

Ingres® 2006

SQL Reference Guide

®

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for
the end user's informational purposes only and is subject to change or withdrawal by Ingres Corporation ("Ingres")
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user's responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user's
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2005-2006 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents iii

Contents

Chapter 1: Introducing the SQL Reference Guide 21
Audience ... 21
Enterprise Access Compatibility... 21
System-specific Text in This Guide... 22
Terminology Used in This Guide .. 22
Syntax Conventions Used in This Guide .. 23

Chapter 2: Introducing SQL 25
SQL Functionality .. 25
Types of SQL Statements ... 25
SQL Releases ... 26

Interactive SQL ... 26
Embedded SQL.. 26

SQL Naming and Statement Rules ... 29
Object Naming Rules.. 30
Regular and Delimited Identifiers ... 31
Statement Terminators... 36
Correlation Names ... 36
Database Procedures.. 38
Object Management Extension... 39
ANSI Compliance... 39
OpenSQL.. 39
Security Levels.. 40

Chapter 3: Introducing SQL Data Types 41
SQL Data Types .. 41

Character Data Types... 42
Unicode Data Types ... 47
Numeric Data Types... 47
Abstract Data Types... 50
Binary Data Types ... 61

Storage Formats of Data Types ... 63
Literals .. 64

String Literals ... 65
Numeric Literals .. 66

SQL Constants.. 67

iv SQL Reference Guide

Nulls ... 68
Nulls and Comparisons ... 69
Nulls and Aggregate Functions... 69
Nulls and Integrity Constraints .. 70

Chapter 4: Understanding the Elements of SQL Statements 71
SQL Operators.. 71

Arithmetic Operators.. 71
Comparison Operators.. 72
Logical Operators .. 73

SQL Operations... 74
String Concatenation Operations.. 74
Assignment Operations... 75
Arithmetic Operations .. 81

SQL Functions .. 87
Scalar Functions .. 87
Aggregate Functions ...108
Ifnull Function..114
Universal Unique Identifier (UUID) ..115

Expressions in SQL...119
Case Expressions..120
Sequence Expressions ...121

Predicates in SQL...122
Comparison Predicate..122
Like Predicate ..123
Between Predicate ..124
In Predicate ...125
Any-or-All Predicate ..125
Exists Predicate..127
Is Null Predicate ...127

Search Conditions in SQL Statements ...127
Subqueries..129

Chapter 5: Working with Embedded SQL 131
Embedded SQL Statements ...131
How Embedded SQL Statements are Processed ..131
General Syntax and Rules of an Embedded SQL Statement ..132
Structure of an Embedded SQL Program..133
Host Language Variables in Embedded SQL..134

Variable Declarations ..135
Include Statement ..136

Contents v

Variable Usage ...136
Variable Structures ...137
Dclgen Utility ...138
Indicator Variables..138
Null Indicator Arrays and Host Structures...142

Data Manipulation with Cursors ..143
Example: Cursor Processing ...144
Cursor Declarations ..145
Open Cursors...145
Readonly Cursors ...146
Open Cursors and Transaction Processing ..146
Fetch Data From Cursor...147
Fetch Rows Inserted by Other Queries ...148
Using Cursors to Update Data...148
Cursor Position for Updates ..149
Delete Data Using Cursors ...149
Closing Cursors ..151
Summary of Cursor Positioning...151
Cursors versus Select Loops...154

Dynamic Programming..155
SQLDA..155
Using Clause..159
Dynamic SQL Statements ..160
Execute a Dynamic Non-select Statement ..164
Execute a Dynamic Select Statement...167
Select Statement with Execute Immediate ...175
Retrieve Results Using Cursors ...176

Data Handlers for Large Objects...178
Errors in Data Handlers ...179
Restrictions on Data Handlers...179
Large Objects in Dynamic SQL..179
Example: PUT DATA Handler ..181
Example: GET DATA Handler ..183
Example: Dynamic SQL Data Handler ..185

Ingres 4GL Interface ..189

Chapter 6: Working with Transactions and Handling Errors 191
Transactions..191

How Transactions Work ...191
How Consistency is Maintained During Transactions...192
How Commit and Rollback Process Works...192
Statements Used to Control Transactions ...193

vi SQL Reference Guide

How Transaction Control Works ..193
Savepoints on Multi Statement Transactions ...194
Interrupt Handling ..195
Abort Policy for Transactions and Statements ...196

Two Phase Commit...197
Statements that Support Two Phase Commit ..198
Coordinator Applications for a Two Phase Commit ...199
Manual Termination of a Distributed Transaction ...200
Example: Using Two-Phase Commit ..200

Status Information ...204
session_priv Function..204
dbmsinfo Function ..205
inquire_sql Function..211
SQL Communications Area (SQLCA) ..212
SQLCODE and SQLSTATE...214

Error Handling ...216
Types of Error Codes...217
Understand Error Messages..218
Display of Error Messages ...218
Error Handling in Embedded Applications ...219
How to Specify Program Termination When Errors Occur ..225
Deadlocks..225

Chapter 7: Understanding Database Procedures, Sessions, and Events 229
Benefits of Database Procedures ...229
How Database Procedures are Executed...230
Database Procedure Invocation...230
Contents of Database Procedures..230
Permissions on Database Procedures ...231
Methods of Executing Procedures ..231
Parameter Passing in Database Procedures...232
Row Producing Procedures ...232
Effects of Errors in Database Procedures ..233
Messages from Database Procedures ...236

Rules ...238
Multiple Session Connections ...239

Multiple Sessions ..240
Session Identification ..240
Session Switching...241
Disconnection of Sessions ..241
Status Information in Multiple Sessions..242
Multiple Sessions and the DBMS Server ...242

Contents vii

Example: Two Open Sessions ...243
Examples: Session Switching ...244

Database Events ..245
Example: Database Events in Conjunction with Rules...246
Database Event Statements ...247

Chapter 8: Using SQL Statements 257
Star Statements ..257
Alter Group ...258

Embedded Usage: Alter Group..259
Locking: Alter Group ...259
Related Statements: Alter Group ..259
Examples: Alter Group ..259

Alter Location ..260
Embedded Usage: Alter Location...260
Locking: Alter Location ..261
Related Statements: Alter Location ...261
Examples: Alter Location ...261

Alter Profile ...261
Embedded Usage: Alter Profile..264
Locking: Alter Profile ...264
Related Statements: Alter Profile ..264
Examples: Alter Profile ..265

Alter Role..265
Embedded Usage: Alter Role ..267
Locking: Alter Role ...267
Related Statements: Alter Role...267
Examples: Alter Role...268

Alter Security_Audit ...269
Embedded Usage: Alter Security_Audit ..270
Related Statements: Alter Security_Audit...270
Examples: Alter Security_Audit...271

Alter Sequence ..271
Locking: Alter Sequence ..272
Related Statements: Alter Sequence ...272
Examples: Alter Sequence ...272

Alter Table ..273
Constraint Specifications: Alter Table...277
Named Constraints: Alter Table ..278
Embedded Usage: Alter Table...280
Locking: Alter Table ..280
Related Statements: Alter Table ...280

viii SQL Reference Guide

Examples: Alter Table ...281
Alter User ...282

Embedded Usage: Alter User..284
Locking: Alter User ...284
Related Statements: Alter User...284
Examples: Alter User ..285

Begin Declare ..286
Related Statements: Begin Declare ...286
Example: Begin Declare...286

Call ..287
Examples: Call ...288

Close..289
Embedded Usage: Close ..289
Locking: Close..289
Related Statements: Close...289
Example: Close ..290

Comment On...290
Embedded Usage: Comment On ...290
Locking: Comment On...291
Related Statements: Comment On ..291
Examples: Comment On ..291

Commit ..292
Embedded Usage: Commit...292
Locking: Commit ..293
Performance: Commit ...293
Related Statements: Commit..293
Example: Commit...293

Connect..294
Connecting with Distributed Transactions ...296
Creating Multiple Sessions ...296
Locking: Connect..297
Related Statements: Connect ...297
Examples: Connect ...298

Copy ..300
Binary Copying...301
Column Formats ...303
Filename Specification...313
With Clause Options..313
Locking: Copy ..316
Restrictions and Considerations: Copy ...316
Related Statements: Copy ...316
Example: Copy...317

Contents ix

Create Dbevent ...319
Embedded Usage: Create Dbevent ..319
Locking: Create Dbevent ...319
Related Statements: Create Dbevent...320

Create Group...321
Embedded Usage: Create Group ...321
Locking: Create Group...322
Related Statements: Create Group..322
Examples: Create Group..322

Create Index ...323
Parameters: Create Index..326
Embedded Usage: Create Index..331
Locking: Create Index ...331
Related Statements: Create Index ..331
Examples: Create Index ..332

Create Integrity ...333
Embedded Usage: Create Integrity..334
Locking: Create Integrity ...334
Performance: Create Integrity ..334
Related Statements: Create Integrity ..334
Examples: Create Integrity ..334

Create Location ...335
Embedded Usage: Create Location ..336
Locking: Create Location ...336
Related Statements: Create Location...337
Examples: Create Location...337

Create Procedure ...338
Nullability and Default Values for Parameters..341
Set Of Parameters ..342
Embedded Usage: Create Procedure..343
Related Statements: Create Procedure ..343
Examples: Create Procedure ..344

Create Profile ..345
Embedded Usage: Create Profile ...347
Locking: Create Profile ..347
Related Statements: Create Profile..348
Examples: Create Profile..348

Create Role ...348
Embedded Usage: Create Role..350
Locking: Create Role ...350
Related Statements: Create Role ..351
Examples: Create Role ..351

x SQL Reference Guide

Create Rule ...352
Row and Statement Level Rules..355
Embedded Usage: Create Rule ...357
Locking: Create Rule...357
Related Statements: Create Rule ..357
Examples: Create Rule ..358

Create Schema ..359
Embedded Usage: Create Schema...360
Locking: Create Schema ..361
Related Statements: Create Schema ...361
Example: Create Schema...361

Create Security_Alarm..362
Embedded Usage: Create Security_Alarm ..363
Locking: Create Security_Alarm..363
Related Statements: Create Security_Alarm ...363
Examples: Create Security_Alarm ...363

Create Sequence..364
Sequence_Options Specification..365
Locking: Create Sequence..366
Related Statements: Create Sequence ...367
Examples: Create Sequence...367

Create Synonym ..367
Embedded Usage: Create Synonym...368
Locking: Create Synonym ..368
Related Statements: Create Synonym ...368
Examples: Create Synonym ...368

Create Table..369
Column Specifications ...373
Column Defaults and Nullability ..373
Constraints ..377
Constraint Index Options ...383
Column-Level Constraints and Table-Level Constraints ...385
Constraints and Integrities...386
Partitioning Schemes ..387
With_Clause Options ...390
Create Table...as Select Options ...394
Using Create Table...as Select ..395
Embedded Usage: Create Table ..396
Locking: Create Table ...396
Related Statements: Create Table...396
Examples: Create Table...397

Create User...400

Contents xi

Embedded Usage: Create User ...403
Locking: Create User...403
Related Statements: Create User ..403
Examples: Create User ..404

Create View ..405
With Check Option Clause ..406
Embedded Usage: Create View ...406
Locking: Create View ..406
Related Statements: Create View..407
Examples: Create View..407

Declare...408
Related Statements: Declare..409
Example: Declare ...409

Declare Cursor...410
Cursor Updates ..411
Cursor Modes...413
Embedded Usage: Declare Cursor ...414
Locking: Declare Cursor...415
Related Statements: Declare Cursor ..415
Examples: Delete Cursor ...416

Declare Global Temporary Table...420
Embedded Usage: Declare Global Temporary Table ...422
Restrictions: Declare Global Temporary Table ...423
Related Statements: Declare Global Temporary Table ..424
Examples: Declare Global Temporary Table ..424

Declare...425
Related Statements: Declare..425
Example: Declare ...425

Declare Table ..426
Example: Declare Table...426

Delete ..427
Embedded Usage: Delete...428
Locking: Delete ..430
Related Statements: Delete ...430
Example: Delete...430

Describe ...431
Related Statements: Describe ..432

Disable Security_Audit ..433
Embedded Usage: Disable Security_Audit ..434
Locking: Disable Security_Audit..434
Related Statements: Disable Security_Audit ...434
Example: Disable Security_Audit...434

xii SQL Reference Guide

Disconnect ..435
Locking: Disconnect ..435
Related Statements: Disconnect ...435
Examples: Disconnect ...436

Drop ..437
Embedded Usage: Drop...438
Locking: Drop ..438
Related Statements: Drop..438
Examples: Drop..438

Drop Dbevent..439
Embedded Usage: Drop Dbevent ..439
Related Statements: Drop Dbevent ...439
Example: Drop Location...439

Drop Group ...440
Embedded Usage: Drop Group..440
Locking: Drop Group ...440
Related Statements: Drop Group ..441
Examples: Drop Group ..441

Drop Integrity ...441
Embedded Usage: Drop Integrity ..442
Related Statements: Drop Integrity...442
Examples: Drop Integrity...442

Drop Location..442
Embedded Usage: Drop Location ..442
Locking: Drop Location..443
Related Statements: Drop Location ...443

Drop Procedure..443
Embedded Usage: Drop Procedure ..443
Related Statements: Drop Procedure ...444
Example: Drop Procedure ..444

Drop Profile...444
Locking: Drop Profile...445
Related Statements: Drop Profile ..445
Example: Drop Profile ...445

Drop Role ...445
Embedded Usage: Drop Role ..446
Locking: Drop Role ...446
Related Statements: Drop Role...446
Example: Drop Role ..446

Drop Rule ...446
Embedded Usage: Drop Rule ..446
Related Statements: Drop Rule...447

Contents xiii

Example: Drop Rule ..447
Drop Security_Alarm ..447

Embedded Usage: Drop Security_Alarm...447
Locking: Drop Security_Alarm ..448
Related Statements: Drop Security_Alarm..448
Examples: Drop Security_Alarm ...448

Drop Sequence ..449
Locking: Drop Sequence ..449
Related Statements: Drop Sequence ...449
Examples: Drop Sequence ...449

Drop Synonym ..450
Embedded Usage: Drop Synonym ...450
Locking: Drop Synonym ..450
Related Statements: Drop Synonym..450
Example: Drop Synonym ...450

Drop User ...451
Embedded Usage: Drop User..451
Locking: Drop User ...451
Related Statements: Drop User ..451
Example: Drop User..451

Enable Security_Audit...452
Embedded Usage: Enable Security_Audit ...453
Locking: Enable Security_Audit...453
Related Statements: Enable Security_Audit ..453
Example: Enable Security_Audit ...453

Enddata..454
Examples: Enddata ...454

End Declare Section ...454
Related Statements: End Declare Section...455

Endselect..455
Locking: Endselect..455
Related Statements: Endselect ...456
Example: Endselect ..456

Execute ..457
Locking: Execute ..459
Related Statements: Execute ...459
Examples: Execute ...460

Execute Immediate ..461
Locking: Execute Immediate ..463
Related Statements: Execute Immediate..463
Examples: Execute Immediate ...464

Execute Procedure ...465

xiv SQL Reference Guide

Passing Parameters - Non-Dynamic Version..466
Passing Parameters - Dynamic Version ..467
Temporary Table Parameter ...468
Execute Procedure Loops ...469
Locking: Execute Procedure ...469
Related Statements: Execute Procedure...470
Examples: Execute Procedure...470

Fetch ...472
Readonly Cursors and Performance ...473
Related Statements: Fetch...473
Examples: Fetch...474

For-EndFor..475
Example: For-EndFor ..477

Get Data...478
Related Statements: Get Data ..479

Get Dbevent..479
Related Statements: Get Dbevent ...479

Grant (privilege) ..480
Types of Privileges..482
Privilege Defaults..490
Grant All Privileges Option ...491
Grant Option Clause..493
Embedded Usage: Grant (privilege)...493
Locking: Grant (privilege) ..494
Related Statements: Grant (privilege) ...494
Examples: Grant (privilege) ...495

Grant (role)...496
Related Statements: Grant (role)..496
Example: Grant (role) ...496

Help...497
Help Options..498
Wildcards and Help ...500
Locking: Help...500
Related Statements: Help ..501
Examples: Help ..501

If-Then-Else ..502
If Statement ..502

Include...506
Related Statements: Include ..507
Examples: Include ..507

Inquire_sql ...508
Inquiring About Logical Keys ..509

Contents xv

Inquiring About Database Events ..510
Types of Inquiries...510
Related Statements: Inquire_sql...515
Examples: Inquire_sql...516

Insert...517
Embedded Usage: Insert ...518
Repeated Queries ...519
Error Handling..519
Locking: Insert...519
Related Statements: Insert ..519
Examples: Insert ..520

Message ...521
Related Statements: Message ..522
Examples: Message ..523

Modify ..524
Storage Structure Specification...529
Modify...to Reconstruct..531
Modify...to Merge ...531
Modify...to Relocate ..532
Modify...to Reorganize...532
Modify...to Truncated ..533
Modify...to Add_extend ...533
Modify...with Blob_extend..533
Modify...to Phys_consistent|Phys_inconsistent ..533
Modify...to Log_consistent|Log_inconsistent ...534
Modify...to Table_recovery_allowed|Table_recovery_disallowed...534
Modify…to Unique_scope = Statement|Row ..534
Modify…to [No]Readonly..534
Modify…to Priority=n...535
With Clause Options..535
Embedded Usage: Modify...540
Locking: Modify..541
Related Statements: Modify ...541
Examples: Modify ...542

Open..544
Locking: Open..545
Related Statements: Open ...546
Examples: Open ...546

Prepare ..547
Related Statements: Prepare..549
Example: Prepare ...550

Prepare to Commit ...551

xvi SQL Reference Guide

Related Statements: Prepare to Commit ..551
Example: Prepare to Commit..552

Put Data ...554
Related Statements: Put Data ..554

Raise Dbevent ...555
Embedded Usage: Raise Dbevent..555
Related Statements: Raise Dbevent ..556

Raise Error..556
Related Statements: Raise Error ...558
Example: Raise Error ..559

Register Dbevent ...560
Embedded Usage: Register Dbevent..560
Related Statements: Register Dbevent...561

Register Table ...562
Security Log Files ...563
With Clause Options..564
Embedded Usage: Register Table ..564
Locking: Register Table ...564
Related Statements: Register Table...565
Example: Register Table ..565

Remove Dbevent ...566
Related Statements: Remove Dbevent...566

Remove Table ...567
Embedded Usage: Remove Table ..567
Locking: Remove Table ...567
Related Statements: Remove Table...567
Example: Remove Table ..567

Return..568
Example: Return ..568

Return Row ...569
Related Statements: Return Row ..569
Example: Return Row..570

Revoke...570
Revoking Grant Option ..573
Restrict versus Cascade...574
Embedded Usage: Revoke ...575
Locking: Revoke...575
Related Statements: Revoke ..575
Examples: Revoke ..576

Rollback ...577
Embedded Usage: Rollback ..577
Locking: Rollback ...578

Contents xvii

Performance: Rollback...578
Related Statements: Rollback...578

Save ..579
Embedded Usage: Save...579
Locking: Save ..579
Example: Save...579

Savepoint ...580
Embedded Usage: Savepoint..580
Related Statements: Savepoint...580
Example: Savepoint ..581

Select (interactive)...582
Select Statement Clauses ..583
Query Evaluation ..594
Specifying Tables and Views...595
Joins...595
ANSI/ISO Join Syntax ...598
Examples: Select (interactive)..600

Select (embedded)...601
Non-Cursor Select ..602
Select Loops ..603
Retrieving Values into Host Language Variables ..604
Retrieving Long Varchar and Long Byte Values..604
Host Language Variables in Union Clause ...605
Repeated Queries ...605
Cursor Select ...605
Error Handling..606
Embedded Usage: Select (embedded) ...606
Related Statements: Select (embedded) ..606
Examples: Select (embedded) ..607

Set ..610
Embedded Usage: Set ...611
Autocommit ...612
[No]Lock_Trace..612
[No]Journaling ...612
Result_Structure ..613
Lockmode..614
[No]Printqry Option ..616
[No]Qep Option..616
Joinop [No]Timeout ..616
Joinop [No]Greedy..616
[No]Rules Option..617
[No]Printrules ..617

xviii SQL Reference Guide

[No]Maxcost ..617
[No]Maxcpu...618
[No]Maxio ...618
[No]Maxpage ...618
[No]Maxquery ..619
[No]Maxrow...619
[No]Maxidle Option...619
[No]Maxconnect Option ...619
[No]Parallel ...620
Set Role ..620
[No]Printdbevents Option ..620
[No]Logdbevents Option ..621
Random_seed ..621
Session with Add Privileges ..621
Session with Drop Privileges...621
Session with On_error ...622
Session with On_user_error ...622
Session with [No]Description..623
Session with Priority ...623
Session with [No]Privileges ..624
Session with on_logfull ..624
[No]Logging...625
[No]Optimizeonly ...627
Connection ..627
Work Locations ..627
Update_Rowcount...628
Set Session ...629
Set Transaction ..630
Set unicode_substitution [<substitution character>] and Set nounicode_substitution631
Related Statements: Set..632
Examples: Set..632

Set_sql...633
Related Statements: Set_sql ..636

Update ...637
Embedded Usage: Update..638
Cursor Updates ..639
Locking: Update ...640
Related Statements: Update ..640
Examples: Update ..641

Whenever ...642
Embedded Usage: Whenever..645
Locking: Whenever ...645

Contents xix

Related Statements: Whenever ..645
Examples: Whenever ..646

While - Endwhile ..647
Example: While - Endwhile...649

Appendix A: Keywords 651
Single Word Keywords ..651
Multi Word Keywords..662
Partition Keywords ...672
Unreserved ANSI/ISO SQL Keywords ..673

Appendix B: Terminal Monitors 679
Terminal Monitor Releases...679

How Terminal Monitors Are Accessed...680
Terminal Monitor Query Buffering..681
Terminal Monitor Commands..682
Terminal Monitor Messages and Prompts..685
Terminal Monitor Character Input and Output ...685
Implementation of the Help Statement ..686
Aborting the Editor (VMS only) ...686

Appendix C: SQL Statements from Earlier Releases of Ingres 687
Substitute Statements ..687
Abort Statement ..688

Example: Abort Transaction ...688
Example: Partial Abort ..689

Begin Transaction Statement ...689
Example: Begin a Multi-Statement Transaction and Commit Updates690
Example: Begin a Multi-Statement Transaction and Abort...690

Create Permit Statement...691
Example: Create Permit...691

Drop Permit ..692
Embedded Usage: Drop Permit ...692
Locking: Drop Permit ..692
Example: Drop Permit ...693

End Transaction Statement..693
Example: End Transaction..693

Inquire_ingres Statement..693
Relocate Statement ..694

Example: Relocate..694

xx SQL Reference Guide

Set_ingres Statement ...695

Appendix D: SQLSTATE Values and Generic Error Codes 697
SQLSTATE Values...697
Generic Error Codes ...702

Generic Error Data Exception Subcodes ...705
SQLSTATE and Equivalent Generic Errors...706

Appendix E: ANSI Compliance Settings 713
Configuration-By-Forms Settings..713

Case Sensitivity for Identifiers ..713
Default Cursor Mode ...715
Query Flattening...715

Connection Flags..716
-string_truncation Connection Flag..716
-numeric_overflow Connection Flag ...716

ESQL Preprocessor Flags ...717
-wsql ESQL Preprocessor Flag...717
-blank_pad ESQL Preprocessor Flag...717
-sqlcode ..718
-check_eos (C only) ..718

Index 719

Introducing the SQL Reference Guide 21

Chapter 1: Introducing the SQL
Reference Guide

The SQL Reference Guide provides the following information:

 Detailed descriptions of all SQL statements

 Examples of the correct use of SQL statements and features

 Detailed discussion on performing transactions and handling errors

 Detailed descriptions about database procedures, sessions, and events

Audience
This guide is intended for programmers and users who have an understanding
of the SQL language, and a basic understanding of Ingres® and relational
database systems. In addition, you must have a basic understanding of your
operating system. This guide is also intended as a reference for the database
administrator.

Enterprise Access Compatibility
If your installation includes one or more Enterprise Access products, check
your OpenSQL documentation for information about syntax that differs from
the syntax described in this guide. Areas that differ include:

 Varchar data type length

 Legal row size

 Command usage

 Name length

 Table size

System-specific Text in This Guide

22 SQL Reference Guide

System-specific Text in This Guide
Generally, Ingres operates the same on all systems. When necessary,
however, this guide provides information specific to your operating system.
For example:

UNIX: Information is specific to the UNIX environment.

VMS: Information is specific to VMS environment.

Windows: Information is specific to the Windows environment.

When necessary for clarity, the symbol is used to indicate the end of
system-specific text.

For sections that pertain to one system only, the system is indicated in the
section title.

Terminology Used in This Guide
This guide uses the following terminology:

command

A command is an operation that you execute at the operating system
level. An extended operation invoked by a command is often referred to as
a utility.

statement

A statement is an operation that you embed within a program or execute
interactively from a terminal monitor.

Note: A statement can be written in Ingres 4GL, a host programming
language (such as C), or a database query language (SQL or QUEL).

Syntax Conventions Used in This Guide

Introducing the SQL Reference Guide 23

Syntax Conventions Used in This Guide
This guide uses the following conventions to describe command and statement
syntax:

Convention Usage
Regular fixed font Indicates keywords, symbols, or punctuation that you

must enter as shown.

Italics Represent a variable name for which you must supply
an actual value. This convention is used in
explanatory test, as well as syntax.

[] brackets Indicate an optional item.

{ } braces Indicate an optional item that you can repeat as many
times as appropriate.

| (vertical bar) Indicates a list of mutually exclusive items (that is,
you can select only one item from the list).

Introducing SQL 25

Chapter 2: Introducing SQL

This chapter provides an overview of SQL, including an introduction to
interactive and embedded SQL statements. This chapter also describes the
features and extensions of SQL and the database management system
(DBMS).

SQL Functionality
SQL statements enable you to:

 Manipulate database objects—Create, modify, and destroy a variety of
database objects, such as tables, views, indexes, and database
procedures.

 Manipulate data—Select, insert, update, and delete data in database
tables.

 Manage groups of statements as transactions—Process a group of
database statements as a single transaction. Transaction management
includes the ability to undo (roll back) a transaction, either in whole or in
part.

 Perform other database management functions—Set runtime options,
copy data between tables and files, modify the characteristics of a
database table, and perform many other database management functions.

Types of SQL Statements
SQL statements are categorized according to the task performed:

Data Definition Language (DDL)

Creates or deletes objects such as tables, indexes, and database
procedures.

Data Manipulation Language (DML)

Allows data manipulation in tables.

SQL Releases

26 SQL Reference Guide

SQL Releases
SQL statements come in two releases:

Interactive SQL

SQL statements are entered from a terminal and query results display on
the terminal screen.

Embedded SQL

SQL statements can be included in programming languages such as C or
Fortran.

Interactive SQL

Interactive SQL statements are entered through the Terminal Monitor.

Line-Based Terminal Monitors

The line-based Terminal Monitor accepts SQL statements in a line-oriented
style. The line-based Terminal Monitor is invoked by typing sql at the
operating system prompt.

For a complete discussion of the line-based Terminal Monitor, see the
appendix “Terminal Monitors.”

The Help SQL statement displays information about SQL statements and about
tables, views, and other database objects. A complete list of help options is
provided in the chapter “Using SQL Statements.”

Forms Based Terminal Monitor

The forms-based Terminal Monitor accepts SQL statements in a screen-
oriented style. The forms based Terminal Monitor is invoked by typing isql at
the operating system prompt.

Embedded SQL

Embedded SQL statements can be embedded in a procedural (3GL)
programming language. The procedural language is referred to as the host
language.

SQL Releases

Introducing SQL 27

Embedded SQL Support

Embedded SQL is supported in the following host languages:

Windows:

 C

 C++

 COBOL

 Fortran

UNIX:

 C

 C++

 COBOL

 Fortran

 Verdix Ada

VMS:

 C

 C++

 BASIC

 COBOL

 Fortran

 Pascal

 Ada

SQL Releases

28 SQL Reference Guide

How Embedded SQL Differs From Interactive SQL

Embedded SQL statements can be mixed with the full range of host language
statements and provide your applications with full access to Ingres databases.
The statements available in embedded SQL include those available in
interactive SQL; however, embedded SQL differs from interactive SQL in the
following ways:

 Use of Host Language Variables - Embedded SQL allows host variables
to be used in place of many syntactic elements.

 Error and Status Handling - In interactive SQL, error and status
messages are sent directly to the terminal screen. Embedded SQL stores
error and status information in a data structure called the SQL
Communications Area (SQLCA).

 Cursors - To enable an application to process the result of a query one
row at a time, embedded SQL provides cursor versions of the data
manipulation statements Select, Update, and Delete. A database cursor
points to the row currently being processed by the application.

 Forms Statement - Embedded SQL allows the creation of applications
based on forms that have been created through Visual-Forms-Editor
(VIFRED). Using forms statements, your application can:

 Display VIFRED forms

 Transfer data from the form to the database, and vice-versa

 Respond to user actions (such as menu selections, control keys, and
function keys)

 Validate user entries

 Display help screens

 Dynamic Programming - Embedded SQL allows you to create and
execute statements dynamically, specifying portions of SQL statements in
program variables at runtime.

The dynamic programming feature of embedded SQL allows you to specify
tables, columns, and queries at runtime. Dynamic programming allows
generic applications to be written that can be used with any table. Details
about dynamic programming, can be found in Dynamic Programming in
the chapter “Embedded SQL.”

 Multiple Sessions - An embedded SQL application can use multiple
sessions to connect to different databases or to establish multiple
connections to the same database.

 Additional Database Access Statements - Embedded SQL includes
several statements not available in interactive SQL. For example, there are
embedded statements that enable your application to connect to a
particular database, and to manipulate cursors.

SQL Naming and Statement Rules

Introducing SQL 29

SQL Naming and Statement Rules
This section briefly describes the SQL naming and statement rules, as well as
the additional features and extensions of SQL and the database management
system (DBMS).

The following statements and features enable the control of:

 Access to information in the database - Enhancements to the Grant SQL
statement allow you to specify which users can view, add, change, or
delete data from a table. In addition, table access for groups of users and
for individual applications can be controlled.

 Access to computing resources - The Grant SQL statement allows control
of user consumption of computing resources. For example, the amount of
I/O a user can perform can be limited and the approximate maximum
number of rows that can be returned by a query issued by the user to
prevent a runaway query.

 Referential integrity - There are two mechanisms for ensuring that the
data in various tables maintain the relationships required for your business
purposes: rules and referential constraints. Both allow relationships
between specific columns of different tables to be specified, and to specify
actions to be performed when a change to a table violates the
relationships you require.

SQL Naming and Statement Rules

30 SQL Reference Guide

Object Naming Rules

The rules for naming database objects (such as tables, columns, views, and
database procedures) are as follows:

 Names can contain only alphanumeric characters and must begin with an
alphabetic character or an underscore (_). Database names must begin
with an alphabetic character, and cannot begin with an underscore.

 Case significance (upper or lower) is determined by the settings for the
database in which the object is created (Ingres or ANSI/ISO Entry SQL-92-
compliant) and differs for delimited and non-delimited identifiers.

For details about delimited identifiers, see Regular and Delimited
Identifiers in this chapter.

 Names can contain (though cannot begin with) the following special
characters: 0 through 9, #, @, and $. Names specified as delimited
identifiers (in double quotes) can contain additional special characters.

For details about delimited identifiers, see Regular and Delimited
Identifiers in this chapter.

 Database objects (such as tables, columns, views, and database
procedures) cannot begin with the letters, ii. This name is reserved for use
by the DBMS Server.

 The maximum length of an object name is 32 characters. Database names
must be unique to 24 characters (or the maximum file name length
imposed by your operating system, if less than 24).

The following are examples of objects managed by Ingres tools (such as
VIFRED or Vision):

 Forms

 JoinDefs

 QBFNames

 Graphs

 Reports

 Avoid assigning reserved words as object names. A list of reserved words
can be found in the appendix “Keywords.”

SQL Naming and Statement Rules

Introducing SQL 31

Regular and Delimited Identifiers

Identifiers in SQL statements specify names for the following objects:

 Authorization identifier (user, group, or role)

 Column

 Constraint

 Correlation name

 Cursor

 Database event

 Database procedure

 Database procedure label

 Database procedure parameter

 Database procedure variable

 Index

 Location

 Prepared query

 Rule

 Savepoint

 Schema

 Synonym

 Table

 View

Specify these names using regular (unquoted) identifiers or delimited (double-
quoted) identifiers. For example:

 Table name in a Select SQL statement specified using a regular identifier:

select * from employees

 Table name in a Select SQL statement specified using a delimited
identifier:

select * from "my table"

Delimited identifiers enable you to embed special characters in object names.
The use of special characters in regular identifiers is restricted.

Note: Case sensitivity for delimited identifiers are specified when a database
is created. For compliance with ANSI/ISO Entry SQL-92, delimited identifiers
must be case sensitive.

SQL Naming and Statement Rules

32 SQL Reference Guide

Restrictions on Identifiers

The following table lists the restrictions for regular and delimited identifiers
(the names assigned to database objects):

Restriction Regular Identifiers Delimited Identifiers

Quotes Specified without quotes Specified in double quotes

Keywords Cannot be a keyword Can be a keyword

Valid special
characters

“At” sign (@)
(not ANSI/ISO)

Crosshatch (#)
(not ANSI/ISO)

Dollar sign ($)
(not ANSI/ISO)

Underscore (_)

� Ampersand (&)

� Asterisk (*)

� “At” sign (@)

� Colon (:)

� Comma (,)

� Crosshatch (#)

� Dollar sign ($)

� Double quotes (")

� Equal sign (=)

� Forward slash (/)

� Left and right caret (< >)

� Left and right parentheses

� Minus sign (-)

� Percent sign (%)

� Period (.)

� Plus sign (+)

� Question mark (?)

� Semicolon (;)

� Single quote (')

� Space

� Underscore (_)

� Vertical bar (|)

� Backslash (\)

� Caret (^)

� Curly braces ({ })

SQL Naming and Statement Rules

Introducing SQL 33

Restriction Regular Identifiers Delimited Identifiers

� Exclamation point(!)

� Left quote (ASCII 96 or
X'60')

� Tilde (~)

SQL Naming and Statement Rules

34 SQL Reference Guide

Note: The maximum length of an identifier is 32 characters. For ANSI/ISO
Entry SQL-92 compliance, identifiers must be no longer than 18 characters.

The following characters cannot be embedded in object names using either
regular or delimited identifiers:

DEL (ASCII 127 or X'7F')

To specify double quotes in a delimited identifier, repeat the quotes.

For example:

"""Identifier""Name"""

is interpreted as:

"Identifier"Name"

Trailing spaces are deleted from object names specified using delimited
identifiers.

For example:

create table "space test " (scolumn int);

creates a table named, space test, with no trailing blanks (leading blanks are
retained).

If an object name composed entirely of spaces is specified, the object is
assigned a name consisting of a single blank. For example, the following
creates a table named “ ”.

create table " " (scolumn int);

Case Sensitivity of Identifiers

Case sensitivity for regular and delimited identifiers is specified at the time a
database is created. By default, delimited identifiers are not case sensitive. For
compliance with ANSI/ISO Entry SQL-92, however, delimited identifiers must
be case sensitive.

The DBMS Server treats database, user, group, role, cursor, and location
names without regard to case, and mixed-case database or location names
cannot be created.

SQL Naming and Statement Rules

Introducing SQL 35

Comment Delimiters

To indicate comments in interactive SQL, use the following delimiters:

/* and */ (left and right delimiters, respectively).

For example:

/* This is a comment */

When using /*...*/ to delimit a comment, the comment can continue over
more than one line. For example:

/* Everything from here...
...to here is a comment */

The delimiter, --, indicates that the rest of the line is a comment. A comment
delimited by -- cannot be continued to another line.-- (left side only).

For example:

--This is a comment.

To indicate comments in embedded SQL, use the following delimiters:

--, with the same usage rules as interactive SQL. Host language comment
delimiters.

For information about comment delimiters, see the Embedded SQL Companion
Guide.

SQL Naming and Statement Rules

36 SQL Reference Guide

Statement Terminators

Statement terminators separate one SQL statement from another. In
interactive SQL, the statement terminator is the semicolon (;). Terminate
statements with a semicolon when entering two or more SQL statements
before issuing the go command (\g), selecting the Go menu item, or issuing
some other terminal monitor command.

In the following example, semicolons terminate the first and second
statements. The third statement does not need to be terminated with a
semicolon, because it is the final statement.

select * from addrlst;
select * from emp
 where fname = 'john';
select * from emp
 where mgrname = 'dempsey'\g

If only one statement is entered, the statement terminator is not required. For
example, the following single statement does not require a semicolon:

select * from addrlst\g

In embedded SQL applications, the use of a statement terminator is
determined by the rules of the host language. For details, see the Embedded
SQL Companion Guide.

Correlation Names

Correlation names are used in queries to clarify the table (or view) to which a
column belongs or to abbreviate long table names. For example, the following
query uses correlation names to join a table with itself:

select a.empname from emp a, emp b
 where a.mgrname = b.empname
 and a.salary > b.salary;

SQL Naming and Statement Rules

Introducing SQL 37

Correlation Names Rules

Correlation names can be specified in a Select, Delete, Update, Create
Integrity, or Create Rule SQL statement. The rules of using correlation names
are as follows:

 A single query can reference a maximum of 126 table names (including all
base tables referenced by views specified in the query).

 If a correlation name is not specified, the table name implicitly becomes
the correlation name. For example, in the following query:

delete from employee
 where salary > 100000;

the DBMS Server assumes the correlation name of employee for the salary
column and interprets the preceding query as:

delete from employee
 where employee.salary > 100000;

 If a correlation name for a table is specified, use the correlation name (and
not the actual table name) within the query. For example, the following
query generates a syntax error:

/*wrong*/
delete from employee e
 where employee.salary > 35000;

 A correlation name must be unique. For example, the following statement
is illegal because the same correlation name is specified for different
tables:

/*wrong*/
select e.ename from employee e, manager e
 where e.dept = e.dept;

 A correlation name that is the same as a table that you own, cannot be
specified. If you own a table called mytable, the following query is illegal:

select * from othertable mytable...;

In nested queries, the DBMS Server resolves unqualified column names by
checking the tables specified in the nearest from clause, then the from
clause at the next highest level, and so on, until all table references are
resolved.

For example, in the following query, the dno column belongs to the deptsal
table, and the dept column to the employee table.

select ename from employee
 where salary >
 (select avg(salary) from deptsal
 where dno = dept);

SQL Naming and Statement Rules

38 SQL Reference Guide

Because the columns are specified without correlation names, the DBMS
Server performs the following steps to determine to which table the
columns belong:

dno

The DBMS Server checks the table specified in the nearest from clause
(the deptsal table). The dno column does belong to the deptsal table;
the DBMS interprets the column specification as deptsal.dno

dept

The DBMS Server checks the table specified in the nearest from clause
(deptsal). The dept column does not belong to the deptsal table.

The DBMS Server checks the table specified in the from clause at the
next highest level (the employee table). The dept column does belong
to the employee table; the column specification is interpreted as
employee.dept.

 The DBMS Server does not search across subqueries at the same level to
resolve unqualified column names. For example, given the query:

select * from employee
where
dept = (select dept from sales_departments
 where mgrno=manager)
or
dept = (select dept from mktg_departments
 where mgrno=manager_id);

The DBMS Server checks the description of the sales_departments table for
the mgrno and manager columns; if they are not found, it checks the
employee table next, but does not check the mktg_departments table.
Similarly, the DBMS Server first checks the mktg_departments table for the
mgrno and manager_id columns. If they are not found, it checks the employee
table, but never checks the sales_departments table.

Database Procedures

Database procedures are compiled, stored, and managed by the DBMS Server.
Database procedures can be used in conjunction with rules to enforce
database integrities, or to perform frequently repeated operations. When the
procedure is created, its execution plan is saved, reducing the execution
overhead.

SQL Naming and Statement Rules

Introducing SQL 39

Database Procedure Creation

Database procedures can be created interactively or in an embedded program.
A database procedure can be executed in a host language program, in
terminal monitor, in another database procedure, or in a 4GL program.
Database procedures can also be invoked by rules. For more information, see
Database Procedures and Rules in the chapter “Understanding Database
Procedures, Sessions, and Events.”

Determine Settings for a Database

To determine the settings for the database to which a session is connected,
use dbmsinfo(db_name_case) and dbmsinfo(db_delim_case).

For details about dbmsinfo, see Status Information (see page 204)

Object Management Extension

The Object Management Extension allows data types to be created in addition
to the standard SQL data types. Using the Object Management Extension, you
can define operators and a function to manipulate your data types, and
integrate the new data types, operators, and functions into the DBMS Server.

ANSI Compliance

Ingres is compliant with ANSI/ISO Entry SQL-92. In addition, Ingres contains
numerous vendor extensions. For embedded SQL applications, the ESQL
preprocessor can be directed to flag statements in your program that are not
compliant with entry-level ANSI/ISO SQL-92. For details, see the Embedded
SQL Companion Guide.

Information about the settings required to operate in compliance with
ANSI/ISO Entry SQL-92, can be found in the appendix “ANSI Compliance
Settings.”

OpenSQL

OpenSQL is the subset of SQL statements that can be used to access non-
Ingres databases through Enterprise Access products.

SQL Naming and Statement Rules

40 SQL Reference Guide

Security Levels

Basic Ingres installations can be administered in compliance with the C2
security standard. The following statements are of particular interest to C2
security administrators and DBAs:

 Create/drop/help security_alarm

 Enable/disable security_audit

 Create/alter/drop user

 Create/alter/drop role

 Create/alter/drop group

 Create/alter/drop location

 Register/remove table

 Dbmsinfo(security_priv)

 Dbmsinfo(security_audit_log)

For details about administering a C2 site, see the Database Administrator
Guide.

Introducing SQL Data Types 41

Chapter 3: Introducing SQL Data Types

This chapter describes the character, Unicode, numeric, abstract, and binary
SQL data types, along with data type storage formats, literals, and SQL
constants.

SQL Data Types
The following table lists the SQL data types:

Class Category Data Type

Character Fixed length c

 char (character)

 Varying length text

 varchar (character varying)

 long varchar ((clob, character large object,
char large object)

Unicode Fixed length nchar

 Varying length nvarchar

 long nvarchar (clob, nclob, nchar large
object, national character large object)

Numeric Exact numeric integer (integer4)

 smallint (integer2)

 bigint (integer8)

 tinyint (integer1)

 decimal

 Approximate
numeric

float (float8, double precision)

 float4 (real)

Abstract (none) date

 money

 Logical key object_key

table_key

SQL Data Types

42 SQL Reference Guide

Class Category Data Type

Binary byte

 byte varying

 long byte (blob, binary large object)

Character Data Types

Character data types are strings of characters. Upper and lower case
alphabetic characters are accepted literally. There are two fixed-length
character data types: char and c, and three variable-length character data
types: varchar, long varchar, and text.

The maximum row length is dependent on the default_page_size setting (a
DBMS Server configuration parameter), and can be set to a maximum of
32,767 bytes. For further information on page and row size configuration, see
the Database Administrator Guide.

The maximum length of a character column is limited by the maximum row
width configured, but cannot exceed 32,000. Long varchar columns are an
exception: the maximum length of these columns is 2 GB.

C Data Types

Fixed-length c data types accept only printing characters. Non-printing
characters, such as control characters, are converted into blanks.

Blanks are ignored when c strings are compared. For example, this c string:

'the house is around the corner'

is considered equal to:

'thehouseisaroundthecorner'

Note: C is supported for backward compatibility; instead, char is the preferred
fixed length character type.

SQL Data Types

Introducing SQL Data Types 43

Char Data Types

Fixed-length char strings can contain any printing or non-printing character,
and the null character ('\0'). In uncompressed tables, char strings are padded
with blanks to the declared length. (If the column is nullable, char columns
require an additional byte of storage.) For example, if ABC is entered into a
char(5) column, five bytes are stored, as follows:

'ABC '

Leading and embedded blanks are significant when comparing char strings.
For example, the following char strings are considered different:

'A B C'
'ABC'

When selecting char strings using the underscore (_) wildcard character of the
like predicate, include any trailing blanks to be matched. For example, to
select the following char string:

'ABC '

the wildcard specification must also contain trailing blanks:

'_____'

Length is not significant when comparing char strings; the shorter string is
(logically) padded to the length of the longer. For example, the following char
strings are considered equal:

'ABC'
'ABC '

Note: Character is a synonym for char.

