997 970477 34543

1970 WI 4258959 128224 30548

Population Example

Appendix F: Report-Writer Report Examples F–5

year statab tot_18to65 tot_under18 tot_over65

1970 AL 2528983 908247 6935

1970 KY 2971232 241292 6182

1970 MS 1393283 815770 7859

1970 TN 3283432 631696 8559

1970 NJ 6349908 770292 47964

1970 NY 15790307 2166933 233500

1970 PN 10737732 1016514 39663

1970 AZ 1604948 53344 112608

1970 CO 2212352 66411 28496

1970 ID 698802 2130 11635

1970 MT 663043 1995 29371

1970 NV 448177 27762 12799

1970 NM 915815 19555 80630

1970 UT 1031926 6617 20730

1970 WY 323024 2568 6824

1970 CN 2835458 181177 15074

1970 ME 985276 2800 3972

1970 MA 5477624 175817 35729

1970 NH 733106 2505 2070

1970 RI 914757 25338 6630

1970 VT 442553 761 1016

1970 AK 236767 8911 54704

1970 CA 17761032 1400143 791959

1970 HI 298160 7573 462828

1970 OR 2032079 26308 32998

1970 WA 3251055 71308 86806

1970 DE 466459 78276 3369

1970 DC 209272 537712 9526

1970 FL 5711411 1049578 28454

1970 GA 3387516 1190779 11280

Population Example

F–6 User Guide

year statab tot_18to65 tot_under18 tot_over65

1970 MD 3193021 701341 28037

1970 NC 3891510 1137664 52885

1970 SC 1794430 789041 7045

1970 VA 3757478 865388 25628

1970 WV 1666870 73931 3436

1970 IA 2782762 32596 9018

1970 KS 2122068 106977 17533

1970 MN 3736038 34868 34065

1970 MO 4177495 480172 18834

1970 NB 1432867 39911 10715

1970 ND 599485 2494 15782

1970 SD 630333 1627 33547

1970 AR 1561108 357225 4962

1970 LA 2539547 1088734 13025

1970 OK 2275104 177910 106218

1970 TX 9696569 1419677 80484

The following text discusses the report formatting statements for the
POPULATION report. The POP2 example, which follows the report output,
provides a description and listing of a slightly different set of statements that
produce the same output:

 The .query statement shows the database query needed to set up the data
in the form required to write the report. Essentially, the query sets up a
table with one row for each state, including the columns region (name of
region), state (name of state), tot (the total population of the state),
tot_under18, tot_18to65, and tot_over65 (populations of three age
groups).

 The query contains a variable, $year, which is used in the where clause to
select data for only one census year. In the example shown, you can
select the data for 1970 by running the report with the command:

report rwsqldb pop (year=1970)

You must enclose the entire variable=value clause and its delimiting
parentheses within double quotes to pass it through Windows NT or UNIX.
For more information, see Passing Parameters on the Command Line in the
chapter “Report-Writer Commands and Utilities.”

report rwsqldb pop "(year=1970)"

Population Example

Appendix F: Report-Writer Report Examples F–7

You can also run the report with the command:

report

In this case Report-Writer prompts you for the report name, database
name, and value for $year.

 The .sort statement specifies a sorting of the data by region, and within
region, by state. This also defines potential break actions for changes in
value of region and state.

 The .format statement sets up a default format for a set of columns in the
report. These are used not only for the printing of the actual data but also
for the printing of subtotals based on that data. The four numeric columns
(tot, tot_under18, tot_18to65, and tot_over65) have the same format
specification. Actually, the .format statement is not strictly needed, but
provides a convenient way to specify the same format for a number of
columns.

 The .header report statement precedes a set of formatting statements that
execute at the start of the report and write out the centered title at the top
of the report. The dollar sign preceding year in the print statement for the
second line of this title indicates that year is a variable entered at run
time. The statements in this section also print underlined column
headings. Report-Writer determines the locations of the headings from the
positions of the column names given as variables to the .right (right
justify) statements. Report-Writer determines the column positions from
print locations for the associated columns in the .detail statements.

 The .header region statement precedes a set of formatting statements that
execute at the start of each region. The .need statement insures that at
least four lines are available on a page before printing the heading for
region. This assures that Report-Writer prints the heading and the detail
lines for at least two states on a page.

 The .detail statement precedes a set of formatting statements to be
processed for every row created by the query. The statements in this
section create rows for each state and specify printing of the actual
population data. By analyzing these statements, Report-Writer determines
the positions of the columns used throughout the report in the .rt
statements.

 The .footer statement precedes a set of formatting statements to be
processed after Report-Writer has read the last state in each region and
has processed the requisite .detail formatting statements. This report
specification uses a .need statement to insure that the two lines in the
footer both print on the same page. The statements in this section print a
region heading, followed on the same line with the values of some
subtotals for the region. The formats used in printing the subtotals are
those specified in the .format statement at the start of the report.

Population Example

F–8 User Guide

 The statements following the .footer report statement are almost identical
to those following the .footer region statement, except for the heading and
length of the dashed line separators. The values of the subtotals, however,
are different because of the different context.

 The statements following the .header page statement specify the title at
the top of the second page of the report, as well as a re-specification of
the column headings.

 The .footer page statement starts the block of statements that print at the
bottom of each page, including the current page number. Because the
.right statemen has no parameters, the text is justified to the right margin
(determined as the rightmost position printed in the formatting statements
in the report).

Population Example

Appendix F: Report-Writer Report Examples F–9

/* POPULATION - Population Report */
.NAME pop
.OUTPUT pop.out
.LONGREMARK
The POPULATION report demonstrates a fairly common type
of report with subtotaling.
.ENDREMARK
.QUERY
 select region.region, state.state,
 pop.tot_18to65 + pop.tot_under18 + pop.tot_over65 as tot,
 pop.tot_18to65, pop.tot_under18, pop.tot_over65
 from region, state, pop
 where state.statabbrev = pop.statabbrev
 and state.regabbrev = region.regabbrev
 and pop.year = $year
.SORT region, state
.DECLARE year = varchar(4) with prompt 'Enter Year:'
.FORMAT tot, tot_18to65, tot_under18, tot_over65 (' zzz,zzz,zzz')
.HEADER report
 .NEWLINE 3
 .UL .CE .PR 'Population of the United States, by Age Group' .NOU
 .NEWLINE .CE .PR 'Data for the Year - ', $year(c4) .NL 2
 .U .RT tot .PR 'Total Pop' .RT tot_18to65 .PR '18 to 65'
 .RT tot_under18 .PR 'Under 18' .RT tot_over65 .P 'Over 65'
 .NOU .NL 2
.HEADER region
 .NEED 4 .PR 'Region: ', region .NL
.DETAIL
 .NEED 2 .T5 .PR state(c20)
 .T+11 .PR tot, tot_18to65, tot_under18, tot_over65 .NL
.FOOTER region
 .NEED 2 .RT tot .PR '----------' .RT tot_18to65 .P '----------'
 .RT tot_under18 .P '----------' .RT tot_over65 .P '----------'
 .NL .PR 'Totals: ', region (c0) .T tot
 .PR sum(tot), sum(tot_18to65), sum(tot_under18), sum(tot_over65)
 .NL 2
.FOOTER report
 .NEED 2
 .RT tot .PR '-------------' .RT tot_18to65 .P '-------------'
 .RT tot_under18 .P '-------------'
 .RT tot_over65 .P '-------------' .NL
 .PR 'USA Totals' .T tot
 .PR sum(tot), sum(tot_18to65), sum(tot_under18), sum(tot_over65)
 .NL
.HEADER page
 .NL 3 .PR 'Population by State and Region: ', $year .NL 2
 .U .RT tot .P 'Total Pop' .RT tot_18to65 .P '18 to 65'
 .RT tot_under18 .P 'Under 18' .RT tot_over65 .P 'Over 65' .NOU
 .NL 2

Population Example

F–10 User Guide

.FOOTER page
 .NL
 .PR 'Source: US Department of the Interior, Bureau of the
 Census.'
.RIGHT .PR 'Page', page_number('zN') .NL 4
Population of the United States, by Age Group
Data for the Year - 1970
 Total Pop 18 to 65 Under 18 Over 65
Region: East North Central
 Illinois 11,113,976 9,600,381 1,425,674 87,921
 Indiana 5,193,669 4,820,324 357,464 15,881
 Michigan 8,875,083 7,833,474 991,066 50,543
 Ohio 10,652,017 9,646,997 970,477 34,543
 Wisconsin 4,417,731 4,258,959 128,224 30,548
 ---------- ---------- ---------- ----------
Totals: East North Central 40,252,476 36,160,135 3,872,905 219,436

Region: East South Central
 Alabama 3,444,165 2,528,983 908,247 6,935
 Kentucky 3,218,706 2,971,232 241,292 6,182
 Mississippi 2,216,912 1,393,283 815,770 7,859
 Tennessee 3,923,687 3,283,432 631,696 8,559
 ---------- ---------- ---------- ----------
Totals: East South Central 12,803,470 10,176,930 2,597,005 29,535

Region: Middle Atlantic
 New Jersey 7,168,164 6,349,908 770,292 47,964
 New York 18,190,740 15,790,307 2,166,933 233,500
 Pennsylvania 11,793,909 10,737,732 1,016,514 39,663
 ---------- ---------- ---------- ----------
Totals: Middle Atlantic 37,152,813 32,877,947 3,953,739 321,127

Region: Mountain
 Arizona 1,770,900 1,604,948 53,344 112,608
 Colorado 2,207,259 2,112,352 66,411 28,496
 Idaho 712,567 698,802 2,130 11,635
 Montana 694,409 663,043 1,995 29,371
 Nevada 488,738 448,177 27,762 12,799
 New Mexico 1,016,000 915,815 19,555 80,630
 Utah 1,059,273 1,031,926 6,617 20,730
 Wyoming 332,416 323,024 2,568 6,824
 ---------- ---------- ---------- ----------
Totals: Mountain 8,281,562 7,798,087 180,382 303,093

Region: New England
 Connecticut 3,031,709 2,835,458 181,177 15,074
 Maine 992,048 985,276 2,800 3,972
 Massachusetts 5,689,170 5,477,624 175,817 35,729
 New Hampshire 737,681 733,106 2,505 2,070
 Rhode Island 946,725 914,757 25,338 6,630
 Vermont 444,330 442,553 761 1,016
 ---------- ---------- ---------- ----------
Totals: New England 11,841,663 11,388,774 388,398 64,491

Source: US Department of the interior, Bureau of the Census. Page 1

Population by State and Region: 1970

Pop2 Example

Appendix F: Report-Writer Report Examples F–11

 Total Pop 18 to 65 Under 18 Over 65
Region: Pacific
 Alaska 300,382 236,767 8,911 54,704
 California 19,953,134 17,761,032 1,400,143 791,959
 Hawaii 768,561 298,160 7,573 462,828
 Oregon 2,091,385 2,032,079 26,308 32,998
 Washington 3,409,169 3,251,055 71,308 86,806
 ---------- ---------- ---------- ----------
Totals: Pacific 26,522,631 23,579,093 1,514,243 1,429,295
Region: South Atlantic
 Delaware 548,104 466,459 78,276 3,369
 District of Columbia 756,510 209,272 537,712 9,526
 Florida 6,789,443 5,711,411 1,049,578 28,454
 Georgia 4,589,575 3,387,516 1,190,779 11,280
 Maryland 3,922,399 3,193,021 701,341 28,037
 North Carolina 5,082,059 3,891,510 1,137,664 52,885
 South Carolina 2,590,516 1,794,430 789,041 7,045
 Virginia 4,648,494 3,757,478 865,388 25,628
 West Virginia 1,744,237 1,666,870 73,931 3,436
 ---------- ---------- ---------- ----------
Totals: South Atlantic 30,671,337 24,077,967 6,423,710
169,660

Region: West North Central
 Iowa 2,824,376 2,782,762 32,596 9,018
 Kansas 2,246,578 2,122,068 106,977 17,533
 Minnesota 3,804,971 3,736,038 34,868 34,065
 Missouri 4,676,501 4,177,495 480,172 18,834
 Nebraska 1,483,493 1,432,867 39,911 10,715
 North Dakota 617,761 599,485 2,494 15,782
 South Dakota 665,507 630,333 1,627 33,547
 ---------- ---------- ---------- ----------
Totals: West North Central 16,319,187 15,481,048 698,645 139,494

Region: West South Central
 Arkansas 1,923,295 1,561,108 357,225 4,962
 Louisiana 3,641,306 2,539,547 1,088,734
 13,025
 Oklahoma 2,559,232 2,275,104 177,910 106,218
 Texas 11,196,730 9,696,569 1,419,677 80,484
 ---------- ---------- ---------- ----------
Totals: West South Central 19,320,563 16,072,328 3,043,546204,689
 ------------ ------------ ------------ ------------
USA Totals 203,165,702 177,612,309 22,672,573 2,880,820

Source: US Department of the interior, Bureau of the Census. Page 2

Pop2 Example
The POP2 example shows an alternative set of formatting statements for
producing the same output as POPULATION. This report makes use of the
.block and .endblock statements, as well as the .within and .endwithin
statements, in producing the report. These statements are useful for reports
which contain several columns for which the same set of statements is
repeated as is the case with the tot, tot_18to65, tot_under18, and tot_over65
columns in POPULATION.

Pop2 Example

F–12 User Guide

All of the statements in POP2 are identical to the statements in POPULATION
with the exception of those in the .footer region and .footer report sections. In
these sections, instead of spelling out the format of the subtotals line by line,
the block and column formatting statements can be used to duplicate the
same set of statements for each of several columns. In detail, the statements
are:

 The .block statement sets the Report-Writer into block mode, which allows
you to write a two-dimensional block of text, in which you can write text
on several lines, return to the first line in the block, and then write more
text on the first lines in the block.

 The .within statement sets the Report-Writer into column formatting
mode. Because the statement is followed by four column names (tot,
tot_18to65, tot_under18, and tot_over65), Report-Writer executes all
statements between the .within and its corresponding .endwithin
statement four times, using the margins for each of the columns in turn.

 The string of hyphens (“----------”) prints, right justified, within each of
the four columns in the first line of the block. Because this is a .printline
statement, the current output line moves down one line in the block after
the string prints. A sum prints on the second line of the block, right
justified within each of the columns. Because this sum uses the special
name w_column, Report-Writer calculates and prints a separate sum for
each of the columns in turn.

 The .endwithin statement ends the set of formatting statements to be
done within each column. Because block mode is in effect, a .top
statement automatically executes immediately before the .endwithin
statement. This ensures that the statements for each of the columns prints
across the page, rather than stair-stepping down the page.

 Immediately following the .endwithin statement is the .top statement,
which moves the current output line back to the first line in the current
block (which contains all of the strings of hyphens (“-----------”). The
.newline statement moves the current position to the second line in the
block (as block mode is still in effect), and Report-Writer prints the Totals:
region string. The .endblock statement causes Report-Writer to print the
block, consisting of two lines, and to leave block mode. The last .newline
statement inserts a blank line.

 The statements within the .footer section are identical, except for the
string, USA Totals. Because of the context, “sum(w_column)” refers to
totals for the entire report, rather than for the region.

The statements in this example are not quite as intuitive as those in the
POPULATION report specification, but they show an important capability for
formatting reports with column-oriented statements.

Pop2 Example

Appendix F: Report-Writer Report Examples F–13

/* POP2 - Population Report using .WITHIN */
.NAME pop2
.OUTPUT pop2.out
.LONGREMARK
POP2 shows an alternative set of formatting statements
 (.BLOCK and .ENDBLOCK and .WITHIN and .ENDWITHIN)
 for producing the same output as the POPULATION report. The same set of
statements is repeated for the columns: totpop, tot_18to65, tot_under18,
 tot_over65. All statements in POP2 are the same as POPULATION with the
exception of those in the ".FOOT region" and ".FOOT report" sections.
.ENDREMARK
.QUERY
 select region.region, state.state,
 pop.tot_18to65 + pop.tot_under18 + pop.tot_over65 as tot,
 pop.tot_18to65, pop.tot_under18, pop.tot_over65
 from region, state, pop
 where state.statabbrev = pop.statabbrev
 and state.regabbrev = region.regabbrev
 and pop.year = $year
.SORT region, state
.DECLARE year = varchar(4) with prompt 'Enter Year:'
.FORMAT tot, tot_18to65, tot_under18, tot_over65 (' zzz,zzz,zzz')
.FORMFEEDS
.HEADER report
 .NEWLINE 3
 .UL .CE .PR 'Population of the United States, by Age Group' .NOU
 .NEWLINE .CE .PR 'Data for the Year - ', $year(c4) .NL 2
 .U .RT tot .PR 'Total Pop' .RT tot_18to65 .PR '18 to 65'
 .RT tot_under18 .PR 'Under 18' .RT tot_over65 .P 'Over 65'
 .NOU .NL 2
.HEADER region
 .NEED 4
 .PR 'Region: ', region .NL
.DETAIL
 .NEED 2 .T5
 .PR state(c20) .T+11 .PR tot, tot_18to65, tot_under18, tot_over65
 .NL
.FOOTER region
 .NEED2
 .BLOCK .WITHIN tot, tot_18to65, tot_under18, tot_over65
 .RT .PRINTLINE '----------'
 .RT .PRINTLN sum(w_column)
 .ENDWITHIN
 .TOP .NEWLINE .PR 'Totals: ', region(c0)
 .ENDBLOCK .NEWLINE
.FOOTER report
 .NEED2
 .BLOCK .WITHIN tot, tot_18to65, tot_under18, tot_over65
 .RT .PRINTLINE '-------------'
 .RT .PRINTLN sum(w_column)
 .END WITHIN
 .TOP .NEWLINE .PR 'USA Totals'
 .ENDBLOCK .NEWLINE
.HEADER page
 .NL 3 .PR 'Population by State and Region: ', $year .NL 2
 .U .RT tot .P 'Total Pop' .RT tot_18to65 .P '18 to 65'
 .RT tot_under18 .P 'Under 18' .RT tot_over65 .P 'Over 65'
 .NOU .NL 2
.FOOTER page
 .NL
 .PR 'Source: US Department of the Interior, Bureau of the
 Census.'
 .RIGHT .PR 'Page', page_number('zN') .NL 4

Account Example

F–14 User Guide

QUEL User Notes

For the $year variable, you can select the data for 1970 by running the report
with the command:

Windows

report rwqueldb pop (year=1970)

UNIX

report rwqueldb pop '(year=1970)'

VMS

report rwqueldb pop (year=1970)

The QUEL version of the query for this example is shown below. This query is
identical for both the POPULATION and POP2 examples.

/* POPULATION - Population Report */
.NAME pop
.QUERY
 range of r is region
 range of s is state
 range of p is pop
 retrieve (r.region, s.state,
 tot = p.tot_18to65 + p.tot_under18 +
 p.tot_over65, p.tot_18to65, p.tot_under18,
 p.tot_over65,
 where s.statabbrev = p.statabbrev
 and s.regabbrev = r.regabbrev
 and p.year = $year

Account Example
The ACCOUNT example shows a fairly complex report that could be written
from some accounting data. For each account, the report prints the name and
address of a customer, followed by a listing of transactions in an account. The
report lists deposits in one column, withdrawals in another, and a running
balance in a third. The following base tables are used:

 The table, “customer table,” which contains the name and address of a
customer

 The “account” table, which associates an account number with a customer
name and address (because a customer can have more than one account)

This table also contains the balance of an account as of an arbitrary date.
In actual accounting applications, this balance must be updated outside of
Report-Writer.

 The “transact” table, which contains a description of all transactions for an
account

This table contains columns, transnum (the transaction number), acct num
(the account number), tdate (the date of the transaction), amount (the
dollar amount of transaction), and type (the type of transaction: 0 for
deposits, 1 for withdrawals).

Account Example

Appendix F: Report-Writer Report Examples F–15

The following tables provide additional details on each of the database table
layouts:

Customer Table Definition

Column Name Type Length Nulls Defaults

"c name" char 20 yes no

address char 20 yes no

city char 20 yes no

state char 2 yes no

zip integer 4 yes no

balance decimal (12,2) yes no

Customer Data for the Sample Report

"c name" Address city state zip

P.J. Megabucks 1 Panorama Lane Hilltop CT 12345

C. Richard Runn 123 Primer Path Reading PA 23456

Account Table Definition

Column Name Type Length Nulls Defaults

name char 20 yes no

"acct num" integer 4 yes no

balance decimal (12,2) yes no

Account Data for the Sample Report

name acctnum balance

P.J. Megabucks 749025436 234657.00

C. Richard Runn 488219082 1245.00

Transact Table Definition

Column Name Type Length Nulls Defaults

acctnum integer 4 yes no

tdate date yes no

transnum integer 4 yes no

type integer 4 yes no

amount decimal (12,2) yes no

Account Example

F–16 User Guide

Transact Data for the Sample Report

acctnum Tdate transnum type amount

749025436 01-jul-1998 0101 0 100000.00

749025436 01-jul-1998 0102 1 50500.00

749025436 01-jul-1998 0103 1 24.56

749025436 01-jul-1998 0104 1 10100.00

749025436 15-jul-1998 0105 0 50000.00

749025436 17-jul-1998 0106 1 10143.54

749025436 17-jul-1998 0107 1 243.56

749025436 22-jul-1998 0108 1 100.00

749025436 23-jul-1998 0109 1 25000.00

749025436 23-jul-1998 0110 0 100000.00

488219082 25-may-1998 0101 1 200.00

488219082 03-jul-1998 0102 0 250.00

488219082 05-jul-1998 0103 1 320.34

488219082 05-jul-1998 0104 0 65.23

488219082 08-jul-1998 0105 1 100.00

488219082 10-jul-1998 0106 1 56.32

488219082 16-jul-1998 0107 1 24.71

488219082 20-jul-1998 0108 1 120.00

488219082 25-jul-1998 0109 1 31.16

The following text discusses the report formatting statements:

The .delimid statement enables recognition of delimited identifiers used as
a table name (customer table) and column names (c name and acct num).

 The .declare section declares the variables $min_limit and $max_limit, to
be given values in response to a run-time prompt, and $final_balance,
with an initial value of 0.00.

 The query, shown after the .longremark section, provides data for the
report. This query retrieves the transact table, with data from the other
tables joined in. The specification also shows the calculation of the
columns amt, withdrawal, and deposit. The withdrawal value is set to
amount if type is 1; otherwise, it is set to zero. The depositvalue is set to
amount if type equals 0; otherwise, it is set to zero. The value of amt is
calculated as a signed value of amount, which is negative for withdrawals
and positive for deposits. The amt value is used in calculating the running
balance.

Account Example

Appendix F: Report-Writer Report Examples F–17

 The .sort statement describes the order of the data. In the example
output, only one account appears for each name, although this sort order
would print additional accounts for each name if they existed in the data.

 The .formfeeds statement inserts form feed characters at the start of the
report and at the end of each page of the report. Because no .pagelength
statement is specified, a default page size of 61 lines is assumed. The
default is determined by the output for the report. The output can be to a
screen, file, or printer.

 The .format statements provide default formats for some of the output
columns. The hyphen (-) in the format for acct num forces hyphens in
specific places in the output.

 The .header statement begins the set of formatting statements to be
executed at the start of each new name. The .newpage statement tells
Report-Writer to skip to the top of a new page and to set the page number
to the value 1 at the start of each new name. The next statements print
the address and skip some lines.

 The .head acct num block prints the opening balance, column headings,
and sets a temporary format for acct num (so that it is printed for the first
transaction only). Report-Writer determines the positions associated with
the columns from a scan of the formatting statements in the .detail
section, including a position for the amt column, which is somewhat hidden
in the cumulative sum function.

 The .head tdate block sets a temporary format for tdate, so that Report-
Writer prints the date only the first time it encounters that particular date
value.

 The .detail block prints out the lines in the report. It also determines the
default margins and column positions from an analysis of these
statements. The formats for tdate and acct num, which specify nonprinting
formats, can be overridden by the .tformat statements specified in the
header text for tdate and acct num.

The “cum(“acct num”) sum(amt,balance)” aggregate specifies the
calculation and printing of the running balance. The first part, “cum(“acct
num”)” specifies that the running balance is a cumulative aggregate, which
is initialized at the most recent break in “acct num.” The rest,
“sum(amt,balance),” specifies that the cumulative aggregate is a sum of
“amt,” and that the cumulative is to be initialized to the value of “balance”
when the report starts (at the most recent break in “acct num”). The
format to be used is specified as the default for “amt” because the
aggregate specification is not followed by a parenthesized format.

Account Example

F–18 User Guide

 The .foot acct num block prints out summations of the withdrawal and
deposit columns and the closing balance of the account, as calculated in
the “sum(amt,balance)” aggregate. Report-Writer calculates the closing
balance as the sum of amt for a specific acct num (because of the
context), and then initializes it to the value of balance at the start of “acct
num.” Remember that the figure is negative for withdrawals and positive
for deposits. Because the aggregate specification is not followed by a
parenthesized format specification, the .format statement for amt at the
beginning of the report is used as the default format for the aggregate.

The .if-.elseif-.endif block prints a “Balance below ...” or “Balance exceeds
...” message if the customer’s closing balance is less than the established
minimum ($min_limit) or greater than the established maximum
($max_limit).

 The .foot name block specifies the printing of an ending statement.

 The .head page block describes the heading shown at the top of each
page. The .newpage statement in the .head name statements forces the
printing of the page header on the first page (which normally does not
happen).

 The .foot page block tells Report-Writer to skip some lines at the end of
each page.

The pages following the report specification contain sample reports generated
with the following values:

 In the first example, $min_limit = 500.00 and $max_limit = 100,000.00

 In the second example, $min_limit = 1,000.00 and
$max_limit = 250,000.00

Account Example

Appendix F: Report-Writer Report Examples F–19

/* ACCOUNT - example of bank statement report. */
.NAME account_delim
.OUTPUT account_delim.out
.LONGREMARK
The ACCOUNT_DELIM report shows a fairly complex report that could be
written for some accounting data. For each account, the report prints
the name and address of a customer, followed by a listing of
transactions in an account. Deposits are listed in one column,
 withdrawals in another, and a running balance is listed in a third.
 The report orders the transactions in LIFO date order. It also
demonstrates the use of:
 o schema.tablename
 o delimited identifiers
 o decimal datatypes
.ENDREMARK
.DELIMID
.DECLARE
 min_limit = decimal(12,2) with prompt
 'Enter minimum balance flag level: ',
 max_limit = decimal(12,2) with prompt
 'Enter maximum balance flag level: ',
 final_balance = decimal(12,2) with value '0.00'
.QUERY
 SELECT "c tbl"."c name", "c tbl".address, "c tbl".city,
 "c tbl".state, "c tbl".zip,
 a."acct num", a.balance,
 t.transnum, t.tdate,
 t.amount * t.type AS withdrawal,
 t.amount * (1 - t.type) AS deposit,
 (t.amount * (1 - t.type)) - (t.amount *
 t.type) AS amt
 FROM transact t, account a, dave."customer table" "c tbl"
 WHERE a."acct num" = t.acctnum and "c tbl"."c name" = a.name
.SORT "c name", "acct num", tdate:d, transnum
.FORMAT "acct num" (' nn\-nnnnnn\-n '),
 tdate (d'01/02/03'),
 withdrawal, deposit, amt, balance (' $$$,$$$,$$$.zz')
.HEAD "c name"
 .NEWPAGE
 .NL 3
 .PRINT "c name"
 .NL
 .PRINT address
 .NL
 .PRINT city (c0),' ', state (c0),' ', zip ('nnnnn')
 .NL 4
.FOOT "c name"
 .NL 3
 .PRINT 'End of accounts for: ', "c name"
 .NL
.HEAD "acct num"
 .NL 3
 .PRINT 'Account: ', "acct num"
 .RT amt
 .PRINT 'Opening balance:', balance
 .NL 2
 .UL
 .CE "acct num"
 .PRINT 'Account'
 .CE tdate
 .PRINT 'Date'
 .CE transnum
 .PRINT 'Transaction'
 .RT deposit
 .PRINT 'Deposit'
 .RT withdrawal

Account Example

F–20 User Guide

 .PRINT 'Withdrawal'
 .RT amt
 .PRINT 'Balance'
 .NL
 .NOU
 .TFORMAT "acct num" (' nn\-nnnnnn\-n ')
.FOOT "acct num"
 .NL 2
 .PRINT 'Account', "acct num", 'totals.'
 .TAB deposit
 .PRINT sum(deposit)
 .TAB withdrawal
 .PRINT sum(withdrawal)
 .NL 2
 .LET final_balance = sum(amt, balance)
 .RT amt
 .PRINT 'Closing balance:', $final_balance (' $$$,$$$,$$$.zz')
 .IF $final_balance < $min_limit .THEN
 .NL
 .PRINT '*** Balance below established minimum of ',
 $min_limit,' ***'
 .ELSEIF $final_balance > $max_limit .THEN'
 .NL
 .PRINT '*** Balance exceeds established maximum of ',
 $max_limit,' ***'
 .ENDIF
.HEAD tdate
 .TFORMAT tdate (d'01/02/03 ')
.DETAIL
 .PRINT "acct num" (b16), tdate (b16),
 .TAB +8
 .PRINT transnum ('nnnn'), deposit, withdrawal
 .TAB +5
 .PRINT cum("acct num") sum(amt, balance)
 .NL
.HEAD page
 .NL 2
 .PRINT 'Customer: ', "c name"
 .CE
 .PRINT 'Date: ', current_date (d'February 3, 1901'),
 .RT
 .PRINT 'Page ', page_number
 .NL 4
.FOOT page
 .NL 3

Customer: P.J. Megabucks Date: July 27, 2000 Page 1
P.J. Megabucks
1 Panorama Lane
Hilltop CT 12345
Account: 74-902543-6 Opening balance: $234,657.00
Account Date Transaction Deposit Withdrawal Balance
74-902543-6 93/07/23 0109 $25,000.00 $288,545.34
 0110 $100,000.00 $388,545.34
 93/07/22 0108 $100.00 $313,545.34
 93/07/17 0106 $10,143.54 $313,888.90
 0107 $243.56 $313,645.34
 93/07/15 0105 $50,000.00 $324,032.44
 0101 $100,000.00 $274,032.44
 93/07/01 0102 $50,500.00 $184,157.00
 0103 $24.56 $174,032.44
 0104 $10,100.00 $174,057.00
Account 74-902543-6 totals. $250,000.00 $96,111.66
 Closing balance: $388,545.34
*** Balance exceeds established maximum of 250000.00 ***
End of accounts for: P.J. Megabucks

Dictionary Example

Appendix F: Report-Writer Report Examples F–21

Customer: C. Richard Runn Date: July 27, 2000 Page 1
C. Richard Runn
123 Primer Path
Reading PA 23456
Account: 48-821908-2 Opening balance: $234,657.00
 Account Date Transaction Deposit Withdrawal Balance
 48-821908-2 93/07/25 0109 $31.16 $707.70
 93/07/20 0108 $120.00 $738.86
 93/07/16 0107 $24.71 $858.86
 93/07/10 0106 $56.32 $883.57
 93/07/08 0105 $100.00 $939.89
 93/07/05 0103 $320.34 $974.66
 0104 $65.23 $1,039.89
 93/07/03 0102 $250.00 $1,295.00
 93/05/25 0101 $200.00 $1,045.00
Account 48-821908-2 totals. $315.23 $852.53
 Closing balance: $707.70
End of accounts for: C. Richard Runn

QUEL User Notes

You cannot use delimited identifiers, schema or owner qualification for table
names, or the decimal data type in QUEL queries. Therefore, to create a QUEL
version of this report, you have to set up the tables without delimited
identifiers as column or table names. The balance column is data type float8
rather than decimal (12,2). You are not able to use owner qualification for the
customer table.

An equivalent QUEL query for a similar example would be:

/* ACCOUNT - example of bank statement report. */
.NAME account
.QUERY
 range of t is transact
 range of a is account
 range of c is customer
 retrieve (c.name, c.address, c.city, c.state, c.zip,
 a.acctnum, a.balance, t.transnum, tdate = t.date,
 withdrawal = t.amount * t.type,
 deposit = t.amount * (1 - t.type),
 amt = (t.amount * (1 - t.type)) - (t.amount *
 t.type))
 where a.acctnum = t.acctnum and c.name = a.name

Dictionary Example
The DICTIONARY example shows an example of a report that lists a glossary
of Ingres terms, with a listing of related keywords. This demonstrates the use
of some of the word-processing functions available in Report-Writer. The
following base tables are used:

 The “ddef” table, which contains names of terms and definitions of those
terms

Dictionary Example

F–22 User Guide

 The “dref” table, which contains a list of terms and their related keywords

Additional details on each of these table layouts are provided in the tables that
follow:

Dref Table Definition

Column Name Type Length Nulls Defaults

word char 20 yes no

definition char 250 yes no

Ddef Data for the Sample Report

Word Definition

aggregate
function

An aggregate operator which first groups rows on the basis of
the value of a column or list of columns called the by-list,
before computing the aggregate for each value of the by-list.

aggregate
operator

An aggregate operator is a computation performed on a column
across all rows in a table. Common aggregate operators are
SUM, COUNT, and AVG. Aggregate operators can have
qualifications to limit the number of rows used in the
calculation.

attribute Another term for a column in a table.

buffer Another term for the Ingres workspace.

column All data in Ingres is saved in the form of tables made up of
rows and columns. In traditional database terminology, a
column is a field in a record.

comparison
operator

A symbol which specifies the kind of comparison to make in a
qualification, such as > (for greater than), or = (for equality
check).

compressed Any of the Ingres internal storage structures can be
compressed. Compression reduces the storage required for a
table, by deleting all trailing blanks in character columns.

Dref Table

Column Name Type Length Nulls Defaults

Word char 20 yes no

Ref char 20 yes no

Dictionary Example

Appendix F: Report-Writer Report Examples F–23

Dref Data for the Sample Report

Word Ref

aggregate function aggregate operator

aggregate function aggregation

aggregate function by list

aggregate function computation

aggregate operator aggregate function

aggregate operator aggregation

aggregate operator computation

Attribute column

Buffer workspace

Column attribute

Column domain

Column field

comparison operator qualification

comparison operator restriction

Compressed character strings

Compressed compression

Compressed storage structures

The following text discusses the report formatting statements:

 The query used to create the data for the report joins words and
definitions with a list of the related keywords. Therefore, the data returned
to the report contains one row for each related keyword. The .detail
section statement pertains to the related keywords, and the .head word
statement pertains to the word itself and the definition.

 Report-Writer sorts the data by word, and within word, by related
keyword.

 The report specification sets the left and right margins to specific values
because the default margins calculated for the report do not reflect the
required margins of the report.

 The .head report section statement performs a page break and prints a
page header at the top of the page.

Dictionary Example

F–24 User Guide

 The .head statement for “word” prints out the underlined word and the
newspaper style printing of the definition. The cj0.50 format specifies a
column format 50 spaces wide, with right justification, with printing
occurring until the end of the string. The .t80 statement then moves to
position 80 (5 spaces to the right of the edge of the definition), and sets
the left margin of the report to that position. This causes all printing to
wrap around between the left margin (80) and the right margin (100). No
.newline statement is given, so that the next printing occur at column 80
of the top line of the definition.

 The .detail section statement prints out the next related keyword for
“word,” until the next word is found. Because the format specified for ref is
c20, it exactly fits within the temporary margins, and wrap-around format
causes each keyword to appear on a separate line. Remember that the
.lm0 statement in the header text for “word” resets the left margin for
printing a new word and definition.

 The .foot statement for “word” finishes the text for one “word” by printing
out all the lines in the definition and related keyword list, and prints a
blank line.

 The .head page section statements print out a title, page number, and
column headings.

Dictionary Example

Appendix F: Report-Writer Report Examples F–25

/* DICTIONARY - text example */
.NAME dict
.OUTPUT dict.out
.LONGREMARK
The DICTIONARY report demonstrates the use of character printing options
within the Report-Writer. It lists a glossary of Ingres terms,
 with a listing of related keywords. This demonstrates the use of some
of the word-processing functions available in the Report-Writer.
.ENDREMARK
.QUERY
 select ddef.word, ddef.definition, dref.ref
 from ddef ddef, dref dref
 where ddef.word = dref.word
.SORT word, ref
.LM 0
.RM 100
.HEAD report
 .NEWPAGE 1
.HEAD word
 .NE 3 .LM 0
 .UL .PR word(c25) .NOU
 .P definition(cj0.50)
 .T80 .LM80
.DETAIL
 .P ref(c20)
.FOOT word
 .NL 2
.HEAD page
 .NL 2
 .P 'Dictionary of Ingres Terms'
 .RT .P 'Page', page_number .NL 2
 .UL .P 'Word' .T definition .P 'Definition'
 .T80 .P 'Related Term' .NOU .NL 2
.FOOT page
 .NL 3

Dictionary of
Ingres Terms

Page 1 Related Term

Word Definition

aggregate function An aggregate operator which first groups rows on the
basis of the value of a (list of) column(s) (called the
“by-list”), before computing the aggregate for each value
of the “by-list.”

aggregate operator
aggregation
by list
computation

aggregate operator An aggregate operator is a computation performed on a
column across all rows in a table. Common aggregate
operators are SUM, COUNT, and AVG. Aggregate operators
can have qualifications to limit the number of rows used
in the calculation.

aggregate function
aggregation
computation

attribute Another term for “column” in a table. column

buffer Another term for the Ingres “workspace”. workspace

column All data in Ingres is saved in the form of tables made up
of rows and columns. In traditional database terminology,
a “column” is a “field” in a record.

attribute
domain
field

Dict2 Example

F–26 User Guide

comparison
operator

A symbol which specified the kind of comparison to make
in a qualification, such as “>” (for greater than), or
“=” (for equality check).

qualification
restriction

compressed Any of the Ingres internal storage structures can be
compressed. Compression reduces the storage required for
a table, by deleting all trailing blanks in character
columns.

character strings
compression
storage structure

Dict2 Example
The previous DICTIONARY report uses some margin tricks to accomplish what
can perhaps more easily be accomplished with the block mode of Report-
Writer. Instead of letting the margins and wrap-around format accomplish the
task of moving down the page, you can use the more natural .newline
statement in block mode to do this. The DICT2 report is the same as the
DICTIONARY report, except for differences in the .head and .foot for “word,”
and a slight change in the .detail section.

The changed statements are:

 In the .header for “word,” the report specification sets Report-Writer into
block mode. This allows you to move down the page in a more orderly
fashion than would otherwise be possible. The underlined word prints on
the first line of the block. The newspaper-style printing of the definition
causes some number of lines within the block to be written, depending on
the length of the definition. However, when it has finished printing, the
current output line is the top line in the block. You are now ready to print
the detail lines, which contain the keywords for a term.

 Within the .detail section of the report, the specification statements cause
Report-Writer to tab to column 80, and print the next value of “ref.” The
.newline statement moves the current output line down one line in
preparation for the next value of “ref.” Because it is in block mode,
Report-Writer saves all text after the header for “word” until it encounters
the .endblock statement.

 The .end block statement in the .footer section for “word” prints out the
current block containing the word, its definition, and a list of related
keywords. A .newline statement adds another blank line.

The DICT2 report accomplishes the same output as the DICTIONARY report,
but in a somewhat more natural fashion.

Dict2 Example

Appendix F: Report-Writer Report Examples F–27

/* DICT2 - text example, using .BLOCK */
.NAME dict2
.OUTPUT dict2.out
.LONGREMARK
The DICT2 report shows an alternative set of formatting statements for
producing the same output as the DICTIONARY report. The DICTIONARY
report uses some margin tricks to accomplish what can perhaps more
easily be accomplished with the block mode of the Report-Writer. Instead
of letting the margins and wraparound accomplish the task of moving down
the page, within block mode, you can use the more natural .NEWLINE
statement. Differences between the two reports is limited to the ".HEAD
word" and ".FOOT word" and a slight change in the ".DETAIL" section.
.ENDREMARK
.QUERY
 select ddef.word, ddef.definition, dref.ref
 from ddef ddef, dref dref
 where ddef.word = dref.word
.SORT word, ref
.LM 0
.RM 100
.HEAD report
 .NEWPAGE 1
.HEAD word
 .NEED 3
 .BLOCK
 .UL .PR word(c25) .NOU
 .PR definition(cj0.50)
.DETAIL
 .T80 .PR ref(c20) .NL
.FOOT word
 .END BLOCK
 .NL
.HEAD page
 .NL 2
 .P 'Dictionary of Ingres Terms'
 .RT .P 'Page', page_number .NL 2
 .UL .P 'Word' .T definition .P 'Definition'
 .T80 .P 'Related Term' .NOU .NL 2
.FOOT page
 .NL 3

QUEL User Notes

The QUEL version of the query for this example is shown below. This query is
identical for both the DICTIONARY and DICT2 examples.

/* DICTIONARY - text example */
.NAME dict
.QUERY
 range of d is ddef
 range of r is dref
 retrieve (d.word, d.definition, r.ref)
 where d.word = r.word

Label Example

F–28 User Guide

Label Example
The LABEL example shows a report that prints mailing labels three across the
page. The base table, subscriber, is a mailing list containing the name, post
office box, address, city, state and zip code for each label. If there is no post
office box for the label, the field is left blank.

Additional details on the base table layout are provided in the following tables:

Subscriber Table Definition

Column Name Type Length Nulls Defaults

name char 20 yes no

po_box char 20 yes no

address char 20 yes no

city char 20 yes no

state char 2 yes no

zip integer 4 yes no

Subscriber Data for the Sample Report

name po_
box

Address city state zip

Betty Clark 2556 Carey Rd Boston MA 01002

Ming Ho 1020 The Parkway Mamaroneck NY 10543

Pat McTigue Route 146 Trumbell CT 04239

T. Shigio 1234 201 Emperor Lane Rye NY 10101

Marvin Blumbert 17 Saville Row Carmel CA 93001

Carlos Ramos 2459 39th Ave San Francisco CA 94121

AnastassiosVasos 722 Fourth St. Gualala CA 95035

Mario Verducci x-207 General Delivery Middletown WA 98112

The following text discusses the report formatting statements:

 Report-Writer sorts the data by zip code.

 The report first begins a block so that the labels can be printed across the
page.

Label Example

Appendix F: Report-Writer Report Examples F–29

 The labels are assumed to be $lbl_width wide and $lbl_length number of
lines long. The value of $lbl_width must be greater than the actual number
of characters printed and less than the page width, $pg_columns. The
number of lines actually printed depends on the number of .newline
statements in the report. Because $lbl_length is used to determine page
breaks, it must be less than the number of lines per page, $pg_lines.

 Report-Writer creates a label by printing all fields of the table across four
lines. If the field for the post office box is blank, the corresponding line
cannot be printed.

 Some labels are best printed one set per page. This is useful if FF is used
and the lines per page on the printer is set to the number of lines on the
label. To print one set per page, adjust the value of $pg_lines to be equal
to the $lbl_lines + 1.

 Report-Writer moves the left margin for the next label one label’s width to
the right of the previous left margin, if doing so does not cause the label to
move beyond the right margin (for example, if only 1 or 2 labels have
been formatted for a line which can fit three). When no more room exists
on the line, the block of labels ends, the .endblock statement moves the
report to the top of the next block of labels, the left margin is reset to 0
and a new block of labels begins. When the report runs out of data the
block automatically ends, whether or not there is space left in the block
buffer.