SQL Data Types

44 SQL Reference Guide

Text Data Types

All ASCII characters except the null character (\0) are allowed within text
strings. Null characters are converted to blanks.

Blanks are not ignored when text strings are compared. Unlike varchar, if the
strings are unequal in length, blanks are not added to the shorter string. For
example, assume that the following text strings are being compared:

'abcd'

and

'abcd '

The string 'abcd ' is considered greater than the string 'abcd' because it is
longer.

Note: Text is supported for backward compatibility; instead, varchar is the
preferred varying length character type.

Varchar Data Types

Varchar strings are variable-length strings, stored as a 2-byte (smallint) length
specifier followed by data. In uncompressed tables, varchar columns occupy
their declared length. For example, if ABC is entered into a varchar(5) column,
the stored result is:

'03ABCxx'

where:

03 is a 2-byte length specifier

ABC is three bytes of data

xx represents two bytes containing unknown (and irrelevant) data.

If the column is nullable, varchar columns require an additional byte of
storage.

In compressed tables, varchar columns are stripped of trailing data. For
example, if “ABC” is entered into a varchar(5) column in a compressed table,
the stored result is:

'03ABC'

The varchar data type can contain any character, including non-printing
characters and the ASCII null character ('\0').

SQL Data Types

Introducing SQL Data Types 45

Blanks are significant in the varchar data type. For example, the following two
varchar strings are not considered equal:

'the store is closed'

and

'thestoreisclosed'

If the strings being compared are unequal in length, the shorter string is
padded with trailing blanks until it equals the length of the longer string.

For example, consider the following two strings:

'abcd\001'

where:

'\001' represents one ASCII character (ControlA)

and

'abcd'

If they are compared as varchar data types, then

'abcd' > 'abcd\001'

because the blank character added to 'abcd' to make the strings the same
length has a higher value than ControlA ('\040' is greater than '\001').

Long Varchar Data Types

The long varchar data type has the same characteristics as the varchar data
type, but can accommodate strings up to 2GB in length.

Do not declare a length for long varchar columns. In embedded SQL, data
handlers can be created, which are routines to read and write the data for long
varchar (and long byte) columns. For more information on data handlers, see
Data Handlers for Large Objects (see page 178) and the Embedded SQL
Companion Guide.

SQL Data Types

46 SQL Reference Guide

Restrictions on Long Varchar Columns

The following restrictions apply to long varchar columns:

 They cannot be part of a table key.

 They do not declare a length.

 They cannot be part of a secondary index.

 They cannot be used in the order by or group by clause in a Select SQL
statement.

 They can be included in a select list with the “distinct” qualifier, but
duplicate values will not be eliminated.

 They cannot have query optimization statistics. For details about query
optimization statistics, see the discussion of the optimizedb utility in the
Command Reference Guide.

 The following string functions do not work with long varchar columns:

– Locate

– Pad

– Shift

– Squeeze

– Trim

– Notrim

– Charextract

These columns cannot be directly compared to other string data types. To
compare a long varchar column to another string data type, apply a
coercion function.

A string literal of more than 2000 characters cannot be assigned to a long
varchar column. Details about assigning long strings to these columns are
found in the description of data handlers in the Embedded SQL Companion
Guide or the OpenAPI User Guide.

SQL Data Types

Introducing SQL Data Types 47

Unicode Data Types

Unicode datatypes nchar, nvarchar and long nvarchar are used to store
Unicode data. They behave similar to char, varchar and long varchar character
types respectively, except that each character in Unicode types typically uses
16 bits. Similar to their local character counterparts, nchar types are of fixed
length and nvarchar and long nvarchar are of variable length.

Ingres represents Unicode data in UTF-16 encoding form and internally stores
them in Normalization Form D (NFD) or Normalization Form C (NFC)
depending upon the createdb flag (-n or –i) used for creating the database.
Each character of a Unicode value is typically stored in a 2-byte code point
(some complex characters require more). The maximum length of a Unicode
column is limited by the maximum row width configured, but cannot exceed
16,000 characters for nchar and 15,999 for nvarchar. Long nvarchar columns
can have a maximum length of 2 GB.

Unicode data types support the coercion of local character data to Unicode
data, and of Unicode data to local character data. Coercion function
parameters are valid character data types (for example, char, c, varchar and
long varchar) and valid Unicode data types (nchar, nvarchar, and long
nvarchar.).

Embedded programs use wchar_t data type to store and process Unicode
values.

Note: No matter what size the compilation platform uses for the data type
wchar_t, Ingres will initialize only the low 16 bits with UTF-16 data. When
Ingres reads values from wchar_t variables, the values are coerced to 16 bits
and stored in the NFD or NFC canonical form. Applications that make use of
any available bits beyond the lower 16 to represent information, for example
for UTF-32, will not be able to store that information directly in Ingres. It is
the responsibility of the application to convert UTF-32 encoded Unicode to
UTF-16 encoded Unicode for use with the Ingres Unicode data types.

For details on Unicode Normalization Forms, go to http://www.unicode.org.

Numeric Data Types

There are two categories of numeric data types: exact and approximate. Exact
data types include integer data types and decimal data types. Approximate
data types include floating point data types.

SQL Data Types

48 SQL Reference Guide

Integer Data Types

Exact numeric data types includes the following integer data types:

 tinyint (one-byte)

 smallint (two-byte)

 integer (four-byte)

 bigint (eight-byte)

The following table lists the ranges of values for each integer data type:

Integer Data Type Lowest Possible Value Highest Possible Value

tinyint (integer1) -128 +127

smallint (integer2) -32,768 +32,767

integer (integer4) -2,147,483,648 +2,147,483,647

bigint (integer8) -
9,223,372,036,854,775,80
8

+9,223,372,036,854,775
,807

Decimal Data Types

The decimal data type is an exact numeric data type defined in terms of its
precision (total number of digits) and scale (number of digits to the right of
the decimal point).

The following is an example of precision and scale in decimal values:

 Precision=1

Scale=5

12345.67890

The minimum precision for a decimal value is 1 and the maximum precision is
31. The scale of a decimal value cannot exceed its precision. Scale can be 0
(no digits to the right of the decimal point).

Note: The decimal data type is suitable for storing currency data where the
required range of values or number of digits to the right of the decimal point
exceeds the capacities of the money data type. Note that, for display
purposes, a currency sign cannot be specified for decimal values.

SQL Data Types

Introducing SQL Data Types 49

Decimal Data Type Syntax

Specify the decimal data type using the following syntax:

decimal(p,s)

p

Defines the precision.

s

Defines the scale.

Note: Valid synonyms for the decimal data type are dec and numeric.

Floating Point Data Types

A floating point value is represented either as whole plus fractional digits (like
decimal values) or as a mantissa plus an exponent. The following is an
example of the mantissa and exponent parts of floating point values:

There are two floating point data types:

 float4 (4-byte)

 float (8-byte)

Note: Real is a synonym for float4, while float8 and double precision are
synonyms for float.

SQL Data Types

50 SQL Reference Guide

Floating point numbers are stored in four or eight bytes. The range of float
values is processor-dependent, and the precision of the mantissa is up to 7
decimal digits for four byte numbers and up to 16 decimal digits for eight byte
numbers.

You can specify the binary precision (number of significant bits) for a floating
point value using the following optional syntax:

fload(n)

where n is a value from 0 to 53. Storage is allocated according to the precision
that is specified, as follows:

Range of Binary Precision Storage Allocated

0 to 23 4-byte float

24 to 53 8-byte float

Float Point Limitations

Users must consider the effects of data type conversions when numeric values
are combined or compared. This is especially true when dealing with floating
point values.

Exact matches on floating point numbers are discouraged, because float and
float4 data types are approximate numeric values. Integer and decimal data
types, on the other hand, are exact numeric values.

Abstract Data Types

Abstract data types include the following:

 Date data types

 Money data types

 Logical key data types

SQL Data Types

Introducing SQL Data Types 51

Date Data Types

The date data type is an abstract data type. Date values can contain either
absolute dates and times or time intervals. There are six date data type input
formats:

 Absolute date input

 Absolute time input

 Combined date and time input

 Date interval

 Time interval

Absolute Date Input

Dates are specified as quoted character strings. A date can be entered by itself
or together with a time value. If a date is entered without specifying the time,
no time is shown when the data displays.

Date and Time Display (see page 57)

II_DATE_FORMAT

The legal formats for absolute date values are determined by the
II_DATE_FORMAT setting, summarized in the following table. If it is not set,
the US formats are the default input formats. II_DATE_FORMAT can be set on
a session basis. For information on setting II_DATE_FORMAT, see System
Administrator Guide.

The following table lists date input formats:

II_DATE_FORMAT
Setting

Valid Input
Formats

Output

US (default format) mm/dd/yy
mm/dd/yyyy
dd-mmm-yyyy
mm-dd-yyyy
yyyy.mm.dd
yyyy_mm_dd
mmddyy
mm-dd
mm/dd

dd-mmm-yyyy

MULTINATIONAL dd/mm/yy
and all US formats
except mm/dd/yyyy

dd/mm/yy

SQL Data Types

52 SQL Reference Guide

II_DATE_FORMAT
Setting

Valid Input
Formats

Output

MULTINATIONAL4 dd/mm/yyyy
and all US formats

dd/mm/yyyy

ISO yymmdd
ymmdd
yyyymmdd
mmdd
mdd
and all US input
formats except
mmddyy

yymmdd

ISO4 yymmdd
ymmdd
yyyymmdd
mmdd
mdd
and all US input
formats except
mmddyy

yyyymmdd

SWEDEN/FINLAND yyyy-mm-dd

all US input formats
except mm-dd-yyyy

yyyy-mm-dd

GERMAN dd.mm.yyyy
ddmmyy
dmmyy
dmmyyyy
ddmmyyyy
and all US input
formats except
yyyy.mm.dd and
mmddyy

dd.mm.yyyy

YMD mm/dd
yyyy-mm-dd
mmdd
yymdd
yymmdd
yyyymdd
yyyymmdd
yyyy-mmm-dd

yyyy-mmm-dd

SQL Data Types

Introducing SQL Data Types 53

II_DATE_FORMAT
Setting

Valid Input
Formats

Output

DMY dd/mm
dd-mm-yyyy
ddmm
ddmyy
ddmmyy
ddmyyyy
ddmmyyyy
dd-mmm-yyyy

dd-mmm-yyyy

MDY mm/dd
dd-mm-yyyy
mmdd
mddyy
mmddyy
mddyyyy
mmddyyyy
mmm-dd-yyyy

mmm-dd-yyyy

Year defaults to the current year. In formats that include delimiters (such as
forward slashes or dashes), specify the last two digits of the year; the first two
digits default to the current century (2000). For example, if this date is
entered:

'03/21/03'

using the format mm/dd/yyyy, the DBMS Server assumes that you are
referring to March 21, 2003.

In three-character month formats, for example, dd-mmm-yy, specify three-
letter abbreviations for the month (for example, mar, apr, may).

To specify the current system date, use the constant, today. For example:

select date('today');

To specify the current system date and time, use the constant, now.

SQL Data Types

54 SQL Reference Guide

II_DATE_CENTURY_BOUNDARY

The II_DATE_CENTURY_BOUNDARY variable, which can be set to an integer in
the 0< n <=100 range, dictates the implied century for a date when only the
last two digits of the year are entered.

For example, if II_DATE_CENTURY_BOUNDARY is 50 and the current year is
1999, an input date of 3/17/51 is treated as March 17, 1951, but a date of
03/17/49 is treated as March 17, 2049.

If the II_DATE_CENTURY_BOUNDARY variable is not set or if it is set to 0 or
100, the current century is used. If the user enters the full four digits for the
year in a four-digit year field in the application, the year is accepted as
entered, regardless of the II_DATE_CENTURY_BOUNDARY setting.

Absolute Time Input

The legal format for inputting an absolute time is:

'hh:mm[:ss] [am|pm] [timezone]'

Input formats for absolute times are assumed to be on a 24-hour clock. If a
time with an am or pm designation is entered, the time is converted to a 24-
hour internal and displayed representation.

If timezone is omitted, the local time zone designation is assumed. Times are
stored as Greenwich Mean Time (GMT) and displayed using the time zone
adjustment specified by II_TIMEZONE_NAME. For details about time zone
settings and valid time zones, see the Getting Started guide.

If an absolute time without a date is entered, the date defaults to the current
system date.

Combined Date and Time Input

Any valid absolute date input format can be paired with a valid absolute time
input format to form a valid date and time entry. The following table shows
examples of valid date and time entries, using the US absolute date input
formats:

Format Example

mm/dd/yy hh:mm:ss 11/15/03 10:30:00

dd-mmm-yy hh:mm:ss 15-nov-03 10:30:00

mm/dd/yy hh:mm:ss 11/15/03 10:30:00

dd-mmm-yy hh:mm:ss gmt 15-nov-03 10:30:00 gmt

SQL Data Types

Introducing SQL Data Types 55

Format Example

dd-mmm-yy hh:mm:ss [am|pm] 15-nov-03 10:30:00 am

mm/dd/yy hh:mm 11/15/03 10:30

dd-mmm-yy hh:mm 15-nov-03 10:30

mm/dd/yy hh:mm 11/15/03 10:30

dd-mmm-yy hh:mm 15-nov-03 10:30

Date Interval

Dates intervals, like absolute date values, are entered as quoted character
strings. Date intervals can be specified in terms of years, months, days, or
combinations of these. Years and months can be abbreviated to yrs and mos,
respectively. For example:

'5 years'
'8 months'
'14 days'
'5 yrs 8 mos 14 days'
'5 years 8 months'
'5 years 14 days'
'8 months 14 days'

The following table lists valid ranges for date intervals:

Date Interval Range

Years -9999 to +9999

Months -119988 to +119988

Days -3652047 to +3652047

SQL Data Types

56 SQL Reference Guide

Time Interval

Time intervals can be specified as hours, minutes, seconds, or combinations of
these units. They can be abbreviated to hrs, mins, or secs. For example:

'23 hours'
'38 minutes'
'53 seconds'
'23 hrs 38 mins 53 secs'
'23 hrs 53 seconds'
'28 hrs 38 mins'
'38 mins 53 secs'
'23:38 hours'
'23:38:53 hours'

All values in an interval must be in the range -2,147,483,639 to
+2,147,483,639. If a time interval greater than 1 day is entered, the interval
is converted to a date and time interval.

For example:

'26 hours'

is converted to:

'1 day 2 hours'

SQL Data Types

Introducing SQL Data Types 57

Date and Time Display

Date values display as strings of 25 characters with trailing blanks inserted.

To specify the output format of an absolute date and time, set
II_DATE_FORMAT. For a list of II_DATE_FORMAT settings and associated
formats, see Absolute Date Input. The display format for absolute time is:

hh:mm:ss

The DBMS Server displays 24-hour times for the current time zone, which is
determined when Ingres is installed. Dates are stored in Greenwich Mean Time
(GMT) and adjusted for your time zone when they are displayed.

If seconds are not entered when entering a time, zeros display in the seconds
place.

For a time interval, Ingres displays the most significant portions of the interval
that fit in the 25-character string. If necessary, trailing blanks are appended to
fill out the string. The format appears as:

yy yrs mm mos dd days hh hrs mm mins ss secs

Significance is a function of the size of any component of the time interval. For
instance, if the following time interval is entered:

5 yrs 4 mos 3 days 12 hrs 32 min 14 secs

the entry is displayed as:

5 yrs 4 mos 3 days 12 hrs

Truncating the least significant portion of the time (the minutes and seconds)
to fit the result into 25 characters.

SQL Data Types

58 SQL Reference Guide

Money Data Types

The money data type is an abstract data type. Money values are stored
significant to two decimal places. These values are rounded to their amounts
in dollars and cents or other currency units on input and output, and
arithmetic operations on the money data type retain two-decimal-place
precision.

Money columns can accommodate the following range of values:

$-999,999,999,999.99 to $999,999,999,999.99

A money value can be specified as either:

 A character string literal—The format for character string input of a money
value is $sdddddddddddd.dd. The dollar sign is optional and the algebraic
sign(s) defaults to + if not specified. There is no need to specify a cents
value of zero (.00).

 A number—Any valid integer or floating point number is acceptable. The
number is converted to the money data type automatically.

On output, money values display as strings of 20 characters with a default
precision of two decimal places. The display format is:

$[-]dddddddddddd.dd

where:

$ is the default currency symbol
d is a digit from 0 to 9

The following settings affect the display of money data. For details, see the
System Administrator Guide:

Variable Description

II_MONEY_FORMAT Specifies the character displayed as the currency
symbol. The default currency sign is the dollar sign ($).
II_MONEY_FORMAT also specifies whether the symbol
appears before of after the amount.

II_MONEY_PREC Specifies the number of digits displayed after the
decimal point; valid settings are 0, 1, and 2.

II_DECIMAL Specifies the character displayed as the decimal point;
the default decimal point character is a period (.).
II_DECIMAL also affects FLOAT, FLOAT4, and the
DECIMAL data types.

SQL Data Types

Introducing SQL Data Types 59

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

Logical Key Data Types

The logical key data type allows the DBMS Server or your application to assign
a unique key value to each row in a table. Logical keys are useful when an
application requires a table to have a unique key, and the columns of the table
do not comprise a unique key.

SQL Data Types

60 SQL Reference Guide

Types of Logical Keys

There are two types of logical keys:

 System_maintained—The DBMS Server automatically assigns a unique
value to the column when a row is appended to the table. Users or
applications cannot change system_maintained columns. When the column
is created, the DBMS Server assigns it the option, not null with default. An
error is returned if any option other than not null with default is specified.

 Not system_maintained—The DBMS Server does not assign a value to
the column when a row is appended. Your application must maintain the
contents of the column; users and application programs can change logical
key columns that are not system_maintained. The default for logical key
columns is not system_maintained.

Specify the scope of uniqueness for system_maintained logical key columns
using the following options:

 Table_key—Values are unique within the table.

 Object_key—Values are unique within the entire database.

If two or more system_maintained logical key columns of the same type
(object_key or table_key) are created within the same table, the same value is
assigned to all columns of the same type in a given row. Different values are
assigned to object and table key columns in the same row, as shown in the
following diagram:

Table Key Object Key Table Key Object Key

Same Values Same Values

Different Values

SQL Data Types

Introducing SQL Data Types 61

Table_key values are returned to embedded SQL programs as 8-byte char
strings, and object_key values as 16-byte char strings. Values can be assigned
to logical keys that are not system_maintained using string literals. For
example:

insert into keytable(table_key_column)
 values('12345678');

Values assigned to table_keys must be 8-character strings; values assigned to
object_keys must be 16-character strings.

Restrictions on Logical Keys

When working with logical keys, be aware of the following restrictions:

 A system_maintained logical key column cannot be created using the
create table..as select statement. A not system_maintained data type is
assigned to the resulting column.

 The copy statement cannot be used to load values from a file into a
system_maintained column.

Binary Data Types

There are three binary data types:

 Byte

 Byte varying

 Long byte

Binary columns can contain data such as graphic images, which cannot easily
be stored using character or numeric data types.

Byte Data Types

The byte data type is a fixed length binary data type. If the length of the data
assigned to a byte column is less than the declared length of the column, the
value is padded with zeros to the declared length when it is stored in a table.
The minimum length of a byte column is 1 byte, and the maximum length is
limited by the maximum row width configured but not exceeding 32,000.

Byte Varying Data Types

The byte varying data type is a variable length data type. The actual length of
the binary data is stored with the binary data, and, unlike the byte data type,
the data is not padded to its declared length. The minimum length of a byte
varying column is 1 byte, and the maximum length is limited by the maximum
row width configured, but not exceeding 32,000.

SQL Data Types

62 SQL Reference Guide

Long Byte Data Types

The long byte data type has the same characteristics as the byte varying data
type, but can accommodate binary data up to 2 GB in length. In embedded
SQL data handlers can be created, which are routines to read and write the
data for long byte columns. For details about data handlers, see Handlers for
Large Objects in the chapter “Embedded SQL” and the Embedded SQL
Companion Guide.

Restrictions to Long Byte Data Types

The following restrictions apply to long byte columns:

 They cannot be part of a table key.

 They do not declare a length

 They cannot be part of a secondary index.

 They cannot be used in the order by group, or by clause of a select
statement.

 They cannot have query optimization statistics. For details about query
optimization statistics, see the discussion of the optimizedb utility in the
Command Reference Guide.

 The following string functions do not work with long byte columns:

– Locate

– Pad

– Shift

– Squeeze

– Trim

– Notrim

– Charextract

 Long byte columns cannot be directly compared to other data types. To
compare a long byte column to another data type, apply a coercion
function.

 A literal of more than 2000 bytes cannot be assigned to a long byte
column. For details about assigning long values to long byte columns, see
the description of data handlers in the Embedded SQL Companion Guide,
Dynamic Programming in the chapter “Embedded SQL” or the OpenAPI
User Guide.

Storage Formats of Data Types

Introducing SQL Data Types 63

Storage Formats of Data Types
The following table lists storage formats for SQL data types:

Data Type Description Range

char character A string of 1 to maximum configured row
size but not exceeding 32,000

c character A string of 1 to maximum configured row
size but not exceeding 32,000.

varchar character A string of 1 to maximum configured row
size but not exceeding 32,000.

long varchar character A string of 1 to 2 GB characters.

text character A string of 1 to maximum configured row
size but not exceeding 32,000.

nchar Unicode A string of 1 to maximum configured row
size, but not exceeding 16,000 characters
(32,000 bytes).

nvarchar Unicode A string of 1 to maximum configured row
size, but not exceeding 16,000 characters
(32,000 bytes).

long
nvarchar

Unicode A string of 1 to a maximum of 1 GB
Unicode characters (that is, 2 bytes to a
maximum of 2 GB bytes in length).

tinyint 1-byte integer -128 to +127

smallint 2-byte integer -32,768 to +32,767

integer 4-byte integer -2,147,483,648 to +2,147,483,647.

bigint 8-byte integer -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

decimal fixed-point exact
numeric

Depends on precision and scale. Default
is (5,0): -99999 to +99999. Maximum
number of digits is 31.

float4 4-byte floating -1.0e+38 to +1.0e+38 (7 digit precision).

float 8-byte floating -1.0e+38 to +1.0e+38

date date (12 bytes) 1-jan-0001 to 30-dec-9999 (for absolute
dates) and -9999 years to +9999 years
(for time intervals).

money money (8 bytes) $-999,999,999,999.99 to
$999,999,999,999.99.

Literals

64 SQL Reference Guide

Data Type Description Range

table_key logical key No range: stored as 8 bytes.

object_key logical key No range: stored as 16 bytes.

byte binary Fixed length binary data, 1 to maximum
configured row size.

byte varying binary Variable length binary data, 1 to
maximum configured row size.

long byte binary 1 to 2 GB of binary data.

Nullable columns require one additional byte to store a null indicator.

Note: If your hardware supports the IEEE standard for floating point numbers,
the float type is accurate to 14 decimal precision (-dddddddddddd.dd to
+dddddddddddd.dd) and ranges from -10**308 to +10**308. The money
type is accurate to 14 decimal precision with or without IEEE support.

Literals
A literal is an explicit representation of a value. There are two types of literals:

 String

 Numeric

Literals

Introducing SQL Data Types 65

String Literals

String literals are specified by one or more characters enclosed in single
quotes. The default data type for string literals is varchar, but a string literal
can be assigned to any character data type or to money or date data type
without using a data type conversion function.

To compare a string literal with a non-character data type (A), you must either
cast the string literal to the non-character data type A, or cast the non-
character data type to the string literal type. Failure to do so causes
unexpected results if the non-character data type contains the ‘NULL (0)
value.

For example, to compare the function X string literal that returns a varchar
data type to a byte data type, cast the result of the X function as follows:

SELECT * FROM uid_table
 WHERE uid = BYTE(X’010000000000000000000000000000’)

or

SELECT * FROM uid_table
 WHERE HEX(uid) = ’010000000000000000000000000000’

Hexadecimal Representation

To specify a non-printing character in terminal monitor, use a hex
(hexadecimal) constant. Hex constants are specified by an X followed by a
single-quoted string composed of (an even number of) alphanumeric
characters. For example, the following represents the ASCII string
ABC<carriage return>:

X'4142430D'

A = X'41', B = X'42', C = X'43', and carriage return = X'OD'.

Quotes within Strings

To include a single quote inside a string literal, it must be doubled. For
example:

'The following letter is quoted: ''A''.'

which is evaluated as:

The following letter is quoted: 'A'.

Literals

66 SQL Reference Guide

Numeric Literals

Numeric literals specify numeric values. There are three types of numeric
literals:

 Integer

 Decimal

 Floating point

A numeric literal can be assigned to any of the numeric data types or the
money data type without using an explicit conversion function. The literal is
automatically converted to the appropriate data type, if necessary.

By default, the period (.) is displayed to indicate the decimal point. This
default can be changed by setting II_DECIMAL. For information about setting
II_DECIMAL, see the System Administrator Guide.

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

Integer Literals

Integer literals are specified by a sequence of up to 10 digits and an optional
sign, in the following format:

[+|-] digit {digit} [e digit]

Integer literals are represented internally as either an integer or a smallint,
depending on the value of the literal. If the literal is within the range -32,768
to +32,767, it is represented as a smallint. If its value is within the range -
2,147,483,648 to +2,147,483,647 but outside the range of a smallint, it is
represented as an integer. Values that exceed the range of integers are
represented as decimals.

You can specify integers using a simplified scientific notation, similar to the
way floating point values are specified. To specify an exponent, follow the
integer value with the letter, e, and the value of the exponent. This notation is
useful for specifying large values. For example, to specify 100,000 use the
exponential notation as follows:

1e5

SQL Constants

Introducing SQL Data Types 67

Decimal Literals

Decimal literals are specified as signed or unsigned numbers of 1 to 31 digits
that include a decimal point. The precision of a decimal number is the total
number of digits, including leading and trailing zeros. The scale of a decimal
literal is the total number of digits to the right of the decimal point, including
trailing zeros.

Decimal literals that exceed 31 digits are treated as floating point values.

Examples of decimal literals are:

3.

-10.

1234567890.12345

001.100

Floating Point Literals

A floating point literal must be specified using scientific notation. The format
is:

[+|-] {digit} [.{digit}] e|E [+|-] {digit}

For example:

2.3e-02

At least one digit must be specified, either before or after the decimal point.

SQL Constants
It is possible to use the following constants in queries:

Special Constant Meaning

Now Current date and time. This constant must be specified
in quotes.

Note: This constant only works when used within the
SQL date() function.

Null Indicates a missing or unknown value in a table.

Nulls

68 SQL Reference Guide

Special Constant Meaning

Today Current date. This constant must be specified in
quotes.

Note: This constant only works when used within the
SQL date() function.

User Effective user of the session (the Ingres user identifier,
not the operating system user identifier).

current_user Same as user.

system_user Operating system user identifier of the user who
started the session.

initial_user Ingres user identifier in effect at the start of the
session.

session_user Same as user.

These constants can be used in queries and expressions. For example:

select date('now');

insert into sales_order
 (item_number, clerk, billing_date)
 values ('123', user, date('today')+date('7 days'));

To specify the effective user at the start of a session, use the Ingres -u flag
(for operating system commands) or the identified by clause of the SQL
connect statement.

Nulls
A null represents an undefined or unknown value and is specified by the
keyword null. A null is not the same as a zero, a blank, or an empty string. A
null can be assigned to any nullable column when no other value is specifically
assigned. More information about defining nullable columns is provided in the
section Create Table in the chapter “Using SQL Statements.”

The ifnull function and the is null predicate allow nulls in queries to be
handled. For details, see ifNull function and isNull in the chapter “Elements of
SQL Statements.”

Nulls

Introducing SQL Data Types 69

Nulls and Comparisons

Because a null is not a value, it cannot be compared to any other value
(including another null value). For example, the following where clause
evaluates to false if one or both of the columns is null:

where columna = columnb

Similarly, the where clause:

where columna < 10 or columna >= 10

is true for all numeric values of columna, but false if columna is null.

Nulls and Aggregate Functions

If an aggregate function against a column that contains nulls is executed, the
function ignores the nulls. This prevents unknown or inapplicable values from
affecting the result of the aggregate. For example, if the aggregate function,
avg(), is applied to a column that holds the ages of your employees, be sure
that any ages that have not been entered in the table are not treated as zeros
by the function. This distorts the true average age. If a null is assigned to any
missing ages, the aggregate returns a correct result: the average of all known
employee ages.

Aggregate functions, except count(), return null for an aggregate that has an
argument that evaluates to an empty set. (Count() returns 0 for an empty
set.) In the following example, the select returns null, because there are no
rows in the table named test.

create table test (col1 integer not null);
select max(col1) as x from test;

In the above example, use the ifnull function to return a zero (0) instead of a
null:

select ifnull(max(coll),0) as x from test;

For more information, see ifNull function in the chapter “Elements of SQL
Statements.”

When specifying a column that contains nulls as a grouping column (that is, in
the group by clause) for an aggregate function, nulls in the column are treated
as equal for the purposes of grouping. This is the one exception to the rule
that nulls are not equal to other nulls. For information about the group by
clause, see the chapter "Using SQL Statements".

Nulls

70 SQL Reference Guide

Nulls and Integrity Constraints

When creating a table with nullable columns and subsequently creating
integrities on those columns (using the create integrity statement), the
constraint must include the or...is null clause to ensure that nulls are allowed
in that column.

For example, if the following create table statement is issued:

create table test (a int, b int not null);
/* "a" is nullable */

and the following integrity constraint is defined on the test table:

create integrity on test is a > 10;

the comparison, a >10, is not true whenever a is null. For this reason, the
table does not allow nulls in column a, even though the column is defined as a
nullable column.

Similarly, the following insert statements fails:

insert into test (b) values (5);
insert into test values (null, 5);

Both of these insert statements are acceptable if the integrity had not been
defined on column a. To allow nulls in column a, define the integrity as:

create integrity on test is a > 10 or a is null;

Note: If an integrity on a nullable column is created without specifying the
or...is null clause and the column contains nulls, the DBMS Server issues an
error and the integrity is not created.

Understanding the Elements of SQL Statements 71

Chapter 4: Understanding the Elements
of SQL Statements

This chapter describes the following elements of SQL statements:

 Operators, functions and predicates

 Arithmetic operations, assignments, and other basic operations

 Expressions and search conditions in queries

This chapter identifies the differences in syntax between embedded and
interactive SQL (where applicable). If the embedded syntax is dependent on a
host language, see the Embedded SQL Companion Guide.

SQL Operators
There are three types of SQL operators:

 arithmetic

 comparison

 logical

Arithmetic Operators

Arithmetic operators are used to combine numeric expressions arithmetically
to form other numeric expressions.

The following are the valid arithmetic operators (in descending order of
precedence):

Arithmetic Operator Description

+ and – plus, minus (unary)

** exponentiation (binary)

* and / multiplication, division (binary)

+ and – addition, subtraction (binary)

SQL Operators

72 SQL Reference Guide

Unary operators group from right to left, while binary operators group from
left to right. Use the unary minus (-) to reverse the algebraic sign of a value.

To force a desired order of evaluation, use parentheses. For example:

(job.lowsal + 1000) * 12

is an expression in which the parentheses force the addition operator (+) to
take precedence over the multiplication operator (*).

Comparison Operators

Comparison operators allow you to compare two expressions. SQL includes the
following comparison operators:

Comparison Operator Description

= equal to

<> not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

In addition, you can specify the comparison operator “not equal to” (<>) using
“!=” or “^=”.

All comparison operators are of equal precedence.

The equal sign (=) also serves as the assignment operator in assignment
operations. For a discussion of assignment operations, see Assignment
Operations (see page 75).

SQL Operators

Understanding the Elements of SQL Statements 73

Logical Operators

There are three logical operators in SQL:

 Not

 And

 Or

The not operator has the highest precedence, followed by the and operator,
with the or operator having the least precedence. Use parentheses to change
this behavior. For example, the following expression:

exprA or exprB and exprC

is evaluated as:

exprA or (exprB and exprC)

To change the order of evaluation, use parentheses:

(exprA or exprB) and exprC

When parentheses are used as shown, the DBMS Server evaluates (exprA or
exprB) first, then uses the and operator for the result with exprC.

Parentheses can also be used to change the default evaluation order of a
series of expressions combined with the same logical operator. For example,
the following expression:

exprA and exprB and exprC

is evaluated as:

(exprA and exprB) and exprC

To change this default left-to-right grouping, use parentheses as follows:

exprA and (exprB and exprC)

The parentheses direct the DBMS Server to use the and operator for exprB and
exprC, then use the and operator for that result with exprA.

SQL Operations

74 SQL Reference Guide

There is a per-query limit of 127 or expressions. Because the limit is checked
after the query is optimized, it is probably not obvious that your query has
exceeded the limit. The query optimizer converts all expressions to
expressions combined using the logical operator, and. The following example
illustrates this effect of query optimization:

Before optimization:

expressionA or (expressionB and expressionC)

has one or expression.

After optimization:

(expressionA or expressionB) and (expressionA or expressionC)

has two or expressions.

As a result of optimization, the number of the or logical operators in the query
has doubled. To avoid exceeding the limit, be aware of this side effect of query
optimization.

SQL Operations
This basic SQL operations supported include:

 String concatenation operations

 Assignment operations

 Arithmetic operations

 Date operations

String Concatenation Operations

To concatenate strings, use the + operator. For example:

'This ' + 'is ' + 'a ' + 'test.'

gives the value:

'This is a test.'

Use the concat function to also concatenate strings. For details, see String in
the chapter "Introducing SQL Data Types."

SQL Operations

Understanding the Elements of SQL Statements 75

Assignment Operations

An assignment operation places a value in a column or variable. Assignment
operations occur during the execution of insert, update, fetch, create table
as...select, and embedded select statements. Assignments can also occur
within a database procedure.

Rules of Assignment Operations

When an assignment operation occurs, the data types of the assigned value
and the receiving column or variable must either be the same or comparable.

 If the data types are not the same, comparable data types are converted.

 If the data types are not comparable, convert the assignment value into a
type that is the same or comparable with the receiving column or variable.

For information about the type conversion functions, see Default Type
Conversion (see page 81).

Compatibility of Character String Data Types

All character string types are compatible with one another.

Character string types include the following data types:

 char

 varchar

 c

 text

 nchar

 nvarchar

Note: Long varchar and long nvarchar values that do not exceed the lesser of
maximum configured row size and 32,000 are comparable with other character
data types.

Compatibility of Date and String Data Types

Date data types are compatible with string data types if the value in the string
is a valid representation of a date input format.

 Absolute Date Input (see page 51)

Compatibility of Numeric Data Types

All numeric types are compatible with one another. Money is compatible with
all of the numeric and string data types.

SQL Operations

76 SQL Reference Guide

Compatibility of Table Keys

A table_key is comparable with other table_keys and with an 8-byte char or
varchar data item. An object_key is comparable with other object_keys and
with a 16-byte char or varchar data item.

For example, assuming that the following table is created:

create table emp
 (name char(20),
 salary money not null,
 hiredate date not null);

this insert statement:

insert into emp (name, salary, hiredate)
 values ('John Smith', 40000, '10/12/98');

assigns the varchar string literal, John Smith, to the char column name; the
integer literal, 40000, to the money column salary; and the varchar string
literal, 10/12/98, to the date column hiredate.

Other examples of assignments are:

update emp set name = 'Mary Smith'
 where name = 'Mary Jones';

and

create table emp2 (name2, hiredate2) as
 select name, hiredate from emp;

and, from a database procedure:

result = 'salary is' + varchar(:salary);

In the following embedded SQL example, the value in the name column is
assigned to the variable, name_var, for each row that fulfills the where clause.

exec sql select name into :name_var from emp
 where empno = 125;

Note: If assigning to a host language variable, see the Embedded SQL
Companion Guide for information about which host language data types are
comparable with SQL data types.

Character String

All character types are comparable with one another. Any character string can
be assigned to any column or variable of character data type. The result of the
assignment depends on the types of the assignment string and the receiving
column or variable.

SQL Operations

Understanding the Elements of SQL Statements 77

Assignment for Fixed-length Data Types

For fixed-length assignment strings, if the receiving column or variable is of
fixed-length, the assigned string is truncated or padded with spaces if the
receiving column or variable is not the same length as the fixed length string.
If the assigned string is truncated to fit into a host variable, a warning
condition is indicated in SQLWARN. For a discussion of the SQLWARN
indicators, see SQL Communications Area (SQLCA) (see page 212)

For fixed length assignment strings, if the receiving column or variable is of
variable length (varchar, long varchar, or text), the trailing spaces are
trimmed. If the receiving column or variable is shorter than the fixed length
string, the fixed length string is truncated from the right side. If the
assignment was to a variable, a warning condition is indicated in SQLWARN.
For a discussion of the SQLWARN indicators, see SQL Communications Area
(SQLCA) (see page 212)

Note: If a long varchar value over is assigned to another character data type,
the result is truncated at the maximum row size configured but not exceeding
32,000.

Assignment for Variable Length Data Types

For assignment strings of variable length if the receiving column or variable is
of type fixed-length, the assignment string is truncated or padded with spaces
if the receiving column or variable is not of the same length as the variable
length string.

Note: If a long varchar value over is assigned to another character data type,
the result is truncated at the maximum row size configured but not exceeding
32,000.

For assignment strings of variable length that have receiving variable or
columns of variable lengths, the variable length string is truncated if the
receiving length variable is not long enough.

String Truncation Errors

If an attempt is made to insert a string value into a table column that is too
short to contain the value, the string is truncated.

SQL Operations

78 SQL Reference Guide

Causes of String Truncation

String truncation can occur as a result of the following statements:

 Copy

 Create table...as select

 Insert

 Update

Specify Error Handling for String Truncation

To specify error handling for string truncation, use the -
string_truncation=option flag, specified when a session connects to a database
(using the connect statement). Options for error handling are:

Option Description

ignore (default setting) The string is truncated and inserted. No error or
warning is issued.

fail The string is not inserted, an error is issued, and
the statement is aborted.

This flag can also be specified on the command line for Ingres operating
system commands that accept SQL option flags. For details about SQL option
flags, see the sql command description in the Command Reference Guide.

Numeric

All numeric types are compatible with one another. Money is compatible with
all of the numeric and string data types.

SQL Operations

Understanding the Elements of SQL Statements 79

Rules of Numeric Assignments

Numeric assignments follow these rules:

 The DBMS Server can truncate leading zeros, or all or part of the fractional
part of a number if necessary. If truncation of the non-fractional part of a
value (other than leading zeros) is necessary, an overflow error results.
These errors are reported only if the -numeric_overflow flag is set to warn
or fail. For information about the -numeric_overflow flag, see the sql
command description in the Command Reference Guide.

 If the receiving column or variable specifies more digits to the right of the
decimal point than is present in the assignment value, the assignment
value is padded with trailing zeros.

 When a float, float4, decimal, or money value is assigned to an integer
column or variable, the fractional part is truncated.

 When a decimal value with a scale greater than two is assigned to a
money column or variable, the fractional value is rounded.

Date

Date data types are compatible with string data types if the value in the string
is a valid representation of a date input format.

Absolute date or interval column values can be assigned to a date column. In
addition, a string literal, a character string host variable, or a character string
column value can be assigned to a date column if its value conforms to the
valid input formats for dates.

When a date value is assigned to a character string, the DBMS Server converts
the date to the display format. For more information about date display
formats, see Date and Time Display (see page 57) .

SQL Operations

80 SQL Reference Guide

Types of Logical Keys

There are two types of logical keys:

Table_key—This is comparable only with another table_key or a char that has
a length of 8 bytes (char(8)).

Object_key—This is comparable only with another object_key or a char that
has a length of 16 bytes (char(16)).

If a logical key column is declared as system_maintained, the DBMS Server
assigns the values to that column. System_maintained logical key columns
cannot be updated. If a logical key column is declared as not
system_maintained, values must be assigned to the column.

In embedded SQL programs, if values are assigned using host variables, the
host variables must be char(8)-comparable for table_key columns, and
char(16)-comparable variables for object_key columns.

Values can be assigned to logical keys, not system_maintained, using a hex
constant or a string literal. For information about the format of a hex constant,
see String Literals.

Values assigned to table_keys must be 8 bytes long. Values assigned to
object_keys must be 16 bytes long. The following example inserts the value 1
into a table_key column using a hex constant:

insert into test (tablekey) values (table_key(X'0000000000000001'));

The previous statement inserts 7 bytes containing 0, followed by 1 byte
containing 1. The value is explicitly converted to a table key using the
table_key conversion function.

The following example assigns the value 'abc' (padded to 8 characters for data
type compatibility) to a logical key column:

insert into test (tablekey) values (table_key('abc'));

Null Value Assignment

A null can be assigned to a column of any data type if the column was defined
as a nullable column. A null can also be assigned to a host language variable if
there is an indicator variable associated with the host variable. For more
information about indicator variables, see Indicator Variables in the chapter
“Working with Embedded SQL.”

To ensure that a null is not assigned to a column, use the Ifnull Function.

SQL Operations

Understanding the Elements of SQL Statements 81

Arithmetic Operations

An arithmetic operation combines two or more numeric expressions using the
arithmetic operators to form a resulting numeric expression. For details about
arithmetic operators, see Arithmetic Operators (see page 71).

Before performing any arithmetic operation, the participating expressions are
converted to identical data types. After the arithmetic operation is performed,
the resulting expression too has that storage format.

Default Type Conversion

When two numeric expressions are combined, the data types of the
expressions are converted to be identical; this conversion determines data
type of the result. The expression having the data type of lower precedence is
converted to the data type of the higher. The order of precedence among the
numeric data types is, in highest-to-lowest order:

 money

 float4

 float

 decimal

 integer8

 integer

 smallint

 integer1

For example, in an operation that combines an integer and a floating point
number, the integer is converted to a floating point number. If the operands
are two integers of different sizes, the smaller is converted to the size of the
larger. The conversions are done before the operation is performed.

SQL Operations

82 SQL Reference Guide

The following table lists the data types that result from combining numeric
data types in expressions:

intege
r1

smalli
nt

integ
er

intege
r8

decim
al

float float4 mone
y

integer1 integer integer intege
r

integer
8

decimal float float4 money

smallint integer integer intege
r

integer
8

decimal float float4 money

integer integer integer intege
r

integer
8

decimal float float4 money

integer8 integer
8

integer
8

intege
r8

integer
8

decimal float float4 money

decimal decimal decimal decim
al

decimal decimal float float4 money

float float float float float float float float4 money

float4 float4 float4 float4 float4 float4 float4 float4 money

money money money mone
y

money money mone
y

mone
y

money

For example, for the expression:

(job.lowsal + 1000) * 12

the first operator (+) combines a float4 expression (job.lowsal) with a smallint
constant (1000). The result is float4. The second operator (*) combines the
float4 expression with a smallint constant (12), resulting in a float4
expression.

To convert one data type to another, use data type conversion functions. For
details, see Data Type Conversion in this chapter.

SQL Operations

Understanding the Elements of SQL Statements 83

Arithmetic Operations on Decimal Data Types

In expressions that combine decimal values and return decimal results, the
precision (total number of digits) and scale (number of digits to the right of
the decimal point) of the result can be determined, as shown in the following
table:

Precision Scale

Addition and
subtraction

Largest number of
fractional digits plus
largest number of non-
fractional digits + 1 (to a
maximum of 31)

Scale of operand having the
largest scale

Multiplication Total of precisions to a
maximum of 31

Total of scales to a maximum of
31

Division 31 (31 – precision of first operand)
+ (scale of first operand) –
(scale of second operand)

For example, in the following decimal addition operation:

1.234 + 567.89

the scale and precision of the result is calculated as follows:

Precision = 7

Calculated as 3 (largest number of fractional digits) + 3 (largest number of
non-fractional digits) + 1 = 7

Scale = 3

The first operand has the largest number of digits to the right of the decimal
point.

Result:

0569.124

If exponentiation is performed on a decimal value, the resulting data type is
float.

SQL Operations

84 SQL Reference Guide

Specify Error Handling for Arithmetic Errors

To specify error handling for numeric overflow, underflow and division by zero,
use the connect statement -numeric_overflow=option flag. Error-handling
options are:

Option Description

ignore No error is issued.

warn A warning message is issued.

fail (default setting) An error message is issued and the statement that
caused the error is aborted. To obtain ANSI-compliant
behavior, specify this option (or omit the
numeric_overflow flag).

This flag can also be specified on the command line for Ingres operating
system commands that accept SQL option flags. For details about SQL option
flags, see the sql command description in the Command Reference Guide.

Date Arithmetic

Date values can be added and subtracted, but cannot be multiplied or divided.
The following lists the results of date arithmetic:

Addition:

interval + interval = interval

interval + absolute = absolute

Subtraction:

interval - interval = interval

absolute - absolute = interval

absolute - interval = absolute

SQL Operations

Understanding the Elements of SQL Statements 85

When adding intervals, each of the units is added.