 This report uses declared variables without prompts. This means that the
values of the variables must be passed in from the command line. The
following report was run using these commands typed on a single line:

Windows

report rwsqldb labels (pg_lines=11, pg_columns=79,lbl_width=25,
lbl_length=5)

UNIX

report rwsqldb labels "(pg_lines=11, pg_columns=79, lbl_width=25,
lbl_length=5)"

/*

Label Example

F–30 User Guide

** LABEL. Write out three across mailing labels
** with suppression of blank PO boxes.
*/
.NAME labels
.OUTPUT labels.out
.SHORTREMARK Prints data in mailing label format:
.LONGREMARK
Requires parameters pg_columns, pg_lines, lbl_width, and lbl_length
passed in on the command line. They will not be prompted for. The
following values will result in three labels across and two down:
 (pg_lines=11,pg_columns=79,lbl_width=25,lbl_length=5) By varying the
values you can vary the layout of the labels.
.ENDREMARK
.QUERY select name, po_box, address, city, state, zip
 from subscriber
.SORT zip
.DECLARE
 pg_columns = int, /* number of characters across the page */
 pg_lines = int, /* number of lines per page */
 lbl_width = int, /* the number of characters across one label*/
 lbl_length = int /* the number of lines in one label */
.PL $pg_lines
.PW $pg_columns
.RM $pg_columns
.LM 0
.HEADER report
 .NEED $lbl_length
 .BLOCK
.HEADER page
 .NEED $lbl_length
 .BLOCK
.DETAIL
 .TOP
 .LINESTART
 .PRINTLN name
 .IF po_box != ' ' .THEN
 .PRINTLN 'PO Box ', po_box
 .ENDIF
 .PRINTLN address(cf0.30)
 .PRINTLN city (c0),',',state(c0),' ',zip('nnnnn')
 .IF left_margin + ($lbl_width * 2) < right_margin .THEN
 .LM + $lbl_width
 .ELSE
 .ENDBLOCK
 .NL
 .NEED $lbl_length
 .BLOCK
 .LM 0
 .ENDIF
.FOOTER page
 .ENDBLOCK
.FOOTER report
 .ENDBLOCK

Creating Reports Using Several Tables

Appendix F: Report-Writer Report Examples F–31

Completed Report:

Betty Clark Pat McTigue Ming Ho
2556 Carey Rd. Route 146 1020 The Parkway
Boston, MA 01002 Trumbell, CT 04239 Mamaroneck, NY 10012
T. Shigio Marvin Blumbert Carlos Ramos
PO Box 1234 17 Saville Row 2459 39th Ave
201 Emperor Lane Carmel, CA 93001 San Francisco, CA 94121
Rye, NY 10101
Anastassios Vasos Mario Verducci
722 Fourth St. PO Box X-207
Gualala, CA 95035 General Delivery
 Middletown, WA 98112

QUEL User Notes

The QUEL version of the query for this example is:

/*
** LABEL. Write out three across mailing labels
** with suppression of blank PO boxes.
*/
.NAME label
.QUERY
 range of s is subscriber
 retrieve (s.name, s.po_box, s.address, s.city,
 s.state, s.zip)

Creating Reports Using Several Tables
There are times when you want to use Report-Writer to produce a report from
related information scattered across several tables that share one or more
column definitions. You can do this by creating a temporary table or view
based on multiple tables in the .setup section, using SQL statements. You can
then drop the table or view, or update a status, in the .cleanup section of the
same report.

Joining Tables for a Report

Suppose you want to assemble a report from a database of the books in your
personal library. You decide upon a report design to present title, author, and
subject information like this:

TITLE OF BOOK
Author1 Subject1
Author2 Subject2
 Subject3

In your database, you have designated three separate tables to hold this
information—one for titles (title), one for authors (name) and one for subject
information (subject):

Creating Reports Using Several Tables

F–32 User Guide

Book Table Definition

Column Name Type Length Nulls Defaults

id integer 4 yes no

title varchar 20 yes no

Book Data for the Sample Report

id title

1001 The C Programming Language

1002 Computer Programming Arch.

1003 The INGRES Papers

1004 Database Systems

1005 The Quiet American

Author Table Definition

Column Name Type Length Nulls Default

Id integer 4 yes no

name varchar 15 yes no

Author Data for the Sample Report

Id title

1001 Ritchie

1001 Kernighan

1002 Eckhouse

1002 Levy

1003 Stonebraker

1004 Ullman

1005 Greene

Subject Table Definition

Column Name Type Length Nulls Default

Id integer 4 yes no

Subject varchar 15 yes no

Subject Data for the Sample Report

Creating Reports Using Several Tables

Appendix F: Report-Writer Report Examples F–33

id Subject

1001 C

1001 Programming

1001 Language

1002 Architecture

1002 Assembler

1002 Computer

1002 Programming

1003 Database

1003 Ingres

1003 Computer

1004 Database

1004 Management

1005 Vietnam

Using a Union Clause Now you must combine these tables to produce the data shown in the
following table:

id title name subject code

1001 The C Programming
Language

Kernighan 1

1001 The C Programming
Language

Ritchie 1

1001 The C Programming
Language

 C 2

1001 The C Programming
Language

 language 2

1001 The C Programming
Language

 programming 2

The easiest method is to use a union clause, as is shown in the .query section
of the following report example:

Creating Reports Using Several Tables

F–34 User Guide

.NAME books1

.OUTPUT books1.out

.LONGREMARK
 The BOOKS report demonstrates the use of joining tables
 for producing a report.
.ENDREMARK
.QUERY
 select b.id, b.title, a.name, ’’ as subject, 1 as code
 from book b, author a
 where b.id = a.id
 union
 select b.id, b.title, ’’ as name, s.subject, 2 as code
 from book b, subject s
 where b.id = s.id
.SORT title, code
.BREAK title, code /* title and code will be break columns */
.RIGHTMARGIN 80 /* Initialize right margin */
.DECLARE
 authors_column = integer,
 subject_column = integer,
 title_string = varchar(8)
.HEADER report
 /* Initialize variables */
 .LET authors_column = 5
 .LET subject_column = 20
.HEADER title
 /* Reset margin and print title of book */
 /* start a block after printing the master info */
 .LEFTMARGIN 0
 .ULCHARACTER '='
 .UNDERLINE
 .PRINT title .NEWLINE
 .NOUNDERLINE
 .BLOCK
.HEADER code
 /* goto the top of the block each time code changes */
 /* set margin to the correct column for the code type */
 .TOP
 .ULCHARACTER '-'
 .IF code = 1 .THEN
 .LEFTMARGIN $authors_column
 .LET title_string = ’Authors’
 .ELSEIF code = 2 .THEN
 .LEFTMARGIN $subject_column
 .LET title_string = ’Subject’
 .ENDIF
 .UNDERLINE
 .PRINT $title_string .NEWLINE
 .NOUNDERLINE
.DETAIL
 /* test the value of code to see which column to print */
 .IF code = 1 .THEN
 .PRINT name .NEWLINE
 .ELSEIF code = 2 .THEN
 .PRINT subject .NEWLINE
 .ENDIF
.FOOTER title
 .ENDBLOCK /* end the block at the end of the master info */
 .NEWLINE

Creating Reports Using Several Tables

Appendix F: Report-Writer Report Examples F–35

Completed Report:
 Computer Programming and Arch.

 ======== =========== === ====

 Authors Subjects

 ------- --------
 Eckhouse architecture
 Levy assembler
 Computer
 programming

QUEL User Notes

In QUEL, you specify a join of several tables with a retrieve statement. In
QUEL, you would use these queries to join the tables:

destroy tempbooksq\p\g
range of b is book\p\g
\range of a is author\p\g
range of s is subject\p\g
create tempbooksq (
 id = i4,
 title = varchar(30),
 name = varchar(15) not null with default,
 subject = varchar(15) not null with default,
 code = i1
)\p\g
 append tempbooksq (b.all, a.name, code=1)
 where b.id = a.id\p\g
 append tempbooksq (b.all, s.subject, code=2)
 where b.id = s.id\p\g

Avoiding Awkward Page Breaks

Assume you have invested in a new bookcase and have expanded the size of
your personal library by many volumes. Now when you combine your three
tables, you create a much larger union than before:

id Title name subject code

1001 The C Programming Language Kernighan 1

1001 The C Programming Language Ritchie 1

1001 The C Programming Language C 2

1001 The C Programming Language language 2

1001 The C Programming Language programming 2

Creating Reports Using Several Tables

F–36 User Guide

id	title	name	subject	code

|1001|The C Programming Language |Kernighan | | 1|

|1001|The C Programming Language |Ritchie | | 1|

|1002|Computer Programming and Arch. |Eckhouse | | 1|

|1002|Computer Programming and Arch. |Levy | | 1|

|1003|The INGRES Papers |Stonebraker | | 1|

|1004|Database Systems |Ullman | | 1|

|1005|The Quiet American |Greene | | 1|

|1001|The C Programming Language | |C | 2|

|1001|The C Programming Language | |language | 2|

|1001|The C Programming Language | |programming | 2|

|1002|Computer Programming and Arch. | |architecture | 2|

|1002|Computer Programming and Arch. | |assembler | 2|

|1002|Computer Programming and Arch. | |computer | 2|

|1002|Computer Programming and Arch. | |programming | 2|

|1003|The INGRES Papers | |Database | 2|

|1003|The INGRES Papers | |INGRES | 2|

|1003|The INGRES Papers | |computer | 2|

|1004|Database Systems | |Database | 2|

|1004|Database Systems | |management | 2|

|1005|The Quiet American | |Vietnam | 2|

|----|--------------------------------------|--------------|---------------|-------|

If you create a report from such variable blocks of data, you must issue very
specific instructions to Report-Writer about where and where not to place page
breaks; otherwise, you find that some of your data has been incongruously
parceled across two pages. In cases where you use Report-Writer to generate
a report from a single, unjoined table, you would use a simple .need statement
to establish proper page breaks. For more information, see the .need
statement in Page Layout and Control Statements.

In this case, when generating a report from a joined table, you must use
variable parameters to the .need statement to assure proper page breaks, as
follows:

8. Change the selection statement in your .query section to a creation of a
view in your .setup section.

9. Create two new tables in your .setup section based on that view which
contain information about the number of authors or subjects per book.

10. Join the two new tables with the view in the .query section.

11. Alter the report specifications to use the new information for paging.

Creating Reports Using Several Tables

Appendix F: Report-Writer Report Examples F–37

Note: The .setup and .cleanup sections can only use the SQL language. For the
QUEL implementation of this example, see the QUEL Users Notes section
below.

The reason for the three-step process is that SQL requires a special method
for the calculation of num_sub and num_auth. In SQL, when you perform a set
function on a set of data and group rows together, you cannot place in the
select clause any column not also listed in the group by clause, except as an
argument to a set function. When a select statement includes a group by
clause, any columns listed in the select clause must be single-valued per
group.

Here is the revised specification file for the report, with the new .setup,
.cleanup and .query sections:

Creating Reports Using Several Tables

F–38 User Guide

.NAME books2

.OUTPUT books2.out

.LONGREMARK
 The BOOKS2 report demonstrates using setup and cleanup to
 produce temporary tables.
.ENDREMARK
.SETUP
 create view tempbooks as
 select b.id, b.title, a.name, '' as subject, 1 as code
 from book b, author a
 where b.id = a.id
 union
 select b.id, b.title, '' as name, s.subject, 2 as code
 from book b, subject s
 where b.id = s.id;
 create table subj_count as
 select id, num_sub=count(subject)
 from tempbooks
 where code = 2
 group by id;
 create table auth_count as
 select id, num_auths=count(name)
 from tempbooks
 where code = 1
 group by id;
.CLEANUP
 drop tempbooks;
 drop subj_count;
 drop auth_count;
.QUERY
 select b.id, b.title, b.name, b.subject, b.code,
 a.num_auths, s.num_sub
 from tempbooks b, subj_count s, auth_count a
 where b.id = a.id and b.id = s.id
.PAGELENGTH 20
.SORT title, code
.BREAK title, code /* title and code will be break columns */
.RIGHTMARGIN 80 /* it is important to set the right margin here */
.DECLARE
 lines_in_title = integer,
 authors_column = integer,
 subject_column = integer,
 title_string = varchar(8)
.HEADER report
 /* Initialize variables */
 .LET lines_in_title = 4
 .LET authors_column = 5
 .LET subject_column = 20
.HEADER title
 /* Request the maximum number of lines needed to print all */
 /* book information on one page. */
 .IF num_sub num_auths .THEN
 .need num_sub + $lines_in_title
 .ELSE
 .need num_sub + $lines_in_title
 .ENDIF
 /* Reset margin and print title of book */
 /* start a block after printing the master info */
 .LEFTMARGIN 0
 .ULCHARACTER '='
 .UNDERLINE
 .PRINT title .NEWLINE
 .NOUNDERLINE
 .BLOCK
.HEADER code
 /* goto the top of the block each time code changes */

Creating Reports Using Several Tables

Appendix F: Report-Writer Report Examples F–39

 /* set the margin to the correct column for the code type */
 .TOP
 .ULCHARACTER '-'
 .IF code = 1 .THEN
 .LEFTMARGIN $authors_column
 .LET title_string = 'Authors'
 .ELSEIF code = 2 .THEN
 .LEFTMARGIN $subject_column
 .LET title_string = 'Subject'
 .ENDIF
 .UNDERLINE
 .PRINT $title_string .NEWLINE
 .NOUNDERLINE
.DETAIL
 /* test the value of code to see which column to print */
 .IF code = 1 .THEN
 .PRINT name .NEWLINE
 .ELSEIF code = 2 .THEN
 .PRINT subject .NEWLINE
 .ENDIF
.FOOTER title
 .ENDBLOCK /* end the block at the end of the master info */
 .NEWLINE

Computer Programming and Arch.
 ======== =========== === ====
 Authors Subject
 ------- -------
 Eckhouse architecture
 Levy assembler
 Computer
 Programmind
Database Systems
======== =======
 Authors Subject
 ------- -------
 Ullman Database
 Management
The C Programming Language
=== = =========== ========
 Authors Subject
 ------- -------
 Kernighan C
 Ritchie language
 Programming
The INGRES Papers
=== ====== ======
 Authors Subject
 ------- -------
 Stonebraker Database
 INGRES
 Computer
The Quiet American
=== ===== ========
 Authors Subject
 ------- -------
 Greene Vietnam

Creating Reports Using Several Tables

F–40 User Guide

QUEL User Notes

When you generate a report from a joined table, you must simulate the .need
statement to assure proper page breaks. In QUEL, this involves making the
same alterations to the report specifications file as shown in the text, but no
additional tables need to be constructed.

Here is the query statement for the final report specification:

.NAME booksq

.OUTPUT booksq.out

.LONGREMARK
 The BOOKSQ report uses previously executed QUEL
 statements to create a temporary table,tempbooksq
 which is the join of books, authors and subject.
.ENDREMARK
.QUERY
 range of b is tempbooksq
 retrieve (b.all,
 num_auths=count(b.subject by b.id where
 b.code=1),
 num_sub=count(b.subject by b.id where b.code=2)
)
...

Appendix G: Troubleshooting Report-Writer G–1

Appendix G: Troubleshooting Report-
Writer

This appendix contains suggestions for troubleshooting if you have problems
with your report specification in the following areas:

 Parameter substitution

 Queries

 Comments

 Default positioning values

 Performance

Parameter Substitution
Report-Writer parameter substitution problems commonly fall into the
following areas:

 Failure to declare variables

 Failure to always precede variable references with a dollar sign ($)

 Special characters in the variable string

 Embedded quotes in the variable string

Always declare all variables. Although Report-Writer recognizes any name
preceded by a dollar sign ($) as a variable, undeclared variables assume
default types and characteristics that are often incompatible with their
intended use. If a variable has not been declared, you can assign it a value
only by using a command line parameter or by entering a value in response to
a run-time prompt. You cannot specify a value for an undeclared variable with
a .let statement. Also, unless the variable has been declared, attempting to
pass a parameter with a null value to Report-Writer can produce incorrect
results.

Always specify variable instances by including the leading dollar sign ($). If the
dollar sign is not present, and the variable has the same name as an identifier,
such as a column or table name, Report-Writer assumes the variable is an
identifier.

Parameter Substitution

G–2 Character-based Querying and Reporting Tools User Guide

Check to make sure you have dereferenced any special characters in the
variable’s value string, such as embedded dollar sign ($), SQL or QUEL wild
cards, and so forth. Special characters in a variable’s value string can cause
unexpected results. They can be stripped and/or processed by your system’s
command line processor, or misinterpreted by Report-Writer. Some
characters require multiple dereferencing, if the character is meaningful to
both the native system’s command line processor and Report-Writer.

Check to make sure you have correctly handled quotes in the variable string.
Embedded quotes in the variable’s value string present problems similar to
those of special characters, and you must handle them in the same manner.
Because of the potential confusion with delimited identifiers, we strongly
advise you to always use single rather than double quotes to surround a
variable value string. This greatly reduces the number of double quotes that
must be escaped and standardizes the dereferencing of quotes, because string
constants must always be delimited by single quotes.

To determine a variable’s actual substituted value, use a test report such as
this:

.NAME check_variable

.DECLARE string_variable = varchar(32) with value 'Hi!'

.QUERY
 SELECT count(object_id)
 FROM ii_reports
.DETAIL
 .PRINTLN $string_variable

This report prints the value of the variable as it can be used by Report-Writer.
Date and format template variables behave similarly to string constants.
Numeric variables behave in a much simpler manner, because they cannot
contain characters that can be confused with comment or string delimiters.
The above example works equally well for parameters specified on the
command line and variables for which the user is prompted.

An alternate method of determining if the parameter value string is the cause
of the failure is to save the report specification with the sreport command. If
this fails, then the problem lies in the existing syntax. If this succeeds, then
the problem most likely results from the effects of substituting the parameter
value string.

The .setup, .cleanup, and .query statements differ from other statements in
that parameter substitution can occur within quoted strings. For example,
suppose your query contained the following where clause:

WHERE object_name = '$match_name'

If you substitute the value “ABC” for $match_name, the resulting where clause
would be:

WHERE object_name='ABC'

Queries

Appendix G: Troubleshooting Report-Writer G–3

Other statements, such as .println, treat a variable within a quoted string as a
constant, as shown by the following results:

Statement Printed Result

.PRINTLN '$match_name' $match_name

.PRINTLN $match_name ABC

Queries
Problems related to query processing usually result from misstating the query
or from syntax errors or ambiguities as a consequence of parameter
substitution.

You can easily test the form and structure of the query by using a terminal
monitor utility. Its diagnostics are sometimes more detailed than those of
Report-Writer, particularly where syntax is concerned.

Note: If your Report-Writer code includes a .sort statement, add an order by
clause to the select statement when testing the query in a terminal monitor.

The single most useful means for determining query behavior is the
II_EMBED_SET environment variable/logical. If you include the value printqry
in its value string, execution of the report produces an “iiprtqry.log” file in the
current directory. This log contains the text of all queries sent to the database,
as formulated after all variable substitutions have occurred. The actual report
query appears towards the end of the log file (after all queries related to
Report-Writer’s access of the Ingres catalogs). For information on setting this
environment variable, see the System Administrator Guide.

Comments
In general, you must format comments as follows:

 Avoid comment nesting

 Separate comment delimiters from the comment text and from each other
by white space, as in the following example:

/* Comment Text /* Unavoidable nested comment */ */

Do not use comment delimiters without intervening white space:

/*CommentText/*Unavoidable nested comment*/*/

Default Print Positions

G–4 Character-based Querying and Reporting Tools User Guide

 Within a .query statement, place comments before any from clause:

.QUERY

 /*
 ** explanation of query
 */
 SELECT col1
 FROM table

 Avoid placing comments after the from clause in a .query statement:

.QUERY

 SELECT col1
 FROM table
 /*
 ** explanation of query
 */

Reports created in RBF can contain RBF-generated comments after the from
clause in the .query statement that are preserved and used by Report-Writer.
Placing your comments prior to the from clause avoids any potential confusion
with the RBF-generated comments, because Report-Writer removes all such
comments before saving the report specification to the database. This also
saves room in the database. Report-Writer assumes that comments occurring
after the from clause are RBF-generated comments and saves them along with
the report specification.

Default Print Positions
For other than very simple, default style reports, you must always specify
values for .pagewidth, .pagelength, .leftmargin, and .rightmargin. If you do
not specify these and other print positions explicitly, Report-Writer determines
default positions from an analysis of your other report formatting statements.
The results can or cannot compare favorably to your expectations. For an
explanation of how Report-Writer determines default positioning values, see
Automatic Determination of Default Settings in the chapter “Using Report-
Writer.”

Within a single line, you must specify .position and non-relative .tab
statements in ascending order, from left to right:

.print 'A' .tab 10 .print 'B' .tab 20 .print 'C' .tab 50

Specifying these statements in a different order can cause Report-Writer to
calculate an incorrect right margin, which could result in unexpected wrapping
or truncation of text.

Formfeeds

Appendix G: Troubleshooting Report-Writer G–5

Formfeeds
The default for formfeeds in Report-Writer reports is:

Windows
 .formfeeds

UNIX
 .formfeeds

VMS
 .noformfeeds

The following Report-Writer statements and command line flags for the report
command turn formfeeds on or off in your report, overriding the default
behavior for Report-Writer in your environment:

 .formfeeds (.ffs, .ff) statement

 .noformfeeds (.noffs, .noff) statement

 +b | -b command line flags

Additionally, if formfeeds are enabled, you can specify no initial formfeed prior
to the first page of your report with the following Report-Writer statement or
report command line flag:

 .nofirstff statement

 -nofirstff command line flag

The following report command line flag overrides the .nofirstff statement if
formfeeds are enabled, but has no effect otherwise:

 -firstff

If you are having trouble with formfeeds, use the following tables to determine
the combined result of the system default, the formfeed statements in your
report specification, and the formfeed run time command line flags.

The following table indicates the resulting behavior when formfeeds are
enabled or disabled:

 No Flag Set
UNIX VMS
WinNT

+b Flag -b Flag

No formfeed statement
specified

On Off On Off

.formfeeds specified On On On Off

.noformfeeds specified Off Off On Off

Performance Problems

G–6 Character-based Querying and Reporting Tools User Guide

The following table indicates whether an initial formfeed can occur when
formfeeds are enabled:

 No Flag Set -nofirstff -firstff

No initial formfeed statement
specified

Yes No Yes

.nofirstff specified No No Yes

The following table indicates whether an initial formfeed can occur when
formfeeds are disabled:

 No Flag Set -nofirstff -firstff

No initial formfeed statement
specified

No No No

.nofirstff specified No No No

Performance Problems
Approaches to solving performance problems are inherently implementation-
dependent. The following observations and recommendations are specific to
the release of Report-Writer associated with this manual. They can have little
or no effect on other releases, and can in some cases degrade performance.

Performance problems can be related to the manner in which the query is
stated, or to extensive expression usage and/or the use of functions in the
body of the report specification.

Query Problems

The performance of the query itself can easily be tested using a terminal
monitor utility, and must never differ from its performance within Report-
Writer.

Conversion Functions

Conversion functions that occur as part of query processing can execute faster
by up to two orders of magnitude compared to conversion function execution
within the body of the report specification. Of the following two sample
reports, the first report handles the conversion function most efficiently,
assuming the function is being applied unconditionally to all rows retrieved.

Performance Problems

Appendix G: Troubleshooting Report-Writer G–7

Examples

Example 1

.NAME query_convert

.QUERY
 SELECT uppercase(col1) AS uc_col1
 FROM test_table
.DETAIL
 .PRINT uc_col1
 .NL

Example 2

.NAME rw_body_convert

.QUERY
 SELECT col1
 FROM test_table
.DETAIL
 .PRINT uppercase(col1)
 .NL

Memory Usage

Report-Writer must allocate memory to control execution of each .print
statement. Limiting the number of .print statements, as shown in Example 1,
can result in significant run-time memory savings compared to Example 2.

Examples

Example 1

.NAME small_memory

.QUERY
 SELECT col1, col2, col3, col4
 FROM test_table
.DETAIL
 .PRINT col1, col2, col3, col4
 .NL

Example 2

.NAME large_memory

.QUERY
 SELECT col1, col2, col3, col4
 FROM test_table
.DETAIL
 .PRINT col1
 .PRINT col2
 .PRINT col3
 .PRINT col4
 .NL
 .noformfeeds

 Index–1

Index

-

- (hyphen)
.ulcharacter, 12-81
i flag (delobj command), 17-13
include flag (delobj command), 17-13
pattern matching, 5-15
underlining character, 12-81

- (minus sign)
arithmetic, 11-21
exponent, 11-9
justification with, 11-27, 12-38, 12-40, 12-
45, 12-66, 12-69, 12-73, 18-14
numeric templates, 11-44, 18-19
subtraction, 11-21
unary, 11-9, 11-21

'

' (single quotation mark)
constants and, 11-6, 11-7
parameter passing, 17-35, G-2
string literals and, 18-3
string variables and, 17-35

!

!= (not equal to)
comparison operator, 11-22

"

" (double quotation marks)

constants and, 11-6, 11-8
delimited identifiers, 10-14, 11-4, 12-2
dereferencing, 11-8
escaping from operating system, 17-36,
17-40
parameter passing, 17-36, G-2
reserved words, 11-6
string variables and, 17-36
system-level commands, 17-27, 17-36

(number sign)
termcap descriptions, C-4

$

$ (dollar sign)
numeric templates, 11-44, 18-19
report formats, 10-21, 12-24
variable names, 11-14, 12-12, G-1

%

% (percent sign)
delobj (command), 17-13
pattern match character, 5-14

(

() (parentheses)
numeric templates, 11-45, 18-20
parameter passing, 17-35
system-level commands, 12-24, 12-28,
17-27, 17-36, 17-40, 17-41, 17-42
variable names, 11-14

Index–2 Character-based Querying and Reporting Tools User Guide

*

* (asterisk)
centering, 11-27
comment indicator, 12-9
displayed in a field, 18-15
exponentiation, 11-21
integer data display, 18-15
justification with, 18-14
multiplication, 11-21
numeric, 11-45
numeric templates, 18-20
wild card character, 11-23, 15-12

,

, (comma)
numeric templates, 11-44, 18-20
value separator, 10-14, 12-2
variable names, 11-14

.

. (period)
decimal indicator, 11-9, 11-44, 18-7, 18-
20
numeric templates, 11-44, 18-20
owner qualification, 2-13

.block (Report-Writer statement)
.blk abbreviation, 12-51
.within/.endwithin sections, 12-63
described, 12-51
examples, 12-52, F-12
overview, 10-11, 12-50

.bottom (Report-Writer statement)
.bot abbreviation, 12-53
described, 10-11, 12-51, 12-52, 12-53
examples, 12-53

.break (Report-Writer statement)
.brk abbreviation, 12-6
.sort (Report-Writer statement), 12-6, 12-
34
described, 12-6

examples, 12-7
footers, 12-6
headers, 12-6
overview, 10-9, 10-19, 12-5

.center (Report-Writer statement)
.ce abbreviation, 12-66
.cen abbreviation, 12-66
described, 12-66
examples, 12-68
overview, 10-10, 10-12, 12-36, 12-65

.cleanup (Report-Writer statement)
autocommit, 12-9
described, 12-7
examples, 12-9, F-31
overview, 10-9, 10-10, 10-19, 12-5

.data (Report-Writer statement)
.dat abbreviation, 12-10
.table synonym, 12-10
.view synonym, 12-10
described, 10-9, 10-19, 12-5, 12-10
examples, 12-11
QUEL and, 12-27

.declare (Report-Writer statement)
.let (Report-Writer statement) and, 12-29,
12-85
described, 12-11
examples, 12-14, F-16
overview, 10-9, 10-19, 12-5, 12-28
using with variables, 10-20

.delimid (Report-Writer statement)
described, 12-15, 12-16
example, F-16
overview, 12-5
QUEL and, 12-16

.detail (Report-Writer statement)
.det abbreviation, 12-46
described, 12-46
examples, F-7, F-17, F-24, F-26
overview, 10-11, 10-32, 12-46

.else (clause), 12-84

.elseif (clause), 12-84

.elseif (Report-Writer statement)
example, F-18

.endblock (Report-Writer statement)
.end block synonym, 12-51

 Index–3

.endblk abbreviation, 12-51
described, 12-51
examples, 12-52, F-12, F-26, F-29
overview, 10-11, 12-50

.endif (Report-Writer statement), 12-84, F-18

.endremark (Report-Writer statement)
.endrem abbreviation, 12-18
described, 12-18, 12-19
examples, 12-19
overview, 10-9, 12-5

.endwithin (Report-Writer statement)
.end within synonym, 12-62
.endwi abbreviation, 12-62
described, 12-62
examples, 12-64, F-12
overview, 10-11, 12-51

.footer (Report-Writer statement)
.foot abbreviation, 12-47
.footing synonym, 12-47
breaks, 12-6
described, 12-47
examples, 12-48, F-7, F-8, F-18, F-24
overview, 10-10, 12-46

.format (Report-Writer statement)
described, 12-53
examples, 12-55, F-7, F-17
overview, 10-11, 12-51
using with columns, 10-32

.formfeeds (Report-Writer statement)
.ff abbreviation, 12-37
.ffs abbreviation, 12-37
described, 12-37
examples, 12-38, F-17
overview, 10-10, 12-36
troubleshooting, G-5
using with pagination, 10-24

.header (Report-Writer statement)
.head abbreviation, 12-48
.heading synonym, 12-48
described, 12-48
example, 12-49, F-7, F-17, F-18, F-23, F-
24, F-26
overview, 10-10, 12-46

.if (Report-Writer statement)
described, 12-84
example, 12-84, F-18

overview, 10-13, 12-83
using with conditions, 10-29

.include (Report-Writer statement)
described, 12-17
example, 12-18
modified files, 17-48
overview, 10-10, 10-20, 12-5

.left (Report-Writer statement)
.lft abbreviation, 12-68
.tab (Report-Writer statement) versus, 12-
69
described, 12-68
example, 12-70
overview, 10-12, 12-65

.leftmargin (Report-Writer statement)
.lm abbreviation, 12-38
described, 12-38
example, 12-39
overview, 10-10, 12-36

.let (Report-Writer statement)
.declare (Report-Writer statement) and,
12-85
described, 12-85, 12-86
example, 12-86
overview, 10-13, 12-83
using with variables, 10-30

.lineend (Report-Writer statement)
.lnend abbreviation, 12-70
described, 12-70
example, 12-70
overview, 10-12, 12-66

.linestart (Report-Writer statement)
.linebegin synonym, 12-71
.lnstart abbreviation, 12-71
described, 12-71
examples, 12-71
overview, 10-12, 12-66

.longremark (Report-Writer statement)
.lrem abbreviation, 12-18
described, 12-18
example, 12-19, F-16
overview, 10-9, 10-20, 12-5

.name (Report-Writer statement)
.nam abbreviation, 12-19
described, 12-19
example, 12-20

Index–4 Character-based Querying and Reporting Tools User Guide

overview, 10-9, 10-19, 12-5

.need (Report-Writer statement)
.ne abbreviation, 12-39
described, 12-39
example, 12-40, F-36
overview, 10-10, 12-36
using with pagination, 10-24

.newline (Report-Writer statement)
.nl abbreviation, 12-71
default limit, 12-52
described, 12-71
example, 12-72, F-12, F-26, F-29
overview, 10-12, 12-66

.newpage (Report-Writer statement)
.np abbreviation, 12-40
described, 12-40
example, 12-41, F-17, F-18
overview, 10-10, 12-36
using with pagination, 10-24

.nofirstff (Report-Writer statement)
described, 12-42
troubleshooting, G-5

.noformfeeds (Report-Writer statement)
.noff abbreviation, 12-37
.noffs abbreviation, 12-37
described, 12-37
example, 12-38
overview, 10-10, 12-36
troubleshooting, G-5

.nounderline (Report-Writer statement)
.nou abbreviation, 12-82
described, 12-82
example, 12-83
overview, 10-12, 12-77

.nullstring (Report-Writer statement)
.nullstr abbreviation, 12-78
described, 12-78
examples, 12-78
overview, 10-12, 12-77

.output (Report-Writer statement)
described, 12-20
example, 12-21
overview, 10-9, 10-19, 12-5

.pagelength (Report-Writer statement)
.pl abbreviation, 12-42

described, 12-42
example, 12-43, F-17
overview, 10-10, 10-24, 12-36

.pagewidth (Report-Writer statement)
defaults, 10-31
described, 12-44
example, 12-45
overview, 10-10, 10-24, 12-36

.position (Report-Writer statement)
.pos abbreviation, 12-55
described, 12-55
example, 12-57
overview, 10-11, 10-26, 12-50, 12-51

.print (Report-Writer statement)
described, 10-12, 12-77, 12-79
example, 12-80

.println (Report-Writer statement)
.pln abbreviation, 12-79
.prln abbreviation, 12-79
described, 12-79
example, 12-80, F-12

.query (Report-Writer statement)
.quel synonym, 12-22
column breaks, 12-6
described, 12-21
example, 12-25, F-6
overview, 10-9, 10-19, 12-5
QUEL queries, 12-26

.right (Report-Writer statement)
.rt abbreviation, 12-73
described, 12-73
example, 12-75, F-8
overview, 10-10, 10-11, 10-12, 12-36, 12-
50, 12-66

.rightmargin (Report-Writer statement)
described, 12-45
example, 12-46
overview, 10-10, 12-36

.rw filename extension
.include (Report-Writer statement), 12-17
sreport (command), 17-49

.setup (Report-Writer statement)
described, 12-30
example, 12-33, F-31
overview, 10-9, 10-19, 12-5

 Index–5

.shortremark (Report-Writer statement)
.srem abbreviation, 12-33
described, 12-33
example, 12-34
overview, 10-9, 10-20, 12-5

.sort (Report-Writer statement)
.srt abbreviation, 12-34
described, 12-34
example, 12-35, F-7, F-17
overview, 10-9, 10-19, 12-5

.tab (Report-Writer statement)
.left (Report-Writer statement) versus, 12-
69
described, 12-75
example, 12-76
overview, 10-11, 10-12, 10-32, 12-50, 12-
66

.tformat (Report-Writer statement)
described, 12-57
example, 12-58, F-17
overview, 10-11, 12-51

.then (clause), 12-84

.top (Report-Writer statement)
.tp abbreviation, 12-59
described, 12-59
examples, 12-60, F-12
overview, 10-11, 12-51

.ulcharacter (Report-Writer statement)
.ulc abbreviation, 12-81
described, 12-81
example, 12-82
overview, 10-13, 12-77

.underline (Report-Writer statement)
.u abbreviation, 12-82
.ul abbreviation, 12-82
described, 12-82
example, 12-83
overview, 10-12, 12-77

.width (Report-Writer statement)
described, 12-60
example, 12-61
overview, 10-11, 10-26, 12-50, 12-51

.within (Report-Writer statement)
.wi abbreviation, 12-62
described, 12-62

examples, 12-64, F-12
overview, 10-11, 12-51

/

/ (slash)
comment indicator (with asterisk), 10-9,
12-5, 12-9, B-37
server type syntax, 2-10

/* (comment indicator)
report specification, 10-20

:

: (colon)
variable names, 11-14

: (colon)
report cleanup and setup sections, 12-8

: (colon)
report cleanup and setup sections, 12-32

: (colon)
.sort (Report-Writer statement), 12-34

: (colon)
.let (Report-Writer statement), 12-85

:= (assignment operator), 12-85

;

; (semicolon)
report cleanup and setup sections, 12-8,
12-32
statement separator, 12-8, 12-31

?

? (question mark)
wild card character, 11-23, 15-12

Index–6 Character-based Querying and Reporting Tools User Guide

[

[] (brackets), 1-4

[] (square brackets)
comparisons in validation checks, 15-15
delobj (command), 17-13
numeric templates, 11-45, 18-20
pattern matching, 5-14, 11-23, 15-12

\

\ (backslash)
dereference character, 11-8, 17-40
numeric templates, 11-45, 18-18, 18-20
parameter passing, 17-37
string continuation character, C-3
string literals, 11-8
text match indicator, 5-14, 12-25
time interval templates, 11-38
wild card characters, 5-14

_

_ (underscore)
.ulcharacter, 12-81
delobj (command), 17-13
pattern matching, 5-14
reports, 8-38
underlining character, 12-82

_date (function), 11-25

_time (function), 11-25

{

{ } (braces), 1-4

|

| (vertical bar), 1-4
date templates, 11-36

separators, C-3

+

+ (plus sign)
addition, 11-21
arithmetic, 11-21
exponent, 11-9
justification with, 11-27, 12-38, 12-40, 12-
45, 12-66, 12-69, 12-73, 18-14
numeric templates, 11-44, 18-20
unary, 11-9, 11-21

-+b flag
report (command), 17-33, G-5

<

< (less than)
comparison operator, 11-22

< > (angle brackets)
numeric templates, 11-45, 18-20

<= (less than or equal to)
comparison operator, 11-22

=

= (equal to)
comparison operator, 11-22

= (equals sign)
assignment operator, 12-85
QBF blank retrieves, 5-17

>

> (greater than)
comparison operator, 11-22

>= (greater than or equal to)
comparison operator, 11-22

 Index–7

5

-5 flag
report (command), 17-33

6

-6 flag
report (command), 12-10, 12-34, 17-33

A

ABF
abf (command), E-2
calling, E-2
starting, 2-8

abs (function), 11-25

absolute dates/times, 11-10, 11-11, 18-22,
18-27

AddDetail operation
Update frame, 5-26

adding
blank lines to forms, 14-7
boxes and lines to forms, 14-7
columns to reports, 8-14
columns to tables, 3-16
components to reports, 8-11
duplicate fields to a form, 14-25
headers and footers to reports, 8-12
records in QBF, 5-1
report sections, 8-12
simple fields to forms, 14-11
table fields to forms, 14-18, 14-23
trim to forms, 14-4
trim to reports, 8-14

Enterprise Access products
product differences, 1-2

aggregate functions
average (avg), 11-18
breaks, 11-15, 11-16, 11-19
count (cnt), 11-17
Create an Aggregate pop-up, 8-18

cumulative, 11-16
Cumulative Aggregation pop-up, 8-19
data selection, 11-15
defined, 8-16
moving, 8-33
non-unique, 11-16, 11-18
reports, 10-30
Selecting an Aggregate pop-up, 8-18
simple, 11-16, 11-18
syntax, 11-18, 11-51
unique, 8-27, 11-16
views and, 3-3

Aggregate operation
Create submenu, 8-12

aligning
RBF report components, 8-8

All (clause), 12-62

am/pm (with date data type), 18-6

anchor point
boxes, 14-10
rotating, 14-10
vertical lines, 14-10

and (logical operator), 5-10, 11-24

ANSI/ISO Entry SQL-92 compliant databases
regular identifiers, 2-25

any (aggregate function)
reports, 8-16

append
Append operation, 5-1
data, 5-2

Append operation
QBF Execution Phase Frame, 5-1

appending
Append operation, 5-1
in QBF, 5-1
QBF, 4-9
with table- and simple-field formats, 5-2

applications
Ingres Menu operation, 2-8
mapping customized, B-11, B-24

archiving
report definitions, 8-46

arithmetic

Index–8 Character-based Querying and Reporting Tools User Guide

dates, 11-21
expressions, 11-49
operations, 11-21
operators, 11-21
overflow/underflow, 17-18

arrow keys
mapping, B-1
scrolling with, 15-9

asc (keyword), 12-35

ascending sort sequence
retrieving information, 5-19

assignment (statement)
overview, 10-30

atan (function), 11-25

attributes
Color, C-14
derived fields, 15-18
editing, 15-2, 15-9
field, 2-16, 14-16, 15-9
form, 15-2
video, C-12

Attributes operation
VIFRED, 14-12, 14-16

autocommit, 12-8, 12-31, 12-32

automatic joins, 6-9

average (aggregate function), 11-18
unique, 8-17
using in reports, 8-16

B

Blank operation
defined, 2-19
Retrieve frame, 5-6
Table Create frame, 3-6
Terminal Monitor frame, 16-5, 16-9
Update frame, 5-25

blanks
blank form creation, 13-6
Blank operation, 5-25
cf format, 11-31, 11-32
cj format, 11-32

comparisons containing, 18-4
flag separator, E-1
inserting, 11-46
numeric templates, 11-45, 18-20
owner qualification, 2-13
padding, C-5
preceding delimited identifiers, 11-5
separating Report-Writer statements, 10-
14, 12-2
system-level commands, 12-24, 12-28,
17-27, 17-36, 17-40, 17-41, 17-42

blinking, C-18

Blinking attribute
Attributes for Field frame, 15-4
Box Attributes frame, 14-6

block style reports, 10-7, 10-26

blocks
.block/.endblock statements, 12-51
.top (Report-Writer statement), 12-59
.top/.bottom statements, 12-53
block style report, 7-12
formatting, 12-51
printing, 12-51

bold, C-18

bold typeface, 1-4
menu operations, 1-3

boolean
.if (Report-Writer statement), 12-84
break, 11-26
expressions, 11-24, 11-51
is null (operator), 11-24
not (operator), 11-24
not null (operator), 11-24
or (operator), 11-24

Bottom (FRS command)
Terminal Monitor frame, 16-8

Bottom operation
predefined menu option, B-32

Box Field attribute
Attributes for Field frame, 15-4

Box/Line operation
anchor point, 14-10
attribute boxes vs, 14-8
attributes, 14-5

 Index–9

compared to keystroke lines, 14-7
creating, 14-8
Edit operation, 14-9
enhancing, 14-9
expanding the box, 14-8
horizontal lines, 14-9
intersections, 14-9
plus sign, 14-8
rotating anchor point, 14-10
underscore character, 14-9
using, 14-8
vertical lines, 14-9

boxes
boxing characters, 14-7
commands, C-19

break (function), 11-26

break Columns
pop-up, 8-5

BreakOptions operation, 8-30

breaks
.header (Report-Writer statement), 12-49
.need (Report-Writer statement), 12-39
.sort (Report-Writer statement), 12-34
actions, 10-4
aggregate function, 11-15, 11-16, 11-18,
11-19
Break Columns pop-up, 8-5
break header, 10-16
defined, 8-30, 10-3
detail, 10-4, 10-16
formatted values and, 12-54
headers and footers, 7-16, 8-13
indented reports, 7-13, 8-5
page, 12-40, F-35
reports, 7-8
sort columns, 8-13
start-of-report, 10-4
tabular reports, 7-11

bright, C-18

Brightness Change attribute
Attributes for Field frame, 15-4
Box Attributes frame, 14-6

buffers
updates, 5-29

byte (data type), 11-12, 18-3, D-2

byte varying (data type), 11-12, 18-3, D-2

C

c (data type)
conversion function, 11-25
default report column format, 11-28

C (data type)
data types for report columns, 11-12
described, 18-2, 18-3, 18-5
storage forma, 18-10
storage format, D-1

c (function), 11-25

C format, 11-31

call (statement)
restrictions on parameters, E-2

calling
call (statement), E-1
IQUEL, 17-16
ISQL, 17-16
operating system, E-6
QBF, 4-3, 4-8, 17-20
RBF, 17-24
VIFRED, 13-3, 17-50

Cancel operation
Create a Table frame, 3-6
defined, 2-19
Form Layout frame, 14-23
Join Specification frame, 6-18
predefined menu option, B-32
Save Report frame, 8-44

case
character strings, 18-3
names, 2-25
system-level commands, 17-2
uppercase (function), 11-25

catalog frames
empty, 17-15, 17-22, 17-26, 17-50
Forms Catalog Frame, 13-5
JoinDefs, 6-13
QBF, 4-4, 4-8
VIFRED, 13-4

catalogdb (command)

Index–10 Character-based Querying and Reporting Tools User Guide

listing databases, 2-3

catalogs (system), 2-3

Center operation
Move submenu, 8-34

centering
.center (Report-Writer statement), 12-66
reports, 11-27
text, 10-12, 12-65, 12-66

ChangeDisplay operation, 6-25

char (data type)
conversion function, 11-25
data types for report columns, 11-12
default report column format, 11-28
described, 18-1, 18-2, 18-3
storage format, D-1

char (function), 11-25

character data
storage format, 18-10

character fields
display function, 15-9

character strings
C format, 11-31
T format, 11-47
variables, 11-14

charextract (function), 11-25

Choose a Report Style
pop-up, 9-4

clanks
B format, 11-31
inserting, 11-31

clear (FRS command), B-26

clearing
screen, 2-19, 16-9

clearrest (FRS command), B-26

coercibility
data types, 6-4

color attribute, C-14

Color attribute
Box Attributes frame, 14-6

colors (in fields), 15-9

colors (in forms)
termcap descriptions, C-22

colors (in graphs)
termcap descriptions, C-22

Column operation
Create submenu, 8-12
Move submenu, 8-34

column style reports, 10-7

ColumnOptions frame, 8-24

ColumnOptions operation
Report Layout frame, 8-10

columns (in reports)
breaks, 11-26, 12-6, 12-34
Create a Column pop-up, 8-15
creating, 8-14
data types, 11-11
defaults, 10-31, 11-30
deleting, 8-22
delimited identifiers, 11-3, 11-4, 11-12,
12-15
editing, 8-23
format, 10-11, 12-50
headings, 8-22, 12-52
justification, 12-68, 12-69, 12-75
line advancing, 12-72
margins, 12-62
moving, 8-33
position_number variable, 11-15
positioning, 10-26, 10-31, 12-55
print formats, 12-57
printing, 12-79
referencing, 11-11, 12-22, 12-27
sorting, 8-30, 10-22
temporary formats, 10-28, 12-54, 12-57
w_column variable, 11-15, 12-63
w_name variable, 11-15, 12-63
width, 10-32, 12-55, 12-60, 12-62

columns (in tables)
adding, 3-16
copying specifications for, 3-12
defaults, 3-9, 3-14
defined, 3-2
deleting, 3-16, 6-25
delimited identifiers, 2-26
hiding, 6-24
join, 6-3, 6-17, 6-19