For example:

date('6 days') + date('5 hours')

yields, 6 days 5 hours, while:

date('4 years 20 minutes') + date('6 months 80 minutes')

yields, 4 years 6 months 1 hour 40 minutes.

In the above example, 20 minutes and 80 minutes are added and the result is
1 hour 40 minutes. 20 minutes plus 80 minutes equals 100 minutes, but this
result overflows the minute time unit because there are 60 minutes in an hour.
Overflows are propagated upward except when intervals are added. In the
above example, the result is 1 hour 40 minutes. However, days are not
propagated to months. For example, if 25 days is added to 23 days, the result
is 48 days.

When intervals or absolute dates are subtracted, the result is returned in
appropriate time units. For example, if the following subtraction is performed:

date('2 days') - date('4 hours')

the result is 1 day 20 hours.

Date constants can be converted into numbers of days relative to an absolute
date. For example, to convert today’s date to the number of days since
January 1, 1900:

num_days = int4(interval('days', 'today' - date('1/1/00')))

To convert the interval back to a date:

(date('1/1/00') + concat(char(num_days), ' days'))

where num_days is the number of days added to the date constant.

Adding a month to a date always yields the same date in the next month. For
example:

date('1-feb-98') + '1 month'

yields March 1.

If the result month has fewer days, the resulting date is the last day of the
next month. For instance, adding a month to May 31 yields June 30, instead of
June 31, which does not exist. Similar rules hold for subtracting a month and
for adding and subtracting years.

SQL Operations

86 SQL Reference Guide

Dates that are stored without time values can acquire time values as a result
of date arithmetic. For example, the following SQL statements create a table
with one date column and store today’s date (with no time) in the column:

create table dtest (dcolumn date);
insert into dtest (dcolumn) values (date('today'));

If the contents of the date column is selected using the following query:

select dcolumn from dtest;

a date with no time is returned. For example:

09-aug-2001

If date arithmetic is used to adjust the value of the date column, the values in
the column acquire a time. For example:

update dtest set dcolumn=dcolumn-date('1 hour');
select dcolumn from dtest;

returns the value:

08-aug-1998 23:00:00

Comparing Dates

In comparisons, a blank (default) date is less than any interval date. All
interval dates are less than all absolute dates. Intervals are converted to
comparable units before they are compared. For instance, before comparing
date('5 hours') and date('200 minutes'), both the hours and minutes are
converted to milliseconds internally before comparing the values. Dates are
stored in Greenwich Mean Time (GMT). For this reason, 5:00 PM Pacific
Standard Time is equal to 8:00 PM Eastern Standard Time.

SQL Functions

Understanding the Elements of SQL Statements 87

SQL Functions
Functions can be used in the following SQL statements:

 Select

 Insert

 Update

 Delete

 While

 If

Scalar functions take single-valued expressions as their argument. Aggregate
functions take a set of values (for example, the contents of a column in a
table) as their argument. Aggregate functions cannot be used in if or while
statements.

Scalar Functions

There are seven types of scalar functions:

 Data type conversion

 Numeric

 String

 Date

 Bit-wise

 Hash

 Random number

The scalar functions require either one or two single-value arguments. Scalar
functions can be nested to any level.

Note that if II_DECIMAL is set to comma, be sure that when SQL syntax
requires a comma (such as a list of table columns or SQL functions with
several parameters), that the comma is followed by a space. For example:

Select col1, ifnull(col2, 0), left(col4, 22) from t1:

SQL Functions

88 SQL Reference Guide

Data Type Conversion Functions

The following table lists the data type conversion functions. (When converting
decimal values to strings, the length of the result depends on the precision
and scale of the decimal column.)

Name Operand
Type

Result
Type

Description

byte(expr [, len]) any byte Converts the expression to
byte binary data. If the
optional length argument is
specified, the function returns
the leftmost len bytes. Len
must be a positive integer
value that does not exceed
the length of the expr
argument.

c(expr [, len]) any c Converts argument to c
string. If the optional length
argument is specified, the
function returns the leftmost
len characters. Len must be a
positive integer value that
does not exceed the length of
the expr string.

char(expr [, len]) any char Converts argument to char
string. If the optional length
argument is specified, the
function returns the leftmost
len characters. Len must be a
positive integer value that
does not exceed the length of
the expr string.

date(expr) c, text,
char,
varchar

date Converts a c, char, varchar or
text string to internal date
representation.

SQL Functions

Understanding the Elements of SQL Statements 89

Name Operand
Type

Result
Type

Description

decimal(expr
[,precision[,scale]])

any except
date

decimal Converts any numeric
expression to a decimal value.
If scale (number of decimal
digits) is omitted, the scale of
the result is 0. If precision
(total number of digits) is
omitted, the precision of the
result is determined by the
data type of the operand, as
follows:

Operand Default
Datatype Precision

smallint 5

integer1 5

integer 11

float 15

float4 15

decimal 15

money 15

Decimal overflow occurs if the
result contains more digits to
the left of the decimal point
than the specified or default
precision and scale can
accommodate.

dow(expr) date c Converts an absolute date
into its day of week (for
example, 'Mon,' 'Tue'). The
result length is 3.

float4(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

float4 Converts the specified
expression to float4.

SQL Functions

90 SQL Reference Guide

Name Operand
Type

Result
Type

Description

float8(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

float Converts the specified
expression to float.

hex(expr) any varchar Returns the hexadecimal
representation of the internal
Ingres form of the argument
expression. The length of the
result is twice the length of
the argument, because the
hexadecimal equivalent of
each byte of the argument
requires two bytes. For
example, hex('ABC') returns
'414243' (ASCII) or 'C1C2C3'
(EBCDIC). Also,
hex(int4(125)) returns
'0000007D', the hexadecimal
equivalent of the 4 byte
binary integer 125.

int1(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

integer1 Converts the specified
expression to integer1.
Decimal and floating point
values are truncated. Numeric
overflow occurs if the integer
portion of a floating point or
decimal value is too large to
be returned in the requested
format.

int2(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

smallint Converts the specified
expression to smallint.
Decimal and floating point
values are truncated. Numeric
overflow occurs if the integer
portion of a floating point or
decimal value is too large to
be returned in the requested
format.

SQL Functions

Understanding the Elements of SQL Statements 91

Name Operand
Type

Result
Type

Description

int4(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

integer Converts the specified
expression to integer.
Decimal and floating point
values are truncated. Numeric
overflow occurs if the integer
portion of a floating point or
decimal value is too large to
be returned in the requested
format.

int8(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

integer8 Converts the specified
expression to integer.
Decimal and floating point
values are truncated. Numeric
overflow occurs if the integer
portion of a floating point or
decimal value is too large to
be returned in the requested
format.

long_byte
(expr)

any long byte Converts the expression to
long byte binary data.

long_varchar (expr) c, char,
varchar,
text, long
varchar,
long byte

long
varchar

Converts the expression to a
long varchar.

money(expr) c, char,
varchar,
text, float,
money,
decimal,
integer1,
smallint,
integer

money Converts the specified
expression to internal money
representation. Rounds
floating point and decimal
values, if necessary.

nchar(expr [, len]) any nchar Converts argument to nchar
unicode string. If the optional
length argument is specified,
the function returns the
leftmost len characters. Len
must be a positive integer
value that does not exceed
the length of the expr string.

SQL Functions

92 SQL Reference Guide

Name Operand
Type

Result
Type

Description

nvarchar(expr [,
len])

any nvarchar Converts argument to
nvarchar Unicode string. If
the optional length argument
is specified, the function
returns the leftmost len
characters. Len must be a
positive integer value that
does not exceed the length of
the expr string.

object_key(expr) varchar,
char, c,
text

object_
key

Converts the operand to an
object_key.

table_key(expr) varchar,
char, c,
text

table_
key

Converts the operand to a
table_key.

text(expr [, len]) any text Converts argument to text
string. If the optional length
argument is specified, the
function returns the leftmost
len characters. Len must be a
positive integer value that
does not exceed the length of
the expr string.

unhex(expr) varchar, c,
text

varchar Returns the opposite of the
hex function. For example,
unhex('61626320') returns
'abc' and unhex('01204161')
returns '\001Aa'.

Exceptions can occur when a
"c" data type suppresses the
display of certain stored
characters, or when the
output data type differs from
the input type.

SQL Functions

Understanding the Elements of SQL Statements 93

Name Operand
Type

Result
Type

Description

 Note: Normally one character
is generated for every two
hex digits being converted to
a printable character. If the
hex digit pair being converted
does not translate to a
printable character, the value
is converted to a backslash
(\), followed by the numeric
value of the hex digit pair as
a three-digit octal value.

varbyte(expr [, len]) any byte
varying

Converts the expression to
byte varying binary data. If
the optional length argument
is specified, the function
returns the leftmost len
bytes. Len must be a positive
integer value that does not
exceed the length of the expr
argument.

varchar(expr [, len]) any varchar Converts argument to varchar
string. If the optional length
argument is specified, the
function returns the leftmost
len characters. Len must be a
positive integer value that
does not exceed the length of
the expr string.

If the optional length parameter is omitted, the length of the result returned
by the data type conversion functions c(), char(), varchar(), and text() are as
follows:

Data Type of Argument Result Length

byte Length of operand

byte varying Length of operand

c Length of operand

char Length of operand

date 25 characters

decimal Depends on precision and scale of column

SQL Functions

94 SQL Reference Guide

Data Type of Argument Result Length

float & float4 11 characters; 12 characters on IEEE computers

integer1 (smallint) 6 characters

integer 6 characters

integer4 13 characters

long varbyte Length of operand

long varchar Length of operand

money 20 characters

text Length of operand

varchar Length of operand

Numeric Functions

SQL supports the numeric functions listed in the following table:

Name Operand Type Result
Type

Description

abs(n) all numeric types
and money

same as n Absolute value of n.

atan(n) all numeric types float Arctangent of n; returns a
value from (-pi/2) to pi/2.

cos(n) all numeric types float Cosine of n; returns a value
from -1 to 1.

exp(n) all numeric types
and money

float Exponential of n.

log(n)
ln(n)

all numeric types
and money

float Natural logarithm of n.

mod(n,b) integer, smallint,
integer1, decimal

same as b n modulo b. The result is the
same data type as b.

Decimal values are truncated.

power(x,y) all numeric types float x to the power of y (identical
to x ** y)

sin(n) all numeric types float Sine of n; returns a value from
-1 to 1.

sqrt(n) all numeric types
and money

float Square root of n.

SQL Functions

Understanding the Elements of SQL Statements 95

For trigonometric functions (atan(), cos(), and sin()), specify arguments in
radians. To convert degrees to radians, use the following formula:

radians = degrees/360 * 2 * pi

To obtain a tangent, divide sin() by cos().

String Functions

String functions perform a variety of operations on character data. String
functions can be nested. For example:

left(right(x.name, size(x.name) - 1), 3)

returns the substring of x.name from character positions 2 through 4, and

concat(concat(x.lastname, ', '), x.firstname)

concatenates x.lastname with a comma and concatenates x.firstname with the
first concatenation result. The + operator can also be used to concatenate
strings:

x.lastname + ', ' + x.firstname

The following string functions do not accept long varchar or long byte
columns:

 Locate

 Pad

 Shift

 Squeeze

 Substring

 Trim

 Notrim

 Charextract

To apply any of the preceding functions to a long varchar or long byte column,
first coerce the column to an acceptable data type. For example:

squeeze(varchar(long_varchar_column))

If a coercion function is applied to a long varchar or long byte value that is
longer than 2008 characters or bytes, the result is truncated to 2008
characters or bytes.

SQL Functions

96 SQL Reference Guide

String Functions Supported in SQL

The following table lists the string functions supported in SQL. The expressions
c1 and c2, representing function arguments, can be any of the string types
(char, varchar, long varchar, c, text, byte, varbyte, long varbyte) or any of the
Unicode types (nchar, nvarchar, long nvarchar), except where noted. The
expressions len, n, n1, n2 or nshift, representing function arguments, are the
integer type. For string functions operating on one of the string types, the
integer arguments represent character (or 8-bit octet) counts or offsets. For
string functions operating on one of the Unicode types, the integer arguments
represent “code point” (or 16-bit Unicode characters) counts or offsets.

Name Result Type Description

charextract(c1,n) char or nchar Returns the nth byte or code point
of c1. If n is larger than the length
of the string, the result is a blank
character. It does not support long
varchar or long nvarchar arguments.

collation_weight(c1
[,n1])

varbyte Returns the collation weight of any
char, c, varchar, text, nchar, or
nvarchar value c1. n1 is an optional
collation ID when the collation
weight is desired relative to a
specific collation.

concat(c1,c2) any character or
Unicode data
type, byte

Concatenates one string to another.
The result size is the sum of the
sizes of the two arguments. If the
result is a c or char string, it is
padded with blanks to achieve the
proper length. To determine the
data type results of concatenating
strings, see the table regarding
results of string concatenation.

This function does not support long
nvarchar arguments.

left(c1,len) any character or
Unicode data
type

Returns the leftmost len characters
of c1. If the result is a fixed-length c
or char string, it is the same length
as c1, padded with blanks. The
result format is the same as c1.

This function does not support long
nvarchar arguments.

SQL Functions

Understanding the Elements of SQL Statements 97

Name Result Type Description

length(c1) smallint

(for long varchar,
returns 4-byte
integer)

If c1 is a fixed-length c or char
string, returns the length of c1
without trailing blanks. If c1 is a
variable-length string, returns the
number of characters actually in c1.

locate(c1,c2) smallint Returns the location of the first
occurrence of c2 within c1, including
trailing blanks from c2. The location
is in the range 1 to size(c1). If c2 is
not found, the function returns
size(c1) + 1. The function size() is
described below, in this table.

If c1 and c2 are different string data
types, c2 is coerced into the c1 data
type.

This function does not support long
varchar or long nvarchar arguments.

lowercase(c1) or
lower(c1)

any character or
Unicode data type

Converts all upper case characters in
c1 to lower case.

This function does not support long
nvarchar arguments.

pad(c1) text, varchar, or
nvarchar

Returns c1 with trailing blanks
appended to c1; for instance, if c1 is
a varchar string that can hold fifty
characters but only has two
characters, pad(c1) appends 48
trailing blanks to c1 to form the
result.

This function does not support long
varchar or long nvarchar arguments.

right(c1,len) any character or
Unicode data type

Returns the rightmost len characters
of c1. Trailing blanks are not
removed first. If c1 is a fixed-length
character string, the result is padded
to the same length as c1. If c1 is a
variable-length character string, no
padding occurs. The result format is
the same as c1.

This function does not support long
nvarchar arguments.

SQL Functions

98 SQL Reference Guide

Name Result Type Description

shift(c1,nshift) any character or
Unicode data type

Shifts the string nshift places to the
right if nshift > 0 and to the left if
nshift < 0. If c1 is a fixed-length
character string, the result is padded
with blanks to the length of c1. If c1
is a variable-length character string,
no padding occurs. The result format
is the same as c1.

This function does not support long
varchar or long nvarchar arguments.

size(c1) smallint Returns the declared size of c1
without removal of trailing blanks.

soundex(c1) any character
data type

Returns a c1 four-character field
that can be used to find similar
sounding strings. For example,
SMITH and SMYTHE produce the
same soundex code. If there are less
than three characters, the result is
padded by trailing zero(s). If there
are more than three characters, the
result is achieved by dropping the
rightmost digit(s).

This function is useful for finding
like-sounding strings quickly. A list
of similar sounding strings can be
shown in a search list rather than
just the next strings in the index.

This function does not support long
varchar or any Unicode arguments.

SQL Functions

Understanding the Elements of SQL Statements 99

Name Result Type Description

squeeze(c1) text or varchar Compresses white space. White
space is defined as any sequence of
blanks, null characters, newlines
(line feeds), carriage returns,
horizontal tabs and form feeds
(vertical tabs). Trims white space
from the beginning and end of the
string, and replaces all other white
space with single blanks.

This function is useful for
comparisons. The value for c1 must
be a string of variable-length
character string data type (not
fixed-length character data type).
The result is the same length as the
argument.

This function does not support long
varchar or long nvarchar arguments.

substring(c1 from
loc[FOR len])

varchar or
nvarchar

Returns part of c1 starting at the loc
position and either extending to the
end of the string or for the number
of characters/code points in the len
operand. The result format is a
varchar or nvarchar the size of c1.

This function does not support long
varchar or long nvarchar arguments.

trim(c1) text or varchar Returns c1 without trailing blanks.
The result has the same length as
c1.

This function does not support long
varchar or long nvarchar arguments.

notrim(c1) any character
string variable

Retains trailing blanks when placing
a value in a varchar column. This
function can only be used in an
embedded SQL program. For more
information, see the Embedded SQL
Companion Guide.

uppercase(c1) or
upper(c1)

any character
data type

Converts all lower case characters in
c1 to upper case.

This function does not support long
nvarchar arguments.

SQL Functions

100 SQL Reference Guide

String Concatenation Results

The following table shows the results of concatenating expressions of various
character data types:

1st String 2nd String Trim Blanks Result Type

from 1st? from 2nd?

c c Yes -- C

c text Yes -- C

c char Yes -- C

c varchar Yes -- C

c long varchar Yes No long varchar

text c No -- C

char c Yes -- C

varchar c No -- C

long varchar c No No long varchar

text text No No text

text char No Yes text

text varchar No No text

text long varchar No No long varchar

char text Yes No text

varchar text No No text

long varchar text No No long varchar

char char No -- char

char varchar No -- char

char long varchar No No long varchar

varchar char No -- char

long varchar char No No long varchar

varchar varchar No No varchar

long varchar long varchar No No long varchar

nchar nchar No No nchar

nchar nvarchar No No nchar

nvarchar nchar No No nchar

SQL Functions

Understanding the Elements of SQL Statements 101

1st String 2nd String Trim Blanks Result Type

from 1st? from 2nd?

nvarchar nvarchar No No nvarchar

Byte Byte No No Byte

Byte Varbyte No No Byte

Varbyte Byte No No Byte

Varbyte Varbyte No No Varbyte

Byte Longbyte No No Longbyte

Varbyte Longbyte No No Longbyte

Longbyte Longbyte No No Longbyte

When concatenating more than two operands, expressions are evaluated from
left to right. For example:

varchar + char + varchar

is evaluated as:

(varchar+char)+varchar

To control concatenation results for strings with trailing blanks, use the trim,
notrim, and pad functions.

Date Functions

SQL supports functions that derive values from absolute dates and from
interval dates. These functions operate on columns that contain date values.
An additional function, dow(), returns the day of the week (mon, tue, and so
on) for a specified date. For a description of the dow() function, see Data Type
Conversion (see page 88).

Some date functions require specifying of a unit parameter; unit parameters
must be specified using a quoted string. The following table lists valid unit
parameters:

Date Portion How Specified

Second second, seconds, sec, secs

Minute minute, minutes, min, mins

Hour hour, hours, hr, hrs

SQL Functions

102 SQL Reference Guide

Date Portion How Specified

Day day, days

Week week, weeks, wk, wks

ISO-Week iso-week, iso-wk

Month month, months, mo, mos

Quarter quarter, quarters, qtr, qtrs

Year year, years, yr, yrs

The following table lists the date functions:

Name Format
(Result)

Description

date_trunc(unit,date
)

date Returns a date value truncated to the
specified unit.

date_part(unit,date) integer Returns an integer containing the
specified (unit) component of the input
date.

date_gmt(date) any
character
data type

Converts an absolute date into the
Greenwich Mean Time character
equivalent with the format yyyy_mm_dd
hh:mm:ss GMT. If the absolute date does
not include a time, the time portion of the
result is returned as 00:00:00.

For example, the query:

select date_gmt('1-1-98 10:13 PM PST')

returns the following value:

1998_01_01 06:13:00 GMT

while the query:

select date_gmt(‘1-1-1998’)

returns:

1998_01_01 00:00:00 GMT

SQL Functions

Understanding the Elements of SQL Statements 103

Name Format
(Result)

Description

gmt_timestamp(s) any
character
data type

Returns a twenty-three-character string
giving the date s seconds after January 1,
1970 GMT. The output format is
‘yyyy_mm_dd hh:mm:ss GMT’.

For example, the query:

select (gmt_timestamp (1234567890))

returns the following value:
2009_02_13 23:31:30 GMT

while the query:

(II_TIMEZONE_NAME = AUSTRALIA-
QUEENSLAND)

select date(gmt_timestamp
(1234567890))

returns:
14-feb-2009 09:31:30

interval
(unit,date_interval)

float Converts a date interval into a floating-
point constant expressed in the unit of
measurement specified by unit. The
interval function assumes that there are
30.436875 days per month and 365.2425
days per year when using the mos, qtrs,
and yrs specifications.

For example, the query:

select(interval(‘days’, ‘5 years’))

returns the following value:

1826.213

_date(s) any
character
data type

Returns a nine-character string giving the
date s seconds after January 1, 1970
GMT. The output format is dd-mmm-yy.

For example, the query:

select _date(123456)

returns the following value:

 2-jan-70

Note that this function formats a leading
space for day values less than 10.

SQL Functions

104 SQL Reference Guide

Name Format
(Result)

Description

_date4(s) any
character
data type

Returns an eleven-character string giving
the date s seconds after January 1, 1970
GMT. The output format is controlled by
the II_DATE_FORMAT setting.

For example, with II_DATE_FORMAT set
to US, the query:

select _date4(123456)

returns the following value:

02-jan-1970

while with II_DATE_FORMAT set to
MULTINATIONAL, the query:

select _date4(123456)

returns this value:

02/01/1970

_time(s) any
character
data type

Returns a five-character string giving the
time s seconds after January 1, 1970
GMT. The output format is hh:mm
(seconds are truncated).

For example, the query:

select _time(123456)

returns the following value:

02:17

SQL Functions

Understanding the Elements of SQL Statements 105

Truncate Dates using date_trunc Function

Use the date_trunc function to group all the dates within the same month or
year, and so forth. For example:

date_trunc('month',date('23-oct-1998 12:33'))

returns 1-oct-1998, and

date_trunc('year',date('23-oct-1998'))

returns 1-jan-1998.

Truncation takes place in terms of calendar years and quarters
(1-jan, 1-apr, 1-jun, and 1-oct).

To truncate in terms of a fiscal year, offset the calendar date by the number of
months between the beginning of your fiscal year and the beginning of the
next calendar year (6 mos for a fiscal year beginning July 1, or 4 mos for a
fiscal year beginning September 1):

date_trunc('year',date+'4 mos') - '4 mos'

Weeks start on Monday. The beginning of a week for an early January date
falls into the previous year.

SQL Functions

106 SQL Reference Guide

Using Date_part

This function is useful in set functions and in assuring correct ordering in
complex date manipulation. For example, if date_field contains the value 23-
oct-1998, then:

date_part('month',date(date_field))

returns a value of 10 (representing October), and

date_part('day',date(date_field))

returns a value of 23.

Months are numbered 1 to 12, starting with January.

Hours are returned according to the 24-hour clock.

Quarters are numbered 1 through 4.

Week 1 begins on the first Monday of the year. Dates before the first Monday
of the year are considered to be in week 0. However, if you specify ISO-Week,
which is ISO 8601 compliant, the week begins on Monday, but the first week is
the week that has the first Thursday. The weeks are numbered 1 through 53.

Therefore, if you are using Week and the date falls before the first Monday in
the current year, date_part returns 0. If you are using ISO-Week and the date
falls before the week containing the first Thursday of the year, that date is
considered part of the last week of the previous year, and date_part returns
either 52 or 53.

The following table illustrates the difference between Week and ISO-Week:

Date Column Day of Week Week ISO-Week

02-jan-1998 Fri 0 1

04-jan-1998 Sun 0 1

02-jan-1999 Sat 0 53

04-jan-1999 Mon 1 1

02-jan-2000 Sun 0 52

04-jan-2000 Tue 1 1

02-jan-2001 Tue 1 1

04-jan-2001 Thu 1 1

SQL Functions

Understanding the Elements of SQL Statements 107

Bit-wise Functions

Bit-wise functions operate from right to left, with shorter operands padded
with hex zeroes to the left. Each result is a byte field the size of the longer
operand, except bit_not, which takes a single byte operand and returns the
same-sized operand.

There are six external bit-wise functions:

 bit_add—The logical "add" of two byte operands; any overflow is
disregarded.

 bit_and—The logical "and" of two byte operands. For example, if two bits
are 1, the answer is 1, otherwise the answer is 0.

 bit_not—The logical "not" of two byte operands.

 bit_or—The logical "or" of two byte operands. For example, if either or
both bits are 1, the answer is 1.

 bit_xor—The logical "xor" of two byte operands. For example, if either bit
is 1, the answer is 1.

 intextract (byte,int)—Similar to charextract. Returns the nth byte of b1
as an integer. If n is larger than b1, 0 is returned. Extracts the number at
the given location. For example, if int is < 1 or > length(byte) à 0, i4 is
returned.

Hash Functions

The hash function is used to generate a four-byte numeric value from
expressions of all data types except long data types. Note that the implicit size
for the expression can affect the result. For example:

select hash(1), hash(int1(1)), hash(int2(1)), hash(int4(1))\g

returns the following single row:

Col1 Col2 Col3 Col4

-920527466 1526341860 -920527466 -1447292811

Note: Because the constant 1 is implicitly a short integer, only the return
values for Hash(1) and Hash(int2(1)) match. For the remaining columns, the
difference in the number of bytes holding the integer leads to a different hash
value. Also note that the generated hash value is not guaranteed unique, even
if the input values are unique.

SQL Functions

108 SQL Reference Guide

Random Number Functions

The random number function is used to generate random values. Use the
following statement to set the beginning value for the random functions:

[exec sql] set random_seed [value]

There is a global seed value and local seed values. The global value is used
until you issue “set random_seed,” which changes the value of the local seed.
Once changed, the local seed is used for the whole session. If you are using
the global seed value, the seed is changed whenever a random function
executes. This means that other users issuing random calls enhance the
“randomness” of the returned value. Note that the seed value can be any
integer.

If you omit the value, Ingres multiplies the process ID by the number of
seconds past 1/1/1970 until now. This value generates a random starting
point. You can use value to run a regression test from a static start and get
identical results.

There are four random number functions:

 random()—Returns a random integer based on a seed value.

 randomf()—Returns a random float based on a seed value between 0 and
1. This is slower than random, but produces a more random number.

 random(l,h)—Returns a random integer within the specified range (that is,
l >= x <= h).

 randomf(l,h)— Passing two integer values generates an integer result
within the specified range; passing two floats generates a float within the
specified range; passing an int and a float causes them to be coerced to an
int and generates an integer result within the specified range (that is, l >=
x <= h).

Aggregate Functions

Aggregate functions include the following:

 Unary

 Binary

 Count

SQL Functions

Understanding the Elements of SQL Statements 109

Unary Aggregate Functions

A unary aggregate function returns a single value based on the contents of a
column. Aggregate functions are also called set functions.

Note: For OpenROAD users, aggregate functions used within OpenROAD can
only be coded inside SQL statements.

The following example uses the sum aggregate function to calculate the total
of salaries for employees in department 23:

select sum (employee.salary)
 from employee
 where employee.dept = 23;

SQL Aggregate Functions

The following table lists SQL aggregate functions:

Name Result Data Type Description

any integer Returns 1 if any row in the table
fulfills the where clause, or 0 if no
rows fulfill the where clause.

avg float, money, date
(interval only)

Average (sum/count)

The sum of the values must be within
the range of the result data type.

count integer Count of non-null occurrences

max same as argument Maximum value

min same as argument Minimum value

sum integer, float,
money, date
(interval only)

Column total

stddev_pop float Compute the population form of the
standard deviation (square root of the
population variance of the group).

stddev_samp float Computes the sample form of the
standard deviation (square root of the
sample variance of the group).

SQL Functions

110 SQL Reference Guide

Name Result Data Type Description

var_pop float Computes the population form of the
variance (sum of the squares of the
difference of each argument value in
the group from the mean of the
values, divided by the count of the
values).

var_samp float Computes the sample form of the
variance (sum of the squares of the
difference of each argument value in
the group from the mean of the
values, divided by the count of the
values minus 1).

The general syntax of an aggregate function is as follows:

function_name ([distinct | all] expr)

where function_name denotes an aggregate function and expr denotes any
expression that does not include an aggregate function reference (at any level
of nesting).

To eliminate duplicate values, specify distinct. To retain duplicate values,
specify all (this is the default.) Distinct is not meaningful with the functions
min and max, because these functions return single values (and not a set of
values).

Nulls are ignored by the aggregate functions, with the exception of count, as
described in Count(*) Function (see page 112).

Binary Aggregate Functions

Ingres supports a variety of binary aggregate functions that perform a variety
of regression and correlation analysis. For all of the binary aggregate
functions, the first argument is the independent variable and the second
argument is the dependent variable.

The following table lists binary aggregate functions:

Name Result Data
Type

Description

regr_count

(indep_parm,
dep_parm)

integer Count of rows with non-null values for
both dependent and independent
variables.

SQL Functions

Understanding the Elements of SQL Statements 111

Name Result Data
Type

Description

covar_pop

(indep_parm,
dep_parm)

float Population covariance (sum of the
products of the difference of the
independent variable from its mean,
times the difference of the dependent
variable from its mean, divided by the
number of rows).

covar_samp

(indep_parm,
dep_parm)

float Sample covariance (sum of the products
of the difference of the independent
variable from its mean, times the
difference of the dependent variable
from its mean, divided by the number of
rows minus 1).

corr

(indep_parm,
dep_parm)

float Correlation coefficient (ratio of the
population covariance divided by the
product of the population standard
deviation of the independent variable and
the population standard deviation of the
dependent variable).

regr_r2

(indep_parm,
dep_parm)

float Square of the correlation coefficient.

regr_slope

(indep_parm,
dep_parm)

float Slope of the least-squares-fit linear
equation determined by the (independent
variable, dependent variable) pairs.

regr_intercept

(indep_parm,
dep_parm)

float Y-intercept of the least-squares-fit linear
equation determined by the (independent
variable, dependent variable) pairs.

regr_sxx

(indep_parm,
dep_parm)

float Sum of the squares of the independent
variable.

regr_syy

(indep_parm,
dep_parm)

float Sum of the squares of the dependent
variable.

regr_sxy

(indep_parm,
dep_parm)

float Sum of the product of the independent
variable and the dependent variable.

SQL Functions

112 SQL Reference Guide

Name Result Data
Type

Description

regr_avgx

(indep_parm,
dep_parm)

float Average of the independent variables.

regr_avgy

(indep_parm,
dep_parm)

float Average of the dependent variables.

Count(*) Function

The count function can take the wildcard character, *, as an argument. This
character is used to count the number of rows in a result table, including rows
that contain nulls. For example, the statement:

select count(*)
 from employee
 where dept = 23;

counts the number of employees in department 23. The asterisk (*) argument
cannot be qualified with all or distinct.

Because count(*) counts rows rather than columns, count(*) does not ignore
nulls. Consider the following table:

Name Exemptions

Smith 0

Jones 2

Tanghetti 4

Fong Null

Stevens Null

SQL Functions

Understanding the Elements of SQL Statements 113

Running:

count(exemptions)

returns the value of 3, whereas:

count(*)

returns 5.

Except count, if the argument to an aggregate function evaluates to an empty
set, the function returns a null. The count function returns a zero.

Aggregate Functions and Decimal Data

Given decimal arguments, aggregate functions (with the exception of count)
return decimal results.

The following table explains how to determine the scale and precision of
results returned for aggregates with decimal arguments:

Name Precision of Result Scale of Result

count Not applicable Not applicable

sum 31 Same as argument

avg 31 Scale of argument + 1 (to a maximum of
31)

max Same as argument Same as argument

min Same as argument Same as argument

Group By Clause with Aggregate Functions

The group by clause allows aggregate functions to be performed on subsets of
the rows in the table. The subsets are defined by the group by clause. For
example, the following statement selects rows from a table of political
candidates, groups the rows by party, and returns the name of each party and
the average funding for the candidates in that party.

select party, avg(funding)
 from candidates
 group by party;

SQL Functions

114 SQL Reference Guide

Restrictions on the Use of Aggregate Functions

The following restrictions apply to the use of aggregate functions:

 Aggregate functions cannot be nested.

 Aggregate functions can only be used in select or having clauses.

 If a select or having clause contains an aggregate function, columns not
specified in the aggregate must be specified in the group by clause. For
example:

select dept, avg(emp_age)
from employee
group by dept;

The above select statement specifies two columns, dept and emp_age, but
only emp_age is referenced by the aggregate function, avg. The dept column
is specified in the group by clause.

Ifnull Function

The ifnull function specifies a value other than a null that is returned to your
application when a null is encountered. The ifnull function is specified as
follows:

ifnull(v1,v2)

If the value of the first argument is not null, ifnull returns the value of the first
argument. If the first argument evaluates to a null, ifnull returns the second
argument.

For example, the sum, avg, max, and min aggregate functions return a null if
the argument to the function evaluates to an empty set. To receive a value
instead of a null when the function evaluates to an empty set, use the ifnull
function, as in this example:

ifnull(sum(employee.salary)/25, -1)

Ifnull returns the value of the expression sum(employee.salary)/25 unless that
expression is null. If the expression is null, the ifnull function returns -1.

Note: If an attempt is made to use the ifnull function with data types that are
not nullable, such as system_maintained logical keys, a runtime error is
returned.

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

SQL Functions

Understanding the Elements of SQL Statements 115

Ifnull Result Data Types

If the arguments are of the same data type, the result is of that data type. If
the two arguments are of different data types, they must be of comparable
data types. For a description of comparable data types, see Assignment.

When the arguments are of different but comparable data types, the DBMS
Server uses the following rules to determine the data type of the result:

 The result type is always the higher of the two data types; the order of
precedence of the data types is as follows:

date > money > float4 > float > decimal > integer > smallint > integer1

and

c > text > char > varchar > long varchar > byte > byte varying > long
byte

 The result length is taken from the longest value. For example:

ifnull (varchar (5), c10)

results in c10.

The result is nullable if either argument is nullable. The first argument is
not required to be nullable, though in most applications it is nullable.

Ifnull and Decimal Data

If both arguments are decimal, the data type of the result returned by ifnull is
decimal, and the precision (total number of digits) and scale (number of digits
to the right of the decimal point) of the result is determined as follows:

 Precision—The largest number of digits to the left of the decimal point
(precision - scale) plus largest scale (to a maximum of 31)

 Scale—The largest scale

Universal Unique Identifier (UUID)

A Universal Unique Identifier (UUID) is a 128 bit, unique identifier generated
by the local system. It is unique across both space and time with respect to
the space of all UUIDs.

SQL Functions

116 SQL Reference Guide

Benefits of Using a UUID

No centralized authority is responsible for assigning UUIDs. They can be
generated on demand (10 million per second per machine if needed).

A UUID can be used for multiple purposes:

 Tagging objects that have a brief life

 Reliably identifying persistent objects across a network

 Assigning as unique values to transactions as transaction IDs in a
distributed system

UUIDs are fixed-sized (128-bits), which is small relative to other alternatives.
This fixed small size lends itself well to sorting, ordering, and hashing of all
sorts, sorting in databases, simple allocation, and ease of programming.

UUID Format

The basic format of a unique 128-bits (16 octets) UUID:

FIELD DATA TYPE OCTET
NUMBER

NOTE

time_low unsigned 32 bit
integer

0-3 The low field of
the timestamp.

time_mid unsigned 16 bit
integer

4-5 Time middle field
of the timestamp.

time_hi_and_version unsigned 16 bit
integer

6-7 The high field of
the timestamp
multiplex with the
release number.

clock_seq_hi_and_reser
ved

unsigned 8 bit
integer

8 The high field of
the clock
sequence
multiplex with the
variant.

clock_seq_low unsigned 8 bit
integer

9 The low field of
the clock
sequence.

node unsigned 48 bit
integer

10-15 The spatially
unique node
identifier.

SQL Functions

Understanding the Elements of SQL Statements 117

SQL Functions for UUID Implementation

Ingres implements the following SQL functions to create, convert and compare
UUIDs:

 uuid_create ();

 uuid_from_char (c);

 uuid_compare(uuid1, uuid2);

uuid_compare(uuid1, uuid2) Function

The uuid_compare(uuid1, uuid2) function, upon completion, returns an integer
value of:

RETURN MEANING

(-1) uuid1 < uuid2

(0) uuid1 == uuid2

(+1) uuid1 > uuid2

* select uuid_compare(u1,u2) from uuidtable\g

P,,,,T
.col1
5,,,,6
. 1.
F,,,,G

SQL Functions

118 SQL Reference Guide

uuid_from_char(c) Function

The uuid_from_char(c) function converts a generated UUID from character
representation into byte representation:

//
// Inserts a generated UUID in character format.
//

* insert into uuidtochar values ();\g

* select * from uuidtochar;\g

P,,,,,,,,,,,,,T
.c1
5,,,,,,,,,,,,,6
.f703c440-b35c-01d5-8637-00805fc13ce5.
F,,,,,,,,,,,,,G

//
// converts UUID into byte representation
//
* select uuid_from_char (u1) from uuidtochar;\g

P,,,,,,T
.col1
5,,,,,,6
.œ\003Ä@³\\\001Õ\2067\221\0134¡\221\013.
F,,,,,,G

uuid_create () Function

The uuid_create() function creates a 128 bit UUID:

 > createdb uuiddb
 > sql uuiddb
* create table uuidtable (u1 byte (16), u2 byte(16)); \g
* insert into uuidtable values (uuid_create(), uuid_create())\g
//
// verify length in byte format
//
* select length(u1) from uuidtable;\g

P,,,,T
.col1
5,,,,6
. 16.
F,,,,G

Length returned equals 16 bytes.

UUID Usage

A UUID can be used to tag records to ensure that the database records are
uniquely identified regardless of which database they are stored in, for
example, in a system where there are two separate physical databases
containing accounting data from two different physical locations.

Expressions in SQL

Understanding the Elements of SQL Statements 119

Expressions in SQL
Expressions are composed of various operators and operands that evaluate to
a single value or a set of values. Some expressions do not use operators; for
example, a column name is an expression. Expressions are used in many
contexts, such as specifying values to be retrieved (in a select clause) or
compared (in a where clause). For example:

select empname, empage from employee
 where salary > 75000

In the preceding example, empname and empage are expressions
representing the column values to be retrieved, salary is an expression
representing a column value to be compared, and 75000 is an integer literal
expression.

Expressions that contain aggregate functions can appear only in select and
having clauses, and aggregate functions cannot be nested.

An expression can be enclosed in parentheses without affecting its value.

Expressions in SQL

120 SQL Reference Guide

Case Expressions

Case expressions provide a decoding capability that allows one expression to
be transformed into another. Case expressions can appear anywhere that
other forms of expressions can be used. There are two forms of case
expressions:

 Simple

 Searched

A simple case expression looks like this:

case expr when expr1 then expr2 when expr3 then expr4... [else exprn] end

The initial case expression is compared in turn to the expressions in each when
clause. The result of the case is the expression from the then clause
corresponding to the first when clause whose expression is equal to the case
expression. If none of the when expressions match the case expression, the
result is the value of the expression from the else clause. If there is no else
clause, the result is the null value.

The searched case expression syntax looks like this:

case when search_conditon1 then expr1 when search_expression2 then expr2...[else
exprn] end

The search conditions of each when clause are evaluated in turn. The result of
the case is the expression from the then clause corresponding to the first
when clause whose search condition evaluates to true. If none of the when
clause search conditions evaluate as true, the result is the value of the
expression from the else clause. If there is no else clause, the result is the null
value.

Expressions in SQL

Understanding the Elements of SQL Statements 121

Sequence Expressions

Sequence expressions return values from defined database sequences. A
sequence expression consists of one of two different operators:

 next value for [schema.]sequence or [schema.]sequence.nextval

 current value for [schema.]sequence or [schema.]sequence.currval

The next value operator returns the next available value from the referenced
sequence. The current value operator returns the previous value returned from
the sequence to the executing application. Note that the current value
operator cannot be used in a transaction until a next value operator is
executed on the same sequence. This prevents transactions from seeing
sequence values returned to other executing applications.

Sequence expressions are typically used in INSERT or UPDATE statements to
maintain columns that reflect some ordinal relationship with the creation of
their containing rows. For example:

INSERT INTO T1 VALUES (:hv1, NEXT VALUE FOR mydb.t1seq, …)

or

INSERT INTO T2 SELECT col1, col2, t2seq.NEXTVAL, …FROM …

Sequence expressions can also be used in the select list of a SELECT
statement, but not in a where clause, on clause, group by, or having clause.

A “next value” or “current value” expression on a particular sequence is
evaluated once per row inserted by an INSERT statement, updated by an
UPDATE statement, or added to the result set of a SELECT statement. If
several occurrences of a “next value” or “current value” expression on the
same sequence are coded in a single statement, only one value is computed
for each row touched by the statement. If a “next value” expression and a
“current value” expression are coded on the same sequence in the same
statement, the “next value” expression is evaluated first, then the “current
value” expression (assuring they return the same value), regardless of their
order in the statement syntax.

Predicates in SQL

122 SQL Reference Guide

Predicates in SQL
Predicates are keywords that specify a relationship between two expressions.
SQL supports the following types of predicates:

 Comparison

 Like

 Between

 In

 Any-or-All

 Exists

 Is null

These predicates are described in the following sections.

Note: The null predicate is the only predicate that can be used with long
varchar, long byte, and long nvarchar data.

Comparison Predicate

The syntax for comparison predicates is as follows:

expression_1 comparison_operator expression_2

In a comparison predicate, expression2 can be a subquery. If expression2 is a
subquery and does not return any rows, the comparison predicate evaluates to
false. For information about subqueries, see Subqueries (see page 129). For
details about comparison operators, see Comparison Operators (see page 72).

Predicates in SQL

Understanding the Elements of SQL Statements 123

Like Predicate

The like predicate performs pattern matching for the character data types
(char, varchar, c, and text) and Unicode data types (nchar and nvarchar). The
like predicate has the following syntax:

expression [not] like pattern [escape escape_character]

The expression can be a column name or an expression containing string
functions.

The pattern parameter must be a string literal. The pattern-matching (wild
card) characters are the percent sign (%) to denote 0 or more arbitrary
characters, and the underscore (_) to denote exactly one arbitrary character.

The like predicate does not ignore trailing blanks. If you are matching a char
value (that is padded with blanks when it is inserted) or if the value has
trailing blanks that were entered by the user, include these trailing blanks in
your pattern. For example, if searching a char(10) column for rows that
contain the name harold, specify the trailing blanks in the pattern to be
matched:

name like 'harold'

Four blanks are added to the pattern after the name to include the trailing
blanks.

Because blanks are not significant when performing comparisons of c data
types, the like predicate returns a correct result whether or not trailing blanks
are included in the pattern.

If the escape clause is specified, the escape character suppresses any special
meaning for the following character, allowing the character to be entered
literally. The following characters can be escaped:

 The pattern matching characters % and _.

 The escape character itself. To enter the escape character literally, type it
twice.

 Square brackets []. Within escaped square brackets ([and]), a series
of individual characters or a range of characters separated by a dash (-)
can be specified.

The following examples illustrate some uses of the pattern matching
capabilities of the like predicate.

To match any string starting with a:

name like 'a%'

Predicates in SQL

124 SQL Reference Guide

To match any string starting with A through Z:

name like '\[A-Z\]%' escape '\'

To match any two characters followed by 25%:

name like '__25\%' escape '\'

To match a string starting with a backslash:

name like '\%'

Because there is no escape clause, the backslash is taken literally.

To match a string starting with a backslash and ending with a percent:

name like '\\%\%' escape '\'

To match any string starting with 0 through 4, followed by an uppercase letter,
then a [, any two characters and a final]:

name like '\[01234\]\[A-Z\][__]' escape '\'

To detect names that start with S and end with h, disregarding any leading or
trailing spaces:

trim(name) like 'S%h'

To detect a single quote, repeat the quote:

name like ''''

Between Predicate

The following table explains the operators between and not between:

Operator Meaning

y between [asymmetric] x and z x < = y and y < = z

y not between [asymmetric] x and z not (y between x and z)

y between symmetric x and z (x < = y and y < = z) or (z < = y
and y < = x)

y not between asymmetric x and z not (y between symmetric x and z)

x, y, and z are expressions, and cannot be subqueries.

Predicates in SQL

Understanding the Elements of SQL Statements 125

In Predicate

The following table explains the operators in and not in:

Operator Meaning

y in (x, ..., z) The in predicate returns true if y is equal to one of the
values in the list (x, ..., z).