 Index–11

key numbers, 3-8, C-7
maximum number, 3-2
moving, 3-12
naming, 3-2, 3-7, 14-22
protecting, 6-21
unique, 3-11
unique keys, 3-11

commands
system-level, 17-1

comment blocks
archived reports, 8-47

comments
debugging, G-3
delimiters, 10-20, G-3
mapping files, B-6, B-15, B-37
nesting, 12-9, G-3
report specification, 10-9, 12-5, 12-9

comparison operators
and, 5-10
defined, 11-22
list, 11-22
QBF, 5-9
validation check, 15-11, 15-12

compform (command), 17-4

compiled forms
compform (command), 17-4, 17-5
linking, 17-4
VIFRED, 13-27

compiling
Embedded SQL, 13-27
operations, 13-27

Complete operation
Terminal Monitor frame, 16-5, 16-7, 16-8

computation
aggregation, 11-15
breaks, 11-19
date expressions, 11-21
exponential notation, 11-9
reports, 11-21

concat (function), 11-25

conditional statements
.if (Report-Writer statement), 12-84
boolean/logical functions, 11-24
overview, 10-29, 12-84

constants
.declare (Report-Writer statement), 12-11
.let (Report-Writer statement), 12-85
.nullstring (Report-Writer statement), 12-
78
date, 11-10
numeric, 11-9
reports, 11-7
string, 11-6, 11-7

control characters
Q0 format, 11-46

control keys
mapping, B-25

conventions
query languages, 1-3
syntax, 1-4, 17-1
system-level commands, 1-4, 17-1

conversion
functions, 11-49, 11-50, G-6

copyform (command)
described, 17-6
duplicating forms, 13-7

copying
column specifications in tables, 3-12
copyform (command), 13-28, 17-4, 17-6
copyrep (command), 17-10
forms, 13-7, 13-28, 17-6
reports, 17-10, 17-48
sreport (command), 17-48

copyrep (command)
described, 17-10
examples, 17-12

correlation names, 6-16, 11-3, 11-4

cos (function), 11-25

count (aggregate function), 8-16, 8-17, 11-17

CR abbreviation for credit, 11-45, 18-20

Create a Column pop-up, 8-15

create an Aggregate pop-up, 8-18

create index (statement)
described, 3-4

Create operation
Form Layout frame, 13-12, 14-3

Index–12 Character-based Querying and Reporting Tools User Guide

forms, 13-6
Forms Catalog frame, 13-5, 13-6
JoinDefs Catalog frame, 6-13, 6-21
Report Catalog frame, 7-4
Report Layout frame, 8-10
scrollable fields, 15-9
Table Utility frame, 3-5
VIFRED, 14-4
VIFRED forms components, 14-4, 14-11

createdb (command), 2-4

creating
columns in reports, 8-14
creating a Report pop-up, 8-1
databases, 2-4
forms, 13-26
report sections, 8-12
reports, 8-6, 10-2
tables, 3-5

Creating a Report Layout Section pop-up, 8-13

creating a Report pop-up, 8-1

cumulative (keyword)
aggregate functions, 11-17
cum abbreviation, 11-17

cumulative Aggregation pop-up, 8-19

currency formats, 18-8

current_date (report variable), 11-15

current_day (report variable), 11-15

current_time (report variable), 11-15

cursor
activating on terminals, C-24
moving, 2-21, C-11, C-24

D

d display format parameter
numeric print format E, 11-38
numeric print format F, 11-39
numeric print format G, 11-40
numeric print format N, 11-42

-d flag
report (command), 12-9, 12-32, 17-32

D format, 11-34

data
.query, 12-21
appending, 5-2
constants, 11-7
defining, 16-2
deleting, 5-25, 5-27
display, 5-20
display format symbols, 14-17
display formats, 18-9
editing, 5-25
entry errors, 5-3
expressions, 11-7
formatting, 11-26
manipulating, 16-2
retrieving, 5-5
runtime selection, 8-28, 9-3
sources for reports, 7-7
updating, 5-24

data dictionary, 2-3

data display format
case, 18-12
data types vs, 18-9
date templates, 18-16
dates, 18-16
f flag, 18-15
floating point numbers, 18-15
incompatible data types, 14-18
integers, 18-15
j flag, 18-15
justification of character data, 18-14
numeric templates, 18-16
scrollable fields, 15-9
symbols, 18-9
syntax summary, 11-51

data integrity
unique keys, 3-11

data type attribute, 15-7

data types
abstract, 11-12
byte, 11-12, 18-3, D-2
byte varying, 11-12, 18-3
c, 11-12, 11-28
c (data type), 18-2, 18-3, 18-5, D-1
changing in fields, 15-8
char, 11-12, 11-28, 18-2, 18-3, 18-4, 18-
5, D-1

 Index–13

character, 11-12, 18-1, 18-2, 18-3, 18-10
coercible, 6-4
compatibility, 12-85
conversion, 12-85
date, 11-10, 11-12, 11-29, 18-1, 18-2, 18-
5, 18-10, 18-16, D-2
decimal, 11-10, 11-12, 11-29, 18-2, 18-7,
D-2
described, 18-1
display formats vs, 14-2, 14-22, 18-9
displaying formats, 14-18, 18-10
entering, 3-7
float, 11-10, 11-12, 11-29, 18-7
float4, 11-12, 11-29, 18-2, D-1
float8, 11-12, 11-29, 18-2, D-2
floating point, 18-7, 18-10, 18-15, D-1
integer, 11-10, 18-2, 18-7, 18-10, 18-15
integer1, 11-12, 11-29, 18-2, D-2
integer2, 11-12, 11-29, 18-2, D-2
integer4, 11-12, 11-29, 18-2, D-2
integrity, 5-29
long byte, 11-12, 18-3, D-2
long varchar, 11-12, 12-10, 12-27, 17-28,
18-3, D-2
long varying, D-2
money, 11-12, 11-29, 18-1, 18-2, 18-8,
18-10, 18-15, D-2
numeric, 11-9, 11-12, 18-1
OpenSQL, D-1
precision, 18-2
QUEL, 11-13, 11-30, D-1
reports, 11-7, 11-12, 11-13, 18-9
smallint, 18-2
SQL, 18-2, D-1
string, 11-7
text, 11-12, 11-28, 18-2, 18-3, 18-5, 18-
10, 18-14, D-1
unsupported, 12-10, 12-23, 12-27, 17-28
user-defined type (UDT), 18-3, D-2
varchar, 11-12, 11-28, 18-2, 18-3, 18-5,
D-1

data windows
defined, 2-15
specifying size, 18-12

database administrator (DBA), 2-4

databases
_SQL-92 compliant, 11-2
accessing, 2-8

accessing non-Ingres, 2-2, 2-9, 2-10
ANSI/ISO Entry SQL-92 compliant, 2-25
creating, 2-4
defined, 2-3
destroying, 2-4
distributed access, 2-2, 2-9, 2-11
Enterprise Access products, 2-2, 2-9, 2-10
Ingres Distributed Option access, 2-9
local access, 2-1, 2-8, 2-9
location, 2-1, 2-9
maintaining, 2-4
relational, 6-1
remote access, 2-2, 2-9, 2-10
restoring, 2-5
Star access, 2-2
Star Server access, 2-11
syntax for access, 2-8
system catalogs, 2-3

date (data type), 11-12, 11-29, 18-1, 18-2,
18-5, 18-10, D-2

date (function), 11-25, 18-6

date format, 11-34
conversion function, 11-25, 18-6

date_gmt (function), 11-25

date_part (function), 11-25

date_trunc (function), 11-25

dates
absolute, 11-10, 11-11, 18-21, 18-22, 18-
27
arithmetic operations, 11-21
constants, 11-10
converting, 18-6
current, 15-10
current_date variable, 11-15
current_day variable, 11-15
data type, 18-1, 18-2, 18-5, 18-10, 18-16,
18-21
date (function), 11-25
date_gmt (function), 11-25
date_part (function), 11-25
date_trunc (function), 11-25
display formats, 18-16
formats, 11-34, 18-21
functions, 11-51
interval (function), 11-37, 18-6
interval function, 18-27

Index–14 Character-based Querying and Reporting Tools User Guide

reports, 7-9, 8-21, 8-39
storing, 11-10
templates, 11-34, 18-22, 18-24

DB abbreviation for debit, 11-45, 18-20

Dbname parameter, 2-9, 17-3

Ddtes
intervals, 11-11

deadlock
causes, 5-4, 5-29

debugging
queries, G-3
reports, G-1

decimal (data type), 11-10, 11-12, 11-29, 18-
2, 18-7, D-2

decimals
E format, 11-38
F format, 11-39
G format, 11-40
N format, 11-42
Numeric templates, 11-43
printing standard notation, 11-39, 11-41,
11-42

declared variables
runtime, 12-11

Declared Variables frame, 9-3

default forms, 13-6

default report format
block style, 10-7

default values
Field attribute, 15-7

DefaultOrder operation, 14-28

defaults
arithmetic exceptions, 17-18
autocommit, 12-8, 12-31
column, 3-9, 3-14, 10-31
column format, 10-32
column position, 10-26, 10-31
column width, 10-32
formats, 10-30
joins, 6-9
mapping files, B-17
margins, 10-31, 11-29
menu item mapping, B-29

pagewidth, 10-31
print format, 11-28, 12-53, 12-55, 12-57
reports, 10-7, 10-11, 10-30, 11-28, 12-50
rules, 6-23
terminal-type mapping, B-19
VIFRED, 15-10

Define term_ingres, A-3

Delete operation
Forms Layout frame, 13-12, 14-3, 14-27
report components, 8-10, 8-22
Report Layout frame, 8-10
Table Create frame, 3-6
Table Field menu, 14-20

deletechar (FRS command), B-26

DeleteLine operation
Terminal Monitor frame, 16-5

deleting
columns, 3-16, 8-22
Delete operation, 6-22, 6-26
delobj (command), 17-12
Edit Report Layout pop-up, 8-21
report components, 8-20
report sections, 8-20, 8-21
reports, 7-4, 17-12

delimited identifiers
command parameters, 17-1, 17-2
distinguishing from format templates, 11-6
distinguishing from strings, 11-6, 12-23
enabling, 12-15, 12-16
object ownership, 11-4
QUEL and, 11-3, 12-16
reserved words, 11-6
special characters in, 2-26
using, 2-26, 11-12

delimiters
comment, 10-20
delimited identifiers, 10-14, 11-4, 12-2
Report-Writer statement, 10-14, 12-2
string literal, 11-8

delobj (command)
description, 17-12
examples, 17-14

dereferencing
backslash (\), 11-8

derivation formulas

 Index–15

described, 15-7, 15-20

Derived attribute, 15-7

derived fields
behavior, 15-18

desc (keyword), 12-35

desc sort sequence
retrieving information, 5-19

destinations
reports, 9-1
Select a Destination pop-up, 9-4, 9-5

Destroy operation
Forms Catalog frame, 13-5
JoinDefs Catalog frame, 6-13
Report Catalog frame, 7-4
Table Utility frame, 3-5

destroying
databases, 2-4
Destroy operation, 6-28
indexes, 3-13
synonyms, 3-13
tables, 3-13
views, 3-13

detail
break, 10-4, 10-16, 10-32
instructions, 10-5
sections, 10-5, 10-16

direction, C-24

display formats
B format, 11-31
C format, 11-31
column, 11-28, 14-21
data types vs, 11-27, 18-9
date templates, 11-34
differences, 11-27
DisplayFormat operation, 14-13
E format (numeric), 11-38
editing, 8-24
F format (numeric), 11-39
floating point numbers, 11-38
G format (numeric), 11-40
justification of character data, 11-31
N format (numeric), 11-42
numeric template, 11-43
parameters, 18-12
Q0 format, 11-46

RBF, 8-24, 18-9
T format, 11-47, 12-54, 12-57

Display only attribute, 15-5

DisplayFormat operation
RBF, 8-24
VIFRED, 14-12

displaying
reports, 17-43

DisplayOnly
scrollable fields, 15-10

distributed databases, 2-9
accessing, 2-2, 2-11

dow (function), 11-25

downline (FRS command), B-26

duplicate (FRS command), B-26

Duplicate operation
Creating a Form frame, 13-6, 13-7, 14-26

duplicates
-6 flag, 17-33
fields, 14-25
removing, 12-10
suppressing in reports, 8-30
suppressing in tables, 3-11
table rows, 12-10

E

E format
exponential notation, 11-9
overview, 11-38

Edit operation
described, 8-22, 8-23
Form Layout frame, 13-12, 14-3, 14-23
Forms Catalog frame, 13-5
JoinDefs Catalog frame, 6-13
Order frame, 14-28
Report Catalog frame, 7-4
Report Layout frame, 8-10
Terminal Monitor frame, 16-5
VIFRED forms components, 14-5, 14-10

EditAttr operation
Table Field menu, 14-20, 14-25, 15-2

Index–16 Character-based Querying and Reporting Tools User Guide

EditDefaults operation
Create a Table frame, 3-6

editing
attributes, 15-2
canceling edits, 8-42
columns in reports, 8-23
Edit operation, 8-22
forms, 13-1, 13-26, 14-4, 14-7
insert and overstrike modes, 2-21
JoinDefs, 6-28
report formats, 8-22
table fields, 14-23
trim, 8-22, 14-5

Editor (FRS command), B-26

embedded SQL
compiling forms, 17-5

End operation
defined, 2-19
output frame, 16-9
predefined menu option, B-31

Enter key, 2-21

Enterprise Access products
accessing databases, 2-2, 2-10, 17-3

environment variables/logicals
II_DATE_FORMAT, 18-22
II_EMBED_SET, G-3
II_NULL_STRING, 12-78
II_NUMERIC_LITERAL, 11-10, 18-7
II_SCROLL_MSG, 5-22
ING_PRINT, 17-45
setting, 2-2
TERM_INGRES, A-1

Equijoin, 6-5

error messages
checking, 2-23
Save operation, 5-29
suppressing, 12-9
Terminal Monitor, 16-10

errors
-5 flag, 17-33
-d flag, 12-9, 12-32, 17-32
handling, 12-9, 12-32
report error log, 9-2
runtime processing, 12-8, 12-9, 12-32

escape sequences
Q0 format, 11-46

Examine operation
obtaining information on tables, 3-14
system catalogs, 2-3
Table Utility frame, 3-5, 3-14

examining
tables, 3-14

examples
reports, F-1

exp (function), 11-25

Expand operation
described, 13-20
Report Margin submenu operation, 8-36
VIFRED, 13-21

expert mode
pattern matching, 13-4

exponential notation, 11-9, 11-21, 18-7, 18-
10, 18-15

G format, 11-41
N format, 11-42

expressions
abstract, 11-12
arithmetic, 11-49
boolean, 11-51
character, 11-12
columns, 11-11
conditional, 11-22
data type resolution, 11-49
date, 11-51
format specifications, 11-26
numeric, 11-12, 11-50
printing in reports, 12-79
QUEL conversion functions, 11-50
report variables, 11-49
string, 11-50
string constants, 11-7, 11-8
types of data, 11-7

F

-f flag
copyrep (command), 17-11
report (command), 12-21

 Index–17

-f flag
report (command), 17-30

F format, 11-39

Field Attribute menu, 15-3

field attributes
Attributes frame, 15-2
blinking, 15-4
box, 15-4
Box/Line vs, 15-5
brightness change, 15-4
color, 15-7, 15-9
columns in table fields, 15-1
data type, 15-7
default value, 15-7
defaults, 15-1
derivation formula, 15-7
derived field, 15-7
display only, 15-5
finishing, 15-3
force lower case, 15-4
force upper case, 15-4
inputmasking, 15-5, 15-6
internal field name, 15-7
internal name, 15-8
invisible, 15-5
keep previous value, 15-4
list, 15-4, 15-6
no auto tab, 15-4
no echo, 15-4
now value, 15-10
nullable, 15-7
nullable data types, 15-9
query only, 15-4
reverse video, 15-4
scroll size, 15-8
scrollable, 15-8
setting, 15-1
setting default values, 15-10
simple fields, 15-2
table fields, 15-2
today value, 15-10
underline, 15-4
validation check, 15-7
validation error message, 15-7

Field operation
VIFRED, 14-11, 14-12

fields

attributes, 2-16, 14-16
blank, 5-17
changing display, 15-9
components, 14-11
creating, 14-11
data display format, 14-13
data window, 2-15, 14-13, 14-16, 14-18
default QBFName, 14-11
default values, 15-7, 15-10
derived, 15-18
described, 2-14, 14-1
duplicate, 14-25
editing, 14-16
enclosing in boxes, 15-4
form components, 14-1
internal names, 2-16, 14-11, 14-12, 15-8
JoinDef displays, 6-9
justification, 14-15
mandatory, 15-4
names vs titles, 14-12
order, 14-28
prioritizing in retrievals, 5-17
scrollable, 15-9
simple, 2-15, 14-11
simple in VIFRED, 14-16
tabbing order, 14-28
table fields, 2-15, 14-18
titles, 2-16, 14-12
validation, 2-27
width, 18-13

File operation
input frame, 16-5
Terminal Monitor input frame, 16-6
Terminal Monitor output frame, 16-9, 16-
10

filename extensions
.rw, 12-17

FilePartial operation
filing reports, 9-7, 17-46

files
including external, 12-17
Report-Writer, 17-11

Find operation, B-32
predefined menu option, B-32

-firstff flag
report (command), G-5

Index–18 Character-based Querying and Reporting Tools User Guide

flags parameter
system-level commands, 17-2

float (data type)
default column format, 11-29
described, 18-7
numeric constants, 11-10, 11-12
precision, 11-29, 18-2

float4 (data type), 11-12, 11-29, 18-2

float4 (function), 11-25

float8 (data type), 11-12, 11-29, 18-2, D-2

float8 (function), 11-25

floating point
+- flag (arithmetic), 17-34
-5 flag, 17-33
arithmetic, 17-33
data type, 18-7, 18-10, 18-15, D-1
display format, 11-38, 18-10, 18-15

footers
.header (Report-Writer statement), 12-49
break, 10-4, 10-16
columns, 10-4
deleting, 8-21
reports, 7-16, 10-4

Force Lower Case attribute, 15-4

Force Upper Case attribute, 15-4

form feed (command), 8-39

Form Layout frame, 14-1

Format operation, 14-31

format specifications
B format (blank), 11-31
C format (character), 11-31
D format (date), 11-34
E format (numeric), 11-38
F format (numeric), 11-39
G format (numeric), 11-40
N format (numeric), 11-42
numeric templates, 11-43
Q0 format (control characters), 11-46
T format (character string), 11-47

format templates
distinguishing from delimited identifiers,
11-6

formats
.format (Report-Writer statement), 10-32,
12-53, 12-55
.tformat (Report-Writer statement), 12-57
block, 12-51
column, 10-28, 10-32, 11-29, 12-53, 12-
55, 12-57
defaults, 10-30, 11-28
display, 14-13, 14-22, 14-23
expressions, 11-26
Format operation, 14-31
overriding, 12-54, 12-57
report data, 11-26
report date and time stamp, 8-40
report page numbers, 8-40

FormAttr operation
attributes, 13-13
Form Layout frame, 13-13, 14-3
pop-up location, 13-15
pop-up position, 13-14
pop-up vs fullscreen, 13-14

forms
assigning QBFNames, 13-30
centering components, 14-31
compiling definitions as C source files, 13-
28, 17-5
components, 14-1
copying, 13-7, 13-28, 17-6
creating, 13-26
creating blank, 13-6, 13-7
creating from existing forms, 13-7
creating from multiple tables, 13-9
default, 4-10, 13-6
default forms, 13-7
deleting, 13-26
deleting lines/components, 14-27
described, 2-14
display mode, 13-8
editing, 13-1, 13-26
fields, 2-14, 14-1
justifying components, 14-31
linking to JoinDefs, 13-29
linking to tables, 13-29
moving components, 14-29, 14-31
moving parts of a field, 14-31
ownership, 13-7, 17-7
pop-up display, 13-15
printing, 13-28, 17-19
QBF, 4-7

 Index–19

renaming, 13-5, 13-30
saving, 13-24
trim, 2-14, 14-1

forms (Ingres Menu operation), 2-8

Forms Catalog frame, 13-6

Forms in Database
pop-up, 14-26

frames
described, 2-13
reports, 8-6

from (clause), 12-22

FRS
commands, B-25, C-24
defined, B-1
FRS keys, B-30
key definition, B-1

FRS commands
top, 16-8

FullPrompt operation
specifying variables, 9-3

fullscreen form
Pop-up form vs, 13-15

function keys
activating on terminals, C-20
defined, 2-20, B-1

functions
aggregate, 11-16
boolean, 11-51
built-in, 11-24
conversion, 11-25, 11-49, 11-50, G-6
date, 11-25, 11-51, 18-6
interval, 18-6
numeric, 11-25, 11-50
string, 11-25, 11-50

G

G format, 11-40

GetTableDef operation
copying column specifications in tables, 3-
12
Create a Table frame, 3-6

Join Specification frame, 6-18, 6-20
Table Field menu, 14-20
VIFRED, 14-21

Go operation
defined, 2-19
JoinDef Catalog frame, 6-13
JoinDef Definition frame, 6-14, 6-26
predefined menu option, B-31
Report Catalog frame, 7-4
Report MoreInfo frame, 7-5
Retrieve frame, 5-6
Terminal Monitor frame, 16-4, 16-7, 16-8

graphics
boxes, C-19

graphs
Ingres Menu operation, 2-8

group by (clause), 12-22, F-37

H

-h flag
report (command), 17-33

having (clause), 12-22

headers
deleting, 8-21
page header, 8-38
reports, 7-16

Heading operation
Create submenu, 8-12

headings
break header, 10-4, 10-16
columns, 10-4
creating additional lines, 8-19
deleting, 8-22
editing, 8-22
moving, 8-33
page header, 10-16
reports, 8-9, 10-4, 10-16