(x, ..., z) represents a list of expressions, each of which
must evaluate to a single value. If there is only one
expression in the list, the parentheses are optional.
None of the expressions (y, x, or z) can be subqueries.

y not in (x, ..., z) Returns true if y is not equal to any of the values in the
list (x, ..., z).

(x, ..., z) is a list of expressions, each of which must
evaluate to a single value. If there is only one
expression in the list, the parentheses are optional.
None of the expressions (y, x, or z) can be subqueries.

y in (subquery) Returns true if y is equal to one of the values returned
by the subquery. The subquery must be parenthesized
and can reference only one column in its select clause.

y not in (subquery) Returns true if y is not equal to any of the values
returned by the subquery. The subquery must be
specified in parentheses and can reference only one
column in its select clause.

Any-or-All Predicate

The any-or-all predicate takes the following form:

any-or-all-operator (subquery)

The subquery must have exactly one element in the target list of its outermost
subselect (so that it evaluates to a set of single values rather than a set of
rows). The any-or-all operator must be one of the following:

=any
<>any
<any
<=any
>any
>=any

=all
<>all
<all
<=all
>all
>=all

Predicates in SQL

126 SQL Reference Guide

The != (instead of <>) can also be used to specify not equal. Include a space
between the comparison operator and the keyword any or all.

A predicate that includes the any operator is true if the specified comparison is
true for at least one value y in the set of values returned by the subquery. If
the subquery returns no rows, the any comparison is false.

A predicate that includes the all operator is true if the specified comparison is
true for all values y in the set of values returned by the subquery. If the
subquery returns no rows, the all comparison is true.

The operator =any is equivalent to the operator in. For example:

select ename
from employee
where dept = any
 (select dno
 from dept
 where floor = 3);

can be rewritten as:

select ename
from employee
where dept in
 (select dno
 from dept
 where floor = 3);

The operator some is a synonym for operator any. For example:

select name
from employee
where dept = some
 (select dno
 from dept
 where floor = 3);

Search Conditions in SQL Statements

Understanding the Elements of SQL Statements 127

Exists Predicate

The exists predicate takes the following form:

[not] exists (subquery)

It evaluates to true if the set returned by the subquery is not empty. For
example:

select ename
from employee
where exists
 (select *
 from dept
 where dno = employee.dept
 and floor = 3);

It is typical, but not required, for the subquery argument to exists to be of the
form select *.

Is Null Predicate

The is null predicate takes the following form:

is [not] null

For example:

x is null

is true if x is a null. Use this predicate to determine whether an expression is
null, because you cannot test for null by using the = comparison operator.

Search Conditions in SQL Statements
Search conditions are used in where and having clauses to qualify the
selection of data. Search conditions are composed of predicates of various
kinds, optionally combined using parentheses and logical operators (and, or,
and not). The following are examples of legal search conditions:

Description Example

Simple predicate salary between 10000 and 20000

Predicate with not operator edept not like eng_%

Predicates combined using or
operator

edept like eng_% or edept like admin_%

Search Conditions in SQL Statements

128 SQL Reference Guide

Description Example

Predicates combined using and
operator

salary between 10000 and 20000 and edept
like eng_%

Predicates combined using
parentheses to specify
evaluation

(salary between 10000 and 20000 and
edept like eng_%) or edept like admin_%

Predicates evaluate to true, false, or unknown. They evaluate to unknown if
one or both operands are null (the is null predicate is the exception). When
predicates are combined using logical operators (that is, and, or, not) to form
a search condition, the search condition evaluates to true, false, or unknown
as shown in the following tables:

and true false unknown

true true false unknown

false false false false

unknown unknown false unknown

or true false unknown

true true true true

false true false unknown

unknown true unknown unknown

Not(true) is false, not(false) is true, not(unknown) is unknown.

After all search conditions are evaluated, the value of the where or having
clause is determined. The where or having clause can be true or false, not
unknown. Unknown values are considered false. For more information about
predicates and logical operators, see Logical Operators (see page 73).

Subqueries

Understanding the Elements of SQL Statements 129

Subqueries
Subqueries are select statements nested within other select statements.

For example:

select ename
from employee
where dept in
 (select dno
 from dept
 where floor = 3);

Use subqueries in a where clause to qualify a column against a set of rows. In
the previous example, the subquery returns the department numbers for
departments on the third floor. The outer query retrieves the names of
employees who work on the third floor.

Subqueries often take the place of expressions in predicates. Subqueries can
be used in place of expressions only in the specific instances outlined in the
descriptions of Predicates in SQL (see page 122).

The syntax of the subquery is identical to that of the subselect, except the
select clause must contain only one element. A subquery can see correlation
names defined (explicitly or implicitly) outside the subquery. For example:

select ename
from employee empx
where salary >
 (select avg(salary)
 from employee empy
 where empy.dept = empx.dept);

The preceding subquery uses a correlation name (empx) defined in the outer
query. The reference, empx.dept, must be explicitly qualified here. Otherwise
the dept column is assumed to be implicitly qualified by empy. The overall
query is evaluated by assigning empx each of its values from the employee
table and evaluating the subquery for each value of empx.

Note: Although aggregate functions cannot appear directly in a where clause,
they can appear in the select clause or the having clause of a subselect, which
itself appears within a where clause.

Working with Embedded SQL 131

Chapter 5: Working with Embedded SQL

This chapter discusses the techniques of, and how to work with, Embedded
SQL. Topics covered include:

 General syntax and rules of an embedded SQL statement

 Structure of embedded SQL programs

 Host language variables

 Data manipulation with cursors

 Dynamic programming

 Data handlers for large objects

Embedded SQL Statements
Embedded SQL statements refer to SQL statements embedded in a host
language such as C or Fortran. Embedded SQL statements include most
interactive SQL statements and statements that fulfill the additional
requirements of an embedded program.

How Embedded SQL Statements are Processed
Embedded SQL statements are processed by an embedded SQL (ESQL)
preprocessor, which converts the ESQL statements into host language source
code statements. The resulting statements are calls to a runtime library that
provides the interface to Ingres (host language statements are not altered by
the ESQL preprocessor). After the program has been preprocessed, it must be
compiled and linked according to the requirements of the host language. For
details about compiling and linking an embedded SQL program, see the
Embedded SQL Companion Guide.

General Syntax and Rules of an Embedded SQL Statement

132 SQL Reference Guide

General Syntax and Rules of an Embedded SQL Statement
In the examples in this chapter, host language program elements are indicated
by pseudocode in italics. All of the examples use the semicolon (;) as the
statement terminator. In an actual program, however, the statement
terminator is determined by the host language.

An embedded SQL statement has the following format:

[margin] exec sql SQL_statement [terminator]

Note: To create forms-based applications, use forms statements. For details,
see the Forms-based Application Development Tools User Guide.

When creating embedded SQL (ESQL) programs, remember the following
points:

 The margin, consisting of spaces or tabs, is the margin that the host
language compiler requires before the regular host code. Not all languages
require margins. To determine if a margin is required, see the Embedded
SQL Companion Guide.

 The keywords, exec sql, must precede the SQL statement. Exec sql
indicates to the embedded SQL preprocessor that the statement is an
embedded SQL statement.

 The terminator, which indicates the end of the statement, is specific to the
host language. Different host languages require different terminators and
some, such as Fortran, do not require any.

 Embedded SQL statements can be continued across multiple lines
according to the host language’s rules for line continuation.

 A label can precede an embedded statement if a host language statement
in the same place can be preceded by a label. Nothing can be placed
between the label and the exec sql keywords.

 Host language comments must follow the rules for the host language.

Some host languages allow the placement of a line number in the margin. For
information about language-dependent syntax, see the Embedded SQL
Companion Guide.

Structure of an Embedded SQL Program

Working with Embedded SQL 133

Structure of an Embedded SQL Program
In general, SQL statements can be embedded anywhere in a program that
host language statements are allowed. The following example shows a simple
embedded SQL program that retrieves an employee name and salary from the
database and prints them on a standard output device. The statements that
begin with the words, exec sql, are embedded SQL statements.

begin program
exec sql include sqlca;
exec sql begin declare section;
 name character_string(15);
 salary float;
exec sql end declare section;
exec sql whenever sqlerror stop;
exec sql connect personnel;
exec sql select ename, sal
 into :name, :salary
 from employee
 where eno = 23;
print name, salary;
exec sql disconnect;
end program

The above sequence of statements illustrates a pattern common to most
embedded SQL programs. The first SQL statement to appear is:

exec sql include sqlca;

This statement incorporates the SQL error and status handling mechanism—
the SQL Communications Area (SQLCA)—into the program. The SQLCA is used
by the whenever statement, appearing later in the example.

Next is an SQL declaration section. Host language variables must be declared
to SQL prior to their use in any embedded SQL statements. Host language
variables are described in detail in the next section.

The whenever statement that follows uses information from the SQLCA to
control program execution under error or exception conditions. For details
about error handling, see Error Handling in the chapter “Working with
Transactions and Error Handling.” In general, an error handling mechanism
must precede all executable embedded SQL statements in a program.

Following the whenever statement is a series of SQL and host language
statements. The first statement:

exec sql connect personnel;

initiates access to the personnel database. A connect statement must precede
any references to a database.

Host Language Variables in Embedded SQL

134 SQL Reference Guide

Next is the familiar select statement, containing a clause that begins with the
keyword, into. The into clause associates values retrieved by the select
statement with host language variables in the program. Following the into
keyword are the two host language variables previously declared to SQL,
name and salary.

Following the select statement is a host language statement that prints the
values contained in the variables.

The last database statement in the program is:

exec sql disconnect;

This statement severs the connection of the program to the database.

Host Language Variables in Embedded SQL
Embedded SQL allows the use of host language variables for many elements of
embedded SQL statements. Host language variables can be used to transfer
data between the database and the program or to specify the search condition
in a where clause.

In embedded SQL statements, host language variables can be used to specify
the following elements:

 Database expressions. Variables can generally be used wherever
expressions are allowed in embedded SQL statements, such as in target
lists and predicates. Variables must denote constant values and cannot
represent names of database columns or include any operators.

 Objects of the into clause of the select and fetch statements. The into
clause is the means by which values retrieved from the database are
transferred to host language variables.

 Miscellaneous statement arguments. Many embedded SQL statement
arguments can be specified using host language variables. For more
information, see the chapter "Using SQL Statements".

A host language variable can be a simple variable or a structure. All host
language variables must be declared to embedded SQL before using them in
embedded SQL statements.

For a full discussion of the use of host language variables in embedded SQL,
see the Embedded SQL Companion Guide.

Host Language Variables in Embedded SQL

Working with Embedded SQL 135

Variable Declarations

Host language variables must be declared to SQL before using them in any
embedded SQL statements. Host language variables are declared to SQL in a
declaration section that has the following syntax:

exec sql begin declare section;
host language variable declaration
exec sql end declare section;

A program can contain multiple declaration sections. The preprocessor treats
variables declared in each declaration section as global to the embedded SQL
program from the point of declaration onward, even if the host language
considers the declaration to be in local scope.

The variable declarations are identical to any variable declarations in the host
language, however, the data types of the declared variables must belong to a
subset of host language data types that embedded SQL understands.

The DBMS Server automatically handles the conversion between host language
numeric types and SQL numeric types, as well as the conversion between host
language character string types and SQL character string types. To convert
data between numeric and character types, use one of the explicit conversion
functions described in Default Type Conversion in the chapter “Understanding
the Elements of SQL Statements.” For a list of the data types acceptable to
embedded SQL and a discussion of data type conversion, see the Embedded
SQL Companion Guide.

Note: Host language variables that are not declared to SQL are not processed
by the ESQL preprocessor and therefore can include data types that the
preprocessor does not understand.

Host Language Variables in Embedded SQL

136 SQL Reference Guide

Include Statement

The embedded SQL include statement allows external files to be included in
your source code. The syntax of the include statement is:

exec sql include filename

This statement is commonly used to include an external file containing variable
declarations.

For example, assuming you have a file called, myvars.dec, that contains a
group of variable declarations, use the include statement in the following
manner:

exec sql begin declare section;
exec sql include 'myvars.dec';
exec sql end declare section;

This is the functional equivalent of listing all the declarations in the myvars.dec
file in the declaration section itself.

Variable Usage

After host language variables are declared, use them in your embedded
statements. In embedded SQL statements, host language variables must be
preceded by a colon, for example:

exec sql select ename, sal
 into :name, :salary
 from employee
 where eno = :empnum;

The into clause contains two host language variables, name and salary, and
the where clause contains one, empnum.

A host language variable can have the same name as a database object, such
as a column. The preceding colon distinguishes the variable from an object of
the same name.

If no value is returned (for example, no rows qualified in a query), the
contents of the variable are not modified.

Host Language Variables in Embedded SQL

Working with Embedded SQL 137

Variable Structures

To simplify data transfer in and out of database tables, embedded SQL allows
the usage of variable structures in the select, fetch, update, and insert
statements. Structures must be specified according to the rules of the host
language and must be declared in an embedded SQL declare section. For
structures to be used in select, insert, and update statements, the number,
data type, and order of the structure elements must correspond to the
number, data type, and order of the table columns in the statement.

For example, if you have a database table, employee, with the columns,
ename (char(20)) and eno (integer), you can declare the following variable
structure:

emprec,
 ename character_string(20),
 eno integer;

and issue the following select statement:

exec sql select *
 into :emprec.ename, :emprec.eno
 from employee
 where eno = 23;

It is also legal to specify only the structure name in the statement. If this is
done, each variable structure must correspond to the table specified in the
statement. The number, data type, and order of the structure elements must
correspond to the number, data type, and order of the table columns in the
statement.

exec sql select *
 into :emprec
 from employee
 where eno = 23;

The embedded SQL preprocessor expands the structure name into the names
of the individual members. Placing a structure name in the into clause has the
same effect as enumerating all members of the structure in the order in which
they were declared.

A structure can also be used to insert values in the database table. For
example:

exec sql insert into employee (ename,eno)
 values (:emprec);

For details on the declaration and use of variable structures, see the
Embedded SQL Companion Guide.

Host Language Variables in Embedded SQL

138 SQL Reference Guide

Dclgen Utility

The dclgen utility (declaration generator utility) is a structure-generating utility
that maps the columns of a database table into a structure that can be
included in a variable declaration.

The dclgen utility can be invoked from the operating system level by executing
the following command:

dclgen language dbname tablename filename structurename

language

Defines the embedded SQL host language.

dbname

Defines the name of the database containing the table.

tablename

Defines the name of the database table.

filename

Defines the output file generated by dclgen containing the structure
declaration.

structurename

Defines the name of the generated host language structure.

This command creates the declaration file, filename, containing a structure
corresponding to the database table. The file also includes a declare table
statement that serves as a comment and identifies the database table and
columns from which the structure was generated. Once the file has been
generated, use an embedded SQL include statement to incorporate it into the
variable declaration section. For details, see Declare Table (see page 426).

For details on the dclgen utility, see the Embedded SQL Companion Guide or
the Command Reference Guide.

Indicator Variables

An indicator variable is a 2-byte integer variable associated with a host
language variable in an embedded SQL statement. Indicator variables enable
an application to:

 Detect when a null value is retrieved

 Assign a null value to a table column, form field, or table field column

 Detect character string truncation

Host Language Variables in Embedded SQL

Working with Embedded SQL 139

Indicator Variable Declaration

Like other host language variables, an indicator variable must be declared to
embedded SQL in a declare section.

In an embedded SQL statement, the indicator variable is specified immediately
after the host language variable, with a colon separating the two:

host_variable:indicator_variable

Or you can use the optional keyword indicator in the syntax:

host_variable indicator :indicator_variable

When used to detect or assign a null, indicator variables are commonly termed
null indicator variables.

Specify indicator variables in association with host language variables that
contain the following data:

 Database column value

 Constant database expression

 Form field value

 Table field column value

For example, the following example associates null indicators with variables
representing column values:

exec sql select ename, esal
 into :name:name_null, :salary:sal_null
 from employee;

Host Language Variables in Embedded SQL

140 SQL Reference Guide

Null Indicators and Data Retrieval

When a null value is retrieved into a host language variable that has an
associated indicator variable, the indicator variable is set to -1 and the value
of the host language variable is not changed. If the value retrieved is not a
null, the indicator variable is set to 0 and the value is assigned to the host
language variable. If the value retrieved is null and the program does not
supply a null indicator, an error results.

Null indicator variables can be associated with the following:

 Select into and fetch into result variable lists

 Data handlers for long varchar and long byte values

 Database procedure parameters passed by reference

The following example illustrates the use of a null indicator when retrieving
data. This example issues a fetch statement and updates a roster while
checking for null phone numbers indicated by the variable, phone_null.

exec sql fetch emp_cursor into :name,
 :phone:phone_null, :id;
if (phone_null = -1) then
 update_roster(name, 'N/A', id);
else
 update_roster(name, phone, id);
end if;

Host Language Variables in Embedded SQL

Working with Embedded SQL 141

Using Null Indicators to Assign Nulls

Use an indicator variable with a host language variable to specify the
assignment of a null to a database column. (An indicator variable can also be
used to assign a null to a form field or a table field column.) When the DBMS
Server assigns the value from a host language variable to one of these
objects, it checks the value of the host language variable’s associated indicator
variable.

If the indicator variable value is -1, a null is assigned to the object and ignores
the value in the host language variable. If the indicator variable is any value
other than -1, the value of the host language variable is assigned to the
object.

If the indicator value is -1 and the object type is not nullable (such as a
column created with the not null clause), an error results.

The following example demonstrates the use of an indicator variable and the
null constant with the insert statement. For a description of the null constant,
see Nulls in the chapter “SQL Data Types.”

read name, phone number, and id from terminal;
if (phone = ' ') then
 phone_null = -1;
else
 phone_null = 0;
end if;
exec sql insert into newemp (name, phone, id,
 comment)
 values (:name, :phone:phone_null, :id, null);

This second example retrieves data from a form and updates the data in the
database:

exec frs getform empform (:name:name_null = name,
 :id:id_null = id);
exec sql update employee
 set name = :name:name_null, id = :id:id_null
 where current of emp_cursor;

Use null indicators to assign nulls in:

 The values clause of the insert statement

 The set clause of the update statement

 Execute procedure statement parameters

All constant expressions in the above clauses can include the keyword null.
Wherever an indicator variable can be used to assign a null, you can use the
keyword, null.

Host Language Variables in Embedded SQL

142 SQL Reference Guide

Indicator Variables and Character Data Retrieval

When a character string is retrieved into a host language variable too small to
hold the string, the data is truncated to fit. (If the data was retrieved from the
database, the sqlwarn1 field of the SQLCA is set to 'W'.)

If the host language variable has an associated indicator variable, the indicator
is set to the original length of the data. For example, the following statement
sets the variable, char_ind, to 6 because it is attempting to retrieve a 6-
character string into a 3-byte host language variable, char_3.

exec sql select 'abcdef' into :char_3:char_ind;

Note: If a long varchar or long byte column is truncated into a host language
variable, the indicator variable is set to 0. The maximum size of a long varchar
or long byte column (two gigabytes) is too large a value to fit in an indicator
variable.

Null Indicator Arrays and Host Structures

You can use host structures with the select, fetch, and insert statements,
wherever these statements allow host language variables to be used. An array
of indicator variables can be used in conjunction with a host structure to detect
whether a null has been assigned to an element of the host structure.

An indicator array is an array of 2-byte integers, and is typically declared in
the same declare section as its associated host language variable structure.
Each element of the indicator array acts as an indicator variable to the
correspondingly ordered member of the host structure.

The following example declares a host language variable structure, emprec,
and an associated indicator array, empind.

emprec
 ename character(20),
 eid integer,
 esal float;

empind array(3)of short_integer;

The following example illustrates the use of a host structure and indicator
array in an embedded statement:

exec sql select name, id, sal
 into :emprec:empind
 from employee
 where number = 12;

In the preceding example, if the value of the employee id column is null, a
value of -1 is assigned to the second element of the empind array.

Data Manipulation with Cursors

Working with Embedded SQL 143

Data Manipulation with Cursors
Cursors enable embedded SQL programs to process, one at a time, the result
rows returned by a select statement. After a cursor has been opened, it can be
advanced through the result rows. When the cursor is positioned to a row, the
data in the row can be transferred to host language variables and processed
according to the requirements of the application. The row to which the cursor
is positioned is referred to as the current row.

A typical cursor application uses SQL statements to perform the following
steps:

1. Declare a cursor that selects a set of rows for processing.

2. Open the cursor, thereby selecting the data.

3. Fetch each row from the result set and move the data from the row into
host language variables.

4. Update or delete the current row.

5. Close the cursor and terminate processing.

Data Manipulation with Cursors

144 SQL Reference Guide

Example: Cursor Processing

The following is an example of cursor processing:

exec sql include sqlca;

exec sql begin declare section;
 name character_string(15);
 salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect personnel;

exec sql declare c1 cursor for
 select ename, sal
 from employee
 for update of sal;

exec sql open c1;

exec sql whenever not found goto closec1;
loop while more rows
/* The WHENEVER NOT FOUND statement causes
 the loop to be broken as soon as a row
 is not fetched. */

exec sql fetch c1 into :name, :salary;

print name, salary;

if salary less than 10000 then
 exec sql update employee
 set salary = 10000
 where current of c1;
end if;
end loop;

closec1:

exec sql close c1;

exec sql disconnect;

Data Manipulation with Cursors

Working with Embedded SQL 145

Cursor Declarations

Before using a cursor in an application, the cursor must be declared. The
syntax for declaring a cursor is:

exec sql declare cursor_name cursor for

select_statement;

The declare cursor statement assigns a name to the cursor and associates the
cursor with a select statement to be used to retrieve data. A cursor is always
associated with a select statement. The select is executed when the cursor is
opened. Updates can be performed only if the cursor select statement refers to
a single table (or updateable view) and does not include any of the following
elements:

 Aggregate functions

 Union clause

 Group by clause

 Having clause

 Distinct

These elements can be present in subselects within the select statement, but
must not occur in the outermost select statement.

The cursor_name can be specified using a string literal or a host language
string variable. The cursor name cannot exceed 32 characters, and can be
assigned dynamically. For details, see Summary of Cursor Positioning (see
page 151).

Open Cursors

To open a cursor, use the open statement:

exec sql open cursor_name [for readonly];

Opening a cursor executes the associated select statement. The rows returned
by the select statement are stored in a temporary result set. The cursor is
positioned before the first row in the result table.

Note: If a cursor is closed and reopened, the cursor is repositioned to the
beginning of the result table, and does not resume the position it had before it
was closed.

Data Manipulation with Cursors

146 SQL Reference Guide

Readonly Cursors

Readonly cursors specify that the data does not intend to be updated. The for
readonly clause can be specified even if the cursor was declared for update; if
this is done, updates on the data cannot be performed.

To improve performance, the DBMS Server pre-fetches (buffers) rows for
readonly cursors. Use the set_sql(prefetchrows) statement to disable
prefetching or to specify the number of rows to prefetch. To determine the
number of rows that is prefetched for a particular readonly cursor, open the
cursor, issue the inquire_sql(prefetchrows) statement.

By default the DBMS Server calculates the number of rows it can prefetch,
taking into consideration the size of the row being fetched and the dimensions
of internal buffers. If, using set_sql(prefetchrows), a value larger than the
maximum number of rows the DBMS Server can prefetch is specified,
prefetchrows is reset to its calculated maximum.

Note: Prefetchrows cannot be set for readonly cursors that return long varchar
or long byte columns.

Open Cursors and Transaction Processing

Cursors affect transaction processing as follows:

 Cursors cannot remain open across transactions. The commit statement
closes all open cursors, even if a close cursor statement was not issued.

 A savepoint cannot be declared when a cursor is open.

 If an error occurs while a cursor is open, the DBMS Server can roll back
the entire transaction and close the cursor.

Data Manipulation with Cursors

Working with Embedded SQL 147

Fetch Data From Cursor

The fetch statement advances the position of the cursor through the result
rows returned by the select. Using the fetch statement, your application can
process the rows one at a time. The syntax of the fetch statement is:

exec sql fetch cursor_name

into variable{, variable};

The fetch statement advances the cursor to the first or next row in the set,
and loads the values indicated in the select clause of the declare cursor
statement into host language variables.

To illustrate, the example of cursor processing shown previously contains the
following declare cursor statement:

exec sql declare c1 cursor for
 select ename, sal
 from employee
 for update of sal;

Later in the program, the following fetch statement appears:

exec sql fetch c1 into :name, :salary;

This fetch statement puts the values from the columns, ename and sal, of the
current row into the host language variables, name and salary.

Because the fetch statement operates on a single row at a time, it is ordinarily
placed inside a host language loop.

You can detect when you have fetched the last row in the result table in the
following ways:

 The sqlcode variable in the SQLCA is set to 100 if an attempt is made to
fetch past the last row of the result table.

 After the last row is retrieved, succeeding fetches do not affect the
contents of the host language variables specified in the into clause of the
fetch statement.

 The whenever not found statement specifies an action to be performed
when the cursor moves past the last row.

 The SQLSTATE variable returns 02000 when the last row has been
fetched.

Cursors can only move forward through a set of rows. To refetch a row, close
and reopen a cursor.

Data Manipulation with Cursors

148 SQL Reference Guide

Fetch Rows Inserted by Other Queries

While a cursor is open, your application can append rows using non-cursor
insert statements. If rows are inserted after the current cursor position, the
rows are or are not be visible to the cursor, depending on the following
criteria:

 Updatable cursors—The newly inserted rows are visible to the cursor.
Updatable cursors reference a single base table or updateable view.

 Non-updatable cursors—If the cursor select statement retrieves rows
directly from the base table, the newly inserted rows are visible to the
cursor. If the select statement manipulates the retrieved rows (for
example, includes an order by clause), the cursor retrieves rows from an
intermediate buffer, and cannot detect the newly inserted rows.

Using Cursors to Update Data

To use a cursor to update rows, specify the for update clause when declaring
the cursor:

exec sql declare cursor_name cursor for

select_statement

for [deferred | direct] update from column1 {,column};

The for update of clause must list any columns in the selected database table
that are intended to be updated. Columns cannot be updated unless they have
been declared for update. To delete rows, the cursor does not need to be
declared for update.

The cursor update statement has the following syntax:

exec sql update tablename

set column= expression {, column = expression}

where current of cursor_name;

Cursor Modes

There are two cursor modes: direct and deferred. The default cursor mode is
specified when the DBMS Server is started. The default for ANSI/ISO Entry
SQL-92 compliance is direct mode.

Data Manipulation with Cursors

Working with Embedded SQL 149

Direct Mode for Update

Direct mode allows changes to be seen by the program before the cursor is
closed. In direct mode, if a row is updated with a value that causes the row to
move forward with respect to the current position of the cursor (for example, a
key column is updated), the program sees this row again and takes
appropriate steps to avoid reprocessing that row.

Deferred Mode for Update

In a Deferred Mode, changes made to the current row of a cursor are not
visible to the program that opened the cursor until the cursor is closed.
Transaction behavior, such as the release of locks and external visibility to
other programs, is not affected if deferred update is used. There can be only
one cursor open for update in deferred mode at any given time.

Cursor Position for Updates

The where clause of the cursor version specifies the row to which the cursor
currently points. The update affects only data in that row. Each column
referenced in the set clause must have been previously declared for updating
in the declare cursor statement.

The cursor must be pointing to a row (a fetch has been executed) before a
cursor update is performed. The update statement does not advance the
cursor; a fetch is required to move the cursor forward one row. Two cursor
updates not separated by a fetch generally cause the same row to be updated
twice if the cursor was opened in direct mode, or cause an error if the cursor
was opened in deferred mode.

Delete Data Using Cursors

The cursor version of the delete statement has the following syntax:

exec sql delete from tablename where current of cursor_name;

The delete statement deletes the current row. The cursor must be positioned
on a row (as the result of a fetch statement) before a cursor delete can be
performed. After the row is deleted, the cursor points to the position after the
row (and before the next row) in the set. To advance the cursor to the next
row, issue the fetch statement.

A cursor does not have to be declared for update to perform a cursor delete.

Data Manipulation with Cursors

150 SQL Reference Guide

Example: Updating and Deleting with Cursors

The following example illustrates updating and deleting with a cursor:

exec sql include sqlca;

exec sql begin declare section;
 name character_string(15);
 salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect personnel;

exec sql declare c1 cursor for
 select ename, sal
 from employee
 for update of sal;

exec sql open c1;

exec sql whenever not found goto closec1;

loop while more rows

exec sql fetch c1 into :name, :salary;
 print name, salary;

/* Increase salaries of all employees earning
 less than 60,000. */

if salary < 60,000 then

 print 'Updating ', name;
 exec sql update employee
 set sal = sal * 1.1
 where current of c1;

/* Fire all employees earning more than
 300,000. */

else if salary > 300,000 then

 print 'Terminating ', name;
 exec sql delete from employee
 where current of c1;
end if;

end loop;

closec1:

 exec sql close c1;

 exec sql disconnect;

Data Manipulation with Cursors

Working with Embedded SQL 151

Closing Cursors

To close a cursor, issue the close cursor statement:

exec sql close cursor_name;

After the cursor is closed, no more processing can be performed with it unless
another open statement is issued. The same cursor can be opened and closed
any number of times in a single program. A cursor must be closed before it
can be reopened.

Summary of Cursor Positioning

The following table summarizes the effects of cursor statements on cursor
positioning:

Statement Effect on Cursor Position

Open Cursor positioned before first row in set.

Fetch Cursor moves to next row in set. If it is already on the last
row, the cursor moves beyond the set and its position
becomes undefined.

Update(cursor) Cursor remains on current row.

Delete(cursor) Cursor moves to a position after the deleted row (but before
the following row).

Close Cursor and set of rows become undefined.

For extended examples of the use of cursors in embedded SQL, see the
Embedded SQL Companion Guide.

Data Manipulation with Cursors

152 SQL Reference Guide

Dynamically Specifying Cursor Names

A dynamically specified cursor name (a cursor name specified using a host
string variable) can be used to scan a table that contains rows that are related
hierarchically, such as a table of employees and managers.

In a relational database, this tree structure is represented as a relationship
between two columns. In an employee table, employees are assigned an ID
number. One of the columns in the employee table contains the ID number of
each employee’s manager. The ID number column establishes the
relationships between employees and managers.

To use dynamically specified cursor names to scan this kind of table, do the
following:

 Write a routine that uses a cursor to retrieve all the employees that work
for a manager.

 Create a loop that calls this routine for each row that is retrieved and
dynamically specifies the name of the cursor to be used by the routine.

The following example retrieves rows from the employee table, which has the
following format:

Data Manipulation with Cursors

Working with Embedded SQL 153

exec sql declare employee table
 (ename varchar(32),
 title varchar(20),
 manager varchar(32));
This program scans the employee table and prints out all employees and the
employees that they manage.
/* This program will print out, starting with
** the top manager, each manager and who they
** manage for the entire company. */

exec sql include sqlca;

/* main program */
exec sql begin declare section;
 manager character_string(32)
exec sql end declare section;

exec sql connect dbname;

exec sql whenever not found goto closedb;
exec sql whenever sqlerror call sqlprint;

/* Retrieve top manager */
exec sql select ename into :topmanager
 from employee
 where title = ‘President’;

/* start with top manager */
print “President”, topmanager
call printorg(1, “President”);

closedb:
exec sql disconnect;

/* This subroutine retrieves and displays employees who report to a given
manager. This subroutine is called recursively to determine if a given employee
is also a manager and if so, it will display who reports to them.
*/

subroutine printorg(level, manager)
level integer;

exec sql begin declare section;
 manager character_string(32)
 ename character_string(32)
 title character_string(20);
exec sql end declare section;

/* set cursor name to ‘c1’, ‘c2’, … */
cname = ‘c’ + level

exec sql declare :cname cursor for
 select ename, title, manager from employee
 where manager = :manager
 order by ename;

exec sql whenever not found goto closec;

exec sql open :cname;

loop
 exec sql fetch :cname into :ename, :title,
 :manager;

/* Print employee’s name and title */
 print title, ename

Data Manipulation with Cursors

154 SQL Reference Guide

/* Find out who (if anyone) reports to this
 employee */
 printorg(level+1, ename);
end loop

closec:
exec sql close :cname;

Cursors versus Select Loops

A select loop is a block of code associated with an embedded select statement;
the select loop processes the rows returned by the select. Select loops are
typically used when the select returns more than one row.

The select loop is an enhancement of standard SQL. ANSI SQL does not allow
more than one row to be retrieved by a select statement. If multiple rows are
to be retrieved, the ANSI standard requires the use of a cursor even if the
rows are not updated.

Cursors enable an application to retrieve and manipulate individual rows
without the restriction of the select loop. Within a select loop, statements
cannot be issued that access the database. Use cursors in the following
situations:

 When a program needs to scan a table to update or delete rows.

 When a program requires access to other tables while processing rows.

 When more than one table needs to be scanned simultaneously (parallel
queries).

 When more than one table needs to be scanned in a nested fashion, for
example, in a master-detail application.

The following two examples do the same thing. The first example uses a select
loop and the second uses a cursor. Because there are no nested updates and
only one result table is being processed, the select method is preferred.

 //Select Loop Version

exec sql select ename, eno, sal
 into :name, :empnum, :salary
 from employee
 order by ename;

 exec sql begin;
 print name, salary, empnum;
 exec sql end;

//Cursor Version

Dynamic Programming

Working with Embedded SQL 155

exec sql declare c1 cursor for
 select ename, eno, sal/* No INTO clause */
 from employee
 order by ename;

 exec sql open c1;
 exec sql whenever not found goto closec1;

 loop while more rows
 exec sql fetch c1 into :name, :salary, :empnum;
 print name, salary, empnum;
 end loop;

 closec1:
 exec sql close c1;

Dynamic Programming
Dynamic programming allows your applications to specify program elements
(including queries, SQL statements, and form names) at runtime. In
applications where table or column names are not known until runtime, or
where queries must be based on the runtime environment of the application,
hard-coded SQL statements are not sufficient.

To support applications such as these, use dynamic SQL. Using dynamic SQL,
you can:

 Execute a statement that is stored in a buffer (using the execute
immediate statement).

 Encode a statement stored in a buffer and execute it multiple times (using
the prepare and execute statements).

 Obtain information about a table at runtime (using the prepare and
describe statements).

Note: Dynamic FRS allows an application to transfer data between the form
and the database using information specified at runtime.

SQLDA

The descriptor area, called the SQLDA (SQL Descriptor Area), is a host
language structure used by dynamic SQL. Dynamic SQL uses the SQLDA to
store information about each result column of the select statement and to
store descriptive information about program variables. Use the SQLDA when
executing a describe statement, a prepare statement, an execute statement,
or execute immediate statement.

Dynamic Programming

156 SQL Reference Guide

Structure of the SQLDA

Typically, storage for the SQLDA structure is allocated at runtime. If a program
allows several dynamically defined cursors to be opened at one time, the
program can allocate several SQLDA structures, one for each select statement,
and assign each structure a different name.

Each host language has different considerations for the SQLDA structure.
Before writing a program that uses the SQLDA, see the Embedded SQL
Companion Guide.

The layout of the SQLDA is shown in the following table:

SQLDA Structure Description

sqldaid 8-byte character array assigned the blank-padded
value SQLDA.

sqldabc 4-byte integer assigned the size of the SQLDA.

sqln 2-byte integer indicating the number of allocated
sqlvar elements. This value must be set by the
program before describing a statement, form, or table
field. The value must be greater than or equal to zero.

sqld 2-byte integer indicating the number of result columns
associated with the describe statement. This number
specifies how many of the allocated sqlvar elements
were used to describe the statement. If sqld is greater
than sqln, the program must reallocate the SQLDA to
provide more storage buffers and reissue the describe
statement.

To use the SQLDA to place values in a table, the
program must set sqld to the correct number before
the SQLDA is used in a statement.

When describing a dynamic SQL statement, if the
value in sqld is zero, the described statement is not a
select statement.

Dynamic Programming

Working with Embedded SQL 157

SQLDA Structure Description

sqlvar A sqln-size array composed of the following elements:

� sqltype—2-byte integer indicating the length data
type of the column, variable, or field.

� sqllen—2-byte integer indicating the length of the
column, variable, or field.

� sqldata—Pointer.

� sqlind—Pointer to indicator variable associated
with the host language variable. Your program
must also allocate the memory to which this
variable points.

� sqlname—The result column name (when a select
statement is described).

Including the SQLDA in a Program

To define the SQLDA, your application must issue the following include
statement:

exec sql include sqlda;

Do not place this statement in a declaration section.

In most host languages, this statement incorporates a set of type definitions
that can be used to define the SQLDA structure; in some host languages it
actually declares the structure. If the structure is declared directly (instead of
using the include statement), any name can be specified for the structure. For
information about how your language handles this statement, see the
Embedded SQL Companion Guide.

More than one SQLDA-type structure is allowed in a program. A dynamic FRS
describe statement and a dynamic SQL statement can use the same SQLDA
structure if the described form fields or table field columns have the same
names, lengths, and data types as the columns of the database table specified
in the dynamic SQL statement.

Dynamic Programming

158 SQL Reference Guide

Describe Statement and SQLDA

The describe statement loads descriptive information about a prepared SQL
statement, a form, or the table field of a form into the SQLDA structure. There
are three versions of this statement, one for each type of object (statement,
form, table field) that can be described.

Dynamic SQL uses the describe statement to return information about the
result columns of a select statement. Describing a select tells the program the
data types, lengths, and names of the columns retrieved by the select. If
statements that are not select statements are described, a 0 is returned in the
sqld field, indicating that the statement was not a select statement. For a
complete discussion of how to use describe in a dynamic SQL application, see
Preparing and Describing Select Statement (see page 171) in this chapter.

Data Type Codes

The describe statement returns a code indicating the data type of a field or
column. This code is returned in sqltype, one of the fields in an sqlvar element.

The following table lists the data type codes. If a type code is negative, the
column, variable, or field described by the sqlvar element is nullable.

Data Type Name Data Type Code Nullable

byte 23 No

 -23 Yes

byte varying 24 No

 -24 Yes

C 32 No

 -32 Yes

char 20 No

 -20 Yes

date 3 No

 -3 Yes

decimal 10 No

 -10 Yes

float 31 No

 -31 Yes

integer 30 No

 -30 Yes

Dynamic Programming

Working with Embedded SQL 159

Data Type Name Data Type Code Nullable

long byte 25 No

 -25 Yes

long varchar 22 No

 -22 Yes

money 5 No

 -5 Yes

text 37 No

 -37 Yes

varchar 21 No

 -21 Yes

Note: Logical keys are returned as char values.

For details about dynamic programming with long varchar and long byte
columns, see Using Large Objects in Dynamic SQL (see page 179) in this
chapter.

Using Clause

The using clause directs the DBMS Server to use the variables pointed to by
the sqlvar elements of the SQLDA (or other host language variables) when
executing the statement. The syntax of the using clause follows. The keyword
descriptor is optional in some statements that accept the using clause.

using descriptor descriptor_name

The statements that accept the using clause are:

describe fetch

execute open

execute immediate prepare

execute procedure

Dynamic Programming

160 SQL Reference Guide

Dynamic SQL Statements

Dynamic SQL has the following statements that are used exclusively in a
dynamic program:

 Execute immediate

 Prepare and Execute

 Describe

In addition, all statements that support cursors (declare, open, fetch, update,
delete) have dynamic versions to support dynamically executed select
statements.

This section is an overview of the four statements used in dynamic programs.
Detailed discussions on using these statements to execute dynamic statements
can be found in Execute a Dynamic Non-select Statement (see page 164) and
Execute a Dynamic Select Statement (see page 167) . Information about the
dynamic versions of the cursor statements is found in Data Manipulation with
Cursors (see page 143). In addition, information about the dynamic version of
the execute procedure statement is found in Execute Procedure of the chapter
“Using SQL Statements.”

Dynamic Programming

Working with Embedded SQL 161

Execute Immediate Statement

The execute immediate statement executes an SQL statement specified as a
string literal or using a host language variable. This statement is most useful
when the program intends to execute a statement only once, or when using a
select loop with a dynamic select statement.

Use the execute immediate statement to execute all SQL statements except
for the following statements:

 call

 close

 connect

 declare

 describe

 disconnect

 enddata

 execute procedure

 execute

 fetch

 get data

 get dbevent

 include

 inquire_sql

 open

 prepare to commit

 prepare

 put data

 set_sql

 whenever

The syntax of execute immediate is:

exec sql execute immediate statement_string

[into variable{,variable} | using [descriptor] desrciptor_name

[exec sql begin;

 program_code

exec sql end;]];

Dynamic Programming

162 SQL Reference Guide

The contents of the statement_string must not include the keywords exec sql
or a statement terminator. The optional into/using clause and begin/end
statement block can only be used when executing a dynamic select statement.

Prepare and Execute Statements

The prepare statement tells the DBMS Server to encode the dynamically built
statement and assign it the specified name. After a statement is prepared, the
program can execute the statement one or more times within a transaction by
issuing the execute statement and specifying the statement name. This
method improves performance if your program must execute the same
statement many times in a transaction. When a transaction is committed, all
statements that were prepared during the transaction are discarded.

The following SQL statements cannot be prepared:

 call

 close

 connect

 declare

 disconnect

 enddata

 execute immediate

 execute fetch

 get data

 get dbevent

 include

 inquire_sql

 open

 prepare to commit

 prepare

 put data

 set

 set_sql

 whenever

The syntax of the prepare statement is:

exec sql prepare statement_name

[into descriptor_name | using descriptor descriptor_name]

Dynamic Programming

Working with Embedded SQL 163

from host_string_variable | string_literal;

The statement_name can be a string literal or variable, with a maximum
length of 32 characters. The contents of the host string variable or the string
literal cannot include exec sql or the statement terminator.

If the into clause is included in the prepare statement, the prepare statement
also describes the statement string into the specified descriptor area and it is
not necessary to describe the statement string separately.

The syntax of the execute statement is:

exec sql execute statement_name

[using host_variable{,host_variable}

| using descriptor descriptor_name};

A prepared statement can be fully specified, or some portions can be specified
by question marks (?); these elements must be filled in (by the using clause)
when the statement is executed. For more information see Prepare in the
chapter “Using SQL Statements.”

Describe Statement

The describe statement describes a prepared SQL statement into a program
descriptor (SQLDA), which allows the program to interact with the dynamic
statement as though it was hard coded in the program. This statement is used
primarily with dynamic select statements.

The syntax for the describe statement is as follows:

exec sql describe statement_name into|using descriptor_name;

For more information about the describe statement, Describe Statement and
SQLDA (see page 158) see and Preparing and Describing Select Statement
(see page 171).

Dynamic Programming

164 SQL Reference Guide

Execute a Dynamic Non-select Statement

To execute a dynamic non-select statement, use either the execute immediate
statement or the prepare and execute statements. Execute immediate is most
useful if the program executes the statement only once within a transaction. If
the program executes the statement many times within a transaction, for
example, within a program loop, use the prepare and execute combination:
prepare the statement once, execute it as many times as necessary.

If the program does not know whether the statement is a select statement,
the program can prepare and describe the statement. The results returned by
the describe statement indicate whether the statement was a select. For more
information, see Executing a Dynamic Select Statement (see page 167) in this
chapter.

Dynamic Programming

Working with Embedded SQL 165

Using Execute Immediate to Execute a Non-select Statement

Execute immediate executes an SQL statement specified using a string literal
or host language variable. Use this statement to execute all but a few of the
SQL statements; the exceptions are listed in Execute Immediate Statement
(see page 161).

For non-select statements, the syntax of execute immediate is as follows:'

exec sql execute immediate statement_string;

For example, the following statement executes a drop statement specified as a
string literal:

/*
** Statement specification included
** in string literal. The string literal does
** NOT include 'exec sql' or ';'
*/
exec sql execute immediate 'drop table employee';

The following example reads SQL statements from a file into a host string
variable buffer and executes the contents of the variable. If the variable
includes a statement that cannot be executed by execute immediate, or if
another error occurs, the loop is broken.

exec sql begin declare section;
 character buffer(100);
exec sql end declare section;
open file;
loop while not end of file and not error

 read statement from file into buffer;
 exec sql execute immediate :buffer;

end loop;
close file;

If only the statement parameters (such as an employee name or number)
change at runtime, execute immediate is not needed. A value can be replaced
with a host language variable. For instance, the following example increases
the salaries of employees whose employee numbers are read from a file:

loop while not end of file and not error

read number from file;
 exec sql update employee
 set sal = sal * 1.1
 where eno = :number;

end loop;

Dynamic Programming

166 SQL Reference Guide

Preparing and Executing a Non-select Statement

The prepare and execute statements can also execute dynamic non-select
statements. These statements enable your program to save a statement string
and execute it as many times as necessary. A prepared statement is discarded
when the transaction in which it was prepared is rolled back or committed. If a
statement with the same name as an existing statement is prepared, the new
statement supersedes the old statement.

The following example demonstrates how a runtime user can prepare a
dynamically specified SQL statement and execute it a specific number of
times:

read SQL statement from terminal into buffer;
 exec sql prepare s1 from :buffer;
read number in N
 loop N times
 exec sql execute s1;
 end loop;

The following example creates a table whose name is the same as the user
name, and inserts a set of rows with fixed-typed parameters (the user’s
children) into the table:

get user name from terminal;
buffer = 'create table ' + user_name +
 '(child char(15), age integer)';
exec sql execute immediate :buffer;

buffer = 'insert into ' + user_name +
 '(child, age) values (?, ?)';
exec sql prepare s1 from :buffer;

read child's name and age from terminal;
loop until no more children
 exec sql execute s1 using :child, :age;
 read child's name and age from terminal;
end loop;

A list of statements that cannot be executed using prepare and execute can be
found in Prepare and Execute Statements (see page 162).

Dynamic Programming

Working with Embedded SQL 167

Execute a Dynamic Select Statement

To execute a dynamic select statement, use one of the following methods:

 If your program knows the data types of the select statement result
columns, use the execute immediate statement with the into clause to
execute the select. Execute immediate defines a select loop to process the
retrieved rows.

 If your program does not know the data types of the select statement
result columns, use the execute immediate statement with the using
clause to execute the select.

 If your program does not know the data types of the select statement
result columns, declare a cursor for the prepared select statement and use
the cursor to retrieve the results.

The execute immediate option allows you to define a select loop to process the
results of the select. Select loops do not allow the program to issue any other
SQL statements while the loop is open. If the program must access the
database while processing rows, use the cursor option.

Details about these options are found in When Result Column Data Types Are
Known (see page 169) and When Result Column Data Types Are Unknown
(see page 170) in this chapter.

To determine whether a statement is a select, use the prepare and describe
statements. A repeated select statement cannot be prepared.

The following code demonstrates the use of the prepare and describe
statements to execute random statements and print results. This example
uses cursors to retrieve rows if the statement is a select.

Dynamic Programming

168 SQL Reference Guide

statement_buffer = ' ';
loop while reading statement_buffer from terminal
 exec sql prepare s1 from :statement_buffer;
 exec sql describe s1 into :rdescriptor;

 if sqlda.sqld = 0 then

 exec sql execute s1;

 else

 /* This is a SELECT */
 exec sql declare c1 cursor for s1;
 exec sql open c1;

 allocate result variables using
 result_descriptor;

 loop while there are more rows in the cursor

 exec sql fetch c1 using descriptor
 :rdescriptor;
 if (sqlca.sqlcode not equal 100) then
 print the row using
 rdescriptor;
 end if;

 end loop;

 free result variables from rdescriptor;

 exec sql close c1;

 end if;

 process sqlca for status;

end loop;

Dynamic Programming

Working with Embedded SQL 169

Unknown Result Column Data Types

For some dynamic select statements, the program knows the data types of the
resulting columns and, consequently, the data types of the result variables
used to store the column values. If the program has this information, the
program can use the execute immediate statement with the into clause to
execute the select statement.

In the following example, a database contains several password tables, each
having one column and one row and containing a password value. An
application connected to this database requires a user to successfully enter
two passwords before continuing. The first password entered is the name of a
password table and the second is the password value in that table.

The following code uses the execute immediate statement to execute the
dynamically-defined select built by the application to check these passwords:

...
prompt for table_password and value_password
select_stmt = 'select column1 from ' +
 table_password;
exec sql execute immediate :select_stmt
 into :result_password;
if (sqlstate < 0) or (value_password <>
 result_password) then
 print 'Password authorization failure'
endif
...

Because the application developer knows the data type of the column in the
password table (although not which password table is selected), the developer
can execute the dynamic select with the execute immediate statement and the
into clause.

The syntax of execute immediate in this context is:

exec sql execute immediate select_statement

into variable{,variable};

[exec sql begin;

 host_code

exec sql end;]

This syntax retrieves the results of the select into the specified host language
variables. The begin and end statements define a select loop that processes
each row returned by the select statement and terminates when there are no
more rows to process. If a select loop is used, your program cannot issue any
other SQL statements for the duration of the loop.

Dynamic Programming

170 SQL Reference Guide

If the select loop is not included in the statement, the DBMS Server assumes
that the select statement is a singleton select returning only one row and, if
more than one row is returned, issues an error.

How Unknown Result Column Data Types are Handled

In most instances, when a dynamically defined select statement is executed,
the program does not know in advance the number or types of result columns.
To provide this information to the program, first prepare and describe the
select statement. The describe statement returns to the program the type
description of the result columns of a prepared select statement. After the
select is described, the program must allocate (or reference) dynamically the
correct number of result storage areas of the correct size and type to receive
the results of the select.

If the statement is not a select statement, describe returns a zero to the sqld
and no sqlvar elements are used.

After the statement has been prepared and described and the result variables
allocated, the program has two choices regarding the execution of the select
statement:

 The program can associate the statement name with a cursor name, open
the cursor, fetch the results into the allocated results storage area (one
row at a time), and close the cursor.

 The program can use execute immediate. Execute immediate defines a
select loop to process the returned rows. If the select returns only one
row, it is not necessary to use a select loop.

Dynamic Programming

Working with Embedded SQL 171

Prepare and Describe Select Statements

If the program has no advance knowledge of the resulting columns, the first
step in executing a dynamic select statement is to prepare and describe the
statement. Preparing the statement encodes and saves the statement and
assigns it a name. For information about the syntax and use of prepare, see
Prepare and Execute Statements (see page 162) in this chapter.

The describe statement returns descriptive information about a prepared
statement into a program descriptor, that is, an SQLDA structure. This
statement is primarily used to return information about the result columns of a
select statement to the program; however, it is also possible to describe other
statements. (When a non-select statement is described, the only information
returned to the program is that the statement was not a select statement.)
The syntax of the describe statement is:

exec sql describe statement_name into|using descriptor_name;

When a select statement is described, information about each result column is
returned to an sqlvar element. (For information about sqlvar elements, see
Structure of the SQLDA (see page 156).) This is a one-to-one correspondence:
the information in one sqlvar element corresponds to one result column.
Therefore, before issuing the describe statement, the program must allocate
sufficient sqlvar elements and set the SQLDA sqln field to the number of
allocated sqlvars. The program must set sqln before the describe statement is
issued.

After issuing the describe statement, the program must check the value of
sqld, which contains the number of sqlvar elements actually used to describe
the statement. If sqld is zero, the prepared statement was not a select
statement. If sqld is greater than sqln, the SQLDA does not have enough
sqlvar elements: more storage must be allocated and the statement must be
redescribed.

The following example shows a typical describe statement and the surrounding
host program code. The program assumes that 20 sqlvar elements are
sufficient:

sqlda.sqln = 20;
exec sql describe s1 into sqlda;
if (sqlda.sqld = 0) then

 statement is not a select statement;

else if (sqlda.sqld > sqlda.sqln) then

 save sqld;
 free current sqlda;
 allocate new sqlda using sqld as the size;
 sqlda.sqln = sqld;
 exec sql describe s1 into sqlda;

end if;

Dynamic Programming

172 SQL Reference Guide

Sqlvar Elements

After describing a statement, the program must analyze the contents of the
sqlvar array. Each element of the sqlvar array describes one result column of
the select statement. Together, all the sqlvar elements describe one complete
row of the result table.

The describe statement sets the data type, length, and name of the result
column (sqltype, sqllen and sqlname), and the program must use that
information to supply the address of the result variable and result indicator
variable (sqldata and sqlind). Your program must also allocate the space for
these variables.

For example, if you create the table object as follows:

exec sql create table object
 (o_id integer not null,
 o_desc char(100) not null,
 o_price money not null,
 o_sold date);

and describe the following dynamic query:

exec sql prepare s1 from 'select * from object';
exec sql describe s1 into sqlda;

The SQLDA descriptor results are as follows:

sqld 4 (columns)

sqlvar(1) sqltype = 30 (integer)

 sqllen = 4

 sqlname = 'o_id'

sqlvar(2) sqltype = 20 (char)

 sqllen = 100

 sqlname = 'o_desc'

sqlvar(3) sqltype = 5 (money)

 sqllen = 0

 sqlname = 'o_price'

sqlvar(4) sqltype = -3 (nullable date)

 sqllen = 0

 sqlname = 'o_sold'

Dynamic Programming

Working with Embedded SQL 173

The value that the describe statement returns in sqllen depends on the data
type of the column being described, as listed in the following table:

Data Type Contents of sqllen

char and varchar Maximum length of the character string.

byte and byte varying Maximum length of the binary data.

long varchar and
long byte

Length of the string. If the length exceeds the
maximum value of a 2-byte integer, sqllen is set to
0. Long varchar and long byte columns can contain
up to 2 GB of data.

To avoid buffer overflow, be sure to allocate a host
language variable that is large enough to
accommodate your data.

integer and float Declared size of the numeric field.

date 0 (the program must use a 25-byte character string
to retrieve or set date data).

money 0 (the program must use an 8-byte floating point
variable to retrieve or set money data).

decimal High byte contains precision, low byte contains
scale.

After the statement is described, your program must analyze the values of
sqltype and sqllen in each sqlvar element. If sqltype and sqllen do not
correspond exactly with the types of variables used by the program to process
the select statement, modify sqltype and sqllen to be consistent with the
program variables. After describing a select statement, there is one sqlvar
element for each expression in the select target list.

After processing the values of sqltype and sqllen, allocate storage for the
variables that contain the values in the result columns of the select statement
by pointing sqldata at a host language variable that contain the result data. If
the value of sqltype is negative, which indicates a nullable result column data
type, allocate an indicator variable for the particular result column and set
sqlind to point to the indicator variable. If sqltype is positive, indicating that
the result column data type is not nullable, an indicator variable is not
required. In this case, set sqlind to zero.

Dynamic Programming

174 SQL Reference Guide

To omit the null indicator for a nullable result column (sqltype is negative if the
column is nullable), set sqltype to its positive value and sqlind to zero.
Conversely, if sqltype is positive and an indicator variable is allocated, set
sqltype to its negative value, and set sqlind to point to the indicator variable.

In the preceding example, the program analyzes the results and modifies
some of the types and lengths to correspond with the host language variables
used by the program: the money data type is changed to float, and the date
type to char. In addition, sqlind and sqldata are set to appropriate values. The
values in the resulting sqlvar elements are:

sqlvar(1) sqltype = 30 (integer not nullable)

 sqllen = 4

 sqldata = Address of 4-byte integer

 sqlind = 0

 sqlname = 'o_id'

sqlvar(2) sqltype = 20 (char not nullable)

 sqllen = 100

 sqldata = Address of 100-byte character string

 sqlind = 0

 sqlname = 'o_desc'

sqlvar(3) sqltype = 31 (float not nullable, was money)

 sqllen = 8 (was 0)

 sqldata = Address of 8-byte floating point

 sqlind = 0

 sqlname = 'o_price'

sqlvar(4) sqltype = -20 (char nullable, was date)

 sqllen = 25 (was 0)

 sqldata = Address of 25-byte character string

 sqlind = Address of 2-byte indicator variable

 sqlname = 'o_sold'

Dynamic Programming

Working with Embedded SQL 175

Select Statement with Execute Immediate

A dynamic select statement can be executed if the statement has been
prepared and described with an execute immediate statement that includes
the using clause. The using clause tells the DBMS Server to place the values
returned by the select into the variables pointed to by the elements of the
SQLDA sqlvar array. If the select returns more than one row, a select loop can
also be defined to process each row before another is returned.

The syntax of execute immediate in this context is:

exec sql execute immediate select_statement
 using [descriptor] descriptor_name;
[exec sql begin;
 host_code
exec sql end;]

Within a select loop, no SQL statements other than an endselect can be
issued. For non-looped selects, the DBMS Server expects the select to return a
single row, and issues an error if more than one row is returned.

To illustrate this option, the following program example contains a dynamic
select whose results are used to generate a report:

allocate an sqlda
read the dynamic select from the terminal into
 a stmt_buffer

exec sql prepare s1 from :stmt_buffer;
exec sql describe s1 into :sqlda;
if (sqlca.sqlcode < 0) or (sqlda.sqld = 0) then
 print an error message
 ('Error or statement is not a select');
 return;
else if (sqlda.sqld > sqlda.sqln) then
 allocate a new sqlda;
 exec sql describe s1 into :sqlda;
endif;

analyze the results and allocate variables

exec sql execute immediate :stmt_buffer
 using descriptor :sqlda;
exec sql begin;
 process results, generating report
 if error occurs, then
 exec sql endselect;
 endif;
...
exec sql end;

Dynamic Programming

176 SQL Reference Guide

Retrieve Results Using Cursors

To give your program the ability to access the database or issue other
database statements while processing rows retrieved as the result of the
select, a cursor must be used to retrieve those rows.

To use cursors, after the SQLDA has been analyzed and result variables have
been allocated and pointed at, the program must declare and open a cursor to
fetch the result rows.

The syntax of the cursor declaration for a dynamically defined select statement
is:

exec sql declare cursor_name cursor for statement_name;

This statement associates the select statement represented by
statement_name with the specified cursor. Statement_name is the name
assigned to the statement when the statement was prepared. As with non-
dynamic cursor declarations, the select statement is not evaluated until the
cursor is actually opened. After opening the cursor, the program retrieves the
result rows using the fetch statement with the SQLDA instead of the list of
output variables.

The syntax for a cursor fetch statement is:

exec sql fetch cursor_name using descriptor descriptor_name;

Before the fetch statement, the program has filled the result descriptor with
the addresses of the result storage areas. When executing the fetch
statement, the result columns are copied into the result areas referenced by
the descriptor.

The following example elaborates on an earlier example in this section. The
program reads a statement from the terminal. If the statement is “quit” the
program ends; otherwise, the program prepares the statement. If the
statement is not a select, it is executed. If the statement is a select statement,
it is described, a cursor is opened, and the result rows are fetched. Error
handling is not shown.

Dynamic Programming

Working with Embedded SQL 177

exec sql include sqlca;
exec sql include sqlda;

allocate an sqlda with 300 sqlvar elements;
sqlda.sqln = 300;

read statement_buffer from terminal;

loop while (statement_buffer <> 'quit')

 exec sql prepare s1 from :statement_buffer;
 exec sql describe s1 into sqlda;

 if (sqlda.sqld = 0) then
 /* This is not a select */

 exec sql execute s1;
 else /* This is a select */

 exec sql declare c1 cursor for s1;
 exec sql open c1;

 print column headers from the sqlname
 fields; analyze the SQLDA, inspecting
 types and lengths; allocate result
 variables for a cursor result row;
 set sqlvar fields sqldata and sqlind;

 loop while (sqlca.sqlcode = 0)
 exec sql fetch c1 using descriptor sqlda;
 if (sqlca.sqlcode = 0) then
 print the row using the results
 (sqldata and sqlind)
 pointed at by the sqlvar array;
 end if;

 end loop;

 free result variables from the sqlvar elements;

 exec sql close c1;

 end if;

 process the sqlca and print the status;

 read statement_buffer from the terminal;

end loop;

Data Handlers for Large Objects

178 SQL Reference Guide

Data Handlers for Large Objects
To read and write long varchar and long byte columns (referred to as large
objects), create routines called data handlers. Data handlers use get data and
put data statements to read and write segments of large object data. To
invoke a data handler, specify the datahandler clause in an insert, update,
fetch, or select statement. When the query is executed, the data handler
routine is invoked to read or write the column.

In embedded SQL programs, use the datahandler clause in place of a variable
or expression. For example, you can specify a data handler in a where clause;
the syntax of the datahandler clause is as follows:

datahandler(handler_routine([handler_arg]))[:indicator_var]

The following table lists the parameters for the datahandler clause:

Parameter Description

handler_routine Pointer to the data handler routine. Must be a valid
pointer. An invalid pointer results in a runtime error.

handler_arg Optional pointer to an argument to be passed to the data
handler routine. The argument does not have to be
declared in the declare section of the program.

indicator_var Optional indicator variable; for details about indicator
variables, see Indicator Variables (see page 138). For
datahandler clauses in insert and update statements and
where clauses, if this variable is set to a negative value,
the data handler routine is not called. If the data returned
by a select or fetch statement is null, the indicator variable
is set to -1 and the data handler routine is not called.

For example, the following select statement returns the column, bookname,
using the normal SQL method and the long varchar column, booktext, using a
data handler:

exec sql select bookname, booktext into
 :booknamevar, datahandler(get_text())
 from booktable where bookauthor = 'Melville';

Separate data handler routines can be created to process different columns.

In select loops, data handlers are called once for each row returned.

Data Handlers for Large Objects

Working with Embedded SQL 179

Errors in Data Handlers

Errors from put data and get data statements are raised immediately, and
abort the SQL statement that invoked the data handler. If an error handler is
in effect (as the result of a set_sql(errorhandler) statement), the error
handling routine is called.

The data handler read routines (routines that issue get data statements) must
issue the enddata statement before exiting. If a data handler routine attempts
to exit without issuing the enddata statement, a runtime error is issued.

To determine the name of the column for which the data handler was invoked,
use the inquire_sql(columnname) statement. To determine the data type of
the column, use the inquire_sql(columntype) statement. The
inquire_sql(columntype) statement returns an integer code corresponding to
the column data type. For a table listing the data type codes, see the table
titled Data Type Codes. These inquire_sql statements are valid only within a
data handler routine. Outside of a data handler, these statements return
empty strings.

Restrictions on Data Handlers

Data handlers are subject to the following restrictions:

 The datahandler clause is not valid in interactive SQL.

 The datahandler clause cannot be specified in a dynamic SQL statement.

 The datahandler clause cannot be specified in an execute procedure
statement.

 The datahandler clause cannot be specified in a declare section.

 A data handler routine must not issue a database query. The following
statements are valid in data handlers:

– Put data and get data

– Enddata (for read data handlers only)

– Inquire_sql and set_sql

– Host language statements

Large Objects in Dynamic SQL

The following sections contain considerations and restrictions for using large
object data in dynamic SQL programs. For details about dynamic SQL, see
Dynamic Programming (see page 155).

Data Handlers for Large Objects

180 SQL Reference Guide

Length Considerations

The sqllen field of the SQLDA is a 2-byte integer in which the DBMS Server
returns the length of a column. If a long varchar or long byte column that is
longer than the maximum value possible for sqllen (32,768) is described, a 0
is returned in sqllen.

Long varchar and long byte columns can contain a maximum of two gigabytes
of data. To prevent data truncation, be sure that the receiving variable to
which the SQLDA sqldata field points is large enough to accommodate the data
in the large object columns your program is reading. If data is truncated to fit
in the receiving variable, the sqlwarn member of the sqlca structure is set to
indicate truncation.

Data Handlers in Dynamic SQL

To specify a data handler routine to be called by a dynamic query that reads or
writes a large object column, prepare the SQLDA fields for the large object
column as follows:

 Set the sqltype field to IISQL_HDLR_TYPE. This value is defined when
using the include sqlda statement to define an SQLDA structure in your
program.

 Declare a sqlhdlr structure in your program. For details, see the Embedded
SQL Companion Guide. Load the sqlhdlr field of this structure with a
pointer to your data handler routine. If a variable is to be passed to the
data handler, load the sqlarg field with a pointer to the variable. If no
argument is to be passed, set the sqlarg field to 0.

If the value of the large object column is null (sqlind field of the SQLDA set to
-1) the data handler is not invoked.

Data Handlers for Large Objects

Working with Embedded SQL 181

Example: PUT DATA Handler

The following example illustrates the use of the put data statement; the data
handler routine writes a chapter from a text file to the book table. The data
handler is called when the insert statement is executed on a table with the
following structure.

exec sql create table book
 (chapter_name char(50),
 chapter_text long varchar);

For example:
exec sql begin declare section;
 char chapter_namebuf(50);
exec sql end declare section;

int put_handler();/* not necessary to
 declare to embedded SQL */
...
copy chapter text into chapter_namebuf

exec sql insert into book
 (chapter_name, chapter_text)
 values (:chapter_namebuf,
 datahandler(put_handler()));
...

put_handler()

exec sql begin declare section;
 char chap_segment[3000];
 int chap_length;
 int segment_length;
 int error;

exec sql end declare section;

int local_count = 0;

 ...
exec sql whenever sqlerror goto err;

chap_length = byte count of file

open file for reading

loop while (local_count < chap_length)

 read segment from file into chap_segment

Data Handlers for Large Objects

182 SQL Reference Guide

 segment_length = number of bytes read

 exec sql put data
 (segment = :chap_segment,
 segmentlength = :segment_length)

 local_count = local_count + segment_length

end loop

exec sql put data (dataend = 1); /* required by embedded SQL */

...

err:

exec sql inquire_sql(:error = errorno);

if (error <> 0)
 print error
 close file

Data Handlers for Large Objects

Working with Embedded SQL 183

Example: GET DATA Handler

The following example illustrates the use of the get data statement in a data
handler. This routine retrieves a chapter titled, “One Dark and Stormy Night,”
from the book table which has the following structure.

exec sql create table book
 (chapter_name char(50),
 chapter_text long varchar);

The data handler routine is called when the select statement is executed:
exec sql begin declare section;

 char chapter_namebuf(50);

exec sql end declare section;

 int get_handler()

...

Copy the string "One Dark and Stormy Night" into the chapter_namebuf variable.
exec sql select chapter_name, chapter_text
 into :chapter_namebuf, datahandler(get_handler())
 from book where chapter_name = :chapter_namebuf
 exec sql begin
 /* get_handler will be invoked
 once for each row */
 exec sql end;
...

get_handler()

exec sql begin declare section;
 char chap_segment[1000];
 int segment_length;
 int data_end;
 int error;
exec sql end declare section;

 ...

exec sql whenever sqlerror goto err;

data_end = 0

open file for writing

/* retrieve 1000 bytes at a time and write to text file. on last segment, less
than 1000 bytes may be returned, so segment_length is used for actual number of

Data Handlers for Large Objects

184 SQL Reference Guide

bytes to write to file. */

while (data_end != 1)

 exec sql get data (:chap_segment = segment,
 :segment_length = segmentlength,
 :data_end = dataend)
 with maxlength = 1000;

 write segment_length number of bytes from
 "chap_segment" to text file

end while

...

err:

exec sql inquire_ingres(:error = errorno);

if (error != 0)

 print error
 close file

Data Handlers for Large Objects

Working with Embedded SQL 185

Example: Dynamic SQL Data Handler

The following example illustrates the use of data handlers in a dynamic SQL
program. The sample table, big_table, was created with the following create
table statement.

create table big_table
 (object_id integer, big_col long varchar);

The dynamic program retrieves data from big_table.

The data handler routine, userdatahandler, accepts a structure composed of a
(long varchar) character string and an integer (which represents an object ID).
The data handler writes the object ID followed by the text of the large object
to a file.

The logic for the data handler is shown in the following pseudocode:

userdatahandler(info)

hdlr_param pointer to info structure

{exec sql begin declare section;

 char segbuf[1000];
 int seglen;
 int data_end;

exec sql end declare section;

data_end = 0

open file for writing

set arg_str field of info structure to filename
 /* to pass back to main program */

write arg_int field to file /* id passed in
 from main program */

loop while (data_end != 1)
 exec sql get data
 (:segbuf = segment, :dataend = dFataend)
 with maxlength = 1000;

 write segment to file

end loop

close file

}

Data Handlers for Large Objects

186 SQL Reference Guide

The structures required for using data handlers in dynamic SQL programs are
declared in the eqsqlda.h source file, which is included in your program by an
include sqlda statement. The following (C-style) definitions pertain to the use
of data handlers:

define IISQ_LVCH_TYPE 22
define IISQ_HDLR_TYPE 46

typedef struct sqlhdlr_
{
 char *sqlarg;
 int (*sqlhdlr)();
} IISQLHDLR;

The following definitions must be provided by the application program. In this
example the header file, mydecls.h, contains the required definitions.

/* Define structure hdlr_param, which will be used to pass information to and
receive information from the data handler. The data handler argument is a pointer
to a structure of this type, which is declared in the main program.*/

typedef struct hdlr_arg_struct

{
 char arg_str[100];
 int arg_int;

} hdlr_param;

The following code illustrates the main program, which uses dynamic SQL to
read the long varchar data from the sample table. This sample program sets
up the SQLDA to handle the retrieval of two columns, one integer column and
one long varchar column. The long varchar column is processed using a user-
defined data handler.

Data Handlers for Large Objects

Working with Embedded SQL 187

exec sql include 'mydecls.h';

main()

{

/* declare the sqlda */

exec sql include sqlda;

declare host SQLDA: _sqlda

declare sqlda as pointer to host SQLDA _sqlda

exec sql begin declare section;

 character stmt_buf[100];
 short integer indicator1;
 short integer indicator2;

exec sql end declare section;

integer userdatahandler()

integer i

/* Set the iisqhdlr structure; the data handler "userdatahandler" is invoked with
a pointer to "hdlr_arg" */

iisqlhdlr data_handler;

/* Declare parameter to be passed to datahandler -- in this example a pointer to
a hdlr_param -- a struct with one character string field and one integer field as
defined in "mydecls.h". */

declare hdlr_param hdlr_arg

set the SQLDA’s sqln field to 2

copy "select object_id,big_col from big_table2" to the host language variable
stmt_buf

i = 0

exec sql connect 'mydatabase';

set the sqlhdlr field to point to the userdatahandler routine

set the sqlarg field to point to arguments (hdlr_arg)

/* Set the first sqlvar structure to retrieve column "object_id".Because this
column appears before the large object column in the target list, it IS retrieved
prior to the large object column, and can be put into the hdlr_arg that is passed
to the data handler. */

sqlvar[0].sqltype = IISQ_INT_TYPE

sqlvar[0].sqldata points to hdlr_arg.arg_int

sqlvar[0].sqlind points to indicator1

/* Set the second sqlvar structure to invoke a datahandler.the "sqltype" field
must be set to iisq_hdlr_type.the "sqldata" field must be pointer to iisqlhdlr
type. */

sqlvar[1].sqltype = IISQ_HDLR_TYPE

Data Handlers for Large Objects

188 SQL Reference Guide

sqlvar[1].sqldata points to data_handler

sqlvar[1].sqlind points to indicator2

/* The data handler is called when the large object is retrieved. The data
handler writes the object_id and large object to a file and returns the file name
to the main program in the hdlr_arg struct. */

exec sql execute immediate :stmt_buf
 using descriptor sqlda;

exec sql begin;

/* process the file created in the data handler */

call processfile(hdlr_arg)

exec sql end;

}

Ingres 4GL Interface

Working with Embedded SQL 189

Ingres 4GL Interface
Embedded SQL programs can be called from Ingres 4GL and OpenROAD. Using
Ingres 4GL interface statements, 4GL data can be passed to the embedded
SQL program, and the embedded SQL program can operate on 4GL objects.
Ingres 4GL interface statements must be preceded with the keywords, exec
4gl. For more information about these statements see the Forms-based
Application Development Tools User Guide or the OpenROAD Language
Reference Guide. The following statements are available:

 callframe

 callproc

 clear array

 describe

 get attribute

 get global constant

 get global variable

 getrow

 inquire_4gl

 insertrow

 removerow

 send userevent

 set attribute

 set global variable

 set_4gl

 setrow [deleted]

Working with Transactions and Handling Errors 191

Chapter 6: Working with Transactions
and Handling Errors

This chapter discusses the following SQL features:

 Transactions

 Two-phase commit

 Status information

 Error handling

Transactions
A transaction is one or more SQL statements processed as a single, indivisible
database action.

If the transaction contains multiple statements, it is often called a multi-
statement transaction (MST). By default, all transactions are multi-statement
transactions.

How Transactions Work

A transaction can be performed by the SQL user, the program, or in some
instances, by the DBMS Server itself.

The transaction performs the following actions:

 The transaction begins with the first SQL statement following a connect,
commit, or rollback statement.

 The transaction continues until there is an explicit commit or rollback
statement, or until the session terminates. (Terminating the session or
disconnecting from the database issues an implicit commit statement.)

Transactions

192 SQL Reference Guide

How Consistency is Maintained During Transactions

None of the database changes made by a transaction are visible to other users
until the transaction is committed. In a multi-user environment, where more
than one transaction is open concurrently, this behavior maintains database
consistency. The DBMS lock manager ensures that two transactions cannot
interfere with one another if both are writing to the same database tables by
having one wait until the other is finished. That is, a transaction that writes to
the database locks pages in the tables that are affected, thus enforcing
database consistency.

How Commit and Rollback Process Works

A transaction begins with the first statement after connection to the database
or the first statement following a commit or rollback (including rollbacks
performed by the DBMS). Subsequent statements are part of the transaction
until a commit or rollback is executed. By default, an explicit commit or
rollback must be issued to close a transaction.

Individual Commits

To direct the DBMS to commit each database statement individually, use the
set autocommit on statement (this statement cannot be issued in an open
transaction). When autocommit is set on, a commit occurs automatically after
every statement, except prepare and describe. If autocommit is on and a
cursor is opened, the DBMS does not issue a commit until the close cursor
statement is executed, because cursors are logically a single statement. A
rollback statement can be issued when a cursor is open. To restore the default
behavior (and enable multi-statement transactions), issue the set autocommit
off statement.

How to Determine if You Are in a Transaction

To determine whether you are in a transaction, use the inquire_sql statement.

For information about inquire_sql, see Inquire_sql in the chapter “Using SQL
Statements.” To find out if autocommit is on or off, use dbmsinfo.

Transactions

Working with Transactions and Handling Errors 193

Statements Used to Control Transactions

Three primary statements are used to control transactions, they are:

 Commit

 Rollback

 Savepoint

In some circumstances, the DBMS terminates a transaction with a rollback. For
details, see Aborting Statements and Transactions (see page 196).

How Transaction Control Works

The commit, rollback, and savepoint statements allow control of the effects of
a transaction on the database as follows:

 The commit statement makes the changes permanent.

 The rollback statement undoes all the changes made by the transaction.

 The rollback statement used in conjunction with the savepoint statement
allows a partial undo of the effects of a transaction.

When a commit statement is issued:

 The DBMS makes all changes resulting from the transaction permanent,
terminates the transaction, and drops any locks held during the
transaction.

 When a rollback statement is issued, the DBMS undoes any database
changes made by the transaction, terminates the transaction, and releases
any locks held during the transaction.

Transactions

194 SQL Reference Guide

Savepoints on Multi Statement Transactions

In a multi-statement transaction, use rollback together with the savepoint
statement to perform a partial transaction rollback. The savepoint statement
establishes a marker in the transaction. If a rollback is subsequently issued,
specify that the rollback only go back to the savepoint. All changes made prior
to the savepoint are left in place; those made after the savepoint are undone.
Savepoint does not commit changes or release any locks, it simply establishes
stopping points for use in partial rollbacks. For example:

...
insert into emp_table values (ename, edept);
update.....
savepoint first;
insert.....
delete.....
if error on delete
 rollback to first;
else if other errors
 rollback;
...
commit;

If an error occurs on the delete statement, the rollback to first statement
directs the DBMS to back out all changes made after the savepoint was first
created, in this case, only the changes made by the second insert statement.
Processing resumes with the first statement that follows the rollback to first
statement; the transaction is not terminated.

If an error occurs that makes it necessary to abort the entire transaction, the
rollback statement that does not specify a savepoint causes the DBMS to back
out the entire transaction. Depending on the design of the application, the
program can either restart the transaction or continue with the next
transaction.

An unlimited number of savepoints can be placed in a transaction. Roll back to
the same savepoint is allowed any number of times within a transaction.

For a complete description of these statements, see the chapter “Using SQL
Statements.”

Transactions

Working with Transactions and Handling Errors 195

Interrupt Handling

When an operator interrupt occurs on the currently executing transaction, the
Ingres transaction processing system response depends on the operating
system used:

Windows: The Ingres transaction processing system recognizes the interrupt
signal, Ctrl+C. When the user enters a Ctrl+C through a terminal monitor
during transaction processing, the DBMS interrupts the current statement and
rolls back any partial results of that statement. Additional use of Ctrl+C is
ignored (unless an additional statement is added to the transaction). The
transaction remains open until terminated by a commit or rollback statement.

UNIX: The Ingres transaction processing system recognizes the interrupt
signal Ctrl+C. When the user enters a Ctrl+C through a terminal monitor
during transaction processing, the DBMS interrupts the current statement and
rolls back any partial results of that statement. If there is no statement
currently executing, Ctrl+C has no effect. Ctrl+C has no effect on the state of
the transaction and does not cause any locks to be released.

VMS: The Ingres transaction processing system recognizes two interrupt
signals, Ctrl+C and Ctrl+Y, when they are entered through a terminal monitor.
When the user enters a Ctrl+C through a terminal monitor during transaction
processing, the DBMS interrupts the current statement and rolls back any
partial results of that statement. If there is no statement currently executing,
Ctrl+C has no effect. Ctrl+C has no effect on the state of the transaction and
does not cause any locks to be released.A Ctrl+Y character causes the DBMS
to roll back a transaction in progress. The use of Ctrl+Y is strongly
discouraged, as is the use of the VMS STOP command.

Transactions

196 SQL Reference Guide

Abort Policy for Transactions and Statements

Transactions and statements can be aborted by any of the following entities:

 An application

 The DBMS

Applications can abort transactions or statements as a result of the following
conditions:

 Rollback statement

 Timeout (if set)

The DBMS aborts statements and transactions as a result of the following
conditions:

 Deadlock

 Transaction log full

 Lock quota exceeded

 Error while executing a database statement

How to Direct the DBMS to Rollback an Entire Transaction or Statement

To direct the DBMS to rollback an entire transaction (or a single statement),
use the set session with on error = rollback statement | transaction statement.

For more information, see Session with On_error in the chapter “Using SQL
Statements.”

Note: Deadlock, Transaction log full, and Lock quota exceeded always rollback
the entire transaction regardless of the current on_error setting.

Two Phase Commit

Working with Transactions and Handling Errors 197

Effects of Aborted Transactions

When a statement or transaction is aborted (due to an application or the
DBMS itself), the following occurs:

 Rolling back a single statement does not cause the DBMS to release any
locks held by the transaction. Locks are released when the transaction
ends.

 If cursors are open, the entire transaction is always aborted.

 When an entire transaction is aborted, all open cursors are closed, and all
prepared statements are invalidated.

When writing embedded SQL applications, your application must include logic
for handling operator interrupts. By default, if the application is aborted during
a transaction, the transaction is rolled back. This also applies to Ingres tools.
For example, if you abort Query-By-Forms (QBF) while it is performing an
update, the update is rolled back.

Two Phase Commit
Two phase commit is a mechanism that enables an application managing
multiple connections to ensure that committal of a distributed transaction
occurs in all concerned databases. This maintains database consistency and
integrity.

Two Phase Commit

198 SQL Reference Guide

Statements that Support Two Phase Commit

SQL provides the following two statements that support two phase commit
functionality:

Prepare to Commit

The prepare to commit statement allows the coordinator application to poll
each local DBMS to determine if the local DBMS is ready to commit the
local transaction associated with the specified distributed transaction.
Using this statement, the coordinator application can ensure that a
distributed transaction is committed if and only if all of the local
transactions that are part of the distributed transaction are committed.
When the prepare to commit statement successfully completes, the local
transaction is in a willing commit state.

Connect

The connect statement, when specified with the distributed transaction ID,
provides the means for a coordinator application to re-connect to a local
DBMS, if the original connection was severed for any reason, for the
purposes of committing or aborting a local transaction associated with the
specified distributed transaction. When a local transaction is in the willing
commit state, the coordinator application controls further processing of
that transaction.

Both the prepare to commit and the connect statements make use of the
distributed transaction ID, an 8-byte integer that must be supplied by the
coordinator application. The distributed transaction ID must be a unique
number. The local DBMS returns an error to the coordinator application if a
specified distributed transaction ID is not unique within the local DBMS.

VMS: Two phase commit is not supported for VMS cluster installations.

Two Phase Commit

Working with Transactions and Handling Errors 199

Coordinator Applications for a Two Phase Commit

To use a two phase commit, coordinator applications are used. The coordinator
application is responsible for:

 Generating a unique distributed transaction ID for each distributed
transaction, and passing this ID to each concerned local DBMS.

 Performing the necessary logging and recovery tasks to handle any failure
occurring during the transaction processing. This includes logging the
following information:

 Distributed transaction IDs

 The states of all the slave transactions

If the connection between a coordinator application and a local DBMS breaks
while a distributed transaction is still open, the action taken by the local
recovery process depends on the state of the local transaction associated with
the distributed transaction:

 If the local transaction is not in a willing commit state, the local DBMS
aborts the transaction.

 If the local transaction is in a willing commit state, the local transaction is
not aborted until the connection is re-established by the coordinator
application and the transaction is committed or rolled back.

If the connection between a coordinator application and a local DBMS breaks,
use the connect statement to re-establish the connection with the local DBMS
and transaction. If the local DBMS has rolled back the local transaction
associated with the distributed transaction, the DBMS returns an error
statement indicating this when issuing the connect statement. Otherwise, after
reconnecting, a commit or a rollback statement can be issued to close the
transaction.

If a local DBMS encounters a log file full condition and the oldest transaction is
a local transaction that is associated with a distributed transaction and is in
the willing commit state, the local logging system does not abort the local
transaction. Normally the logging system aborts the oldest transactions first.
For details about transaction logging, see the Database Administrator Guide.

Two Phase Commit

200 SQL Reference Guide

Manual Termination of a Distributed Transaction

To terminate a local transaction associated with a distributed transaction, use
the logstat utility to obtain the local transaction ID of the transaction. With this
ID, use the utility lartool to manually terminate the transaction.

Lartool is a simple command-line utility that allows the commit or rollback of
the transaction identified by the local transaction ID.

For more information about the logstat and lartool utilities, see the Database
Administrator Guide.

Example: Using Two-Phase Commit

The following is an example of a two-phase commit used in a banking
application. It illustrates the use of the prepare to commit and connect SQL
statements.

exec sql begin declare section;
 from_account integer;
 to_account integer;
 amount integer;
 high integer;
 low integer;
 acc_number integer;
 balance integer;
exec sql end declare section;

define SF_BRANCH 1
define BK_BRANCH 2
define BEFORE_WILLING_COMMIT 1
define WILLING_COMMIT 2

exec sql whenever sqlerror stop;

/* Connect to the branch database in S.F */

exec sql connect annie session :SF_BRANCH;

Program assigns value to from_account, to_account, and amount

/* Begin a local transaction on S.F branch to
** update the balance in the from_account. */

exec sql update account
 set balance = balance - :amount
 where acc_number = :from_account;

Two Phase Commit

Working with Transactions and Handling Errors 201

/* Connect to the branch database in Berkeley. */

exec sql connect aaa session :BK_BRANCH;

/* Begin a local transaction on Berkeley branch
** to update the balance in the to_account. */

exec sql update account
 set balance = balance + :amount
 where acc_number = :to_account;

/* Ready to commit the fund transfer transaction. */
/* Switch to S.F branch to issue the prepare to
** commit statement. */

exec sql set_sql (session = :SF_BRANCH);

/* Store the transaction’s state information in a
** file */

store_state_of_xact(SF_BRANCH,
 BEFORE_WILLING_COMMIT, high, low, "annie");

exec sql prepare to commit with highdxid = :high,
 lowdxid = :low;

/* Store the transaction’s state information in a
** file */
store_state_of_xact(SF_BRANCH, WILLING_COMMIT,
 high, low, "annie");

/* Switch to Berkeley branch to issue the prepare
** to commit statement. */

exec sql set_sql (session = :BK_BRANCH);

/* Store the transaction’s state information in a
** file */

store_state_of_xact(BK_BRANCH,
 BEFORE_WILLING_COMMIT, high, low, "annie");

exec sql prepare to commit with highdxid = :high,
 lowdxid = :low;

/* Store the transaction’s state information in a
** file */

store_state_of_xact(BK_BRANCH, WILLING_COMMIT,
 high, low, "annie");

/* Both branches are ready to COMMIT; COMMIT the
** fund transfer transaction. */
/* Switch to S.F branch to commit the local
** transaction. */

exec sql set_sql (session = :SF_BRANCH);

exec sql commit;

/* Switch to Berkeley branch to commit the local
** transaction. */

exec sql set_sql (session = :BK_BRANCH);

Two Phase Commit

202 SQL Reference Guide

exec sql commit;

/* Distributed transaction complete */
/* Switch to S.F branch to verify the data. */

exec sql set_sql (session = :SF_BRANCH);

exec sql select acc_number, balance
 into :acc_number, :balance
 from account;
exec sql begin;

 print (acc_number, balance);

exec sql end;

/* Switch to Berkeley branch to verify the data. */

exec sql set_sql (session = :BK_BRANCH);

exec sql select acc_number, balance
 into :acc_number, :balance
 from account;
exec sql begin;

 print (acc_number, balance);

exec sql end;

/* Exit the S.F database. */

exec sql set_sql (session = :SF_BRANCH);
exec sql disconnect;

/* Exit the Berkeley database. */

exec sql set_sql (session = :BK_BRANCH);
exec sql disconnect;

This portion of the example shows how the information logged in the
procedure store_state_of_xact is used for recovery after a system failure at
either branch.

The first part of the recovery process is to read the state of each transaction
from information logged by store_state_of_xact. If either state is in
BEFORE_WILLING_COMMIT, the program connects to the specific transaction
in both databases and executes a rollback. Although the local DBMS can roll
back the transaction, the recovery process reconnects to the specific
transaction. This occurs because a prepare to commit has been sent, received,
and acted upon, but a crash occurred before the acknowledgment was
received by the coordinator application.

If both states are in WILLING_COMMIT, the program connects to the specific
transactions and commits them:

Two Phase Commit

Working with Transactions and Handling Errors 203

exec sql begin declare section;
 high integer;
 low integer;
 session1 integer;
 session2 integer;
 dbname1 character_string(25);
 dbname2 character_string(25);
exec sql end declare section;

/* Read information saved by store_state_of_xact */

read_from_file(address(session1),
 address(session2),
 address(dbname1), address(dbname2),
 address(high), address(low));

/* Assume that a global flag has been set to
** commit or rollback based on the information
** in the file */

if (flag = 'COMMIT') then
 exec sql connect :dbname1 session :session1
 with highdxid = :high, lowdxid = :low;
 exec sql commit;
 exec sql disconnect;

exec sql connect :dbname2 session :session2
 with highdxid = :high, lowdxid = :low;
 exec sql commit;
 exec sql disconnect;

else
 exec sql connect :dbname1 session :session1
 with highdxid = :high, lowdxid = :low;
 exec sql rollback;
 exec sql disconnect;

exec sql connect :dbname2 session :session2
 with highdxid = :high, lowdxid = :low;
 exec sql rollback;
 exec sql disconnect;
endif;

Status Information

204 SQL Reference Guide

Status Information
The following functions enable an embedded SQL application program to
obtain status information:

session_priv

Returns session privilege information.

dbmsinfo

Returns information about the current session.

inquire_sql

Returns information about the last database statement that was executed.

SQLCA (SQL Communications Area)

Returns status and error information about the last SQL statement that
was executed.

SQLCODE and SQLSTATE

These are the stand-alone variables in which the DBMS returns status
information about the last SQL statement that was executed.

session_priv Function

The session_priv function determines whether the current session has a
subject privilege, or can request it. The input is any single subject privilege
name, such as operator, specified as a text string in upper or lower case.

The following values are returned:

Y

Indicates session has privilege.

N

Indicates session does not have the privilege.

R

Indicates the session can request the privilege and make it active.

The following example checks whether the current session has auditor
privilege:

SELECT session_priv('AUDITOR');

Status Information

Working with Transactions and Handling Errors 205

dbmsinfo Function

A dbmsinfo function is a SQL function that returns a string containing
information about the current session. Use this statement in a terminal
monitor or in an embedded SQL application.

The dbmsinfo function is used in a select statement as follows:

select dbmsinfo ('request_name')

For example, to find out which runtime of Ingres you are using, enter:

select dbmsinfo('_version');

Use the dbmsinfo function in where clauses in select statements. For example:

exec sql select dept from employee
 where ename=dbmsinfo('username');

Valid Request Names for dbmsinfo Function

The following table lists valid request_names that can be used with the
dbmsinfo function:

Request Name Description

autocommit_state Returns 1 if autocommit is on and 0 if autocommit is
off.

_bintim Returns the current time and date in an internal
format, represented as the number of seconds since
January 1, 1970 00:00:00 GMT.