Help (statement)
delimited identifiers, 2-27
displaying user tables, 2-3

Help operation, 2-22, B-31
defined, 2-19

Index–20 Character-based Querying and Reporting Tools User Guide

keys option, 2-22
menu option, 2-22
Terminal Monitor frame, 16-5, 16-6

Help screens, 2-22

hex (function), 11-25

hexadecimal
constants, 11-9, 11-47

hierarchical control break
report style, 7-13

I

-i flag
report (command), 12-20, 17-31

II_DATE_FORMAT, 18-22

II_DECIMAL, 18-7

II_EMBED_SET
printqry, G-3

II_MONEY_PREC, 18-8

II_NULL_STRING, 12-78

II_NUMERIC_LITERAL, 11-10, 18-7

II_PATTERN_MATCH, 5-14

II_PRINTSCREEN_FILE, 2-23

II_SCROLL_MSG, 5-22

II_TERMCAP_FILE, C-2

II_TIMEZONE, 18-6

indented report style, 7-13

indexes
defined, 3-3
destroying, 3-13
examining, 3-14

ING_PRINT, 17-45

ingmenu (command), 17-15, E-2

Ingres Distributed Option
accessing distributed database, 2-9

Ingres Menu
forms-based tools access, 2-5

Ingres Menu
using, 2-5

Ingres Menu
capabilities, 2-6

Ingres Menu
menu maps, 2-7

Ingres Menu
Tables operation, 2-8

Ingres Menu
Forms operation, 2-8

Ingres Menu
JoinDefs operation, 2-8

Ingres Menu
Reports operation, 2-8

Ingres Menu
Graphs operation, 2-8

Ingres Menu
Applications operation, 2-8

Ingres Menu
Queries operation, 2-8

Ingres Menu
starting from command line, 2-8

Ingres Menu
JoinDefs operation, 6-10

Ingres Menu
Forms operation, 13-4

Ingres Menu
Queries operation, 16-3

Ingres Menu
calling, E-2

Ingres Menu
ingmenu (command), E-2

Ingres tools
starting from command line, 2-8

IngresMenu
Tables operation, 3-4

initializing
variables, 10-20, 11-13, 12-13

input masking
numeric templates, 18-18

 Index–21

setting on or off, 15-6
turning on/off, 18-18

Inputmasking attribute, 15-5, 15-6

Inquire_forms (statement), B-24

insert editing mode, 2-21, 14-5

Insert operation
defined, 2-19
Table Create frame, 3-6
Table Field menu, 5-3, 14-20, 14-23

inserting
blank lines, 2-19

InsertLine operation
Terminal Monitor frame, 16-5

int1 (function), 11-25

int2 (function), 11-25

int4 (function), 11-25

integer (data type), 11-10, 18-2, 18-7, 18-10,
18-15, D-2

integer1 (data type), 11-12, 11-29, D-2

Integer1 (data type), 18-2

integer2 (data type), 11-12, 11-29, 18-2, D-2

integer4 (data type), 11-12, 11-29, 18-2, D-2

integers
display format, 18-15

integrity
constraints, 5-4

internal field name
columns, 14-22
field attribute, 2-16, 15-8
table fields, 14-19

internal field name attribute, 15-7

interval (function), 11-25, 18-6

invisible
field attributes, 15-5

Invisible attribute, 15-5

IQUEL
entering statements, 16-4
invoking, 16-3, 17-16
Iquel (command), 17-16

is not null (comparison operator), 11-24

is null (comparison operator), 11-24

ISO Entry SQL 92 compliant databases
delimited identifiers, 2-26
regular identifiers, 2-25

ISQL
calling, E-2
invoking, 16-3, 17-16
isql (command), E-2
Isql (command), 17-16

italics, 1-4

J

J display format parameter
character string print format C, 11-32

JoinDef
basis for form, 13-6
catalog, 6-13
Change Display frame, 6-26
copying to/from text files, 6-28
creating, 6-10
data source for reports, 7-7
defined, 6-1
Definition frame, 6-14
delimited identifiers, 2-26
destroying, 6-28
display, 6-24, 6-26
editing, 6-19
editing forms, 6-28
fields in display, 6-9
join columns, 6-17
Join Specification frame, 6-17
joins (command), 6-11
limitations on sort priority, 5-20
Master/Detail, 6-6, 6-9
naming, 6-15
overview, 6-1
ownership, 17-7
query target, 4-2, 17-50
rules, 5-29, 6-3
saving, 6-26, 6-27
single table, 6-20
testing, 6-26
Update and Delete Rules frame, 6-22

Index–22 Character-based Querying and Reporting Tools User Guide

updating, 5-25, 5-29
viewing sort results, 5-21

JoinDef Definition frame, 6-15, 6-20

JoinDefs Catalog frame, 6-13

JoinDefs operation
Ingres Menu, 2-8, 6-10
QBF Start-up frame, 4-8

joining
multiple tables, F-31
table to itself, 6-1, 6-20, 6-21

JoinLines operation
Terminal Monitor frame, 16-5

joins
defaults, 6-9
equi-joins, 6-5
natural, 6-9
outer joins, 6-5
types, 6-5
validation checks, 6-20
viewing columns, 6-19

Joins operation
JoinDef Definition frame, 6-14, 6-20

justification
fields, 18-14
reports, 11-27, 12-68, 12-70, 12-73

K

Keep Previous Value attribute, 15-4

key numbers, 3-8

keyboard keys
arrow, 15-9, C-22
cursor movement with, 2-21
Enter, 2-21
help list, 2-20
mapping, 2-20
Menu, 2-17
Mode, 2-21
Tab, 2-21
terminal considerations, A-3
VT100 mappings, A-3

keys

help list, 2-22
unique, 3-11

Keys operation, 2-22

keywords
all, 12-22
distinct, 12-22
Report-Writer, 11-6

L

-l flag
report (command), 12-44, 17-31

labels
mapping files, B-16, B-29
report example, F-28
report style, 7-14
restrictions on customizing, 7-14

LastQuery operation
Retrieve frame, 5-6
Update frame, 5-25

Layout operation
adding report sections, 8-11, 8-12
deleting report sections, 8-20
Report Layout frame, 8-10

layouts
Creating Report Layout Section pop-up, 8-
13
default report, 7-17

left (function), 11-25

Left operation
Move submenu, 8-34

left_margin (report variable), 11-15

leftchar (FRS command), B-26

length (function), 11-25

limits
call (statement) parameters, E-2

Line operation
submenu, 8-12

line_number (report variable), 11-15

LineEdit operation

 Index–23

Terminal Monitor frame, 16-5

lines
.center (Report-Writer statement), 12-66
.left (Report-Writer statement), 12-68, 12-
70
.lineend (Report-Writer statement), 12-70
.linestart (Report-Writer statement), 12-71
.newline (Report-Writer statement), 12-52,
12-71, 12-72
.right (Report-Writer statement), 12-73
.tab (Report-Writer statement), 12-75
adding to reports, 8-20
blank, 2-19
Box/Line operations, 14-7
displaying between rows, 14-20
maximum in report block, 12-52, 12-79
size, 18-13
text positioning, 12-66
wrapping, 12-79

ListChoices operation
defined, 2-19
JoinDef Definition frame, 6-14
JoinDef Specification frame, 6-18
predefined menu option, B-32
Retrieve frame, 5-6
Table Create frame, 3-6
Update frame, 5-25

ListForms operation, 14-26

listing
choices for fields, 2-19

local databases
accessing/terminating access to, 2-8

locate (function), 11-25

Location operation
Form Layout frame, 13-13, 14-3
VIFRED, 13-12

log (function), 11-25

logical operators, 11-24
and, 5-10
or, 5-10

logicals
II_EMBED_SET, G-3
II_NULL_STRING, 12-78
II_NUMERIC_LITERAL, 11-10, 18-7
II_SCROLL_MSG, 5-22

ING_PRINT, 17-45
setting, 2-2
TERM_INGRES, A-1

long byte (data type), 11-12, 18-3, D-2

long varchar (data type), 11-12, 12-10, 12-27,
17-28, 18-3, D-2

lowercase (function), 11-25

M

-m flag
report (command), 17-29, 17-31

Mandatory Field attribute
Attributes for Field frame, 15-4

mapping
described, B-1
disabling, B-16, B-36
file errors, B-37
files, B-14, B-37
FRS commands, B-25
FRS keys, B-14, B-30
getting more information about, B-24
menu items, B-28
querying settings, B-24
statements, B-33
syntax of statements, B-32, B-37

margins
.leftmargin (Report-Writer statement), 12-
38, 12-39
.rightmargin (Report-Writer statement),
12-45, 12-46
defaults, 10-31, 11-29, 12-38
expanding, 8-36
forms, 13-20
left_margin variable, 11-15
page footer, 10-25
page header, 10-25
reports, 8-35, 10-25
right_margin variable, 11-15
temporary, 12-62

Master/Detail
report style, 7-13

Master/Detail JoinDefs
creating, 6-5

Index–24 Character-based Querying and Reporting Tools User Guide

in reports, F-31
retrieving with, 6-9
sorting, 5-20, 5-22

Master/Master JoinDefs
creating, 6-5
sorting, 5-20, 5-21

matching
patterns in QBF, 5-14

maximum (aggregate function)
reports, 8-16

memory
usage, G-7

menu (FRS command), B-26

menu key, 2-17

menu option, B-31

menus
exiting, 2-19
keys, B-28
menu items, B-28, B-30
menu maps, 2-7, B-29
using, 2-17, 2-19

messages
disabling warning, 17-3

minimum (aggregate function)
using in reports, 8-16

mod (function), 11-25

mode
block, 12-51
column formatting, 12-68, 12-69, 12-72,
12-75, 12-76
insert, 2-21
-m flag (mode/style), 17-29
overstrike, 2-21

mode (FRS command), B-26

mode key, 2-21

modify (statement)
key columns, 3-8

money (data type)
data types for columns, 11-12
default column formats, 11-29
described, 18-1, 18-2, 18-8
editing defaults, 18-15

storage format, 18-10, D-2

money (function), 11-25

MoreInfo operation
JoinDefs Catalog frame, 6-13
Report Catalog frame, 7-4

mouse
requirements, 2-21

Move operation
Form Layout frame, 13-12, 13-20, 14-3,
14-29, 14-31
moving columns in tables, 3-12
moving report components, 8-33
Report Layout frame, 8-10, 8-34
Table Create frame, 3-6
Table Field menu, 14-20, 14-25

moving
report components, 8-33

N

n character in numeric templates, 11-44, 18-
19

-n flag
report (command), 17-30

n format
character string print format T, 11-48

N format
character string print format C, 11-32

naming
columns, 3-2, 3-7
conventions, 2-25, 11-2
correlation names, 6-16
JoinDefs, 6-15
tables, 3-7
variables, 11-14, 12-23

natural joins, 6-9

nesting
.include (Report-Writer statement), 12-17
comments, 12-9

NewLine operation, 14-7

NewQueryTarget operation

 Index–25

QBF Execution Phase frame, 4-9

newrow (FRS command), B-26

Next operation
Attributes frame, 15-3
predefined menu option, B-31
Report MoreInfo frame, 7-5
Retrieve frame, 5-21
Update frames, 5-26

nextfield (FRS command), B-26

nextitem (FRS command), B-26

NextMaster operation
Retrieve frame, 5-23
Update frame, 5-26

NextTable (command), 6-25

nextword (FRS command), B-26

No Auto Tab attribute, 15-4

No Echo attribute, 15-4

nodes
accessing remote, 2-10
v_node name, 2-9, 2-10

NoEcho (keyword)
scrollable fields, 15-10

-nofirstff flag
report (command), G-5

nonprinting characters, 11-9, 11-46

not (logical operator), 11-24

not null (clause), 12-13

Now date constant, 15-10, 18-6

null strings
.nullstring (Report-Writer statement), 12-
78
alternate, 12-78
reports, 8-38

null values
defined, 3-8, 18-8
displaying, 8-38

nullability
.declare (Report-Writer statement), 12-11
data types, 15-9
described, 18-8

not null (clause), 12-11
with null (clause), 12-11

Nullable attribute, 15-7

numeric (data type)
described, 18-1
E format, 11-38
F format, 11-39
G format, 11-40
numbers, 11-9
printing, 11-38
reports, 11-9, 11-38
storage format, 18-10
templates, 11-43, 18-18

numeric constants, 11-9

numeric expressions
F format, 11-39
functions, 11-50
N format, 11-42

numeric templates
input masking and, 18-18

NxtDetail operation
Update frame, 5-26

O

-o flag
report (command), 17-30

object_key (function), 11-25

objects (user interface)
naming conventions, 2-25, 11-2
referencing, 2-26

OnError operation
Terminal Monitor frame, 16-5, 16-10

OpenSQL
data types, D-1

operating system
conventions for different, 1-3

operations
aborting, B-32
menus, 2-17
undoing, B-32

Index–26 Character-based Querying and Reporting Tools User Guide

operators
arithmetic, 11-21
comparison, 11-22
conditional expressions, 11-22
described, 11-21
functions, 11-24
logical, 11-24
wild card pattern matching, 11-22

or (comparison operator), 5-10

or (logical operator), 11-24

order by (clause), 12-6, 12-22

Order Menu
VIFRED, 14-28

Order operation
Form Layout frame, 13-13, 14-3, 14-28
Retrieve frame, 5-6, 5-18
Update frame, 5-25

outer join, 6-5

outputting
reports, 8-36, 9-1, 17-27

overflow, 17-18

overriding
column position, 12-56

overstrike editing mode, 2-21, 14-5

ownership
changing for reports, 17-11
delimited identifiers, 2-25, 2-27, 11-4
forms, 13-7, 17-7
JoinDefs, 17-7
QBFNames, 17-7
qualifying, 2-13
specify schema, 12-3, 12-11, 12-23
synonyms, 2-13, 10-15, 12-3, 12-4
tables, 2-13, 6-16, 10-15, 12-3, 12-4
views, 2-13, 10-15, 12-3, 12-4

Ownership
specify schema, 10-15

P

pad (function), 11-25

page (keyword), 11-17

page break, 12-41

page_length (report variable), 11-15

page_number (report variable), 11-15

page_width (report variable), 11-15

pages (in reports)
.formfeeds/.noformfeeds (Report-Writer
statement), 10-24, 12-37
.need (Report-Writer statement), 10-24,
12-39
.newpage (Report-Writer statement), 10-
24, 12-40
.pagelength (Report-Writer statement),
10-24, 12-42, 12-43
.pagewidth (Report-Writer statement), 12-
44, 12-45
breaks, 11-26, 12-39, 12-40, F-36
footer, 10-16
form feeds, G-5
header, 10-16
length, 8-37, 10-24, 12-42
line_number variable, 11-15
numbering, 7-9, 8-21, 8-39, 12-40
page_length variable, 11-15
page_number variable, 11-15
pagination, 10-24, 10-25
width, 10-24, 10-26, 10-31, 12-44

parameters
passing, 17-35, G-1
runtime, 11-13, 12-28
system-level commands, 17-2

passing
parameters, 17-35

patterns
matching, 5-14, 11-22

performance
troubleshooting problems, G-6

permissions
accessing database objects, 2-11

Place operation
described, 13-20
move submenu, 3-12
Move submenu, 8-34, 8-35
Report Margin submenu operation, 8-36

 Index–27

VIFRED, 14-25

pm/am (with date data type), 18-6

pop-up display style
active form, 13-15, 13-16
adjusting size, 13-21
anchor point, 13-23
borders, 13-17, 13-23
controlling, 13-16
default location, 13-19
designating, 13-15
FormAttr operation, 13-13
normal vs, 13-15
position, 13-14
size, 13-15, 13-23
types, 13-16
VisualAdjust operation, 13-21

pop-up forms
Box/Line operation, 13-17
uses, 13-16

position_number (report variable), 11-15

Preview operation
Report Catalog frame, 7-4

preview reports
defined, 7-6
running, 9-3

Previous operation
Attributes frame, 15-3
Report MoreInfo frame, 7-5

previousfield (FRS command), B-26

previousword (FRS command), B-26

Print operation
sending reports from screen to printer, 17-
44
Terminal Monitor output frame, 16-10
Utilities frame, 13-6

printing
.formfeeds (Report-Writer statement), 10-
24
block mode, 12-51
centered, 12-66
columns, 10-26, 12-22, 12-79
control characters, 11-46
dates, 11-34
default formats, 11-28, G-4

escape characters, 11-46
expressions, 12-79
formats, 10-28, 11-26, 12-53
forms, 13-28, 17-19
left justification, 12-68
nonprintable character, 11-9, 11-46
null values, 12-78
numbers, 11-38
printform (statement), 17-19
printscreen (statement), 2-23
reports, 9-10, 12-79, 17-27
right justification, 12-73
screen contents, 2-23
strings, 12-79
tabs, 12-80
text, 12-79
text positioning, G-4
variables, 12-22, 12-79

PrintPartial operation
printing reports, 9-8, 17-45

printscreen (FRS command), 13-28, B-10, B-
26

reports displayed on screen, 17-46

privileges
database object access, 2-11

Q

-q flag
report (command), 17-32

Q0 format, 11-9, 11-46

QBF
Append Operation, 5-1
calling, 4-8, E-3
calling from Ingres Menu, 4-3, 4-8
calling from operating system, 4-3
comparison operators, 5-9
data types, 4-7
definition phase, 4-2
described, 4-1
execution phase, 17-23
Execution Phase frame, 4-8, 5-5
forms, 4-7
logical operators, 5-10
phases, 4-2

Index–28 Character-based Querying and Reporting Tools User Guide

Qbf (command), 17-20
QBF operation, 4-8
QBF Start-Up frame, 5-1
QBFName, 4-2, 13-25
QBFName (ownership), 17-7
qf (command), E-3
Retrieve frame, 5-5
running from VIFRED, 13-31
starting, 2-8, 17-20
update (function), 5-25
wild card characters, 5-13

QBF Execution Phase Frame, 5-25
Update operation, 5-25

QBF Start-up frame
JoinDefs operation, 4-8
QBFNames operation, 4-8
Tables operation, 4-8

QBFNames
assigning to forms, 13-29, 13-30
defined, 6-28
delimited identifiers, 2-26
frame in VIFRED, 13-29
Menu in VIFRED, 13-30
query targets, 4-2, 17-50

QBFNames operation
QBF Start-up frame, 4-8
Utilities frame, 13-6
VIFRED, 13-29

qualifying
object names with owner, 2-13

QUEL
data types, 11-13, D-1
delimited identifiers, 11-3, 11-6
specifying queries in reports, 12-21
table owner qualification, 12-4
transaction handling, 12-8, 12-31

queries
debugging, G-3
definition phase, 4-2
executing, 4-8, 16-7, 17-23
execution phase, 4-2, 4-3, 17-21, 17-23
performance, G-6
printing/filing results, 16-10
QBF, 4-3
report specification, 12-21
sorting results, 5-17

targets, 5-2
variables, 10-3, 12-23, 12-25, 12-28

Queries operation
Retrieve frame, 5-21
starting Terminal Monitor, 2-8, 16-3
Update frame, 5-26

query
targets, 4-2

query (command)
described, 17-23
flags/parameters, 17-23
QBF, 17-23

query languages
interactive, 2-8

Query Only attribute, 15-4

Query operation
Table Utility frame, 3-5

query targets
default formats, 5-2
displaying catalog frames, 4-8
forms, 4-10
search order, 4-9
VIFRED, 17-50

Quit key
Forms Layout frame, 13-31

Quit operation
defined, 2-19
end vs, 2-19
predefined menu option, B-31
Terminal Monitor frame, 16-5

quitting
applications from submenus, 2-19

R

-r flag
report (command), 17-29, 17-30

range variables, 6-16

RBF
calling, E-4
command syntax, 17-24
copyrep (command), 17-11

 Index–29

overview, 7-1, 7-2
pop-ups, 7-6
Report-Writer, 10-2
rf (command), E-4
role, 7-1
Save Report frame, 8-42
sreport (command), 17-49
starting from Ingres Menu, 2-8, 7-3
starting from operating system, 17-24

rbf (command)
flags and parameters, 17-26
starting RBF, 17-24

read mode, 12-31

Read operation
Terminal Monitor frame, 16-6

redraw (FRS command), B-26

Redraw key, 2-23

redrawing the screen, 2-23, B-26

referencing
columns, 11-11

remarks (long), 12-18

Remarks (long), 12-19

remarks (short), 12-33

remote data manager, 17-2, 17-10, 17-27, 17-
48

remote databases, 2-9
accessing, 2-2, 2-10

remote nodes, 2-9

Rename operation
Catalog Frame menu, 13-27
Forms Catalog frame, 13-5
JoinDefs Catalog frame, 6-13
Report Catalog frame, 7-4

report (command)
described, 10-7, 17-27

report (keyword), 11-17

Report Catalog frame, 7-3, 7-4

Report Layout frame
described, 8-6, 8-11
menu operations, 8-10

report Moreinfo Frame, 7-5

Report operation
Table Utility frame, 3-5

report specification
archiving, 8-46, 17-11, 17-48
creating, 8-1
default, 7-10, 8-1, 8-5
defined, 7-7
editing, 18-28
format, 10-13, 12-1
getting information, 7-5
getting information about, 7-5
list, 7-3
loading, 8-7
ownership, 7-4
saving, 8-11
syntax checking, 17-48

ReportOptions operation
Report Layout frame, 8-10

reports
adding footers, 8-12
archiving, 8-46
block mode capabilities, 12-51, 12-53, 12-
59
block style, 10-7
block-style, 7-12
breaks, 7-8, 10-2, 10-4, 12-6, 12-7
catalog, 10-6
centering, 12-66
column style, 10-7
column-style, 7-10
comments in specifications, 10-9, 12-5,
12-9, 12-18, 12-19, 12-33
conditions, 12-84
constants, 11-7
copying, 17-10
creating, 7-4, 10-5, 10-9, 12-5
creating report components, 8-11
customizing, 7-10, 10-2
data formats, 11-26
data selection, 10-2, 10-3, 12-10
dates, 7-9, 8-39
default, 10-7, 10-30, 11-28
default destination, 9-1
default layout, 7-17
default report specification, 7-10
deleting, 7-4, 17-12
deleting components, 8-20