_bio_cnt Returns the number of buffered I/O requests for
your session.

collation Returns the collating sequence defined for the
database associated with the current session. This
returns blanks if the database is using the collating
sequence of the machine’s native character set, such
as ASCII or EBCDIC.

connect_time_limit Returns the session connect time limit or -1 if there
is no connect time limit.

create_procedure Returns Y if the session has create_procedure
privileges in the database or N if the session does
not.

create_table Returns Y if the session has create_table privileges
in the database or N if the session does not.

Status Information

206 SQL Reference Guide

Request Name Description

_cpu_ms Returns the CPU time for your session in
milliseconds.

current_priv_mask Returns the decimal number representing a mask of
internal privilege bits currently enabled for the user.

cursor_default_mode Returns the default mode for the cursor.

cursor_update_mode Returns the mode of the current user.

database Returns the database name.

datatype_major_level Returns -2147483648 unless the user datatypes are
in use.

datatype_minor_level Returns 0 unless the user datatypes are in use.

dba Returns the user name of the database owner.

db_admin Returns Y if the session has db_admin privileges,
and N if the session does not have db_admin
privileges.

db_cluster_node Returns the machine you are connected to. Valid
even if not clustered.

db_count Returns the number of distinct databases opened.

db_real_user_case Returns lower, upper, or mixed.

dbms_bio Returns the cumulative non-disk I/O's performed by
the server hosting session.

dbms_cpu Returns the cumulative CPU time for the DBMS
Server, in milliseconds, for all connected sessions.

dbms_dio Returns the cumulative disk I/O's performed by the
server hosting session.

db_delimited_case Returns LOWER if delimited identifiers are translated
to lower case, UPPER if delimited identifiers are
translated to upper case, or MIXED if the case of
delimited identifiers is not translated.

db_name_case Returns LOWER if regular identifiers are translated
to lower case or UPPER if regular identifiers are
translated to upper case.

db_privileges Returns a decimal integer which represents a bit
mask of "Subject" privileges.

db_tran_id Returns the 64 bit internal transaction ID as two
decimal numbers.

Status Information

Working with Transactions and Handling Errors 207

Request Name Description

_dio_cnt Returns the number of disk I/O requests for your
session.

_et_sec Returns the elapsed time since the start of your
session, in seconds.

flatten_aggregate Returns Y if the DBMS Server is configured to flatten
queries involving aggregate subselects; otherwise,
returns N. (Query flattening options are specified
when the DBMS Server is started.)

flatten_singleton Returns Y if the DBMS Server is configured to flatten
queries involving singleton subselects; otherwise,
returns N. (Query flattening options are specified
when the DBMS Server is started.)

group Returns the group identifier of the session or blanks
if no group identifier is in effect.

idle_time_limit Returns the session idle time limit or -1 if there is no
idle time limit.

ima_server Equivalent to IMA registration
exp.gwf.gwm.glb.this_server, which returns the
listen address of the attached server.

ima_session Returns the internal session ID in decimal format.

ima_vnode Equivalent to IMA registration
exp.gwf.gwm.glb.def_vnode configuration value if
set for the connected server. If not set, defaults to
the local host name.

initial_user Returns the user identifier in effect at the start of
the session.

language Returns the language used in the current session to
display messages and prompts.

lockmode Returns Y if the user possesses lockmode database
privileges or N if the user lacks these privileges.

lp64 Returns Y if 64 bit pointers are in use, or N if 32 bit
addresses are used.

maxconnect Returns the current connect time limit, as set by the
set maxconnect statement, or the initial value if no
connect time limit has been set.

Status Information

208 SQL Reference Guide

Request Name Description

maxcost Returns the value specified in the last set maxcost
statement. If no previous set maxcost statement
was issued or if set nomaxcost was specified last,
this returns the same value as the request name
query_io_limit.

maxcpu Returns the value specified in the last set maxcpu
statement. If no previous set maxcpu statement was
issued or if set nomaxcpu was specified last, this
returns the same value as the request name
query_io_limit.

maxidle Returns the current idle time limit, as set with the
set maxidle statement, or the initial value if no idle
time limit has been set.

maxio Returns the value specified in the last set maxio
statement. If no previous set maxio statement was
issued or if set nomaxio was specified last, this
returns the same value as the request name
query_io_limit.

maxquery Same as maxio.

maxrow Returns the value specified in the last set maxrow
statement. If no previous set maxrow statement was
issued or if set nomaxrow was specified last, this
returns the same value as the request name
query_row_limit.

maxpage Returns the value specified in the last set maxpage
statement. If no previous set maxpage statement
was issued or if set nomaxpage was specified last,
this returns the same value as the request name
query_io_limit.

max_page_size Returns the size of the largest enable page cache in
bytes.

max_priv_mask Returns the decimal number representing a mask of
internal privilege bits for which privileges the user
might possess if all his/her privileges were enabled.

max_tup_len Returns the max width for a non-segmented tuple.
This depends on max_page_size.

on_error_state Returns the current setting for transaction error
handling: rollback transaction or rollback statement.
To set transaction error handling, use the set
session with on_error statement.

page_size_2k Returns Y if this size cache is enabled.

Status Information

Working with Transactions and Handling Errors 209

Request Name Description

page_size_4k Returns Y if this size cache is enabled.

page_size_8k Returns Y if this size cache is enabled.

page_size_16k Returns Y if this size cache is enabled.

page_size_32k Returns Y if this size cache is enabled.

page_size_64k Returns Y if this size cache is enabled.

pagetype_v1 Returns Y if this page type is supported.

pagetype_v2 Returns Y if this page type is supported.

pagetype_v3 Returns Y if this page type is supported.

_pfault_cnt Returns the number of page faults for the server.

query_cost_limit Returns the session value for query_io_limit or -1 if
no limit is defined for the session.

query_cpu_limit Returns the session value for query_io_limit or -1 if
no limit is defined for the session.

query_flatten Returns Y if the query flattening is in effect or N if
the query flattening is not in effect.

query_io_limit Returns the session value for query_io_limit or -1 if
no limit is defined for the session.

query_language Returns sql or quel.

query_page_limit Returns the session value for query_io_limit or -1 if
no limit is defined for the session.

query_row_limit Returns the session value for query_row_limit or -1
if no limit is defined for the session.

role Returns the role identifier of the session or blanks if
no role identifier is in effect.

security_audit_log Returns the name of the current security auditing
log file if it is enabled and the user has
maintain_audit privileges, otherwise, remains blank.

security_audit_state Returns the current Ingres security audit state. The
following values are returned:

� (blank) – Ingres security auditing is not available

� STOP – Security auditing is stopped

� SUSPEND – Security auditing is suspended

� ACTIVE – Security auditing is active

Status Information

210 SQL Reference Guide

Request Name Description

security_priv Returns Y if the effective user has the security
privilege or N if the effective user does not have the
security privilege.

select_syscat Returns Y if the session has select_syscat privilege
or N if the session does not have select_syscat
privilege.

session_id Returns the internal session identifier in
hexadecimal.

session_priority Returns the current session priority.

session_priority_limit Returns the highest session priority that can be set,
or an empty string if no session priority limit applies.

session_user Returns the current effective user ID of the session.

system_user Returns the system user ID.

table_statistics Returns Y if the session has table_statistics privilege,
or N if the session does not have table_statistics
privilege.

terminal Returns the terminal address.

transaction_state Returns 1 if currently in a transaction and returns 0
if not currently in a transaction.

tup_len_2k Returns the largest tuple for this page size or
returns 0 if the cache for this page size is turned off.

tup_len_4k Returns the largest tuple for this page size or
returns 0 if the cache for this page size is turned off.

tup_len_8k Returns the largest tuple for this page size or
returns 0 if the cache for this page size is turned off.

tup_len_16k Returns the largest tuple for this page size or
returns 0 if the cache for this page size is turned off.

tup_len_32k Returns the largest tuple for this page size or
returns 0 if the cache for this page size is turned off.

tup_len_64k Returns the largest tuple for this page size or
returns 0 if the cache for this page size is turned off.

ucollation Returns Unicode collation. The default is "udefault."

unicode_level Returns the Unicode level for this database. Returns
0 if there is no Unicode level, otherwise returns 1 if
the database is created with -n flag.

Status Information

Working with Transactions and Handling Errors 211

Request Name Description

unicode_normalization Returns NFC if the database supports the NFC
normalization form, and returns NFD if the database
supports the NFD normalization form.

update_rowcnt Returns qualified if inquire_sql(rowcount) returns
the number of rows that qualified for change by the
last query, or changed if inquire_sql(rowcount)
returns the number of rows that were actually
changed by the last query.

update_syscat Returns Y if the effective user is allowed to update
system catalogs or N if the effective user is not
allowed to update system catalogs.

username Returns the user name of the user currently running
Ingres.

_version Returns the Ingres runtime number.

inquire_sql Function

The inquire_sql function returns information about the status of the last SQL
database statement issued by an application.

Information Provided by the inquire_sql Function

The inquire_sql function can provide the following information on the
occurrence of an error:

 inquire_sql can return the error number and the complete error text.

 inquire_sql can retrieve the message number and text from a message
statement that was executed inside a database procedure.

 Determine if your session is returning local or generic errors, if a
transaction is open, or what session is currently active (useful in multiple-
session applications).

The inquire_sql function does not return status information about forms
statements. To obtain information about the results of forms statements, use
the inquire_frs statement.

For a complete list and description of available status information, see
Inquire_sql in the chapter “Using SQL Statements.”

Status Information

212 SQL Reference Guide

SQL Communications Area (SQLCA)

The SQL Communications Area (SQLCA) consists of a number of variables that
contain error and status information accessible by the program. This
information reflects only the status of executed embedded SQL database
statements. Forms statements do not affect these variables. Because each
embedded SQL statement has the potential to change values in the SQLCA,
the application must perform any checking and consequent processing
required to deal with a status condition immediately after the statement in
question. If it does not, the next executed SQL statement changes the status
information in the variables.

Each host language implements the SQLCA structure differently. For
instructions on how to include the SQLCA in your applications, see the
Embedded SQL Companion Guide.

Variables that Compose SQLCA

The following list describes the variables that compose the SQLCA (not all of
the variables are currently used):

SQLCA
Variable

Description

sqlcaid An 8-byte character string variable initialized to SQLCA. This
value does not change.

sqlcabc A 4-byte integer variable initialized to the length in bytes of
the SQLCA, 136. This value also does not change.

sqlcode A 4-byte integer variable indicating the SQL return code. Its
value falls into one of three categories:

Status Information

Working with Transactions and Handling Errors 213

SQLCA
Variable

Description

 � = 0—The statement executed successfully (though there
have been warning messages: check sqlwarn0).

� < 0—An error occurred. The value of sqlcode is the
negative value of the error number returned to errorno. A
negative value sets the sqlerror condition of the whenever
statement.

� > 0—The statement executed successfully but an
exception condition occurred. The following values are
returned:

100- Indicates that no rows were processed by a delete,
fetch, insert, select, update, modify, copy, create index, or
create as select statement. This value (100) sets the not
found condition of the whenever statement.

700- Indicates that a message statement in a database
procedure has just executed, setting the sqlmessage
condition of the whenever statement.

710- Indicates that a database event was raised.

sqlerrm A varying length character string variable with an initial 2-byte
count and a 70-byte long buffer. This variable is used for error
messages. When an error occurs for a database statement,
the leading 70 characters of the error message are assigned to
this variable. If the message contained within the variable is
less than 70 characters, the variable contains the complete
error message. Otherwise, the variable contains a truncated
error message. To retrieve the full error message, use the
inquire_sql statement with the errortext object. If no errors
occur, sqlerrm contains blanks. For some languages this
variable is divided into two other variables:

� sqlerrml—A 2-byte integer count indicating how many
characters are in the buffer.

� sqlerrmc—A 70-byte fixed length character string buffer.

sqlerrp 8-byte character string variable, currently unused.

Status Information

214 SQL Reference Guide

SQLCA
Variable

Description

sqlerrd An array of six 4-byte integers. Currently only sqlerrd(1) and
sqlerrd(3) are in use. Sqlerrd(1) is used to store error
numbers returned by the server. For more information about
the values returned in sqlerrd(1), see Types of Errors (see
page 217).

Sqlerrd(3) indicates the number of rows processed by a
delete, fetch, insert, select, update, copy, modify, create
index, or create as select statement. All other database
statements reset this variable to zero. Some host languages
start array subscripts at 0. In these languages (C, BASIC), use
the subscript, 2, to select the third array element.

sqlwarn0-
sqlwarn7

A set of eight 1-byte character variables that denote warnings
when set to W. The default values are blanks.

� sqlwarn0—If set to W, at least one other sqlwarn contains
a W. When W is set, the sqlwarning condition of the
whenever statement is set.

� sqlwarn1—Set to W on truncation of a character string
assignment from the database into a hostvariable. If an
indicator variable is associated with the host variable, the
indicator variable is set to the original length of the
character string.

� sqlwarn2—Set to W on elimination of nulls from
aggregates.

� sqlwarn3—Set to W when mismatching number of result
columns and result host variables in a fetch or select
statement.

� sqlwarn4—Set to W when preparing (prepare) an update
or delete statement without a where clause.

� sqlwarn5—Currently unused.

� sqlwarn6—Set to W when the error returned in sqlcode
caused the abnormal termination of an open transaction.

� sqlwarn7—Currently unused.

sqlext An 8-byte character string variable not currently in use.

SQLCODE and SQLSTATE

SQLCODE and SQLSTATE are variables in which the DBMS returns ANSI/ISO
Entry-92-compliant status codes indicating the results of the last SQL
statement that was executed.

Status Information

Working with Transactions and Handling Errors 215

SQLCODE Variable

SQLCODE is an integer variable in which the DBMS returns the status of the
last SQL statement executed. For details about the requirements for declaring
the SQLCODE variable in embedded programs, see the Embedded SQL
Companion Guide.

Note: The ANSI Entry SQL-92 specification describes SQLCODE as a
deprecated feature, and recommends using the SQLSTATE variable, described
in the following section.

Values Returned by SQLCODE

The values returned in the standalone SQLCODE variable are the same as
those returned in the sqlcode member of the SQLCA structure. The value of
SQLCODE is meaningful only in the context of a session.

The values returned in SQLCODE are listed in the following table:

Value Description

0 Successful completion.

+100 No rows were processed by a delete, fetch, insert, select,
update, modify, copy, create index, or create as...select
statement. This value (+100) sets the not found condition of
the whenever statement.

+700 A message statement in a database procedure has just
executed, setting the sqlmessage condition of the whenever
statement.

+710 A database event was raised.

Negative
Value

An error occurred. The value of SQLCODE is the negative
value of the error number returned to errorno. (For
information on errorno, see Error Information Obtained Using
Inquire Statements (see page 224).) A negative value sets the
sqlerror condition of the whenever statement.

Error Handling

216 SQL Reference Guide

SQLSTATE Variable

The SQLSTATE variable is a 5-character string in which the DBMS Server
returns the status of the last SQL statement executed. The values returned in
SQLSTATE are specified in the ANSI/ISO Entry SQL-92 standard. For details
about the requirements for declaring the SQLSTATE variable in embedded
programs, see the Embedded SQL Companion Guide.

Note: If queries are executed while connected (through an Enterprise Access
product) to a DBMS server that doesn’t support SQLSTATE, SQLSTATE is set to
5000K (meaning SQLSTATE not available). This result does not necessarily
mean that an error occurred. To check the results of the query, use one of the
other error-checking methods.

SQLSTATE is not available within database procedures; however, a routine
that directly executes a database procedure can check SQLSTATE to determine
the result of the procedure call.

The following example illustrates the use of SQLSTATE in an embedded
program:

exec sql begin declare section;
 character SQLSTATE(5)
exec sql end declare section;\
exec sql connect mydatabase;
if SQLSTATE <> "00000" print 'Error on connection!'

For a list mapping Ingres generic errors to SQLSTATE values, see the appendix
“Generic Error Codes and SQLSTATE.”

Error Handling
The following section describes how the DBMS returns error information.

Error Handling

Working with Transactions and Handling Errors 217

Types of Error Codes

Three types of error codes are returned to applications:

Local errors

Local errors are error codes specific to the DBMS.

Generic errors

Generic errors are a set of error codes that are mapped to both the DBMS
and to error codes returned through Enterprise Access products from other
relational and non-relational databases. Generic errors allow portable
applications to be written.

ANSI/ISO error codes

SQLSTATE and SQLCODE are ANSI/ISO-compliant error code variables.
(SQLCODE is supported by Ingres but designated by ANSI/ISO Entry SQL-
92 as a deprecated feature. SQLSTATE is the ANSI/ISO Entry SQL-92-
compliant method for returning errors.)

By default, the DBMS returns generic and local errors as follows:

Generic errors

Returned in sqlcode (an SQLCA variable) as a negative value. (Also in the
SQLCODE standalone variable.)

Returned when your application issues the inquire_sql(errorno) statement.

Local errors

Returned in sqlerrd(1), the first element of the SQLCA sqlerrd array.

Returned when your application issues the inquire_sql(dbmserror)
statement.

To reverse this arrangement (so that local error numbers are returned to
errorno and sqlcode and generic errors to dbmserror and sqlerrd(1)), use the
set_sql(errortype) statement.

To obtain the text of error messages, use the inquire_sql(errortext) statement
or check the SQLCA variable sqlerrm.

Error Handling

218 SQL Reference Guide

Understand Error Messages

Every Ingres error message consists of an error code and the accompanying
error message text.

All Ingres error codes begin with E_, followed by one or two letters plus a 4-
digit hexadecimal number, and, optionally, descriptive text or the decimal
equivalent of the hex error code. For example:

E_GEC2EC_SERIALIZATION

indicates a serialization failure (deadlock).

If the error is a local error, the two letters following E_ indicate which Ingres
facility issued the error. If the error is a generic error number, the two letters
are GE. The hexadecimal error code is unique for each error.

Local error codes are stored in
$II_SYSTEM/ingres/files/english/messages/message.text

Generic error codes are stored in $II_system/ingres/files/generr.h

Display of Error Messages

When working in one of the forms-based user interfaces (such as Query-By-
Forms (QBF) or the forms-based Terminal Monitor), error messages appear on
a single line across the bottom of your terminal screen. The text appears first,
followed by the error code. If the text is longer than one line, press the Help
key to see the rest of the message. To clear the error message from the
screen, press the Return key.

When not working in a forms-based user interface, the DBMS displays the
error code followed by the entire message text.

If an SQLCA is included in an embedded SQL application, automatic display of
error messages is disabled. Program code that displays errors must be
provided.

Error Handling

Working with Transactions and Handling Errors 219

Error Handling in Embedded Applications

SQL provides a variety of tools for trapping and handling errors in embedded
SQL applications, including:

 SQLCA

 SQLSTATE

 The whenever statement

 Handler routines

 Inquire statements

 The IIseterr() function

The following sections describe the error handling tools and how they are
used.

Error Handling

220 SQL Reference Guide

Error Information from SQLCA

The SQL Communications Area (SQLCA) is a collection of host language
variables whose values provide status and error information about embedded
SQL database statements. (The status of forms statements is not returned in
SQLCA variables.) If your application does not have an SQLCA, the default is
to display errors and continue with the next statement if possible.

Two variables in the SQLCA contain error information: sqlcode and sqlerrm.
The value in sqlcode indicates one of three conditions:

Success

Sqlcode contains a value of zero.

Error

Sqlcode contains the error number as a negative value.

Warning

Set when the statement executed successfully but an exceptional condition
occurred. Sqlcode contains either +100, indicating that no rows were
processed by a delete, fetch, insert, update, modify, copy, or create
table...as statement, or +700, indicating that a message statement inside
a database procedure has just executed.

The sqlerrm variable is a varying length character string variable that contains
the text of the error message. The maximum length of sqlerrm is 70 bytes. If
the error message exceeds that length, the message is truncated when it is
assigned to sqlerrm. To retrieve the full message, use the inquire_sql
statement. In some host languages, this variable has two parts: sqlerrml, a 2-
byte integer indicating how many characters are in the buffer, and sqlerrmc, a
70-byte fixed length character string buffer.

The SQLCA also contains eight 1-byte character variables, sqlwarn0 -
sqlwarn7, that are used to indicate warnings. For a complete listing of these
variables, see the table titled SQLCA Variables.

The SQLCA is often used in conjunction with the whenever statement, which
defines a condition and an action to take whenever that condition is true. The
conditions are set to true by values in the sqlcode variable. For example, if
sqlcode contains a negative error number, the sqlerror condition of the
whenever statement is true and any action specified for that condition is
performed. For details, seeTrapping Errors Using Whenever Statement (see
page 221) .

The SQLCA variables can also be accessed directly. For information about
using the SQLCA in an application, see the Embedded SQL Companion Guide.

Error Handling

Working with Transactions and Handling Errors 221

SQLSTATE

SQLSTATE is a variable in which the DBMS returns error codes as prescribed
by the ANSI/ISO Entry SQL-92 standard. For a list of the values returned in
SQLSTATE and the corresponding generic error, see the appendix “Generic
Error Codes and SQLSTATE.”

Error Trapping Using Whenever Statement

The whenever statement specifies a particular action to be performed
whenever a particular condition is true. Because conditions are set to true by
values in the SQLCA sqlcode, the whenever statement responds only to errors
generated by embedded SQL database statements. Forms statements do not
set sqlcode.

The following conditions indicate errors or warnings:

Warnings/Error Explanation

sqlwarning Indicates that the executed SQL database statement
produced a warning condition. Sqlwarning becomes true
when the SQLCA sqlwarn0 variable is set to W.

sqlerror Indicates that an error occurred in the execution of the
database statement. Sqlerror becomes true when the
SQLCA sqlcode variable contains a negative number.

For a complete discussion of all the conditions, see Whenever in the chapter
“Using SQL Statements.”

The actions that can be specified for these conditions are listed in the following
table:

Action Explanation

continue Execution continues with the next statement.

stop Prints an error message and terminates the program’s
execution. Pending updates are not committed.

goto label Performs a host language go to.

call procedure Calls the specified host language procedure. If call sqlprint is
specified, a standard sqlprint procedure is called. This
procedure prints the error or warning message and continues
with the next statement. A database procedure cannot be
specified.

Error Handling

222 SQL Reference Guide

In an application program, a whenever statement is in effect until the next
whenever statement (or the end of the program). For example, if you put the
following statement in your program:

exec sql whenever sqlerror call myhandler;

The DBMS traps errors for all database statements in your program that
(physically) follow the whenever statement, to the “myhandler” procedure. A
whenever statement does not affect the statements that physically precede it.

The following diagram illustrates the scope of the whenever statement:

maincode:

whenever condition ACTIONA

call subroutinea

whenever condition ACTIONB

whenever condition ACTIONC

end program

subroutinea

return

subroutineb

return

Scope of
ACTIONA

Scope of
ACTIONB

Scope of
ACTIONC

Physical Source Code File

If your program includes an SQLCA, error and database procedure messages
are not displayed unless your application issues a whenever ... sqlprint
statement, or II_EMBED_SET is set to sqlprint. For details about
II_EMBED_SET, see the System Administrator Guide.

Error Handling

Working with Transactions and Handling Errors 223

Define Error Handling Functions

An error handling function can be defined to be called when SQL errors occur.
To do this, perform the following:

1. Write the error handling routine and link it into your embedded SQL
application.

2. In the application, issue the following set statement:

exec sql set_sql(errorhandler = error_routine);

where

error_routine is the name of the error-handling routine that was created.
Do not declare error_routine in an SQL declare section, and do not precede
error_routine with a colon; the error_routine argument must be a function
pointer.

When this form of error trapping is enabled, all SQL errors are trapped to your
routine until error trapping is disabled (or until the application terminates).
Forms errors are not trapped.

To disable the trapping of errors to your routine, your application must issue
the following set statement:

exec sql set_sql(errorhandler = 0 | error_var)

where error_var is a host integer variable having a value of 0.

Your error-handling routine must not issue any database statements in the
same session in which the error occurred. If it is necessary to issue database
statements in an error handler, open or switch to another session.

To obtain error information, your error-handling routine must issue the
inquire_sql statement.

Error Handling

224 SQL Reference Guide

Other Types of Handlers

In addition to error-handling routines, routines can be defined that enable
embedded SQL applications to trap the following:

Event notifications:

To enable or disable an event-handling routine, issue the following set_sql
statement:

exec sql set_sql(dbeventhandler = event_routine | 0)

When an event notification is received by your application, the specified
routine is automatically called. To obtain the event notification
information, the event handler routine must use the inquire_sql statement.

Messages from database procedures:

To enable or disable a message handling routine, issue the following
set_sql statement:

exec sql set_sql(messagehandler = message_routine | 0)

The message handler routine traps all messages from database
procedures, including messages from procedures that are executed when
rules are fired.

Specify the routine as a function pointer. For more information about
specifying function pointers, see the Embedded SQL Companion Guide.

Error Information from Inquire Statements

There are two inquire statements that can be used to perform error checking:
inquire_sql and inquire_frs. Both statements return error numbers and
messages using the constants errorno and errortext. Inquire_sql returns the
error number and text for the last executed SQL database statement.
Inquire_frs return the same information about the last executed forms
statement. Unlike the whenever statement, an inquire statement must be
executed immediately after the database or forms statement in question. By
default, inquire_sql(errorno) returns a generic error number, but the set_sql
statement can be used to specify that local errors are returned. For a
discussion of local and generic errors, see Types of Errors (see page 217).

Neither of the inquire statements suppress the display of error messages. Both
of the inquire statements return a wide variety of information in addition to
error numbers and text.

Error Handling

Working with Transactions and Handling Errors 225

How to Specify Program Termination When Errors Occur

The set_sql(programquit) statement specifies how an embedded SQL
application handles the following types of errors:

 Attempting to execute a query when not connected to a database

 DBMS server failure

 Communications service failure

By default, when these types of errors occur, the DBMS issues an error but
lets the program continue. To force an application to abort when one of these
errors occur, issue the following set_sql statement:

exec sql set_sql (programquit = 1);

If an application aborts as the result of one of the previously listed errors, the
DBMS issues an error and rolls back open transactions and disconnects all
open sessions. To disable aborting and restore the default behavior, specify
programquit = 0.

Errors affected by the programquit setting belong to the generic error class
GE_COMM_ERROR, which is returned to errorno as 37000, and to sqlcode (in
the SQLCA) as -37000. An application can check for these errors and, when
detected, must disconnect from the current session. After disconnecting from
the current session, the application can attempt another connection, switch to
another session (if using multiple sessions), or perform clean-up operations
and quit.

Programquit can also be specified by using II_EMBED_SET. (For details about
II_EMBED_SET, see the System Administrator Guide.)

To determine the current setting for this behavior, use the inquire_sql
statement:

exec sql inquire_sql (int_variable = programquit);

This returns a 0 if programquit is not set (execution continues on any of the
errors) or 1 if programquit is set (the application exits after these errors).

Deadlocks

A deadlock occurs when two transactions are each waiting for the other to
release a part of the database to enable it to complete its update. Transactions
that handle deadlocks in conjunction with other errors can be difficult to code
and test, especially if cursors are involved.

Error Handling

226 SQL Reference Guide

Example: Handling Deadlocks When Transactions Do Not Contain Cursors

The following example assumes your transactions do not contain a cursor:

exec sql whenever not found continue;

 exec sql whenever sqlwarning continue;
 exec sql whenever sqlerror goto err; /* branch
 on error */
exec sql commit;
start:
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

exec sql commit;
 goto end;
err:
 exec sql whenever sqlerror call sqlprint;
 if (sqlca.sqlcode = deadlock)
 or (sqlca.sqlcode = forceabort) then
 goto start;
 else if (sqlca.sqlcode <> 0) then
 exec sql inquire_sql (:err_msg =
 errortext);
 exec sql rollback;
 print 'Error', err_msg;
 end if;
end:

Error Handling

Working with Transactions and Handling Errors 227

Example: Handling Deadlocks with One Cursor

The following example assumes your transactions contain a single cursor:

exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;

exec sql declare c1 cursor for ...

exec sql commit;
start:
 exec sql open c1;
 while more rows loop
 exec sql fetch c1 into ...
 if (sqlca.sqlcode = zero_rows) then
 exec sql close c1;
 exec sql commit;
 goto end;
 end if;

exec sql insert into ...
 exec sql update ...
 exec sql select ...

end loop;
err:
 exec sql whenever sqlerror call sqlprint;
 if (sqlca.sqlcode = deadlock)
 or (sqlca.sqlcode = forceabort) then
 goto start;
 else if (sqlca.sqlcode <> 0) then
 exec sql inquire_sql (:err_msg =
 errortext);
 exec sql rollback;
 print 'Error', err_msg;
 end if;
end:

Error Handling

228 SQL Reference Guide

Example: Handling Deadlocks with Two Cursors

The following example assumes your transactions contains two cursors(two
cursors with a master/detail relationship):

exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;

exec sql declare master cursor for ...
 exec sql declare detail cursor for ...

exec sql commit;

start:
 exec sql open master;
 while more master rows loop
 exec sql fetch master into ...
 if (sqlca.sqlcode = zero_rows) then
 exec sql close master;
 exec sql commit;
 goto end;
 end if;

/* ...queries using master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

exec sql open detail;
 while more detail rows loop
 exec sql fetch detail into ...
 if (sqlca.sqlcode = zero_rows) then
 exec sql close detail;
 end loop;/* drops out of detail
 fetch loop */
 end if;

/* ...queries using detail & master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

end loop;/* end of detail fetch loop */

/* ...more queries using master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

end loop;/* end of master fetch loop */
err:
 exec sql whenever sqlerror call sqlprint;
 if (sqlca.sqlcode = deadlock)
 or (sqlca.sqlcode = forceabort) then
 goto start;
 else if (sqlca.sqlcode <> 0) then
 exec sql inquire_sql (:err_msg =
 errortext);
 exec sql rollback;
 print 'Error', err_msg;
 end if;
end:

Understanding Database Procedures, Sessions, and Events 229

Chapter 7: Understanding Database
Procedures, Sessions, and Events

This chapter discusses the following features of SQL:

 Database procedures

 Rules

 Multiple session connections

 Database events

Database Procedures

A database procedure is a named routine composed of SQL statements stored
in a database.

Benefits of Database Procedures

Database procedures provide the following benefits:

 Enhanced performance

 Reduced amount of communication between an application and the DBMS
Server. The DBMS Server retains the query execution plan for a database
procedure, reducing execution time.

 Control over access to data. The DBA can use the grant statement to
enable a user to execute a procedure even if the user does not have
permission to directly access the tables referenced in the procedure.

 Reusability and reduced coding time. The same procedure can be used in
many applications.

 The ability to enforce integrity constraints (when used in conjunction with
rules)

Database procedures are created using the create procedure statement and
dropped using the drop procedure statement. For details, see the chapter “SQL
Statements.”

Error Handling

230 SQL Reference Guide

How Database Procedures are Executed

A database procedure query execution plan is created at the time the
procedure is created. If objects named in the procedure are modified in a way
that invalidates the query execution plan, the DBMS Server recreates the
query execution plan the next time the procedure is invoked.

Database Procedure Invocation

Database procedures can be called or invoked in the following ways:

 From an embedded SQL program

 From interactive SQL

 From a 4GL program

 By rules

Contents of Database Procedures

A database procedure can include the following entities:

 Local variable declarations

 Data manipulation statements such as select or insert

 Control flow statements such as if, for and while

 Status statements, such as message, return, return row, and raise error

Database procedures can be executed by running the create procedure
statement from a terminal monitor or including them in an embedded SQL
program.

The DBMS Server resolves all references to database objects in a database
procedure at the time the procedure is created. For this reason, all referenced
objects must exist at the time the procedure is created. If, at the time it is
created, a procedure refers to a DBA-owned table, the procedure always uses
that table, even if a user that owns a table with the same name executes the
procedure.

Error Handling

Understanding Database Procedures, Sessions, and Events 231

Permissions on Database Procedures

A procedure is owned by the user who creates it or by the group or role
specified in the create procedure statement. A procedure can be executed by
the owner and by any user, group, or role to whom the owner has granted
execute permissions. Users, groups, and roles to which the owner has granted
execute permission with grant option can grant execute permission to other
users.

Although a user can create a private procedure that accesses public tables, the
user must have all required permissions on those tables to be able to execute
the procedure.

Methods of Executing Procedures

Database procedures can be executed in the following ways:

 By using the execute procedure statement in an embedded SQL
application. This statement executes a specified procedure and passes
parameter values to the procedure. To specify different parameter lists at
runtime, use the dynamic version of the execute procedure statement. To
execute a procedure owned by a user other than the effective user of the
session, specify the procedure name using the schema.procedure_name
syntax.

 Database procedures are also executed when a rule is fired. Indirectly
executed procedures must handle errors and messages differently than
directly executed procedures. A procedure that is executed as the result of
a rule can execute statements that trigger other rules, and so on.

 From interactive SQL, from within another database procedure, or by using
the dynamic SQL execute immediate statement. A procedure cannot be
executed using the dynamic SQL prepare and execute statements. For
details about executing a database procedure, see Execute Procedure in
the chapter “SQL Statements.” For information about using database
procedures with rules, see Rules (see page 238).

All referenced objects must exist at the time the procedure is executed.
Between the time of creation and the time of execution, objects such as tables
and columns can be modified, reordered, or dropped and recreated without
affecting the procedure definition. However, if an object is redefined in a way
that invalidates the procedure definition, drop and recreate the procedure.

Error Handling

232 SQL Reference Guide

Parameter Passing in Database Procedures

By default, the execute procedure statement passes parameters to a database
procedure by value. To pass a value by reference, use the byref option. If a
parameter is passed by reference, the called database procedure can change
the contents of the variable, and the change is visible to the calling program.

Row Producing Procedures

A row producing procedure is a database procedure that is capable of
returning 0 or more rows to its caller.

Format of Row Producing Procedures

The format of row producing procedures is defined by the Result Row clause in
the procedure definition. The value returned in each “column” of a result row
is specified in a Return Row statement and can be a local variable or
parameter of the procedure, or any expression involving constants, local
variables and parameters. The local variables must contain data retrieved in
the procedure by a Select statement. Multiple result rows must be returned to
the caller using the For-loop that retrieves data from a Select statement.

Row producing procedures must only be called directly from an embedded SQL
host program (not using dynamic SQL, a terminal monitor, or by nesting a call
in another database procedure). However, the host program must include a
Begin/End block to process the rows as they are returned from the procedure.
This block functions much the same as the “select block” used with embedded
Select statements.

Error Handling

Understanding Database Procedures, Sessions, and Events 233

Effects of Errors in Database Procedures

When an error occurs in a database procedure, the behavior of the DBMS
Server depends on whether the procedure was invoked by a rule or executed
directly (using execute procedure).

If the procedure was invoked by a rule, an error has the following effects:

 The procedure is terminated.

 Those statements in the procedure, which have been executed, are rolled
back.

 The statement that fired the rule is rolled back.

If the procedure was executed directly, an error has the following effects:

 All statements in the procedure up to the point of the error are rolled back.

 The procedure continues execution with the statement following the
statement that caused the error.

 Parameters passed by reference are not updated.

In both instances, the error is returned to the application in SQLSTATE,
SQLCODE and errorno. In the case of the directly executed procedure, an error
number is also returned to iierrornumber, a built-in variable available only in
database procedures for error handling.

Error Handling

234 SQL Reference Guide

iierrornumber and iirowcount Variables

The iierrornumber and iirowcount variables, in conjunction with the Raise Error
statement, handle errors in database procedures.

The iirowcount variable contains the number of rows affected by the last
executed SQL statement. The iierrornumber variable contains the error
number (if any) associated with the execution of a database procedure
statement.

Because both iierrornumber and iirowcount reflect the results of the preceding
query, beware of inadvertently resetting the value of one when checking the
other.

The following example from a database procedure illustrates this error:

...

update emp set ...

/* The following statement resets iierrornumber, which will reflect the results
of the second statement and not the first, as desired. */

/* wrong way to check iirowcount */

rcount = iirowcount;

/* The error number reflects the results of the preceding assignment, not the
update statement */

enumber = iierrornumber;

The following example illustrates the correct way to check iierrornumber and
iirowcount: select both values into variables, and then check the contents of
the variables (because iierrornumber and iirowcount is reset to reflect the
results of the select statement).

...

update emp set ...

/* right way to check iirowcount (using select) */

select iirowcount, iierrornumber into rcount, enumber;

The following table lists the values of iirowcount and iierrornumber after the
successful or unsuccessful execution of an SQL statement:

Statement Success Success Error Error

 iirowcount iierrornumber iirowcount iierrornumber

Insert number of
rows

0 0 Ingres error
number

Error Handling

Understanding Database Procedures, Sessions, and Events 235

Statement Success Success Error Error

Update number of
rows

0 0 Ingres error
number

Delete number of
rows

0 0 Ingres error
number

Select 0 or 1 0 0 Ingres error
number

Assignment 1 0 0 Ingres error
number

Commit -1 0 -1 Ingres error
number

Rollback -1 0 -1 Ingres error
number

Message -1 0 -1 Ingres error
number

Return -1 0 -1 Ingres error
number

If no change no change no change Ingres error
number

 iirowcount iierrornumber iirowcount iierrornumber

Elseif no change no change no change Ingres error
number

While no change no change no change Ingres error
number

Else no change no change no change no change

Endif no change no change no change no change

Endloop no change no change no change no change

Endwhile no change no change no change no change

The execution of each database procedure statement sets the value of
iierrornumber either to zero (no errors) or an error number. To check the
execution status of any particular statement, iierrornumber must be examined
immediately after the execution of the statement.

Errors occurring in if, while, message, and return statements do not set
iierrornumber. However, any errors that occur during the evaluation of the
condition of an if or while statement terminate the procedure and return
control to the calling application.

Error Handling

236 SQL Reference Guide

Raise Error Statement

The raise error statement generates an error. The DBMS Server responds to
this error exactly as it does to any other error. If the raise error statement is
issued by a database procedure that is directly executed, the error is handled
using the default error handling behavior or the user-supplied error handling
mechanism. If the statement is executed inside a procedure invoked by a rule,
the DBMS Server terminates the database procedure and rolls back any
changes made by the procedure and any made by the statement that fired the
rule.

The error number that is specified as an argument to raise error is returned to
sqlerrd(1), and can be accessed using inquire_sql(dbmserror).

The raise error statement can be used in conjunction with the conditional
statements to tell the DBMS Server that the results from the statement that
fired the rule violate some specified condition or constraint. For example, if a
user attempts to update a table, a rule can invoke a database procedure that
checks the updated values for compliance with a specified constraint. If the
updated values fail the check, the raise error statement can be used to roll
back those updates.

Messages from Database Procedures

Database procedures use the SQL message statement to return messages to
users and applications. (The SQL message statement is not the same as the
forms message statement.) Messages from database procedures can be
trapped using the whenever sqlmessage statement or the
set_sql(messagehandler) statement.

Messages from database procedures can return to your application before the
database procedure has finished executing. For this reason, any message-
handling routine must not execute any database statements in the current
session. To issue database statements from a message-handling routine,
switch sessions or open another session; if your message-handling routine
switches sessions, it must switch back to the original session before returning
from the message-handling routine.

Error Handling

Understanding Database Procedures, Sessions, and Events 237

Message Handling Using the Whenever Statement

If your application does not include an SQLCA, messages from database
procedures are displayed on the terminal. If your application includes an
SQLCA, use the whenever statement to trap and handle messages from
database procedures. If your application includes an SQLCA, messages are
displayed only if your application issues the whenever sqlmessage call sqlprint
statement.

The whenever statement handles the following scenarios:

 All messages returned from directly executed database procedures

 The last message returned from a procedure called when a rule is fired

Messages issued by database procedures return message text and a message
number to the calling application, and set sqlcode to +700.

Note: If a database procedure issues a message statement and subsequently
raises an error, the whenever sqlmessage does not trap the message. To trap
all messages, use a message handler routine.

Messages Handling Using User-Defined Handler Routines

To define a message handler routine, use the set_sql messagehandler
statement. Routines defined this way can trap all messages returned by
procedures that are executed by rules; the whenever statement traps only the
last message.

To enable or disable a message-handling routine, your application must issue
the following set_sql statement:

exec sql set_sql(messagehandler = message_routine | 0)

To enable message handling, specify message_routine as a pointer to your
message-handling routine or function. (For more information about pointers to
functions, see the Embedded SQL Companion Guide.) To disable message
handling, specify 0.

In addition to issuing the set_sql statement shown above, create the message-
handling routine and link it with your embedded SQL application.

Rules

238 SQL Reference Guide

Rules
A rule invokes a specified database procedure when it detects specified
changes to the database. When the specified change is detected by the DBMS
Server, the rule is fired, and the database procedure associated with the rule
is executed. Rules can be fired by:

 Any insert, update, or delete on a specified table (including a cursor
update or delete)

 An update that changes one or more columns in a table

 A change that results in a specified condition (expressed as a qualification)

Note: Rules can also be fired by the QUEL statements append, delete, and
replace.

Rules are created with the create rule statement and dropped with the drop
rule statement. Dropping the procedure invoked by a rule does not drop the
rule. For more information about creating and dropping rules, see Create Rule
and Drop Rule in the chapter "SQL Statements."

Use rules to enforce referential and general integrity constraints, and for
general purposes such as tracking all changes to particular tables or extending
the permission system. For a detailed discussion of the use of rules to enforce
referential integrity and data security, see the Database Administrator Guide.

When the firing condition of a rule is met, the specified database procedure is
executed. The statement that fires the rule can originate in an application, a
database procedure, or an Ingres tool such as QBF.

The statement that fires a rule and the database procedure invoked by the
rule are treated as part of the same statement. The database procedure is
executed before the statement that fired the rule completes. For this reason, a
commit or rollback statement cannot be issued in a database procedure
invoked by a rule. If a statement fires more than one rule, the order in which
the database procedures are executed is undefined. To trace the execution of
rules, use the set printrules statement.

For an update or delete statement, the DBMS Server executes a rule once for
each row of the table that meets the firing condition of the rule. The rule is
actually executed when the row is updated or deleted and not after the
statement has completed. Thus, an update statement that ranges over a set of
rows and that has a rule applied to it fires the rule each time a row is
modified, at the time the row is modified. This style of execution is called
instance-oriented.

Multiple Session Connections

Understanding Database Procedures, Sessions, and Events 239

Rules can be fired as the result of a statement issued from an invoked
database procedure. Rules can be forward-chained, or nested, in this manner
to a predefined number of levels. If this depth is exceeded, the DBMS Server
issues an error and the statement is rolled back. By default, 20 levels of
nesting can be defined. To change this value, set the RULE_DEPTH server
parameter. Like a non-nested rule, when a nested rule fires, its database
procedure is executed before the statement that fired it is completed.

Before creating or invoking a rule, the associated database procedure must
exist. If it does not exist when the rule is created, the DBMS Server issues an
error. If it does not exist when the rule is invoked, the DBMS Server issues an
error and aborts the statement that attempted to fire the rule.

If an error occurs in the execution of a rule, the DBMS Server responds as if
the statement firing the rule has experienced a fatal error and rolls back any
changes made to the database by the statement and any made by the fired
rule. An error also occurs when the raise error statement is issued.

To create a rule against a table, you must own the table. In addition, you must
either own the invoked database procedure or have execution privileges for
that procedure.

After a rule is created against a table, any user who has permission to access
the table using the operation specified by the rule has implicit permission to
fire the rule and execute its associated database procedure.

Note: The DBA for a database can disable the firing of rules within that
database during a session using the set [no]rules statement. This option is
provided as an aid to rule development and database maintenance tasks.

Important! If rules are disabled using the set norules statement, the DBMS
Server does not enforce table constraints or check options for views.

Rules are not fired by the copy and modify statements.

Multiple Session Connections
Embedded SQL can maintain multiple sessions (connections to a database). An
application can open an initial session and, with subsequent connect
statements, open additional sessions connected with the same database or
with different databases.

Multiple Session Connections

240 SQL Reference Guide

Multiple Sessions

To open a session, issue the connect statement. To identify individual sessions
in a multiple-session application, assign a connection name or numeric session
identifier when issuing the connect statement. Create multiple sessions that
connect to the same database. For each connection, specify different runtime
options, including the effective user.

The current session is established when an application connects to a database
(by issuing the connect statement) or switches sessions (using the set
connection or set_sql(session) statements). If an error occurs when a program
attempts to connect to a database, there is no current session in effect. Before
the program can issue any queries, it must establish the current session by
(successfully) connecting to a database or switching to a previously
established session.

Session Identification

The connect statement assigns each session a numeric session identifier and a
connection name. The numeric identifier must be a positive integer. The
connection name must be no longer than 128 characters.

Multiple Session Connections

Understanding Database Procedures, Sessions, and Events 241

Session Switching

To switch sessions using a numeric session identifier, use the set_sql(session)
statement. To switch sessions using the connection name, use the set
connection statement.

To determine the numeric session identifier for the current session, use the
inquire_sql)session) statement. To determine the connection name for the
current statement, use the inquire_sql(session) statement.

Applications can switch sessions in the following circumstances:

 Within a transaction

 While cursors are open

 Within SQL block statements, such as a select loop

The program code for the nested session must be inside a host language
subroutine. If it is not, the SQL preprocessor issues an error.

 Within subroutines called by a whenever statement

 Within the following types of routines:

 Data handlers (for long varchar or long byte data)

 Error handlers

 Message handlers

 Database event handlers

Note: Sessions cannot be switched inside a database procedure.

After an application switches sessions, the error information obtained from the
SQLCA or the inquire_sql statement is not updated until an SQL statement has
completed in the new session.

Disconnection of Sessions

To disconnect from the current session, the application issues the disconnect
statement. To disconnect a session other than the current session, specify the
numeric session identifier or connection name. To disconnect all connected
sessions, issue the disconnect all statement. For details, see Disconnect in the
chapter “SQL Statements.”

After an application disconnects from the current session in a multi-session
application, the application must establish the current session by issuing the
set connection, set_sql(session), or connect statement. If no current session is
in effect when an application issues a query, an error is returned.

Multiple Session Connections

242 SQL Reference Guide

Status Information in Multiple Sessions

The SQL Communications Area (SQLCA) is a data area in which the DBMS
Server passes query status information to your application program. Although
an application can sustain multiple sessions, there is only one SQLCA per
application. However, the values returned by the inquire_sql(errorcode) and
inquire_sql(errortext) statements are specific to a session.

If sessions are switched in a select loop (for example, by calling a routine that
switches sessions) and database statements are executed in the alternate
session, the values in the SQLCA are reset. When returning to the original
session, the values in the SQLCA reflect the results of the statements issued in
the alternate session and not the results of the select loop.

When sessions are switched, the values in the SQLCA fields are not updated
until after the first SQL statement in the new session has completed. In
contrast, the error information returned by inquire_sql (errortext and errorno)
always applies to the current session. The results of the session switch are
returned in SQLSTATE.

When an application switches sessions within a select loop or other block
statement, the SQLCA field values are updated to reflect the status of the
statements executed inside the nested session. After the application switches
back to the session with the loop, the SQLCA field values reflect the status of
the last statement in the nested session. Sqlcode and sqlwarn are not updated
until the statement immediately following the loop completes. (The
information obtained by inquire_sql is not valid either until the statement
following a loop completes.) For this reason, the application must reset the
sqlcode and sqlwarn fields before continuing the loop.

Multiple Sessions and the DBMS Server

The DBMS Server treats each session in a multiple-session application as an
individual application. When creating multiple-session applications, keep the
following points in mind:

 Be sure that the server parameter CONNECTED_SESSIONS is large enough
to accommodate the number of sessions required by the application. For
details, see the Getting Started guide.

 In a multiple-session application, an application can encounter deadlock
against itself. For example, one session must attempt to update a table
that was locked by another session.

 An application can also lock itself out in an undetectable manner. For
example, if a table is updated in a transaction in one session and selected
from in another transaction in a second session, the second session waits
indefinitely.

Multiple Session Connections

Understanding Database Procedures, Sessions, and Events 243

Example: Two Open Sessions

The following example shows the use of two open sessions in an application
that gathers project information for updating the projects database using the
personnel database to verify employee identification numbers. This example
illustrates session switching and the use of connection names.

exec sql begin declare section;
 empid integer;
 found integer;
...
exec sql end declare section;

/* Set up two database connections */

exec sql connect projects as projects;
exec sql connect personnel as personnel;

/* Set 'projects' database to be current session */

exec sql set connection projects;
display project form
position cursor to emp id field

/* Validate user-entered employee id against
** master list of employees in personnel
** database. */
 found = 0;
 load empid host variable from field on form
/* Switch to 'personnel' database session */
 exec sql set connection personnel;
 exec sql repeated select 1 into :found
 from employee
 where empid = :empid;
/* Switch back to 'project' database session */
 exec sql set connection projects;
 if (found !=1) then
 print 'Invalid employee identification'
 else
 position cursor to next field
 endif;
end if
/* program code to validate other fields in 'projectform' */
if user selects 'Save' menu item
 get project information and update 'projectinfo' table
...
exec sql disconnect personnel;
exec sql disconnect projects;

Multiple Session Connections

244 SQL Reference Guide

Examples: Session Switching

The following examples illustrate session switching inside a select loop and the
resetting of status fields. The main program processes sales orders and calls
the subroutine new_customer for every new customer. This example illustrates
the use of numeric session identifiers.

The following is an example of the main program:

exec sql include sqlca;
exec sql begin declare section;
/* Include output of dclgen for declaration of
** record order_rec */
 exec sql include 'decls';
exec sql end declare section;
exec sql connect customers session 1;
exec sql connect sales session 2;
...
exec sql select * into :order_rec from orders;
exec sql begin;
 if (order_rec.new_customer = 1) then
 call new_customer(order_rec);
 endif
 process order;
exec sql end;
...
exec sql disconnect;
exec sql set_sql(session = 1);
exec sql disconnect;
The following is an example of subroutine new_customer from the select loop,
containing the session switch:
subroutine new_customer(record order_rec)
begin;
 exec sql set_sql(session = 1);
 exec sql insert into accounts values
 (:order_rec);
 process any errors;
 exec sql set_sql(session = 2);
 sqlca.sqlcode = 0;
 sqlca.sqlwarn.sqlwarn0 = ' ';
end subroutine;

Database Events

Understanding Database Procedures, Sessions, and Events 245

Database Events
Database events enable an application or the DBMS Server to notify other
applications that a specific event has occurred. An event is any occurrence that
your application program is designed to handle.

The following diagram illustrates a typical use of database events: various
applications or database procedures raise database events, and the DBMS
Server notifies a monitor (receiving) application that is registered to receive
the database events. The monitor application responds to the database events
by performing the actions the application designer specified when writing the
monitor application.

Application

raise dbevent

Database
Procedure

raise dbevent

Other
Application

Receiving
Application

raise dbevent

Event notification

Ingres

Database events can be raised by any of the following entities:

 An application that issues the raise dbevent statement

 An application that executes a database procedure that issues the raise
dbevent statement

 As the result of firing a rule that executes a database procedure that
issues the raise dbevent statement

VMS: Database events cannot be broadcast across the nodes of a VMS
cluster.

Database Events

246 SQL Reference Guide

Example: Database Events in Conjunction with Rules

The following example uses database events in conjunction with rules to
maintain inventory stock levels, as follows:

 When the inventory table is updated, a rule is fired.

 The rule executes a database procedure that checks stock levels.

 If the on-hand quantity of a part falls below the required minimum, the
procedure raises a stock_low database event.

 Another application polls for stock_low database events. When the monitor
application receives a stock_low database event, it generates a purchase
order.

The detailed steps for this application are as follows:

1. Create a database event to be raised when the on-hand quantity of a part
is low:

create dbevent stock_low;

2. Create a rule that is fired when the qty_on_hand column of the inventory
table is updated; the rule executes a database procedure when the
quantity falls below 100 (assuming your business requires a minimum of
100 of each part you stock):
create rule check_qty after update(qty_on_hand) of
inventory where qty_on_hand < 100
execute procedure issue_reorder(partno = old.partno);

3. Create the database procedure that raises the stock_low database event:

create procedure reorder(partno varchar(25)) as
 begin
 raise dbevent stock_low
 (dbeventtext = partno)
 end

4. At runtime, the stock monitoring application must register to receive the
stock_low database event:

register dbevent stock_low

When the applications are running, the pieces work together as follows:

 Whenever the qty_on_hand column of the inventory table is adjusted, the
check_qty rule is fired; when the quantity falls below 100, the check_qty
rule executes the reorder database procedure. The reorder procedure
raises the stock_low database event.

 The stock monitoring application issues the get dbevent statement to
check the database event queue and extract any database events (for
which it is registered) that have been raised.

Database Events

Understanding Database Procedures, Sessions, and Events 247

 For each database event detected, the stock monitoring application issues
an inquire_sql statement to retrieve information about the database event.
If it is the stock_low database event, the stock monitoring application
generates a purchase order for the part.

The following diagram illustrates the process:

Update
Inventory

Monitor
Stock

Check
Inventory

Inventory
Table

Adjusts
inventory

Generates
purchase order

Raises event if
stock is low

Fires rule that
invokes database
procedure

Purchasing

Database Event Statements

Database events use the following SQL statements:

 create dbevent

 raise dbevent

 register dbevent

 get dbevent

 remove dbevent

 drop dbevent

 inquire_sql

 set_sql

 grant...on dbevent

 help permit on dbevent

Database Events

248 SQL Reference Guide

Create a Database Event

To create a database event, use the create dbevent statement:

create dbevent event_name

event_name

Is a unique database event name and a valid object name.

Database events for which appropriate permissions have been granted (raise
or register) can be raised by all applications connected to the database, and
received by all applications connected to the database and registered to
receive the database event.

If a database event is created from within a transaction and the transaction is
rolled back, creation of the database event is also rolled back.

Database Events

Understanding Database Procedures, Sessions, and Events 249

Raise a Database Event

To raise a database event, use the raise dbevent statement:

raise dbevent event_name [event_text] [with [no] share]

The raise dbevent statement can be issued from interactive or embedded SQL
applications, or from within a database procedure, including procedures that
execute as the result of a rule firing. When the raise dbevent statement is
issued, the DBMS Server sends a database event message to all applications
that are registered to receive event_name. If no applications are registered to
receive a database event, raising the database event has no effect.

A session can raise any database event that is owned by the effective user of
the session, and any database event owned by another user who has granted
the raise privilege to the effective user, group, role, or public.

The optional event_text parameter is a string (maximum 256 characters) that
can be used to pass information to receiving applications. For example, you
can use event_text to pass the name of the application that raised the
database event, or to pass diagnostic information.

The [no]share parameter specifies whether the DBMS Server issues database
event messages to all applications registered for the database event, or only
to the application that raised the database event (or, if the database event
was raised as the result of a rule firing, issued the query that raised the
database event). If share or omit this parameter are specified, the DBMS
Server notifies all registered applications when the database event is raised. If
noshare is specified, the DBMS Server notifies only the application that issued
the query that raised the database event (assuming the program was also
registered to receive the database event).

If a transaction issues the raise statement, and the transaction is subsequently
rolled back, database event queues are not affected by the rollback: the raised
database event remains queued to all sessions that registered for the database
event.

Database Events

250 SQL Reference Guide

Register Applications to Receive a Database Event

To register an application to receive database events, use the register dbevent
statement:

register dbevent event_name

event_name

Is an existing database even.

Sessions must register for each database event to be received. A session can
register for all database events that the session’s effective user owns, and all
database events for which the effective user, group, role, or public has been
granted register privilege. For each database event, the registration is in effect
until the session issues the remove dbevent statement or disconnects from the
database.

The DBMS Server issues an error if:

 A session attempts to register for a non-existent database event

 A session attempts to register for a database event for which the session
does not have register privilege

 A session attempts to register twice for the same database event. If the
register dbevent statement is issued from within a transaction that is
subsequently rolled back, the registration is not rolled back.

The register dbevent statement can be issued from interactive or embedded
SQL, or from within a database procedure.

Database Events

Understanding Database Procedures, Sessions, and Events 251

Receive a Database Event

To receive a database event and its associated information, an application
must perform two steps:

1. Remove the next database event from the session’s database event queue
(using get dbevent or, implicitly, using whenever dbevent or set_sql
dbeventhandler).

2. Inquire for database event information (using inquire_sql).

The get_dbevent statement gets the next database event, if any, from the
queue of database events that have been raised and for which the application
session has registered, as shown in the following illustration:

Raising
Application

Receiving
Application

Other_event . . . Your_event

Session Event Queue

raise dbevent other_event get dbevent

Database Events

252 SQL Reference Guide

Get dbevent returns database events for the current session only; if an
application runs multiple sessions, each session must register to receive the
desired database events, and the application must switch sessions to receive
database events queued for each session.

The optional with clause specifies whether your application waits for a
database event to arrive in the queue. If get dbevent with wait is specified, the
application waits indefinitely for a database event to arrive. If get dbevent with
wait=wait_value is specified, the application waits the specified number of
seconds for a database event to arrive. If no database event arrives in the
specified time period, the get dbevent statement times out, and no database
event is returned. If get dbevent with nowait is specified, the DBMS Server
checks for a database event and returns immediately. The default is nowait.

The with wait clause cannot be specified if the get dbevent statement is issued
in a select loop or user-defined error handler.

To obtain database event information, your application must issue the
inquire_sql statement, and specify one or more of the following parameters:

 dbeventname—The name of the database event (in lowercase letters). If
there are no database events in the database event queue, the DBMS
Server returns an empty string (or a string containing blanks, if your host
language uses blank-padded strings).

 dbeventowner—The username of the user that created the database
event; returned in lowercase letters.

 dbeventdatabase—The database in which the database event was
raised; returned in lowercase letters.

 dbeventtime—The date and time the database event was raised, in date
format. The receiving host variable must be a string (minimum length of
25 characters).

 dbeventtext—The text, if any, specified in the optional event_text
parameter by the application that raised the database event. The receiving
variable must be a 256-character string. If the receiving variable is too
small, the text is truncated.

Database Events

Understanding Database Procedures, Sessions, and Events 253

Process Database Events

Three methods can be used to process database events:

 The get dbevent statement is used to explicitly consume each database
event from the database event queue of the session. Typically, a loop is
constructed to poll for database events and call routines that appropriately
handle different database events. Get dbevent is a low-overhead
statement: it polls the application’s database event queue and not the
server.

 Trap database events using the whenever dbevent statement. To display
database events and remove them from the database event queue, specify
whenever dbevent sqlprint. To continue program execution without
removing database events from the database event queue, specify
whenever dbevent continue. To transfer control to a database event
handling routine, specify whenever dbevent goto or whenever dbevent
call. To obtain the database event information, the routine must issue the
inquire_sql statement.

 Trap database events to a handler routine, using set_sql dbeventhandler.
To obtain the database event information, the routine must issue the
inquire_sql statement.

Note: If your application terminates a select loop using the endselect
statement, unread database events must be purged.

Database Events (dbevents) are received only during communication between
the application and the DBMS Server while performing SQL query statements.
When notification is received, the application programmer must ensure that all
database events in the database events queue are processed by using the get
dbevent loop, which is described below.

Get Dbevent Statement

The following example shows a loop that processes all database events in the
database event queue. The loop terminates when there are no more database
events in the queue.

loop

 exec sql get dbevent;
 exec sql inquire_sql (:event_name =
 dbeventname);
 if event_name = 'event_1'
 process event 1
 else
 if event_name = 'event_2'
 process event 2
 else
 ...
 endif
until event_name = ''

Database Events

254 SQL Reference Guide

Whenever Dbevent Statement

To use the whenever dbevent statement, your application must include an
SQLCA. When a database event is added to the database event queue, the
sqlcode variable in the SQLCA is set to 710 (also the standalone SQLCODE
variable is set to 710; SQLSTATE is not affected). However, if a query results
in an error that resets sqlcode, the whenever statement does not trap the
database event. The database event is still queued, and your error-handling
code can use the get dbevent statement to check for queued database events.

To avoid inadvertently (and recursively) triggering the whenever mechanism
from within a routine called as the result of a whenever dbevent statement,
your database event-handling routine must turn off trapping:

main program:

exec sql whenever dbevent call event_handler;

...

event_handler:

/* turn off the whenever event trapping */
 exec sql whenever dbevent continue;

exec sql inquire_sql(:evname=dbeventname...);

process events
return

User-Defined Database Event Handlers

To define your own database event-handling routine, use the exec sql
set_sql(dbeventhandler) statement. This method traps database events as
soon as they are added to the database event queue; the whenever method
must wait for queries to complete before it can trap database events.

Remove a Database Event Registration

To remove a database event registration, use the remove dbevent statement:

remove dbevent event_name

event_name

Specifies a database event for which the application has previously
registered.

After a database event registration is removed, the DBMS Server does not
notify the application when the specified database event is raised. (Pending
database event messages are not removed from the database event queue.)
When attempting to remove a registration for a database event that was not
registered, the DBMS Server issues an error.

Database Events

Understanding Database Procedures, Sessions, and Events 255

Drop a Database Event

To drop a database event, use the drop dbevent statement:

drop dbevent event_name

where event_name is a valid and existing database event name. Only the user
that created a database event can drop it.

After a database event is dropped, it cannot be raised, and applications cannot
register to receive the database event. (Pending database event messages are
not removed from the database event queue.)

If a database event is dropped while applications are registered to receive it,
the database event registrations are not dropped from the DBMS Server until
the application disconnects from the database or removes its registration for
the dropped database event. If the database event is recreated (with the same
name), it can again be received by registered applications.

Privileges and Database Events

The raise privilege is required to raise database events, and the register
privilege is required to register for database events. To grant these privileges,
use the grant statement:

grant raise on dbevent event_name to

grant register on dbevent event_name to

To revoke these privileges, use the revoke statement. To display the number
for the raise or register privileges, use the help permit statement. To display
the permits defined for a specific database event, use the following statement:

help permit on dbevent event_name{, event_name}

Database Events

256 SQL Reference Guide

Trace Database Events

The following features enable your application to display and trace database
events:

 To enable or disable the display of database event trace information for an
application when it raises a database event, set [no]printdbevents
statement.

To enable the display of database events as they are raised by the
application, specify set printdbevents. To disable the display of database
events, specify set noprintdbevents.

 To enable or disable the logging of raised database events to the
installation log file, use the set [no]logdbevents statement:

To enable the logging of database events as they are raised by the
application, specify set logdbevents. To disable the logging of database
events, specify set nologdbevents.

 To enable or disable the display of database events as they are received
by an application, use the exec sql set_sql(dbeventdisplay = 1| 0 |
variable)

Specify a value of 1 to enable the display of received database events, or
0 to disable the display of received database events. This feature can also
be enabled by using II_EMBED_SET. For details about II_EMBED_SET, see
the System Administrator Guide.

 A routine can be created that traps all database events returned to an
embedded SQL application. To enable or disable a database event-
handling routine or function, your embedded SQL application must issue
the exec sql set_sql(dbeventhandler = event_routine | 0) statement:

To trap database events to your database event-handling routine, specify
event_routine as a pointer to your error-handling function. For information
about specifying pointers to functions, see the Embedded SQL Companion
Guide. Before using the set_sql statement to redirect database event handling,
create the database event-handling routine, declare it, and link it with your
application.

Using SQL Statements 257

Chapter 8: Using SQL Statements

This chapter describes what you need to know about using SQL statements. A
description of the purpose of the SQL statement, its syntax, and its use are
described for each SQL statement.

In particular, this chapter describes the release of SQL indicated by the
following values in the iidbcapabilities catalog:

CAP_CAPABILITY CAP_VALUE

INGRES/SQL_LEVEL 00850

SQL statements which pertain only to distributed databases are not included.

For more information about standard catalogs, see the Database Administrator
Guide.

Star Statements
The following Star statements have additional considerations when used in a
distributed environment:

 commit

 create table

 create view

 drop

 remove

 rollback

 savepoint

 set

Alter Group

258 SQL Reference Guide

Alter Group
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_users privileges and be working
in a session connected with the iidbdb database.

The Alter Group statement adds or drops user identifiers from the user list
associated with a group identifier.

The Alter Group statement has the following format:

[exec sql] alter group group_id {, group_id}
add users (user_id {, user_id}) | drop users (user_id {, user_id}) | drop all

[exec sql] alter group group_id {, group_id}

Modifies the list of users associated with a group identifier. Individual
users can be added or dropped, or the entire list can be dropped. An add
and a drop operation cannot be performed in the same alter group
statement.

group_id

must be an existing group identifier. If a group_id that does not exist is
specified, the DBMS Server issues a warning but continues processing any
valid group_ids in the list. If a specific user_id occurs more than once in
the user list, additional occurrences of the specified user_id are ignored.
No errors are issued.

add users (user_id {, user_id})

Adds the specified users to the user list associated with the group_ids. The
user_ids must exist when they are added to a group. If a specified user is
not defined in the installation, the DBMS Server issues an error but
processes the remaining user identifiers. If any of the specified users are
already part of the group user list, the DBMS Server returns a warning but
adds any other valid specified users to the list.

drop users (user_id {, user_id}) | drop all

Removes the specified users from the user list of the group identifier. If
any of the specified users are not in the group's user list, the DBMS Server
returns a warning but does not abort the statement, and any other valid
specified users are dropped. A user cannot be dropped from a group if that
group is the default group of the user. (Use the alter user statement to
change a user's default group.)

Alter Group

Using SQL Statements 259

The drop all clause removes all users from the group's user list. A group
cannot be dropped if it has any members in its user list. If any member of
the specified group has that group as its default group, drop all results in
an error. Use the alter user statement to change the user's default group
before attempting to drop all.

If a user is dropped from a group in a session that is associated with that
group, the user retains the privileges of the group until the session
terminates.

Embedded Usage: Alter Group

You cannot use host language variables in an embedded Alter Group SQL
statement.

Locking: Alter Group

The Alter Group SQL statement locks pages in the iiusergroup catalog in the
iidbdb. This can cause sessions attempting to connect to the server to be
suspended until the alter group statement is completed.

Related Statements: Alter Group

For related information on the Alter Group SQL statement, see the following
SQL statement descriptions in this chapter.

Create Group (see page 321)

Drop Group (see page 440)

Examples: Alter Group

The following examples add and drop user identifiers from the user list
associated with a group identifier:

1. Add users to the group, sales_clerks.

exec sql alter group sales_clerks
 add users (dannyh, helent);

2. Drop three users from the group, tel_sales.

exec sql alter group tel_sales
 drop users (harryk, joanb, elainet);

3. In an application, drop all users from the group, researchers.

exec sql alter group researchers drop all;

Alter Location

260 SQL Reference Guide

Alter Location
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_locations privileges and be
connected to the iidbdb to issue this statement.

The Alter Location statement changes the type of files that can be created at
an existing location.

The Alter Location statement has the following format:

[exec sql] alter location location_name
 with usage = (usage_type {, usage_type}) | nousage

[exec sql] alter location location_name

Specifies the name of an existing disk and directory combination. Current
usage of the location is unaffected, but future attempts to extend a
database to the target extention are constrained by the new usage setting.
To create a location, use the create location statement. To delete an
existing location, use the drop location statement.

with usage = (usage_type {, usage_type}) | nousage

Specifies the types of file that can be stored at this location. Valid values
are:

 database

 work

 journal

 checkpoint

 dump

 all

To prevent any files from being stored at the location, specify with
nousage.

Embedded Usage: Alter Location

In an embedded Alter Location SQL statement, the usage portion of the with
clause can be specified using a host string variable. The preprocessor does not
validate the with clause.

Alter Profile

Using SQL Statements 261

Locking: Alter Location

The Alter Location SQL statement locks pages in the iilocation_info system
catalog.

Related Statements: Alter Location

For related information on the Alter Location SQL statement, see the following
SQL statement descriptions in this chapter:

Create Location (see page 335)

Drop Location (see page 442)

Examples: Alter Location

The following examples change the type of files that can be created at an
existing location:

1. Specify that only checkpoint files can be created at the checkpoint_disk
location.

alter location checkpoint_disk
 with usage = (checkpoint);

2. Prevent any files from being created at the new_db location.

alter location new_db with nousage;

Alter Profile
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_users privileges and be
connected to the iidbdb database. Additional privileges are required to perform
certain operations, as summarized in the table below:

Action Privilege Required

Change security audit attributes maintain_audit

Alter Profile

262 SQL Reference Guide

The Alter Profile statement alters a user profile.

The Alter Profile statement has the following format:

[exec sql] alter [default] profile [profile_name]
[add privileges(priv {,priv}) | drop privileges(priv {,priv})]
[with with_item {, with_item}]

with_item = noprivileges | privileges = (priv {, priv})
 | nogroup | group = default_group
 | security_audit = (audit_opt {,audit_opt})
 | noexpire_date | expire_date = 'expire_date'
 | default_privileges = (priv {, priv}) | all
 | nodefault_privileges

profile_name

Must be the name of an existing profile. Each user can be given a profile,
which provides the default attributes for that user. The profile_name can
be specified using a delimited identifier.

priv

Must be one of the following:

createdb-Allows users to create databases.

trace-Allows the user to use tracing and debugging features.

security-Allows the user to perform security-related functions (such as
creating and dropping users).

operator-Allows the user to perform database backups and other
database maintenance operations.

maintain_locations-Allows the user to create and change the
characteristics of database and file locations.

auditor-Allows the user to register or remove audit logs and to query
audit logs.

maintain_audit-Allows the user to change the alter user security audit
and alter profile security audit privileges. Also allows the user to enable,
disable, or alter security audit.

maintain_users-Allows the user to perform various user-related
functions, such as creating or altering users, profiles, group and roles, and
to grant or revoke database and installation resource controls.

These privileges are referred to as subject privileges, and apply to the user
regardless of the database to which the user is connected. If the privileges
clause is omitted, the default is noprivileges.

default_group

Specifies the default group for users with this profile. Must be an existing
group.

Alter Profile

Using SQL Statements 263

To specify that the user is not assigned to a group, use the nogroup
option. If the group clause is omitted, the default is nogroup.

audit_opt

If security_audit=(all_events) is specified, all activity by the user is
audited.

If security_audit = (default_events) is specified, only default security
auditing is performed, as specified with the enable and disable
security_audit statements.

If security_audit=(query_text) is specified, auditing of the query text
associated with specific user queries is performed. Security auditing of
query text must be enabled as a whole, using the enable and disable
security_audit statements with the query_text option. For example, enable
security_audit query_text.

expire_date

Specifies an optional expiration date associated with each user using this
profile. Any valid date can be used. Once the expiration date is reached,
the user is no longer able to log on. If noexpire_date is specified, this
profile has no expiration limit.

default_privileges =
(priv {, priv}) | all| nodefault_privileges

Defines the privileges initially active when connecting to Ingres. These
must be a subset of those privileges granted to the user. If all is specified,
all of the privileges held by the profile are initially active. Use nodefault_
privileges to specify that no privileges are to be initially active.

A default profile is provided when no profile is explicitly specified. The
initial default profile is:

 noprivileges

 nodefault_privileges

 noexpire_date

 nogroup

 nosecurity_audit

To modify the settings of a default profile, use alter default profile. You cannot
specify both default and a profile_name in the same statement.

Use add privileges to give the user profile additional privileges. Use drop
privileges to remove privileges from the user profile. You cannot use either
add privileges, or drop privileges if with_option is specified in the with_clause.

If a with_clause item is not specified, its value is left unchanged.

Alter Profile

264 SQL Reference Guide

User profiles are a set of subject privileges and other attributes that can be
applied to a user or set of users. A profile includes:

 Subject privileges

 Default subject privileges

 Default user groups

 Security auditing attributes

 Expire date

Embedded Usage: Alter Profile

In an embedded Alter Profile SQL statement, the with clause can be specified
using a host string variable (with :hostvar).

Locking: Alter Profile

The Alter Profile SQL statement locks iiprofile exclusively.

Related Statements: Alter Profile

For related information on the Alter Profile SQL statement, see the following
SQL statement descriptions in this chapter:

Alter User (see page 282)

Create Profile (see page 345)

Create User (see page 400)

Drop Profile (see page 444)

Alter Role

Using SQL Statements 265

Examples: Alter Profile

The following examples alter a user profile:

1. Update a default profile by using the alter default profile variant of the
alter profile statement.

alter default profile
 with expire_date = '30 days';

2. Change the default profile to include createdb privileges.

alter default profile
 add privileges (createdb);

Only one of default profile and profile profile_name can be specified.

3. Alter the trusted profile to add the createdb privilege and make the default
group trusted_group:

alter profile trusted
add privileges (createdb)
 with group = trusted_group

All users currently using this profile have the appropriate changes made to
their security privilege and group.

4. Alter the security auditing for profile, clerk.

alter profile clerk
with security_audit = (query_text, default_events);

Alter Role
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_users privileges and be
connected to the iidbdb database. Additional privileges are required to perform
certain operations, as summarized in the table below:

Action Privilege Required

Change security audit attributes maintain_audit

Alter Role

266 SQL Reference Guide

The Alter Role statement changes the attributes associated with a role
identifier.

Use add privileges to give the user additional privileges. Use drop privileges to
remove privileges from the user. You cannot use either add privileges, or drop
privileges if with_option is specified in the with_clause.

The Alter Profile statement has the following format:

[exec sql] alter role role_id {, role_id}
[add privileges (priv {,priv}) | drop privileges (priv {,priv})]
[with with_option {,with_option}]

with_option = nopassword | password = 'role_password' | external_password

 | noprivileges | privileges = (priv {,priv})
 | nosecurity_audit | security_audit

role_id

Must exist in the installation. If one or more of the specified role identifiers
do not exist, the DBMS Server issues a warning, but all valid role
identifiers are processed.

To create roles, use the Create Role statement. For more information
about role identifiers, see the Database Administrator Guide.

priv

Must be one of the following:

createdb-Allows the user to create databases.

trace-Allows the user to use tracing and debugging features.

security-Allows the user to perform security-related functions (such as
creating and dropping users).

operator-Allows the user to perform database backups and other
database maintenance operations.

maintain_locations-Allows the user to create and change the
characteristics of database and file locations.

auditor-Allows the user to register or remove audit logs and to query
audit logs.

maintain_audit-Allows the user to change the alter user security audit
and alter profile security audit privileges. Also allows the user to enable,
disable, or alter security audit.

role_password

Alter Role

Using SQL Statements 267

Allows a user to change his or her own password. In addition, users with
the maintain_users privilege can change or remove any password.
Role_password must be no longer than 24 characters. If role_password
contains uppercase or special characters, enclose it in single quotes. Any
blanks in the password are removed when the password is stored. If the
password clause is omitted, the default is nopassword.

To remove the password associated with role_id, specify nopassword.

To allow a user's password to be passed to an external authentication
server for authentication, specify external_ password.

nosecurity_audit| security_audit

If nosecurity_audit is specified (the default, if neither nosecurity_audit nor
security_audit is specified), the security_audit level for the user using the
role is assumed.

If security_audit is specified, all activity is audited for anyone who uses the
role, regardless of any security_audit level that has been set for an
individual user.

Caution! If no password is specified, any session has access to the
specified role identifier and its associated permissions.

Embedded Usage: Alter Role

In an embedded Alter Role SQL statement, the preprocessor does not validate
the syntax of the with clause.

Locking: Alter Role

The Alter Role SQL statement locks pages in the iirole catalog of the iidbdb.
This can cause sessions attempting to connect to the server to suspend until
the statement is completed.

Related Statements: Alter Role

For related information on the Alter Role SQL statement, see the following SQL
statement descriptions in this chapter:

Create Role (see page 348)

Drop Role (see page 445)

Alter Role

268 SQL Reference Guide

Examples: Alter Role

The following examples change the attributes associated with a role identifier:

1. Change the password for the role identifier, new_accounts, to eggbasket.

alter role new_accounts with
 password = 'eggbasket';

2. Remove the password associated with the identifier, chk_inventory.

alter role chk_inventory with nopassword;

3. In an application, change the password for the role identifier,
mon_end_report to goodnews.

exec sql alter role mon_end_report with
 password = goodnews;

4. Alter a role to remove a privilege and audits all activity performed when
the role is active.

alter role sysdba
 drop privileges (trace)
 with security_audit;

Alter Security_Audit

Using SQL Statements 269

Alter Security_Audit
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_audit privileges.

The Alter Security_Audit statement allows the current security audit log to be
switched and for security auditing to be suspended or resumed in the current
installation. This statement takes effect immediately and cannot be issued
within a multi-statement transaction.

Alter Security_Audit can only be issued while connected to the iidbdb
database, by a user with maintain_audit privilege, and is available in dynamic
SQL. It is not available in database procedures.

The Alter Security_Audit statement has the following format:

[exec sql] alter security_audit [suspend | resume | restart | stop][with
audit_log = 'audit_filename']

alter security_audit suspend | resume

Allows auditing to be suspended and later resumed. This allows
maintenance on security audit logs to take place as required. When
auditing is suspended any sessions that attempt to generate security audit
records are stalled until auditing is resumed. Auditing is suspended
immediately after the audit record logging the alter security_audit
statement is written.

Auditing can only be suspended when it is active, and resumed when it is
suspended.

On installation restart, auditing is resumed automatically.

To allow the audit system to be resumed, users with maintain_audit
privilege can continue to access Ingres even when auditing is suspended.
In this case any audit events generated are written to the audit log.

alter security_audit restart

Restarts auditing.

alter security_audit stop

Stops auditing on request. This statement cannot be used to start security
logging for servers that were not started with logging enabled. Auditing
can only be stopped when it is active, and restarted when it is stopped.

Security auditing can be stopped, either by issuing an alter security_audit
stop statement, or as the result of an audit system condition such as
logfull or on-error.

Alter Security_Audit

270 SQL Reference Guide

alter security_audit with audit_log = 'audit_filename'

Sets the current installation security log. The security audit log can be
changed whenever auditing is active (that is, when it is not stopped or
suspended), or when restarting or resuming auditing. The audit log file
specified must actually exist in the Ingres audit configuration.

Embedded Usage: Alter Security_Audit

Audit_filename can be specified using a string hostname variable in an
embedded Alter Security_Audit SQL statement.

Related Statements: Alter Security_Audit

For related information on the Alter Security_Audit SQL statement, see the
following SQL statement descriptions:

Disable Security_Audit (see page 433)

Enable Security_Audit (see page 452)

Alter Sequence

Using SQL Statements 271

Examples: Alter Security_Audit

The following examples allow the current security audit log to be switched and
for security auditing to be suspended or resumed in the current installation:

1. Restart security auditing after it has been suspended.

alter security_audit resume;

2. Restart auditing, switching to a new audit log.

Windows:

alter security_audit restart
with audit_log = 'd:\oping\ingres\files\audit.log'

UNIX:

alter security_audit restart
with audit_log = /install/ingres/files/audit.3

VMS:

alter security_audit restart
with audit_log = disk$7:[ingres.files]audit.3

3. Cause Ingres to log events to the auditlog.7 file.

alter security_audit
 with audit_log = '/auditdisk/auditlog.7';

Alter Sequence
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have ”create_sequence” privileges. You must
also have the “next” privilege to retrieve values from a defined sequence. For
information on the “next” privilege, see Grant (privilege) (see page 480).

The Alter Sequence statement lets you change sequence settings that were
specified when the sequence was created. See Create Sequence (see
page 364) for details.

The Alter Sequence syntax changes settings for the specified sequence. The
Alter Sequence syntax has the following format:

[exec sql] alter sequence [schema.]sequence_name [sequence_options]

Alter Sequence

272 SQL Reference Guide

Locking: Alter Sequence

For applications, the Alter Sequence SQL statement uses logical locks that
allow multiple transactions to retrieve and update the sequence values while
preventing changes to the underlying sequence definition. The logical lock is
held until the end of the transaction.

Related Statements: Alter Sequence

For related information on the Alter Sequence SQL statement, see the
following SQL statement descriptions in this chapter:

Create Sequence (see page 364)

Drop Sequence (see page 449)

Examples: Alter Sequence

The following examples change sequence settings that were specified when
the sequence was created:

1. Change the start value so that sequence “XYZ” starts at sequence item 10.

alter sequence XYZ restart with 10

2. Change the increment value of sequence “XYZ” to 20.

alter sequence XYZ increment by 20

Alter Table

Using SQL Statements 273

Alter Table
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: Only the owner of a table can add or drop constraints or
columns for that table. To define a referential constraint that refers to a table
owned by another user, you must have the references privilege for the
columns to which the constraint refers.

The Alter Table statement adds or removes either a table-level constraint or a
column from the existing base table. The statement can also be used to
modify the character columns in a table to Unicode column types. Constraints
can also be specified when the base table is created. For details, see Create
Table (see page 369).

Note: In order to use this statement, the table must have a page size of 4K or
larger.

The Alter Table statement has the following format:

[exec sql] alter table [schema.]table_name
 add [column] column_name format [default_clause]
 [null_clause] [column_constraint] [collate collation_name]
| drop [column] column_name restrict | cascade
| add [constraint constraint_name] constraint_spec
| drop constraint constraint_name restrict | cascade
| alter [column] column_name format [default_clause]
 [null_clause] [column_constraint] [collate collation_name]

alter table tablename add [column] column_name format
[default_clause] [null_clause]

[column_constraint] [collate collation_name]

Adds a column. The column_name cannot exist in the table at the time the
alter table statement is issued. The format default_clause, null_clause,
column_constraint, and collation_name of the column have the same
structure as for the create table command, except that "with null with
default" and "not null not default" are not allowed. The columns is logically
placed in the table definition after the last existing column. Only one
column at a time can be added with the alter table statement. When a
column is added, the number of columns in the table cannot exceed the
maximum number of columns in a table, (which is 1024), and the row
width cannot exceed the maximum row width for the page size or the
max_tuple_length setting.

Note: When a column is added to a table, the logical definition of the table
is changed without physically reorganizing the data. Therefore, after
adding columns, use the modify command to rebuild the table.

Alter Table

274 SQL Reference Guide

alter table table_name drop [column] column_name
restrict | cascade

Drops a column. The column column_name must exist in the table's
table_name. Only one column can be dropped in a single alter table
statement. The two options associated with dropping a column are restrict
and cascade. One of the two choices must be indicated.

Restrict: does not drop the column if there are one or more dependant
objects in existence on that column. For example a view which references
the column to be dropped or a secondary index defined on the column to
be dropped.

Cascade: automatically drops objects (views, integrity constraints, grants,
and indexes) that are dependent on the column to be dropped. The user is
not provided with information about which objects have been dropped.
Procedures/rules dependent on dropped columns are not dropped; instead
an error is returned when the rule or procedure is executed.

Note: A column cannot be dropped that is being used as a partitioning
column or storage structure key column.

Note: When a column is dropped, the logical definition of the table is
changed without physically reorganizing the data. The column number and
the space associated with the dropped column are not reused. After
dropping columns, use the modify command to clean up space and to
rebuild the table.

alter table table_name add constraint constraint_name
constraint_clause

Adds a constraint. Constraint_name must be a valid object name. If
constraint_name is specified, the keyword, constraint, must be specified.
If constraint_name is not specified, omit the keyword, constraint, and the
DBMS assigns the name. For example, the following statement adds a
named constraint to the emp table:

alter table emp add constraint chksal check (salary>0);

The following statement adds an internally named constraint to the emp
table:

alter table emp add check (age>0);

To find a system-defined constraint name, select the name from the
iiconstraints system catalog:

select * from iiconstraints where table_name = table_name;

Alter Table

Using SQL Statements 275

When a constraint is added to a table, the table is checked to ensure that
its contents do not violate the constraint. If there is a violation, an error is
returned and the constraint is not added. The following table summarizes
the elements of constraint_clause:

Type Keyword Example

referential references alter table dept add constraint chkmgr foreign
key(mgr) references emp(ename) on delete
set null;

unique unique alter table emp add unique (eno, ename);

check check alter table emp add check (salary>0);

primary key primary key alter table emp add constraint ekey primary
key(eno);

alter table table_name drop constraint constraint_name restrict |
cascade

Drops a constraint. For example, the following statement drops the named
constraint "chksal" created in the add constraint example:

alter table emp drop constraint chksal restrict;

If a system-defined constraint name is being dropped, find the constraint
name from the iiconstraints system catalog:

select * from iiconstraints where table_name = table_name;

Enclose the constraint name in double quotes, this is because DBMS
defined constraint names contain special characters and should be treated
as delimited identifiers.

Restrict: will prevent the execution of the “alter table drop constraint”
statement if there are constraints that are dependant on the constraint
being dropped. For example, if an attempt is made to drop a unique
constraint upon which a referential constraint is dependent, the drop will
fail.

Alter Table

276 SQL Reference Guide

Cascade: will drop all dependent constraints. For example, if a unique
constraint upon which a referential constraint is dependent is dropped, the
dependent constraints are automatically dropped. For example, the
following statements create two tables with a referential constraint. The
referential constraint on the emp table depends on the unique constraint
the dept table:

create table dept (
name char(10) not null,
location char(20),

constraint dept_unique unique(dname) <------------------------
with structure=hash); |

 |
"empref" depends
on "dept_unique"

 |
create table emp (|

name char(10) not null, |
salary decimal(10,2), |
dept char(10) |

constraint empref references dept(dname)); ----------------

An error is returned by:

alter table dept drop constraint dept_unique restrict;

This is because there is a referential constraint that depends on
dept_unique:

alter table dept drop constraint dept_unique cascade;

This will drop both the dept_unique constraint and the dependent empref
constraint.

alter table table_name alter [column] column_name format
[default_clause]

[null_clause] [column_constraint] [collate collation_name]

The “alter table table_name alter column column_name” statement allows
specific changes to a columns characteristics.

You can:

 Change the size of a character column to preserve the existing
default_clause, null_clause, column_constraint, and collate
collation_name.

 Change the column from a non_unicode data type to a Unicode data
type.

Note: The database must be Unicode enabled either having been
created as a Unicode-enabled database with the –i (Normalization
Form C (NFC)) or –n (Normalization Form D (NFD)) flag, or by using
the alterdb command.

Alter Table

Using SQL Statements 277

 Change from one character data type to another.

 Change a column from not null to null.

 Change the default value of a column.

 Note: It is only possible to change the default value of a column to
any value except null

 Change the collation sequence of the column.

 Specify the key word collate followed by one of the following
collation_name values which specifies the collation sequence to be
used on the column:

– unicode: Specifies collation for columns containing Unicode data
(nchar and nvarchar data types). This is the default collation for
Unicode columns.

– unicode_case_insensitive: Specifies case insensitive collation
for columns containing Unicode data (nchar and nvarchar data
types).

– sql_character: Specifies the collation for columns containing
char, C, varchar, and text data. This is the default collation for
non-Unicode columns.

Constraint Specifications: Alter Table

When a constraint is added to a table, the table is checked to ensure that its
contents do not violate the constraint. If the contents of the table do violate
the constraint, the DBMS Server returns an error and does not add the
constraint.

Constraint specifications are described in detail in the Create Table SQL
statement description in this chapter. The following table summarizes the
elements of constraint specifications:

Type Keyword Example

referential references alter table dept

add constraint chkmgr

foreign key(mgr) references emp(ename)
on delete set null;

unique unique alter table emp

add unique (eno, ename);

check check alter table emp

add check (salary>0);

Alter Table

278 SQL Reference Guide

Type Keyword Example

primary key primary key alter table emp

add constraint ekey

primary key(eno);

Named Constraints: Alter Table

To assign a name to a constraint, use the following syntax:

alter table table_name add constraint constraint_name constraint_clause

constraint_name

Is a valid object name. If a constraint name is specified, the keyword
constraint must be specified. If a constraint name is not specified, omit the
constraint keyword.

For example, the following alter table statement adds a named constraint to
the emp table:

alter table emp add constraint chksal check (salary>0);

All constraints are named. If the constraint name is omitted, the DBMS Server
assigns a name. To locate a system-defined constraint name, search the
iiconstraints system catalog.

alter table table_name drop constraint constraint_name restrict|cascade

Drops a constraint.

For example, the following alter table statement drops the named constraint
created in the previous example:

alter table emp drop constraint chksal restrict;

If a system-defined constraint name is being dropped, specify the constraint
name using a delimited identifier (that is, in double quotes), because system-
defined constraint names include special characters.

Alter Table

Using SQL Statements 279

If a unique constraint upon which referential constraints depend is dropped,
the dependent constraints are automatically dropped (unless restrict is
specified). For example, given the following tables and constraints:

create table dept (dname char(10) not null unique,
 ...);
create table emp (ename char(10),
 dname char(10)
 references dept(dname));

If the unique constraint on the dname column of the dept table is dropped, the
referential constraint on the dname column of emp is dropped automatically.

Restrict and Cascade

When a constraint or a column is dropped, specify restrict or cascade:

Restrict

 Aborts if there are any constraints that depend on the constraint being
dropped.

 Does not drop the column if there are one or more objects in existence
that depend on the column.

For example:

 A view with reference to the column in the base table

 A check constraint on the column being dropped

 A secondary index defined with this column

Cascade

 Deletes all dependent constraints.