Index–30 Character-based Querying and Reporting Tools User Guide

deleting sections, 8-21
designing, 10-8, 12-1
destinations, 9-1
detail, 7-16
display formats, 8-24, 12-53, 12-57, 18-9
editing components, 8-22, 8-23
error log, 9-2
footers, 7-16
formatting, 10-25
from files outside database, 17-31
headers, 7-16
headings, 8-9
hierarchical control break, 7-13
indented style, 7-13
Ingres Menu operation, 2-8
joined tables, F-31
justification, 12-68, 12-73
labels style, 7-14
layouts, 10-2, 10-10, 10-25, 12-36, 12-37
margins, 12-38, 12-39
Master/Detail style, 7-13
moving components, 8-33
naming, 12-19
nulls, 8-38
output file, 12-20
outputting options, 8-36, 17-29, 17-43
page numbers, 7-9, 8-39
pagination, 10-24, 10-25, 12-37, 12-39,
G-5
preview, 7-6, 9-3
printing, 9-1, 10-25, 17-27
producing, 9-1, 17-27
query language, 8-44
remarks, 12-18, 12-19, 12-33
report (command), E-4
Report Catalog frame, 7-3, 7-4
report specification, 7-7
running, 17-27
running in background (batch), 9-2, 9-9
runtime data selection, 9-3
runtime parameters, 12-28
runtime variables, 12-23, 12-25
sections, 7-16
sending from screen to file, 17-47
sending from screen to printer, 17-45, 17-
47
sending to file or printer, 9-2, 17-44
sending to screen, 12-21
setup procedures, 10-9, 12-5, E-4
setup statements, 10-19, 10-20

sorting, 8-25, 8-26, 10-3, 12-34
sources of data, 7-7, 8-1
specification, 10-6, 10-16, E-4
statistics, 9-2
storing, 17-48
styles, 7-10, 8-5, 10-7
tabular style, 7-10, 10-7
testing, 10-7
time, 7-9, 8-39
underlining, 8-38
variables, 9-3, 10-20, 11-49, 12-85, 12-86
wrap style, 10-7
wrap-style, 7-12

Report-Writer
assignment (statement), 12-85, 12-86
block mode, 12-51
calling, E-4
commands, 17-2
conditional statements, 12-84
described, 10-1
expressions syntax summary, 11-49
features, 10-1, 10-2
functions, 11-24
overview, 7-1
report (command), E-4
reserved words, 11-6
running, 10-7
sample report, F-1
special report variables, 11-14
specification summary, 10-16
statement delimiters, 10-14, 12-2
statement syntax summary, 12-87
troubleshooting, G-1

Report-Writer statements
.block, 12-51, F-12
.bottom, 12-53
.break, 12-6, 12-7
.center, 12-66
.cleanup, 12-7, F-31
.data, 12-10
.declare, 12-11, F-16
.delimid, 12-15, 12-16, F-16
.detail, 12-46, F-7, F-17, F-24, F-26
.elseif, F-18
.endblock, 12-51, F-12, F-26, F-29
.endif, 12-84, F-18
.endremark, 12-18, 12-19
.endwithin, 12-62, F-12
.footer, 12-47, 12-48, F-7, F-8, F-18, F-24

 Index–31

.format, 12-53, 12-55, F-7, F-17

.formfeeds, 12-37, 12-38, F-17, G-5

.header, 12-48, F-7, F-8, F-17, F-18, F-23,
F-24, F-26
.if, 12-84, F-18
.include, 12-17
.left, 12-68, 12-70
.leftmargin, 12-38, 12-39
.let, 12-85, 12-86
.lineend, 12-70
.linestart, 12-71
.longremark, 12-18, 12-19, F-16
.name, 12-19
.need, 12-39, 12-40, F-7, F-36
.newline, 12-52, 12-71, F-12, F-26, F-29
.newpage, 12-40, 12-41, F-17, F-18
.nofirstff, G-5
.nofirstffd, 12-42
.noformfeeds, 12-37, 12-38, G-5
.nounderline, 12-82
.nullstring, 12-78
.output, 12-20, 12-21
.pagelength, 12-42, 12-43, F-17
.pagewidth, 12-44, 12-45
.position, 12-55
.print, 12-79
.println, 12-79, F-12
.query, 12-21, 12-26, F-6
.right, 12-73, F-8
.rightmargin, 12-45, 12-46
.setup, 12-30, F-31
.shortremark, 12-33
.sort, 12-34, F-7, F-17
.tab, 12-75
.tformat, 12-57, F-17
.top, 12-59, F-12
.ulcharacter, 12-81, 12-82
.underline, 12-82
.width, 12-60
.within, 12-62, F-12
types, 10-9, 12-4

Report-Writer system catalogs, 10-6, 17-48

reserved words, 11-6

Resize operation
VIFRED, 13-23, 14-10

restrictions
call (statement) parameters, E-2

Resume operation
Terminal Monitor frame, 16-4, 16-9

retrieve frame
Next operation, 5-21
Order operation, 5-18
Query operation, 5-21

retrieve operation
search conditions, 5-7

Retrieve operation
QBF Execution Phase frame, 5-5

retrieving
data with Terminal Monitor, 16-3, 16-7
QBF, 4-9, 5-5
Retrieve operation, 5-5

reverse, C-18

reverse video, C-18

Reverse Video attribute
Box Attributes frame, 14-6
described, 15-4

right (function), 11-25

right margins
forms, 13-20

Right operation
Move submenu, 8-34

right_margin (report variable), 11-15

rightchar (FRS command), B-26

rounding
-5 flag, 17-33

rows
displaying lines between, 14-20
number displayed, 14-19

rows (in reports), 12-10
distinct vs duplicate, 12-34
sort order, 12-34

rows (in table fields)
number, C-7

rows (in tables)
appending, 5-2
defined, 3-2
deleting, 5-27
duplicates, 3-11

Index–32 Character-based Querying and Reporting Tools User Guide

protecting, 6-21
updating, 5-24
width, 3-2

rubout (FRS command), B-26

Rulers operation
VIFRED Form Layout frame, 13-11, 13-12

rules
deleting, 6-22, 6-24
JoinDef, 6-3, 6-22
Rules operation, 6-21, 6-22
updating, 6-22, 6-23

Rules operation
JoinDef Definition frame, 6-14
JoinDef Specification frame, 6-18

Run a Report
pop-up, 9-3

runtime
data selection, 8-28

runtime system
data selection, 12-12
variables, 12-23, 12-25

S

-s flag
report (command), 12-9, 12-32, 17-3

sample reports
account, F-14
described, F-1
dictionary, F-21
label, F-28
population, F-1

Save Changes to Report
pop-up, 8-45

Save operation
described, 13-13, 14-3
Form Layout frame, 13-13, 14-3
Forms Layout frame, 13-24
JoinDef Definition frame, 6-14
predefined menu option, B-32
Report Layout frame, 8-11, 8-42
Report MoreInfo frame, 7-5
Save Report frame, 8-44

Update frame, 5-26, 5-29

Save Report frame
fields, 8-43

saving
forms, 13-24
JoinDefs, 6-26, 6-27
report definitions, 8-11
Save Changes to Report pop-up, 8-45
Save operation, 6-27
Saving a Form pop-up, 13-26
table updates, 5-29
VIFRED, 13-24

Saving a Form
pop-up, 13-26

schema
defined, 10-15, 12-3
delimited identifiers, 2-25, 11-3, 12-15
object owner qualification, 2-12, 2-13, 2-
24, 3-15, 6-16, 10-15, 11-4, 12-3

screen, C-18
boxing characters, C-19
clearing, C-7
color, C-23
printing contents, 2-23
refreshing, 2-23
returning to previous, 2-19
types, A-4
video attributes, C-18

Scroll size attribute, 15-8

Scrollable attribute, 15-8

scrollable fields
defined, 15-9
DisplayOnly, 15-10
NoEcho, 15-10

scrolldown (FRS command), B-26

scrolling, C-24
keys, 2-21
table fields, 5-22

scrollleft (FRS command), B-26

scrollright (FRS command), B-26

scrollup (FRS command), B-27

search conditions
retrievals, 5-7

 Index–33

search order
query targets, 4-9

select (clause), 12-22, F-37

select (statement)
report queries, 12-22
system catalog queries, 2-3

Select a Destination
pop-up, 9-4, 9-5

selecting an Aggregate
pop-up, 8-18

Sending a report to a file
pop-up, 17-46

Sending a Report to a File
pop-up, 9-7, 9-9

Sending a report to a printer
pop-up, 17-45

Sending a Report to a Printer
pop-up, 9-8

separation lines
displaying, 14-20

separators
multiple values for a parameter, 10-14,
12-2

sequence numbers
in fields, 14-28

server
specifying in database access syntax, 17-3
type, 2-4, 2-9, 2-10, 2-11

set autocommit (statement)
overriding default commit behavior, 12-8,
12-31

set functions, 11-15

Set lockmode (statement)
reports, 12-31

shell (FRS command), B-27

shift (function), 11-25

Shift operation
Move submenu, 8-34, 8-35

simple fields
defined, 2-15

JoinDefs, 6-16
viewing retrieved information, 5-21

Simple fields
logical operators, 5-11

SimpleFields operation
Forms Catalog frame, 13-9

sin (function), 11-25

size (function), 11-25

smallint (data type)
default column format, 11-29
described, 18-2
integer2 (data type), D-2
OpenSQL, D-2

Sort Columns pop-up, 8-13

sorting
.header (Report-Writer statement), 12-49
aggregate functions, 11-16
breaks, 11-16
columns, 10-22, 10-23
defining report sort order, 8-25
order, 5-18
preview reports, 7-6
reports, 10-3, 12-34
rows, 5-25

special characters
numeric templates, 11-43
Q0 format, 11-46
string templates, 18-30

specifications
column, 14-22
data format, 11-26

SplitLine operation
Terminal Monitor frame, 16-5

SQL
.cleanup, 12-7
.setup, 12-31
autocommit, 12-8, 12-31
data types, 11-12, 18-2, D-1
invoking, 17-19
parameter passing, 17-35
specifying queries in reports, 12-21
sql (command), E-6
Sql (command), 17-19
transaction handling, 12-8, 12-31

Index–34 Character-based Querying and Reporting Tools User Guide

SQL-92 standard
database requirements, 11-2

sqrt (function), 11-25

squeeze (function), 11-25

sreport (command)
.include (Report-Writer statement), 12-17
bypassing, 17-31
described, 17-48, 17-49
role, 10-6
syntax check, 17-48
troubleshooting with, G-2

sreport(command), E-6

star
accessing distributed database, 2-2

Star server
accessing distributed database, 2-11

starting
Ingres tools, 2-5
Interactive query languages (ISQL and
IQUEL), 16-3
QBF, 4-9
RBF, 7-3
Terminal Monitor, 16-3
VIFRED, 13-3

statement separator
Report-Writer, 10-14, 12-2

statement syntax, 1-4

statements
block, 17-32
syntax, 10-13, 12-1
types, 10-9, 12-4

straight edge alignment guides
RBF, 8-8

string templates
creating custom template, 18-29
custom character set examples, 18-35
defining, 18-29
described, 18-29
examples, 18-36
mandatory entry, 18-35

strings, B-32
C format, 11-31
constants, 11-6, 11-7, 11-8

delimiters, 11-8
functions, 11-50
hexadecimal, 11-9
literal, 18-3
printing, 12-79
reports, 11-7, 11-8, 12-79
T format, 11-47
trim (function), 11-25
with prompt (clause), 12-12
with value (clause), 12-12
word wrapping, 11-31

style parameter, 17-31

styles
Choose a Report Style pop-up, 9-4
report, 7-10

subtopics, 2-22

sum (aggregate function)
reports, 8-16, 8-17

synonyms
defined, 3-2
delimited identifiers, 11-3, 11-4
destroying, 3-13
examining, 3-14
ownership, 2-13, 10-15, 12-3, 12-4
using, 2-12, 12-11

syntax
aggregate functions, 11-51
conventions, 1-4
database access, 2-8
Report-Writer espressions summary, 11-49
Report-Writer statement summary, 12-87
system-level commands, 17-1

syntax descriptions, 1-4

system catalogs
database, 2-3

system variables
setting, 2-2

system-level commands, 17-1

systems
administrator, B-27
exiting, B-31

 Index–35

T

-t flag
report (command), 12-54, 17-34

T format, 11-47

Tab key, 2-21

tabbing order
changing, 14-28

Table Field frame
VIFRED, 14-19

table fields
components, 2-16
creating, 14-18
described, 2-15
display modes, 14-22
editing, 5-27, 14-23
inserting rows, 5-3
internal names, 14-19
JoinDefs, 6-16
logical operators, 5-10
moving columns, 14-25
retrieving information, 5-20
scrolling, 5-22
validating, 2-27

table names, abbreviating, 6-16

table_key (function), 11-25

TableField operation
Forms Catalog frame, 13-9

tables
appending data, 5-2
basis for form, 13-6
creating, 3-5
data source for reports, 7-7
delimited identifiers, 2-26, 11-3, 11-4, 12-
15
destroying, 3-13
examining, 3-14
joining, 6-1, 6-20, 6-21, F-31
master deleting records, 5-28
naming, 3-7
ownership, 2-13, 6-16, 10-15, 12-3, 12-4
query targets, 4-2
reports created from, 10-3, 10-22, 12-10
retrieving into/from, 6-20

single-table JoinDefs, 6-20
structure, 3-2
synonyms, 2-12

Tables (utility)
creating tables, 3-5
described, 3-1
starting from Ingres Menu, 2-8
starting from IngresMenu, 3-4

Tables Catalog frame
listing user tables, 3-4

Tables operation
Ingres Menu, 2-8, 3-4
QBF Start-up frame, 4-8

tabs
printing, 12-80

tabular
formats for reports, 7-10, 10-7

templates
absolute date and time, 18-22, 18-24
creating custom string template, 18-29
date format, 11-34, 18-22, 18-24
defining string template, 18-29
numeric (data type), 11-43
string examples, 18-36
string templates, 18-29

temporary formats, 12-54, 12-57, 12-62

TERM_INGRES, A-1

termcap descriptions, C-18
advanced features, C-18
basic features, C-7, C-8
list of commands, C-7
writing, C-6

termcap file
purpose, A-1, B-11

Terminal Monitor
calling, E-6
delimited identifiers, 2-27
described, 16-1
error messages, 16-10
printing query results, 16-10
query languages, 16-1
startup, 16-3
writing statements to a file, 16-6

Terminal Monitor frame

Index–36 Character-based Querying and Reporting Tools User Guide

input screen, 16-6, 16-9
output screen, 16-7

terminals
activating cursor, C-24
color, C-22
Concept 100, C-27
Datamedia 3045, C-27
Dec VT100, C-26
Envision 230, C-27
initializing, C-8
mapping files, B-19, B-23
types functional with Ingres, A-4, A-10
video attributes, C-18
VT, A-3, B-12, B-19, B-23, C-26

text
positioning, 10-27
underlining, 12-81

text (data type)
data types for report columns, 11-12
default report column format, 11-28
described, 18-2, 18-3, 18-5
storage format, D-1

text (function), 11-25

text file
report definition, 10-8, 12-1

text strings
character data type, 18-3

time
absolute, 11-10, 18-22, 18-27
current_time variable, 11-15
formats, 11-11
functions, 11-25
intervals, 11-11
reports, 7-9, 8-39
templates, 11-37, 18-22, 18-24, 18-27
zones, 18-6

Title operation
VIFRED, 14-12, 14-31

titles
fields, 2-16, 14-12

Today date constant, 15-10, 18-6

Top (FRS command)
Terminal Monitor frame, 16-8

Top operation

predefined menu option, B-32

transactions
rolling back, 12-9

trim
creating, 8-14, 14-4
defined, 2-14
editing, 14-4, 14-5
form component, 14-1
moving, 8-33

trim (function), 11-25

Trim operation
Create submenu, 8-12
VIFRED forms components, 14-4

troubleshooting
Report-Writer reports, G-1

U

Underline attribute
Box/Trim Attributes frame, 14-6
described, 15-4

underlining, C-18
.nounderline (Report-Writer statement),
12-82
.ulcharacter (Report-Writer statement),
12-81
.underline (Report-Writer statement), 12-
82
reports, 8-38, 12-82

Underlining
.ulcharacter (Report-Writer statement),
12-82

underscore, C-18

Undo operation
defined, 2-19
Form Layout frame, 13-13, 14-3, 14-30
predefined menu option, B-32
Report Layout frame, 8-11
reversing deletions, 8-42

union
select statements, 12-22, F-33

unique keys

 Index–37

preventing duplicate rows in tables, 3-11

UNIX
default printer command, 17-30
delimiting parameters containing
parentheses, 12-28, 17-27, 17-36
escaping double quotes, 17-37, 17-40
termcap file for, C-1, C-25

Update frame
Delete operation, 5-26

Update operation
described, 5-24
exiting, 5-30
QBF Execution Phase frame, 5-25

updating
JoinDefs, 5-25, 5-29
QBF, 4-9, 5-24
rows in tables, 5-24
rules, 6-22, 6-23
Update operation, 5-24

upline (FRS command), B-27

uppercase (function), 11-25

user
mapping customized, B-23

user identifiers
schema names, 2-25
specifying effective user, 2-25

user names
delimited identifiers, 11-3, 11-4, 12-15
object ownership specification, 11-4
specifying effective user, 11-4

user-defined abstract data types, 18-3, D-2

user-defined default values, 3-14

Utilities operation
Forms Catalog frame, 13-6
Report Catalog frame, 7-4

V

-v flag
report (command), 12-43, 17-32

V_node, 2-9, 2-10, 17-2, 17-10, 17-27, 17-48

validation
changing criteria, 15-11
check, 15-11
checks on joins, 6-20
comparisons, 15-12
creating criteria, 15-11
delimited identifiers in, 2-27
error message, 15-17
maximum length, 15-11
syntax check, 15-11, 17-48
table field columns, 15-12

Validation
check, 15-7
valid comparison operators, 15-12

Validation Check attribute, 15-7

Validation Error Message attribute, 15-7

varchar (data type)
conversion function, 11-25
data types for report columns, 11-12
default report column format, 11-28
described, 18-2, 18-3, 18-5
storage format, D-1

varchar (function), 11-25

variables
assigning values to, 12-11, 12-85, 12-86
dbname, 2-9
declaring, 12-12, G-1
expressions, 11-13, 12-85
initialization, 11-13, 12-13
naming, 11-14, 12-23
passing, 17-35
printing, 12-22, 12-79
query, 10-3, 11-14, 12-23, 12-25
range, 6-16
remote node, 2-9, 2-10
reports, 10-20, G-1
runtime, 10-20, 12-22, 12-79
run-time, G-1
server_type, 2-9, 2-10
special report, 11-14
system, 2-2
v_node, 2-9

VAX/VMS
delimiting parameters containing
parentheses, 12-28, 17-27, 17-36
escaping double quotes, 17-37, 17-40

Index–38 Character-based Querying and Reporting Tools User Guide

-G flag, 17-48
print queue initialization, 17-30

vchar (data type)
default report column format, 11-28

vchar (function), 11-25

video attributes
termcap descriptions, C-18

ViewDefaults operation, 3-14

viewing
database tables, 3-5, 3-14
table column defaults, 3-14

views
data source for reports, 7-7
defined, 3-3
deleting, 3-13
delimited identifiers, 11-3, 11-4, 12-15
examining, 3-14
ownership, 2-13, 10-15, 12-3, 12-4
reports, 10-22

VIFRED
Attributes operation, 14-16
Box/Line operation, 14-7
calling, 13-3, 13-4, E-7
Catalog frame, 13-5, 13-6
components of form, 14-1
creating blank lines, 14-7
creating form components, 14-4
creating forms, 13-6
data windows, 14-13
default forms, 13-7
destroying forms, 13-26
exiting, 13-31
expert mode, 13-4
features, 13-1
field display formats, 18-16
Field operation, 14-11
fields, 14-11
Form Layout frame, 13-10
FormAttr operation, 13-13
forms copying, 17-6
forms creating, 13-26
forms editing, 13-26, 14-1, 14-27
forms renaming, 13-27
GetTableDef operation, 14-21
invoking, 17-50
menu operations summarized, 13-2

multiple table forms, 13-9
NewLine operation, 14-7
overview of, 13-1
QBFNames Catalog frame, 13-29
role, 13-1
saving forms, 13-24
setting attributes on fields, 15-1
starting from Ingres Menu, 2-8
TableField operation, 14-19
utilities operation, 13-6
validation checks, 2-27
Vifred (command), 13-3
VisualAdjust operation, 13-21

vifred (command), E-7

Vision
starting from Ingres Menu, 2-8

VisuallyAdjust operation
described, 13-18
fixed-position pop-up forms, 13-22
floating pop-up forms, 13-22
Move operation, 13-24
Resize operation, 13-23
rotating anchor point, 13-23

VT terminals, A-3, B-12, B-19, B-23, C-26

W

w display format parameter
blanking print format B, 11-31
character string print format C, 11-32
numeric print format E, 11-38
numeric print format F, 11-39
numeric print format G, 11-40
numeric print format I, 11-41
numeric print format N, 11-42

-w flag
report (command), 12-52, 12-79, 17-32

w_column (report variable), 11-15, 12-63

w_name (report variable), 11-15, 12-63

where (clause), 11-1, 12-22

wild card characters
asterisk (*), 11-23
delobj (command), 17-13

 Index–39

QBF, 5-13
question mark (?), 11-23
Report-Writer, G-2
VIFRED, 15-12

Windows NT
delimiting parameters containing
parentheses, 12-24, 12-28, 17-27, 17-36,
17-40, 17-41, 17-42
escaping double quotes, 17-37, 17-40

with null (clause), 12-13

with prompt (clause), 12-12, 12-24

with value (clause), 12-12, 12-24

wrap

character string word wrapping, 11-31
line wrapping in reports, 12-79
report style, 7-12

wrap style reports, 10-7

Write operation
Terminal Monitor frame, 16-6

Z

z character in numeric templates, 11-44, 18-
19

	Bookshelf
	Ingres Character-based Querying and Reporting Tools User Guide
	Contents
	1: Introduction
	What You Need to Know
	Special Considerations
	Conventions
	Query Languages
	Operating System Differences
	Entering Data from the Keyboard
	Terminology
	Syntax

	2: Fundamentals of Using Querying and Reporting Tools
	Before Starting Ingres
	Enabling Access to the Database
	Setting System Variables
	Defining the Terminal
	Mapping Function Keys

	About Your Database
	System Catalogs and the Catalogdb Utility
	Creating and Maintaining Databases
	Location and Type of Database
	Copying and Destroying Tables in a Database
	Backing Up and Restoring

	Starting an Ingres Tool
	Using Ingres Menu
	Bypassing Ingres Menu
	Accessing Ingres Menu

	Specifying Startup Commands
	Database on Remote Network Node
	Non-Ingres Database
	Distributed Database

	Accessing Database Tables
	Using Synonyms
	Using Schemas for Owner Qualification

	Frames and Forms
	Forms
	Fields on Forms

	Menus
	Menu Environment
	Using Menus with a Mouse

	Choosing a Menu Option
	Using the Mouse
	Using a Function Key
	Typing or Highlighting the Operation Name

	Leaving Submenus and Quitting Ingres

	Keys and Mouse Support
	Keys for Menu Operations
	Keys for Standard Functions
	Cursor Movement and Editing Keys
	Mouse Support

	On-Screen Help
	Printing and Redrawing the Screen
	Printing the Screen
	Refreshing the Screen

	Error Messages
	Viewing Error Messages

	Naming and Name Use Conventions
	Schema and User Names
	Conventions for Regular Identifiers
	Delimited Identifiers
	Wild Card Characters
	Case Sensitivity
	Using Delimited Identifiers in Forms

	3: Using the Tables Utility
	Before Using the Tables Utility
	Tables
	Synonyms
	Views
	Indexes

	Starting the Tables Utility
	Creating Tables
	Table Names
	Column Names
	Data Types
	Key Numbers
	Nulls
	Defaults
	Standard Defaults
	User-Defined Defaults

	Setting Unique Keys
	Moving Column Specifications
	Cloning Table Specifications with GetTableDef

	Destroying Tables, Synonyms, Views, and Indexes
	Getting Information about Tables and Views
	Adding or Deleting Columns in an Existing Table

	4: Using QBF
	Before Starting QBF
	Query Definition Phase
	Query Execution Phase

	Starting QBF
	Starting QBF from the Operating System
	Starting QBF from the Ingres Menu

	Choosing a Query Target
	Using Catalog Frames for Query Target Selection
	QBFNames Catalog Frame
	JoinDefs Catalog Frame
	Tables Catalog Frame

	Data Display Forms for Query Targets
	Custom Forms
	Default Forms

	Executing a Query
	Displaying and Saving Query Results

	5: Working with QBF Operations
	QBF Append Operation
	Starting the Append Operation
	Using the Append Frame
	Procedure for Adding New Rows of Data
	Simple Fields Format
	Table Fields Format
	Data Entry Errors
	Duplicating Previous Entries
	Transaction Deadlock in Append Mode
	Confirmation Messages

	Exiting the Operation

	QBF Retrieve Operation
	Starting the Retrieve Operation
	Using the Retrieve Frame
	Qualifying Retrievals
	Using Comparison Operators
	Using Logical Operators
	Logical Operators Within a Column
	Logical Operators Between Columns
	Grouping Values
	Using Pattern-Matching Characters
	? and * Pattern-Matching Characters
	% and _Pattern-Matching Characters
	Using Bracketed Expressions
	Complex Queries
	Character String Qualifications
	Date and Time Qualifications
	Queries in Blank and Nullable Fields

	Sorting Query Results
	Sort Sequence and Sort Priority
	Sort Precedence in JoinDef Execution

	Viewing Retrieved Records
	Viewing Retrieve Results for a Table
	Viewing Sort Results for a Master/Master JoinDef
	Viewing Sort Results for a Master/Detail JoinDef
	No Rows Meeting Specifications

	Transaction Deadlock in Retrieve Mode
	Exiting the Retrieve

	QBF Update Operation
	Starting the Update Operation
	Modifying Data
	Update Frame Data Display Form Operations
	Adding New Detail Rows to a JoinDef

	Deleting Data
	Saving Updates
	Update Operation and JoinDef Rules
	Errors Reported During the Save Process
	Transaction Deadlock in Update Mode

	Exiting the Update Operation

	6: Using JoinDefs in QBF
	What Is a JointDef?
	JoinDef Rules
	Join Columns with Coercible Data Types
	Multiple Join Columns

	Join Types
	Master/Master JoinDefs
	Master/Detail JoinDefs

	Automatic Joins
	Fields on a JoinDef Form
	Creating a JoinDef
	Optional JoinDef Specifications

	JoinDefs Catalog Frame
	JoinDef Definition Frame
	JoinDef Name
	Role
	Table Name
	Owner
	Abbreviation
	Choosing Table-Field Format

	Specifying Join Columns
	Viewing or Changing Joined Columns
	Getting Information on Table Column Data Types
	Finishing with the JoinDef Join Specification Frame

	Single-Table JoinDefs
	Update and Delete Rules
	Default Update and Delete Rules
	Determining Update Rules
	Determining Delete Rules
	Exiting the JoinDef Update and Delete Rules Frame

	Changing the Display of JoinDefs
	Deleting Fields from JoinDef Displays
	Exiting the JoinDef Change Display Frame

	Testing JoinDefs
	Saving JoinDefs
	Editing JoinDefs
	Deleting JoinDefs

	7: Using RBF
	RBF Frames and Operations
	Starting RBF
	Starting RBF from the Operating System
	Starting RBF from the Ingres Menu

	Obtaining Information About a Report Specification
	Using RBF Pop Up Frames
	Preview Reports
	Report Specifications
	Sources of Report Data
	Sort Columns and Breaks
	Date, Time, and Page Number
	Report Styles
	Tabular
	Wrap
	Block
	Indented
	Master/Detail
	Labels
	Report Structure

	8: Working with RBF Report Specifications
	Creating a Default Report Specification
	Using the ChooseColumns Operation
	Choosing a Report Style

	RBF Report Layout Frame
	Getting to the Report Layout Frame
	Layout Frame and Report Components
	Report Sections
	Report Margins and Alignment Guides
	Trim
	Columns and Aggregate Functions

	Creating New Report Components
	Creating Break Headers, Footers, and Other Report Sections
	Creating Trim
	Creating a Column
	Aggregates
	Simple and Cumulative Aggregates
	Unique Aggregates
	Guidelines for Creating an Aggregate
	Creating an Aggregate
	Editing an Aggregate

	Creating Additional Heading Lines
	Creating Blank Lines

	Deleting Report Components
	Deleting Break Headers, Footers, and Other Report Sections
	Deleting Other Report Components

	Editing Report Components
	Editing Trim and Headings
	Editing Columns

	Editing Column Display Formats
	Representation of Display Formats
	Changing Display Formats

	Editing Column Sort and Selection Options
	Defining Sort Order
	Sort Direction
	Sort Order and Data Type
	Default Sort Order
	Sort Columns and Breaks
	Changing a Column from Sort to Non Sort
	Changing the Sort Order

	Specifying Runtime Data Selection
	Hexadecimal Constants
	Null Values for Numeric Variables

	Editing Column Break Options
	Options for Showing a Change of Value
	Using the Break Options Operation

	Moving Report Components
	Moving Trim, Columns, Aggregates, and Headings
	Place and Shift Operations

	Moving the Report Margins

	Specifying Report Options
	Page Length
	Underlining
	Page Header on First Page
	Display of Null Values
	Form Feeds
	Date, Time, and Page Components

	Obtaining the Name of a Column
	Undoing Edits
	Saving a Report Specification
	Save Report Frame
	Using the Save Operation
	Save Report Pop-up

	Archiving a Report Definition
	Using the Archive Operation
	Comment Blocks in Archived Reports
	Width Comment Block
	JoinDef Comment Block
	Union Select Comment Block

	Copying Report Specifications
	Deleting a Report Specification

	9: Producing a RBF Report
	Report Destinations
	Background Mode
	Report Log
	Specifying Report Variables

	Producing a Preview Report
	Producing a Report from a Report Specification

	Sending a Report to and from a Screen
	Sending Reports from a Screen to a File
	Sending Reports from a Screen to a Printer

	Sending a Report Directly to a File
	Sending a Report Directly to a Printer

	10: Using Report-Writer
	What Is Report-Writer?
	Report-Writer and RBF

	Before Starting Report-Writer
	Obtaining Data for Reports
	Sorted Data
	Breaks
	Automatic Report Breaks
	Page Breaks

	Headers and Footers
	Detail Section

	Producing a Report
	Creating a Specification
	Saving the Report Specification
	Executing the Report Specification

	Specifying Report Specifications
	Types of Report Specification Statements
	Report Setup Statements
	Page Layout and Control Statements
	Report Structure Statements
	Column and Block Statements
	Text Positioning Statements
	Print Statements
	Conditional and Assignment Statements

	Format of Report Specification Statements
	Statement and Parameter Delimiters
	Using Schemas for Owner Qualification

	Summary of Report-Writer Specifications
	Sample Report

	Setting Up and Formatting a Report
	Creating Reports with Variables
	Creating Reports Using Several Tables
	Specifying Sorts and Breaks
	Pagination in Reports
	Setting Report Margins
	Positioning, Formatting, and Printing Data
	Setting Default Print Positions for Columns
	Positioning Text
	Specifying the Print Format
	Specifying What to Print

	Using Conditional and Assignment Statements
	Calculating and Printing Summary Data
	Automatic Determination of Default Settings
	Analysis of Report Formatting Statements
	Determining Default Page Width
	Determining Default Margins
	Determining Default Column Positions
	Determining Default Column Formats
	Determining Default Column Widths

	11: Report-Writer Expressions and Formats
	ANSI/ISO Entry SQL-92 Compliant Databases
	Delimited Identifiers
	Using Delimited Identifiers
	QUEL User Notes

	Specifying Delimited Identifiers
	Case Sensitivity
	Multiple Delimited Identifiers

	Precedence over String Constants

	Reserved Words
	Types of Data in Expressions
	String Constants
	QUEL User Notes

	Hexadecimal Strings
	QUEL User Notes

	Numeric Constants
	Date Constants
	Columns
	QUEL User Notes

	Variables
	Special Report Variables
	Aggregates
	Syntax of Aggregates
	Simple Non-Unique Aggregates
	Unique Aggregates
	Cumulative Aggregates
	Rounded or Actual Values
	Examples of Aggregates

	Operations
	Arithmetic Operators
	Comparison Operators
	Conditional Expressions
	Pattern Matching with Wild Cards
	Wild Cards in an .If Clause
	Wild Cards in Queries

	Logical Operators
	Built-in Functions
	Boolean Functions

	Format Specifications
	Default Formats
	Default Format for Strings
	Default Format for Columns
	Default Format for Special Report Variables
	Default Format for Aggregates
	Default Format for Numbers
	Default Format for Dates
	QUEL User Notes

	Blanking Format€B
	Character String Format C
	Date Format D
	Specifying Absolute Date and Time Templates
	Specifying Date and Time Interval Templates

	Numeric Format€E
	Numeric Format€F
	Numeric Format€G
	Numeric Format I
	Numeric Format€N
	Numeric Templates
	Control Character Format Q0
	Character String Format T

	Expressions and Formats Syntax Summary
	Special Report Variables
	Arithmetic Operators
	SQL Conversion Functions
	QUEL Conversion Functions
	Numeric Functions
	SQL and QUEL String Functions
	Date Functions
	Boolean Function
	Aggregates
	Formats

	12: Report-Writer Statements
	Format of Report Specification Statements
	Statement and Parameter Delimiters
	Using Schemas for Owner Qualification
	QUEL User Notes

	Types of Report Specification Statements
	Report Setup Statements
	.Break
	.Cleanup
	Comments
	.Data
	.Declare
	.Delimid
	.Delimid with QUEL Query
	.Include
	.Longremark/.Endremark
	.Name
	.Output
	.Query
	.Query for QUEL Users
	.Setup
	.Shortremark
	.Sort

	Page Layout and Control Statements
	.Formfeeds/.Noformfeeds
	.Leftmargin
	.Need
	.Newpage
	.Nofirstff
	.Pagelength
	.Pagewidth
	.Rightmargin

	Report Structure Statements
	.Detail
	.Footer
	.Header

	Column and Block Statements
	.Block/.Endblock
	.Bottom
	.Format
	.Position
	.Tforma
	.Top
	.Width
	.Within/.Endwithin

	Text Positioning Statements
	.Center
	.Left
	.Lineend
	.Linestart
	.Newline
	.Right
	 .Tab

	Print Statements
	.Nullstring
	.Print and .Println
	.Ulcharacter
	.Underline and .Nounderline

	Conditional and Assignment Statements
	.If
	.Let

	Statements Syntax Summary

	13: Using VIFRED
	VIFRED Frames and Operations
	Starting VIFRED
	Starting VIFRED from the Operating System
	Starting VIFRED from the Ingres Menu
	Starting VIFRED in Expert Mode

	VIFRED Forms Catalog Frame
	Creating New and Duplicate Forms
	Duplicating Forms
	Creating Blank Forms
	Creating Default Forms
	Creating Forms that Use Multiple Tables

	Form Layout Frame
	Alignment Guides
	Margin Rulers
	Straight Edges
	Location Operation

	Layout Frame Menu Options

	Specifying a Forms Display Attributes
	Choosing a Forms Display Style
	Fullscreen
	Pop-up
	Changing a Forms Style

	Specifying Borders for Pop-up Forms
	Setting Form Size and Position
	Setting Size and Position Attributes
	Size
	Screen Width
	Position Mode
	StartRow and StartColumn

	Moving the Margins of a Form
	Expanding the Right Margin
	Expanding the Bottom Margin
	Placing the Margin of a Form

	Visually Adjusting a Form
	Adjusting Pop-up Form Size
	Moving a Fixed Position Pop-up Style Form

	Saving Forms
	Save Submenu
	Save Changes Pop-up

	Destroying Forms
	Editing Existing Forms
	Renaming Forms
	Compiling Forms
	Printing Forms
	QBFNames Operation
	QBFNames Catalog Frame
	Assigning Additional QBFNames to Forms

	Running QBF from VIFRED
	Exiting VIFRED

	14: VIFRED Form Components
	Parts of a Form
	Fields
	Internal Name
	Data Window
	Attributes
	Title

	Using Operations on the Form Layout Frame
	Create Operation
	Creating and Editing Trim
	Creating Trim
	Editing Trim
	Specifying Display Attributes for Trim

	Creating New Blank Lines on the Form
	Creating and Editing Boxes and Lines
	Box/Line Operation or Attribute Boxes
	Enhancing Boxes and Lines
	Resizing a Box or Line
	Specifying Display Attributes for Boxes and Lines

	Creating and Editing Simple Fields
	Creating a New Simple Field
	Creating Field Titles and Default Internal Names
	Creating Your Own Internal Field Names
	Creating Data Windows and Display Formats
	Input Masking in Data Entry Fields
	Creating Multi-line Character Fields
	Specifying Simple Field Attributes
	Editing Simple Fields
	Editing Field Titles
	Editing the Data Window
	Editing the Attributes of a Field

	Creating and Editing Table Fields
	Creating a Table Field
	Creating Default Columns with GetTableDef
	Creating Columns
	Editing a Table Field
	Adding Columns
	Deleting Columns
	Editing Column Titles and Internal Name
	Changing Column Attributes
	Changing the Sequence of Columns

	Creating Duplicate Fields

	Deleting Form Components
	Changing the Tabbing Order of Fields on a Form
	Moving Components on a Form
	Moving a Single Component
	Place
	Shift
	Centering and Justifying Components
	Moving Titles and Display Windows

	Moving a Group of Components at Once

	15: VIFRED Field Specifications
	Specifying Field Attributes
	Default Attributes
	Setting Attributes for a Field or Column

	Attributes in the Set List
	An Alternative to the BoxField Attribute
	Setting the Invisible Attribute
	Turning Input Masking On or Off

	Required and Other Attributes
	Changing the Internal Name of a Field
	Changing a Fields Data Type
	Setting Nullable Data Types
	Changing the Color
	Scrollable Fields

	Setting Default Values for a Field
	Specifying a Validation Check
	Comparison Operator Validation Checks
	Character String Comparisons
	Date and Money Comparisons
	NULL Value Comparisons
	Numeric Comparisons
	Comparisons Against Other Fields
	Comparison to a List of Values
	Comparison to a Lookup Table
	Boolean Operators in Validation Checks

	Creating a Validation Error Message

	Derived Fields
	Using Forms with Derived Fields
	Specifying a Derived Field
	Guidelines for Specifying Derivation Formulas
	Arithmetic Operators in Derivation Formulas
	Aggregates in Derivation Formulas
	Constants in Derivation Formulas
	Dates in Derivation Formulas
	Circular References in Derivation Formulas
	Examples of Derivation Formulas

	Improving Performance of Derived Fields

	16: Interactive Query Language Terminal Monitor
	Capabilities of the Interactive Terminal Monitor
	Starting the Interactive Terminal Monitor
	Entering Query Language Statements
	Menu Operations
	Reading from and Writing to a File
	Entering Statements from a File
	Writing Statements to a File

	Executing Query Language Statements
	Printing or Filing Output
	Error Messages

	17: Using System Commands for the Forms-based Tools
	Syntax Conventions
	Report-Writer Command Syntax

	Standard Flags and Parameters
	Compform
	Syntax
	Description
	Compiling a Form into Object Code

	Example

	Copyform
	Syntax
	Description
	Copying Forms to a Text File
	Copying QBF Names and JoinDefs to a Text File
	Copying Forms, QBFNames, and JoinDefs to a Database

	Examples

	Copyrep
	Syntax
	Description
	Example

	Delobj
	Syntax
	Description
	Examples

	Ingmenu
	Syntax
	Description
	Examples

	Iquel
	Syntax
	Description

	Isql
	Syntax
	Description
	Examples

	Printform
	Syntax
	Description
	Example

	Qbf
	Syntax
	Description
	Examples

	Query
	Syntax
	Description
	Examples

	Rbf
	Syntax
	Examples

	Report
	Syntax
	Description
	Examples
	Passing Parameters on the Command Line
	Passing Numeric Variables
	Passing String and Date Variables
	Passing an Entire Where Clause
	Passing Multiple Parameters
	Passing Delimited Identifiers
	Passing String Values with Embedded Quotes
	Prompted Runtime Variables as Parameters

	Sending Reports to and from a Screen
	Sending a Report to a Screen
	Sending Reports from a Window to a Printer
	Sending Reports from a Window to a File
	Sending the Current Window to a File or Printer
	Examples

	 Sreport
	Syntax
	Description
	Examples

	Vifred
	Syntax
	Description
	Examples

	18: Working with Data Types and Data Display Formats
	Data Types
	Character
	C
	Char
	Text
	Varchar
	Comparing Character Strings

	Date
	International Conventions
	Relative Times and Dates

	Floating Point
	Decimal
	Integer
	Money
	Nulls

	Data Display and Input Formats
	Data Types and Display Formats
	Display Format Syntax
	Default Data Display Formats
	Displaying Character Data
	Displaying Numeric and Money Data
	Displaying Date Data
	Using Format Templates
	Format Templates
	Input Masking with Format Templates

	Numeric Templates
	Input Masking with Numeric Templates
	Special Numeric Template Characters
	Numeric Template Examples

	Date and Time Templates
	Absolute Date and Time Templates
	Specifying the Template
	Absolute Date and Time Examples
	Input Masking for Absolute Dates

	Time Interval Templates

	String Input Templates
	Creating a String Template
	Special Characters
	Escape Character
	Custom Character Sets
	User-defined Characters
	Predefined Characters for Custom Character Sets
	Specifying a Default Character
	Specifying Uppercase or Lowercase

	Forcing Mandatory Entry
	Examples of User Defined Character Sets
	Examples of String Templates

	A: Defining Your Terminal
	The Termcap File
	How to Define Your Terminal
	Defining Your Terminal: Windows
	Defining Your Terminal: UNIX
	Defining Your Terminal: VMS
	Terminal Names

	B: Defining Function and Control Keys
	Key Mapping Overview (PC Environment)
	Termcap File
	FRS Mapping File
	Mapping File Example
	Standard FRS Mapping Files
	Application Mapping Files

	Key Mapping Overview (UNIX and VMS Environments)
	Role of the Termcap File
	Mapping Files
	Mapping File Example
	Levels of Mapping
	Installation Level Mapping
	Terminal Type Level Mapping
	User Level Mapping
	Application Level Mapping

	Obtaining Information on Mappings
	FRS Mapping Objects
	FRS Commands
	Command Definitions
	Default Assignments

	Menu Items
	FRS Keys
	Mapping a FRS Key
	Predefined FRS Keys

	Mapping File Syntax
	Mapping Statements
	Disabling Statements
	Comments
	Mapping File Errors

	Troubleshooting (PC Environment)
	Restrictions and Limitations
	Troubleshooting Checklist

	Troubleshooting (UNIX and VMS Environments)
	Restrictions and Limitations
	Troubleshooting Checklist

	C: Writing Termcap Descriptions
	Modifying the Termcap File
	Setting the II_TERMCAP_FILE Variable
	Format of a Termcap Description
	Special Characters
	Names
	Capabilities

	Writing New Termcap Descriptions
	Eleven Basic Commands
	Cursor Motion Command

	Commands for Advanced Features (PC Environment)
	Commands Used to Program Video Attributes
	Commands Used for Color
	Specifying Fonts

	Commands for Advanced Features (UNIX and VMS Environment)
	Commands Used to Program Video Attributes
	Commands Needed for Boxing Characters
	Commands Needed for Function Keys
	Commands Needed for Arrow Keys
	Commands Used for Color
	Commands to Specify Display Width
	Command to Specify FRS Mapping File for Terminal
	Commands to Optimize Cursor Movement

	Commands for Special Situations
	Commands from the UNIX Termcap File

	Examples of Termcap Descriptions
	DEC VT100 (All Inclusive)
	DEC VT100 (Simple)
	Envision 230
	Concept 100
	Datamedia 3045

	D: Data Types
	Data Types in SQL, OpenSQL, and QUEL

	E: Calling Ingres Tools from Embedded SQL and OpenSQL
	Call Statement
	Tools and Parameters
	Abf Command
	Ingmenu Command
	Isql Command
	Qbf Command
	Rbf Command
	Report Command
	Sql Command
	Sreport Command
	System Command
	Vifred Command

	F: Report-Writer Report Examples
	Population Example
	Pop2 Example
	Account Example
	Dictionary Example
	Dict2 Example
	Label Example
	Creating Reports Using Several Tables
	Joining Tables for a Report
	Avoiding Awkward Page Breaks

	G: Troubleshooting Report-Writer
	Parameter Substitution
	Queries
	Comments
	Default Print Positions
	Formfeeds
	Performance Problems
	Query Problems
	Conversion Functions
	Memory Usage

	Index