For example, the following statements create two tables with referential
constraint. The referential constraint of the second table depends on the
unique constraint of the first table:

 create table dept (
 name char(10) not null,
 location char(20),
constraint dept_unique unique(name)
 with structure=hash);

create table emp (
 name char(10) not null,
 salary decimal(10,2),
 dept char(10)
constraint empref references dept(name));

"empref" depends
on "dept_unique"

Alter Table

280 SQL Reference Guide

If the dept_unique constraint is dropped, the restrict and cascade clauses
determine the outcome of the alter table statement as follows:

alter table dept drop constraint dept_unique restrict;

returns an error, because there is a referential constraint that depends on
dept_unique. However,

alter table dept drop constraint dept_unique cascade;

deletes both the dept_unique constraint and the dependent empref constraint.

Attempts to drop all objects dependent on the dropped column, such as any
integrity constraints, any grants, or any views. The user is not provided with
information describing the dependent objects that are dropped.

Embedded Usage: Alter Table

In an embedded Alter Table SQL statement, specify the with clause using a
host string variable (with :hostvar).

Locking: Alter Table

In the Alter Table SQL statement, the alter table command acquires an
exclusive lock on the table at the start of execution. The lock is held until the
end of the transaction.

Related Statements: Alter Table

For related information on the Alter Table SQL statement, see the following
SQL statement descriptions in this chapter:

Create Index (see page 323)

Create Table (see page 369)

Modify (see page 524)

Alter Table

Using SQL Statements 281

Examples: Alter Table

The following examples add and remove a table-level constraint and a column
from the existing base table.

Use the following table as an example:

create table emp (
name char(10) not null not default,
salary decimal(10,2)
dept char(10),
age integer not null not default);

1. Add a check constraint to ensure that employee ages are correct.

alter table emp add constraint
check_age check (age > 0);

2. Drop the age-checking constraint and any dependent constraints.

alter table emp drop constraint check_age cascade;

3. Add a column to an existing table.

alter table emp add column location char(10);

4. Drop a column from an existing table.

alter table emp drop column location restrict;

5. Change the size of a character column.

alter table emp alter column name char(32);

6. Change the column from a non-Unicode data type to a Uniceode data type.

alter table emp alter column name nchar(32);

7. Change from one character data type to another. For example, from char
to varchar.

alter table emp alter column name varchar(32) not null with default;

8. Change a column from not null to null

alter table emp alter column name char(32) with null;

9. Change the collation sequence of a column

alter table emp alter column name nchar(32) not null not default collate
unicode_case_insensitive;

Alter User

282 SQL Reference Guide

Alter User
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be connected to the iidbdb database. The
maintain_users privilege is required, except for users who simply want to
change their own password. You must have maintain_audit privileges in order
to change security audit attributes.

The Alter User statement changes the characteristics of an existing user. To
create a new user, use the Create User SQL statement. To delete a user, use
the Drop User SQL statement. Use Add Privileges to give the user additional
privileges. Use Drop Privileges to remove privileges from the user.

Note: You cannot use either add privileges, or drop privileges if with_option is
specified in the with_clause.

These privileges are referred to as subject privileges, and apply to the user
regardless of the database to which the user is connected. If the privileges
clause is omitted, the default is noprivileges.

The Alter User statement has the following format:

[exec sql] alter user user_name
[add privileges (priv {, priv}) |drop privileges (priv {, priv})]
[with with_item {, with_item}]
with_item = noprivileges| privileges = (priv {, priv})
 | nogroup | group = default_group
 | security_audit= (audit_opt {,audit_opt})
 | noexpiredate | expire_date = 'expire_date'
 | default_privileges = (priv {,priv})| all

 | nodefault_privileges
 | noprofile | profile= profile_name
 | nopassword | password = 'user_password'

 | password = X'encrypted_role_password'
 | external_password
 | oldpassword = 'oldpassword'

user_name

Specifies the user name. The user must be an existing Ingres user.

priv

Must be one of the following:

createdb-Allows the user to create databases.

trace-Allows the user to use tracing and debugging features.

security-Allows the user to perform security-related functions (such as
creating and dropping users).

Alter User

Using SQL Statements 283

operator-Allows the user to perform database backups and other
database maintenance operations.

maintain_locations-Allows the user to create and change the
characteristics of database and file locations.

auditor-Allows the user to register or remove audit logs and to query
audit logs.

maintain_audit-Allows the user to change the alter user security audit
and alter profile security audit privileges. Also allows the user to enable,
disable or alter security audit.

maintain_users-Allows the user to perform various user-related
functions, such as creating, altering or dropping users, profiles and group
and roles, and to grant or revoke database and installation resource
controls.

default group

Specifies the default group to which the user belongs. Must be an existing
group. For details about groups, see Create Group (see page 321). To
specify that the user is not assigned to a group, use the nogroup option. If
the group clause is omitted, the default is nogroup.

audit_opt

If security_audit=(all_events) is specified, all activity by the user is
audited. If security_audit = (default_events) is specified, only default
security auditing is performed, as specified with the enable and disable
security_audit statements. If security_audit=(query_text) is specified,
auditing of the query text associated with specific user queries is
performed. Security auditing of query text must be enabled as a whole,
using the enable and disable security_audit statements with the
query_text option, for example enable security_audit query_text. If the
security_audit clause is omitted, the default is default_events.

expire_date

Specifies an optional expiration date associated with each user. Any valid
date can be used. Once the expiration date is reached, the user is no
longer able to log on. If the expire_date clause is omitted, the default is
noexpire_date.

default_ privileges

Defines the privileges initially active when connecting to Ingres. These
must be a subset of those privileges granted to the user.

nodefault_ privileges

Specifies that the session is started with no privileges active. Allows
default privileges to be removed.

Alter User

284 SQL Reference Guide

profile_name

Allows a profile to be specified for a particular user. If the profile clause is
omitted, the default is noprofile.

user_password

Users can change their own password with this parameter. If the
oldpassword clause is missing or invalid the password is unchanged. In
addition, users with the maintain_users privilege can change or remove
any password.

external_password

Allows a user's password to be authenticated externally to Ingres. The
password is passed to an external authentication server for authentication.

oldpassword

Specified the user's old password.

Embedded Usage: Alter User

In an embedded Alter User SQL statement, specify the with clause using a
host string variable (with :hostvar). The privilege type can be specified using a
host string variable.

Locking: Alter User

The Alter User SQL statement locks pages in the iiuser system catalog.

Related Statements: Alter User

For related information on the Alter User SQL statement, see the following SQL
statement descriptions in this chapter:

Create User (see page 400)

Create Profile (see page 345)

Alter Profile (see page 261)

Drop Profile (see page 444)

Alter User

Using SQL Statements 285

Examples: Alter User

The following examples change the characteristics of an existing user:

1. Change an existing user, specifying privileges and group.

alter user bspring with
 group = engineering,
 noprivileges;

2. Change an existing user, specifying privileges and group.

alter user barney with
 group = marketing,
 privileges = (createdb,trace,security);

3. Specify no expiration date for a predefined user.

alter user bspring
 with noexpiration_date

4. Allow a user to change their existing password.

alter user with
 oldpassword='myoldpassword',
 password='mypassword';

5. Allow a user with maintain_users privilege to change or remove any
password.

alter user username
 with password='theirpassword'
 | nopassword

6. Grant createdb privilege to user bspring.

alter user bspring add privileges (createdb)

Specify a profile for a particular user.
alter user bspring with profile = dbop

where, dbop, is an existing profile.

7. Specify that a user has an externally verified password.
alter user bspring
 with external_password;

Begin Declare

286 SQL Reference Guide

Begin Declare
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: All users.

The Begin Declare statement begins a program section that declares host
language variables to embedded SQL. (All variables used in embedded SQL
statements must be declared.) A single program can have multiple declaration
sections.

The statements that can appear inside a declaration section are:

 Legal host language variable declarations

 An include statement that includes a file containing host language variable
declarations. (This must be an SQL include statement, not a host language
include statement.)

 A declare table statement (normally generated by dclgen in an included
file)

The End Declare section statement marks the end of the declaration section.

The Begin Declare statement has the following format:

exec sql begin declare section

Related Statements: Begin Declare

For related information on the Begin Declare SQL statement, see the following
SQL statement descriptions in this chapter:

Declare Table (see page 426)

End Declare Section (see page 454)

Include (see page 506)

Example: Begin Declare

The following examples shows the typical structure of a declaration statement:

exec sql begin declare section;
 buffer character_string(2000);
 number integer;
 precision float;
exec sql end declare section;

Call

Using SQL Statements 287

Call
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Call statement calls the operating system or an Ingres tool. The call
statement allows an embedded SQL application to call the operating system or
an Ingres tool (such as QBF or Report-Writer).

When used to call the operating system, this statement executes the specified
command_string as if the user typed it at the operating system command line.
After the command_string is executed, control returns to the application at the
statement following the call statement.

The Call statement has the following format:

To call the operating system:

exec sql call system (command =command_string)

command_string

Specifies the command to be executed at the operating system level when
the operating system is called. If command_string is a null, empty, or
blank string, the statement transfers the user to the operating system and
the user can execute any operating system command. Exiting or logging
out of the operating system returns the user to the application.

The command_string can invoke an Ingres tool. For example:

exec sql call system (command = 'qbf personnel');

However, it is more efficient to call the subsystem directly:

exec sql call qbf (database = 'personnel');

When a subsystem is called directly, the database argument must identify
the database to which the session is connected. The call statement is not
sent to the database. For this reason, it cannot appear in a dynamic SQL
statement string. When calling an Ingres tool, an application cannot rely
on the dynamic scope of open transactions, open cursors, prepared
queries, or repeated queries. The application must consider each
subsystem call as an individual DBMS server session. The Ingres tool
commits any open transaction when it starts. For this reason, it is a good
practice to commit before calling the subsystem.

Note: If this statement is being used to call an Ingres tool, it is most
efficient to call the tool directly.

Call

288 SQL Reference Guide

To call an Ingres tool:

exec sql call subsystem (database = dbname {, parameter = value})

where:

subsystem

Is the name of the Ingres tool.

dbname

Is the name of the current database.

parameter

Are one or more parameters specific to the called subsystem.

value

Is the value assigned to the specified parameter.

Examples: Call

The following are Call SQL statement examples:

1. Run a default report on the employee table in the column mode.

exec sql commit;
exec sql call report (database='personnel',
 name='employee', mode='column');

2. Run QBF in the append mode with the QBF name expenses, suppressing
verbose messages.

exec sql commit;
exec sql call qbf (database='personnel',
 qbfname='expenses', flags='-mappend -s');

Close

Using SQL Statements 289

Close
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Close statement closes an open cursor. The cursor_name must have been
previously defined in your source file by a declare cursor statement. Once
closed, the cursor cannot be used for further processing unless reopened with
a second open statement. A commit, rollback, or disconnect statement closes
all open cursors.

The Close statement has the following format:
exec sql close cursor_name

cursor_name

Can be specified using a quoted or unquoted string literal or a host
language string variable. If cursor_name is a reserved word, it must be
specified in quotes. The cursor name cannot exceed 32 characters.

Embedded Usage: Close

In an embedded Close SQL statement, a string constant or host language
variable can be used to specify the cursor name.

Locking: Close

In the Close SQL statement, closing a cursor does not release the locks held
by the cursor. (The locks are released when the transaction is completed.)

Related Statements: Close

For related information on the Close SQL statement, see the following SQL
statement descriptions in this chapter:

Declare Cursor (see page 410)

Fetch (see page 472)

Open (see page 544)

Comment On

290 SQL Reference Guide

Example: Close

The following example illustrates cursor processing from cursor declaration to
closing:

exec sql declare c1 cursor for
select ename, jobid
from employee
where jobid = 1000;
...
exec sql open c1;
loop until no more rows;
exec sql fetch c1
 into :name, :jobid;
print name, jobid;
end loop;

exec sql close c1;

Comment On
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You can only create comments on tables or views that
you own.

The Comment On statement stores comments about a table, view, or column.
To display the comments, use the help comment statement. The maximum
length for a comment is 1600 characters.

To delete the comments, issue the comment on statement and specify an
empty string (' '). Comments on tables and views are deleted when the table
or view is dropped.

The Comment On statement has the following format:

[exec sql] comment on
 table [schema.]table_name | column [schema.]table_name.column_name
 is remark_text

table_name

Specifies the table for which the constraint is defined.

Embedded Usage: Comment On

You cannot use host language variables in an embedded Comment On SQL
statement.

Comment On

Using SQL Statements 291

Locking: Comment On

The Comment On SQL statement locks the iidbms_comment system catalog
and takes an exclusive lock on the table on which the comment is being
created.

Related Statements: Comment On

For related information on the Comment On SQL statement, see Help (see
page 497) .

Examples: Comment On

The following examples store comments about a table:

1. Create a comment on the authors table.

comment on table authors is
 'It was the best of times, it was the worst
 of times. It was...'

2. Delete comments on the authors table.

comment on table authors is '';

3. Comment on column, name, in the authors table.

comment on column authors.name is 'Call me Ishmael';

Commit

292 SQL Reference Guide

Commit
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: All users.

The Commit statement terminates the current transaction. Once committed,
the transaction cannot be aborted, and all changes it made become visible to
all users through any statement that manipulates that data. (Note that if
readlock=nolock is set, the effect of the transaction is visible before it is
committed. This is also true when the transaction isolation level is set to read
uncommitted.)

Note: The optional keyword, work, is included for compliance with the ISO
and ANSI standards for SQL.

The commit statement can be used inside a database procedure if the
procedure is executed directly, using the execute procedure statement.
However, database procedures that are invoked by a rule cannot issue a
commit statement: the commit prematurely terminates the transaction that
fired the rule. If a database procedure invoked by a rule issues a commit
statement, the DBMS Server returns a runtime error. Similarly a database
procedure called from another database procedure must not issue a commit
because that leaves the calling procedure outside the scope of a transaction.
For detailed information about rules and database procedures, see the chapter
“SQL Features.”

The Commit statement has the following format:

[exec sql] commit [work]

Embedded Usage: Commit

In addition to terminating the current transaction, an embedded Commit SQL
statement:

 Closes all open cursors.

 Discards all statements prepared (with the prepare statement) during the
current transaction.

When a program issues the disconnect statement, an implicit commit is also
issued. Any pending updates are submitted. To roll back pending updates
before terminating the program, issue a rollback statement.

Commit

Using SQL Statements 293

Locking: Commit

All locks acquired during the transaction are released in the Close statement.

Performance: Commit

Issuing multiple updates inside a single transaction is generally faster than
committing each update individually.

Related Statements: Commit

For related information on the Commit SQL statement, see the following SQL
statement descriptions in this chapter:

Rollback (see page 577)

Savepoint (see page 580)

Set (see page 610)

Example: Commit

The following embedded example issues two updates, each in its own
transaction:

exec sql connect 'personnel';

exec sql update employee
set salary = salary * 1.1
where rating = 'Good';

exec sql commit;
exec sql update employee
set salary = salary * 0.9
where rating = 'Bad';

exec sql disconnect;
/* Implicit commit issued on disconnect */

Connect

294 SQL Reference Guide

Connect
Valid in: Embedded programs (ESQL).

Permission required: All users. To use the identified by clause, you must be
one of the following:

 The DBA of the specified database

 A user with the security privilege

 A user that has been granted the db_admin privilege for the database

The Connect statement connects the application to a database and, optionally,
to a specified distributed transaction. The embedded SQL connect statement
connects an application to a database, similar to the operating-system-level
sql and isql commands. The connect statement must precede all statements
that access the database. The connect statement cannot be issued in a
dynamic SQL statement. To terminate a connection, use the disconnect
statement.

The Connect statement has the following format:

exec sql connect dbname
 [as connection_name]
 [session session_number]
 [identified by username]
 [dbms_password = dbms_password]
 [options = flag {, flag}]
 [with highdxid = value, lowdxid = value]

dbname

Specifies the database to which the session connects. Dbname can be a
quoted or unquoted string literal or a host string variable. If the name
includes any name extensions (such as a system or node name), string
literals must be quoted.

connection_name

Specifies an alphanumeric identifier to be associated with the session. The
connection name must be a string of up to 128 characters that identifies
the session. If the as connection_name clause and the session clause are
omitted, the default connection name is the specified database name.

Connection_name must be specified using a quoted string literal or a host
language variable.

session_number

Specifies a numeric identifier to be associated with the session. The
session number must be a positive integer literal or variable, and must be
unique among existing session numbers in the application.

Connect

Using SQL Statements 295

username

Specifies the user identifier under which this session runs. Username can
be specified using a quoted or unquoted string literal or string variable.

dbms_password

Specifies the valid password either as string constant or a string program
variable. This parameter allows the application to specify the password at
connection time if required.

flag

Specifies runtime options for the connection. Valid flags are those
accepted by the sql command. Flags specific to the Terminal Monitor are
not valid. For more information about these flags, see the System
Administrator Guide.

The maximum number of flags is 12.

If the -R flag is specified and the role ID has a password, use the following
format:
'-Rroleid/password '

The flags can be specified using quoted or unquoted character string
literals or string variables.

value

Highdxid specifies the high-order 4 bytes of a distributed transaction ID.
Lowdxid specifies the low-order 4 bytes of a distributed transaction ID.
These options are used for two phase commit of distributed transactions.
For details, see the chapter “Transactions and Error Handling.”

Connect

296 SQL Reference Guide

Connecting with Distributed Transactions

To connect to a specified database and the local transaction associated with a
distributed transaction, include the with clause. In a two-phase commit
application, this option allows a coordinator application to re-establish a
connection that was unintentionally severed due to software or hardware
problems.

The distributed transaction is identified by its distributed transaction ID, an 8-
byte integer that is specified by the application. In the with clause, the value
specified for highdxid must be the high-order 4 bytes of this ID and the value
specified for lowdxid must be the low-order 4 bytes of the distributed
transaction ID. The distributed transaction ID must have been previously
specified in a prepare to commit statement.

When the program issues a connect statement that includes the with clause, a
commit or a rollback statement must immediately follow the connect
statement. Commit commits the open local transaction, and rollback aborts it.
For more information about distributed transactions, see the chapter
“Transactions and Error Handling.”

Creating Multiple Sessions

If your application requires more than one connection to a database, a session
identifier or number can be assigned to each session, and the set connection
or set_sql(session) statements can be used to switch sessions.

Using Session Identifiers

To assign a numeric session identifier to a connection, specify the session
clause. For example:

exec sql connect accounting session 99;

assigns the numeric session identifier 99 to the connection to the accounting
database. To determine the session identifier for the current session, use the
inquire_sql(session) statement.

To switch sessions using the numeric session identifier, use the
set_sql(session) statement. For example:

exec sql set_sql(session = 99);

Connect

Using SQL Statements 297

Using Connection Names

To assign a name to a connection, specify the as clause. For example:

exec sql connect act107b as accounting;

assigns the name, accounting, to the connection to the act107b database. To
switch sessions using the connection name, use the set connection statement.
For example:

exec sql set connection accounting;

If the as clause is omitted, the DBMS Server assigns a default connection
name-the database specified in the connect statement. This connection name
can be used in subsequent set connection statements to switch sessions. If the
as clause is omitted and a numeric session identifier is specified (using the
session clause), the default connection name is “iin,” where n is the specified
numeric session identifier.

To determine the connection name for the current session, use the
inquire_sql(connection_name) statement.

Locking: Connect

The Connect SQL statement takes a database lock on the specified database.
Unless an exclusive lock using the -l flag is explicitly requested, the database
lock is a shared lock.

Related Statements: Connect

For related information on the Connect SQL statement, see the following SQL
statement descriptions in this chapter:

Set (see page 610)

Disconnect (see page 435)

Connect

298 SQL Reference Guide

Examples: Connect

The following examples connect a coordinator application to a database and,
optionally, to a specified distributed transaction:

1. Connect to the master database with the current user ID, specifying both a
numeric identifier and a connection name, locking the database for
exclusive use.

exec sql connect 'masterdb'
 as master_database
 identified by :user_id
 options = '-l';

2. Connect to a database passed as a parameter in a character string
variable.

exec sql connect :dbname;

3. Assuming that the connection between the coordinator application and the
local DBMS has been broken, use the connect statement to reconnect the
application to the specified local transactions associated with a distributed
transaction.

exec sql begin declare section;
 int high = 1;
 int low = 200;
 char branch1[24] = "annie";
 char branch2[24] = "annie";
 exec sql end declare section;
 define SF_BRANCH 1
 define BK_BRANCH 2
 define BEFORE_WILLING_COMMIT 1
 define WILLING_COMMIT 2
 int tx_state1 = 1;
 int tx_state2 = 1;

/* Read transaction state information from file */

 read_from_file(&tx_state1, &high, &low, branch1);
 read_from_file(&tx_state2, &high, &low, branch2);

Connect

Using SQL Statements 299

if (tx_state1 equals WILLING_COMMIT and
 tx_state2 equals WILLING_COMMIT) then
 print "Both local transactions are ready to commit."
 print "Re-connect to SF to commit local trx."

 exec sql connect :branch1 session :SF_BRANCH
 with highdxid = :high, lowdxid = :low;

 exec sql commit;

 print "Re-connect to Berkeley to commit local trx."

 exec sql connect :branch2 session :BK_BRANCH
 with highdxid = :high, lowdxid = :low;
 exec sql commit;

else
 print "Not all local trxs are ready to commit."
 print "Rollback all the local transactions."
 print "Re-connect to S.F to rollback the local trx."

 exec sql connect :branch1 session :SF_BRANCH
 with highdxid = :high, lowdxid = :low;

 exec sql rollback;

 print "Re-connect to Berkeley to rollback local trx."

 exec sql connect :branch2 session :BK_BRANCH
 with highdxid = :high, lowdxid = :low;

 exec sql rollback;

endif
print "Distributed transaction complete."
...

Copy

300 SQL Reference Guide

Copy
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: One of the following must apply:

 You own the table

 The table has select (for copy into) or insert (for copy from) permission
granted to public.

 You have been granted copy_into (for copy into) or copy_from (for copy
from) privileges on the table.

The copy statement copies the contents of a table to a data file (copy into) or
copies the contents of a file to a table (copy from). The following table briefly
describes the valid statement parameters. Details about the parameters are
provided in the following sections. For more information on the copy
statement, see “Populating Tables” in the Database Administrator Guide.

The Copy statement has the following format:

[exec sql] copy [table] [schema.]table_name
 ([column_name = format [with null [(value)]]
 {, column_name = format [with null[(value)]]}])
 into | from 'filename[, type]'
 [with-clause]

table_name

Specifies an existing table from which data is read or to which data is
written.

column_name

Specifies the column from which data is read or to which data is written.

format

Specifies the format in which a value is stored in the file.

filename

Specifies the file from which data is read or to which data is written.

type

Specifies the file type: text, binary, or variable. (Optional) On VMS
platforms only.

Copy

Using SQL Statements 301

with-clause

Consists of the word, with, followed by a comma-separated list of one or
more of the following items:

on_error = terminate | continue
error_count = n
rollback = enabled | disabled
log = 'filename'

The following options are valid only for bulk copy operations. For details about
these settings, see Modify (see page 524). The value specified for any of these
options becomes the new setting for the table, and overrides any previously
made settings (either using the modify statement or during a previous copy
operation).

 allocation = n

 extend = n

 fillfactor=n (isam, hash, and btree only)

 minpages=n (hash only)

 maxpages=n (hash only)

 leaffill=n (btree only)

 nonleaffill=n (btree only)

The following option is valid only for bulk copy operations.

row_estimate = n

Binary Copying

To copy all rows of a table to a file using the order and format of the columns
in the table, omit the column list from the copy statement. This operation is
referred to as a binary copy.

For example, to copy the entire employee table into the file, emp_name, issue
the following statement:

copy table employee () into 'emp_name';

Parentheses must be included in the statement, even though no columns are
listed. The resulting file contains data stored in proprietary binary formats. To
load data from a file that was created by a binary copy (copy into), use a
binary copy (copy from).

VMS: Bulk copy always creates a binary file.

Copy

302 SQL Reference Guide

Bulk Copying

To improve performance when loading data from a file into a table, use a bulk
copy. The requirements for performing a bulk copy are:

 The table is not journaled

 The table has no secondary indexes

 For storage structures other than heap, the table is empty and occupies
fewer than 18 pages

 The table is not partitioned

If the DBMS Server determines that all these requirements are met, the data
is loading using bulk copy. If the requirements are not met, data is loaded
using a less rapid technique. For detailed information about bulk copying, see
the Database Administrator Guide.

row_estimate Option

To specify the estimated number of rows to be copied from a file to a table
during a bulk copy operation, use the row_estimate option. The DBMS Server
uses the specified value to allocate memory for sorting rows before inserting
them into the table. An accurate estimate can enhance the performance of the
copy operation.

The estimated number of rows must be no less than 0 and no greater than
2,147,483,647. If this parameter is omitted, the default value is 0, in which
case the DBMS Server makes its own estimates for disk and memory
requirements.

Copy

Using SQL Statements 303

Data File Format versus Table Format

Table columns need not be the same data type or length as their
corresponding entries in the data file. For example, numeric data from a table
can be stored in char(0) or varchar(0) fields in a data file. The copy statement
converts data types as necessary. When converting data types (except
character to character), copy checks for overflow. When converting from
character to character, copy pads character strings with blanks or nulls, or
truncates strings from the right, as necessary.

When copying from a table to a file, specify the column names in the order the
values are to be written to the file. The order of the columns in the data file
can be different from the order of columns in the table. When copying from a
file to a table, specify the table columns in sequence, according to the order of
the fields in the data file.

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from ti:

Column Formats

The following sections describe how to specify the data file format for table
columns. The format specifies how each is stored and delimited in the data
file.

Note: When copying to or from a table that includes long varchar or long byte
columns, specify the columns in the order they appear in the table.

Copy

304 SQL Reference Guide

Storage Format

This section describes specifying the format of fields in the data file. When
specifying storage formats for copy into, be aware of the following points:

 Data from numeric columns, when written to text fields in the data file, is
right-justified and filled with blanks on the left.

 When copying data from a floating-point table column to a text field in a
data file, the format the data according to the options specified by the -i
and -f flags. For information about these flags, see the sql command
description in the System Administrator Guide.

 To avoid rounding of large floating point values, use the sql command -f
flag to specify a floating point format that correctly accommodates the
largest value to be copied. For information about this flag, see the sql
command description in the System Administrator Guide.

The following table explains the data file formats for the various SQL data
types. Delimiters are described in the section following this table.

Format How Stored (Copy Into) How Read (Copy
From)

Byte(0) Stored as fixed-length binary
data (padded with zeros to the
declared length if necessary).

Read as variable-
length binary data
terminated by the first
comma, tab, or
newline encountered.

Byte(0)delim Stored as fixed-length binary
data (padded with zeros to the
declared length if necessary).
The one-character delimiter is
inserted immediately after the
value. Because this format
uses zeros to pad data, a zero
is not a valid delimiter for this
format.

Read as variable-
length binary data
terminated by the
specified character.

Byte(n) where n
is 1 to the
maximum row size
configured, not
exceeding 32,000.

Stored as fixed-length binary
data.

Read as fixed-length
binary data.

Copy

Using SQL Statements 305

Format How Stored (Copy Into) How Read (Copy
From)

Byte varying(0) Stored as variable-length
binary data preceded by a
5-character, right-justified
length specifier.

Read as variable-
length binary data,
preceded by a
5-character,
right-justified length
specifier.

byte varying(n)
(where n is
1 to the maximum
row size configured,
not exceeding
32,000.).

Stored as fixed-length binary
data preceded by a 5-
character, right-justified length
specifier. If necessary, the
value is padded with zeros to
the specified length.

Read as fixed-length
binary data, preceded
by a 5-character,
right-justified length
specifier.

Char(0) Stored as fixed-length strings
(padded with blanks if
necessary). For character data,
the length of the string written
to the file is the same as the
column length.

Read as variable-
length character string
terminated by the first
comma, tab, or
newline encountered.

Char(0)delim Stored padded to the declared
width of the column. The one-
character delimiter is inserted
immediately after the value.
Because this format uses
spaces to pad data, a space
(sp) is not a valid delimiter for
this format.

Read as variable-
length character string
terminated by the
specified character.

char(n)
where n is
1 to the maximum
row size configured,
not exceeding
32,000.

Stored as fixed-length strings. Read as fixed-length
string.

D0 (not applicable) Dummy field. Read as
a variable-length
character string
terminated by the first
comma, tab, or
newline encountered.
The data in the field is
skipped.

Copy

306 SQL Reference Guide

Format How Stored (Copy Into) How Read (Copy
From)

D0delim Indicates a delimited dummy
column. Instead of placing a
value in the file, copy inserts
the specified delim. (Unlike the
dn format, this format does
not insert the column name.)

Dummy field. Read as
a variable-length
character string
delimited by the
specified character.
The data in the field is
skipped.

Date Stored in date format. Read as a date field.

decimal Stored in decimal data format. Read as decimal data.

Dn Dummy column. Instead of
placing a value in the file, copy
inserts the name of the column
n times. For example, if you
specify x=d1, the column
name, x, is inserted once; if
you specify x=d2, copy inserts
the column name, x, twice,
and so on. You can specify a
delimiter as a column name,
for example, nl=d1.

Dummy field, read as a
variable-length
character string of the
specified length. The
data in the field is
skipped.

Float Stored as double-precision
floating point.

Read as
double-precision
floating point.

Float4 Stored as single-precision
floating point.

Read as
single-precision
floating point.

integer Stored as integer of 4-byte
length.

Read as integer of
4-byte length.

integer1 Stored as integer of 1-byte
length.

Read as integer of
1-byte length.

Copy

Using SQL Statements 307

Format How Stored (Copy Into) How Read (Copy
From)

Long byte(0) Binary data stored in
segments, and terminated by a
zero length segment. Each
segment is composed of an
integer specifying the length of
the segment, followed by a
space and the specified
number of characters. The end
of the column data is specified
through a termination, zero
length segment (that is, an
integer 0 followed by a space).
The following example shows
two data segments, followed
by the termination zero length
segment. The first segment is
5 characters long, the second
segment is 10 characters long,
and the termination segment is
0 character long. The
maximum length of each
segment is 32737.

5 abcde10 abcdefghij 0 (with a
space after the terminating 0
character)

(In this example, the effective
data that was in the column is
abcdeabcdefghij)

If the long byte column is
nullable, specify the with null
clause. An empty column is
stored as an integer 0,
followed by a space.

Read under the same
format as copy into.

Copy

308 SQL Reference Guide

Format How Stored (Copy Into) How Read (Copy
From)

Long nvarchar(0) Stored in segments, and
terminated by a zero length
segment. Each segment is
composed of an integer
specifying the length of the
segment, followed by a space
and the specified number of
Unicode characters in UTF-8
format. The end of the column
data is specified through a
termination, zero length
segment (that is, an integer 0
followed by a space).

The maximum segment size
for the long nvarchar segment
is 32727 bytes.

The UTF-8 encoded long
nvarchar data segments are
similar to long varchar data
segments. See the description
for long varchar(0) for an
example of the encoded data
segment.

If the long nvarchar column is
nullable, specify the with null
clause. An empty column is
stored as an integer 0,
followed by a space.

Read under the same
format as copy into.

Copy

Using SQL Statements 309

Format How Stored (Copy Into) How Read (Copy
From)

Long varchar(0) Stored in segments, and
terminated by a zero length
segment. Each segment is
composed of an integer
specifying the length of the
segment, followed by a space
and the specified number of
characters. The end of the
column data is specified
through a termination, zero
length segment (that is, an
integer 0 followed by a space).
The following example shows
two data segments, followed
by the termination zero length
segment. The first segment is
5 characters long, the second
segment is 10 characters long,
and the termination segment is
0 character long. The
maximum length of each
segment is 32737.

5 abcde10 abcdefghij 0 (with a
space after the terminating 0
character)

(In this example, the effective
data that was in the column is
abcdeabcdefghij)

If the long varchar column is
nullable, specify the with null
clause. An empty column is
stored as an integer 0,
followed by a space.

Read under the same
format as copy into.

money Stored in money format. Read as a money field.

nchar(0) Stored as fixed-length Unicode
strings in UTF-8 format
(padded with blanks if
necessary).

Read as fixed-length
Unicode string in UTF-8
format but converted
to UTF-16 for storage.
The string is
terminated by the first
comma, tab, or
newline encountered.

Copy

310 SQL Reference Guide

Format How Stored (Copy Into) How Read (Copy
From)

nvarchar(0) Stored as a variable-length
Unicode string in UTF-8 format
preceded by a 5-character,
right-justified length specifier.

Read as variable-
length Unicode string
in UTF-8 format,
preceded by a 5-
character, right-
justified length
specifier.

smallint Stored as integer of 2-byte
length.

Read as integer of
2-byte length.

varchar(0) Stored as a variable-length
string preceded by a
5-character, right-justified
length specifier.

Read as variable-
length string, preceded
by a 5-character,
right-justified length
specifier.

varchar(n)
(where n is
1 to the maximum
row size configured,
not exceeding
32,000.)

Stored as fixed-length strings
preceded by a 5-character,
right-justified length specifier.
If necessary, the value is
padded with null characters to
the specified length.

Read as fixed-length
string, preceded by a
5-character, right-
justified length
specifier.

Note: The dummy format (dn) behaves differently for copy from and copy
into. When a table is copied into a file, n specifies the number of times the
column name is repeated. When copying from a file to a table, n specifies the
number of bytes to skip.

For user-defined data types (UDTs), use char or varchar.

Delimiters

Delimiters are those characters in the data file that separate fields and mark
the end of records. Valid delimiters are listed in the following table:

Delimiter Description

Nl newline character

Tab tab character

Sp Space

nul or null null character

comma Comma

colon Colon

Copy

Using SQL Statements 311

Delimiter Description

Dash Dash

lparen left parenthesis

rparen right parenthesis

X any non-numeric character

When a single character is specified as the delimiter, enclose that character in
quotes. If the data type specification is d0, the quotes must enclose the entire
format. For example, 'd0%' specifies a dummy column delimited by a percent
sign (%).

If the data type specification is char(0) or varchar(0), only the delimiter
character must be quoted. For example, char(0)'%' specifies a char field
delimited by a percent sign.

Do not use the space delimiter (sp) with char(0) fields: the char(0) format
uses spaces as padding for character and numeric columns.

When copying from a table into a file, insert delimiters independently of
columns. For example, to insert a newline character at the end of a line,
specify 'nl=d1' at the end of the column list. This directs the DBMS Server to
add one (d1) newline (nl) character. (Do not confuse lowercase 'l' with the
number '1'.)

Copy

312 SQL Reference Guide

With Null Clause

When copying data from a table to a file, the with null clause directs copy to
put the specified value in the file when a null value is detected in the
corresponding column. Specify the with null clause for any column that is
nullable. If the with null clause is omitted, the DBMS Server returns an error
when it encounters null data, and aborts the copy statement.

When copying data from a file to a table, the with null clause specifies the
value in the file to be interpreted as a null. When copy encounters this value in
the file, it writes a null to the corresponding table column. The table column
must be nullable.

To prevent conflicts between valid data and null entries, choose a value that
does not occur as part of the data in your table. The value chosen to represent
nulls must be compatible with the format of the field in the file: character
formats require quoted values and numeric formats require unquoted numeric
values. For example:

This example of a value is incorrect:

c0comma with null(0)

because the value specified for nulls (numeric zero) conflicts with the
character data type of the field. However, this example is correct:

c0comma with null('0')

because the null value is character data, specified in quotes, and does not
conflict with the data type of the field. Do not use the keyword null, quoted or
unquoted, for a numeric format.

When copying from a table to a file, be sure that the specified field format is at
least as large as the value specified for the with null clause. If the column
format is too small, the DBMS Server truncates the null value written to the
data file to fit the specified format.

For example, in the following statement the string, 'NULL,' is truncated to 'N'
because the format is incorrectly specified as one character:

copy table t1 (col1 = varchar(1) with null ('NULL')) into 't1.dat';

The correct version specifies a 4-character format for the column.

copy table t1 (col1 = varchar(4) with null ('NULL')) into 't1.dat';

If with null is specified but value is omitted, copy appends a trailing byte
indicating whether the field is null. For null fields, copy inserts an undefined
data value in place of the null and sets the trailing byte to indicate a null field.
Value must be specified for nullable char(0) and varchar(0) columns.

Copy

Using SQL Statements 313

Filename Specification

Filename must be enclosed in single quotation marks; the file specification can
include a directory/path name. For copy into, if the file does not exist, copy
creates the file.

UNIX platforms: For copy into, if the file already exists, copy overwrites it.

VMS platforms: For copy into, if the file already exists, copy creates another
version of the file.

VMS File Types

File type can be specified using the optional type parameter. Type must be one
of the values listed in the following table.

Type Record Format Record Attributes

Text Variable length Records delimited by carriage return

binary Fixed length None

variable Variable length None

If type is omitted, copy determines the file type as follows:

 If all fields in the file are character types (char, varchar), and all records
end in <newline>, copy creates a text file.

 If the file contains variable length records, its file type is variable. Variable
length records occur if one or more fields are stored as varchar(0).

 If none of the preceding conditions apply, copy creates a binary file.

If type is specified, the contents of the file must be in accordance with these
rules. If it is not, copy creates the data file according to the preceding rules.

With Clause Options

The following sections describe the valid with clause options:

Copy

314 SQL Reference Guide

on_error

To direct copy to continue after encountering conversion errors, specify the
on_error option. To direct copy to continue until a specified number of
conversion errors have occurred, specify the error_count option (instead of
on_error). By default, copy terminates when an error occurs while converting
a table row into file format.

When on_error is set to continue, copy displays a warning whenever a
conversion error occurs, skips the row that caused the error, and continues
processing the remaining rows. At the end of the processing, copy displays a
message that indicates how many warnings were issued and how many rows
were successfully copied.

Setting on_error to continue does not affect how copy responds to errors other
than conversion errors. Any other error, such as an error writing the file,
terminates the copy operation.

error_count

To specify how many errors can occur before processing terminates, use the
error_count option. The default error_count is 1. If on_error is set to continue,
setting error_count has no effect.

Copy

Using SQL Statements 315

Log

To store any rows that copy cannot process to a file, specify the with log
option. With log can only be used if on_error continue is specified. When
specified with log, copy places any rows that it cannot process into the
specified log file. The rows in the log file are in the same format as the rows in
the database.

Logging works as follows:

Windows platforms: Copy opens the log file prior to the start of data
transfer. If it cannot open the log file, copy halts. If an error occurs writing to
the log file, copy issues a warning, but continues. If the specified log file
already exists, it is overwritten with the new values (or truncated if the copy
operation encounters no bad rows).

UNIX platforms: Copy opens the log file prior to the start of data transfer. If
it cannot open the log file, copy halts. If an error occurs writing to the log file,
copy issues a warning, but continues. If the specified log file already exists, it
is overwritten with the new values (or truncated if the copy operation
encounters no bad rows).

VMS platforms: Copy attempts to open the log file prior to the start of data
transfer. If it cannot open the log file, copy halts. If an error occurs writing to
the log file, copy issues a warning, but continues. If the log file already exists,
copy creates a new version.

If copying from a data file that contains duplicate rows (or rows that duplicate
rows already in the table) to a table that has a unique key, copy displays a
warning message and does not add the duplicate rows. If specified the with log
option is specified, copy does not write the duplicate rows to the log file.

Rollback

To direct the DBMS Server to back out all rows appended by the copy if the
copy is terminated due to an error, specify with rollback=enabled. To retain
the appended rows, specify with rollback=disabled. The default is with
rollback=enabled. When copying to a file, the with rollback clause has no
effect.

The rollback=disabled option does not mean that a transaction cannot be
rolled back. Database server errors that indicate data corruption still causes
rollback, and rows are not committed until the transaction is complete.

Copy

316 SQL Reference Guide

Locking: Copy
 When copying from a table into a file, the DBMS Server takes a shared

lock on the table.

 When performing a bulk copy into a table, the DBMS Server takes an
exclusive lock on the table. Because bulk copy cannot start until it gets an
exclusive lock, this operation can be delayed due to lock contention.

 When performing a non-bulk copy into a table, the DBMS server takes an
“intended exclusive” lock on the table, and uses insert to update the table.
As a result, the operation can be aborted due to deadlock.

Restrictions and Considerations: Copy

Copy cannot be used to add data to a view, index, or system catalog.

When copying data into a table, copy ignores any integrity constraints defined
(using the create integrity statement) against the table.

When copying data into a table, copy ignores ANSI/ISO Entry SQL-92 check
and referential constraints (defined using the create table and alter table
statements), but does not ignore unique (and primary key) constraints.

The copy statement does not fire any rules defined against the table.

Values cannot be assigned to system_maintained logical key columns. The
DBMS Server assigns values when copying from a data file to a table.

Related Statements: Copy

For related information on the Copy SQL statement, see the following SQL
statement descriptions in this chapter:

Create Table (see page 369)

Modify (see page 524)

Copy

Using SQL Statements 317

Example: Copy

The following examples illustrate the correct use of the copy statement:

1. In the following Data File Format example, the contents of the file,
emp.txt, are copied into the employee table. To omit the city column, a
dummy column is employed. The format of the employee table is as
follows:

ename char(15)
 age integer4
 dept char(10)
 comment varchar(20)

The emp.txt file contains the following data:

Jones,J. 32 Anytown,USA toy,00017A comment

Smith,P. 41 New York,NY admin,00015 Another comment

The following diagram illustrates the copy statement that copies the file,
emp.txt, into the employee table, and maps the fields in the file to the
portions of the statement that specify how the field is to be copied. Note
the following points:

A dummy column is used to skip the city and state field in the data file,
because there is no matching column in the employee table.

The department field is delimited by a comma.

The comment field is a variable-length varchar field, preceded by a five-
character length specifier.

copy table employee

(

ename=char(12),

age=char(3),

xxx=d(17),

dept=char(0) comma,

comment=varchar (0) nl

)

from 'emp.txt'

Jones,J.^^^^^
Smith,P.^^^^^

32
41

^^^Anytown,USA^^^
^^^New York,NY^^^

 toy,
 admin,

00017This is a comment
 00015Another comment

Copy

318 SQL Reference Guide

2. Load the employee table from a data file. The data file contains binary
data (rather than character data that can be changed using a text editor).

copy table employee (eno=integer2, ename=char(10),
 age=integer2, job=integer2, sal=float4,
 dept=integer2, xxx=d1)
 from 'myfile.in';

3. Copy data from the employee table into a file. The example copies
employee names, employee numbers, and salaries into a file, inserting
commas and newline characters so that the file can be printed or edited.
All items are stored as character data. The sal column is converted from its
table format (money) to ASCII characters in the data file.

copy table employee (ename=char(0)tab,
 eno=char(0)tab, sal= char(0)nl)
 into 'mfile.out';

Joe Smith , 101, $25000.00

Shirley Scott , 102, $30000.00

4. Bulk copy the employee table into a file. The resulting data file contains
binary data.

copy table employee () into 'ourfile.dat';

5. Bulk copy from the file created in the preceding example.

copy table other_employee_table () from 'ourfile.dat';

6. Copy the acct_recv table into a file. The following statement skips the
address column, uses the percent sign (%) as a field delimiter, uses 'xx' to
indicate null debit and credit fields, and inserts a newline at the end of
each record.

copy table acct_recv
 (acct_name=char(0)'%',
 address='d0%',
 credit=char(0)'%' with null('xx'),
 debit=char(0)'%' with null('xx'),
 acct_mngr=char(15),
 nl=d1)
 into 'qtr_result';

Smith Corp%% $12345.00% $-67890.00%Jones

ABC Oil %% $54321.00% $-98765.00%Green

Spring Omc%%xx %xx %Namroc

7. Copy a table called, gifts, to a file for archiving. This table contains a
record of all non-monetary gifts received by a charity foundation. The
columns in the table contain the name of the item, when it was received,
and who sent it. Because givers are often anonymous, the column
representing the sender is nullable.

Create Dbevent

Using SQL Statements 319

copy table gifts
 (item_name=char(0)tab,
 date_recd=char(0)tab,
 sender=char(20)nl with null('anonymous'))
 into 'giftdata';
toaster 04-mar-1993 Nicholas
sled 10-oct-1993 anonymous
rocket 01-dec-1993 Francisco

8. Create a table and load it using bulk copy, specifying structural options.

create table mytable (name char 25, ...);

modify mytable to hash;

copy mytable() from 'myfile' with minpages = 16384,
maxpages = 16384, allocation = 16384;

Create Dbevent
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: All users.

The Create Dbevent statement creates the specified database event. Database
events enable an application to pass status information to other applications.
Event_name must be a valid object name. Database events can be registered
or raised by any session, provided that the owner has granted the required
permission (raise or register) to the session's user, group, or role identifier, or
to public. Only the user, group, or role that created a database event can drop
that database event.

The Create Dbevent statement has the following format:

[exec sql] create dbevent [schema.]event_name

Embedded Usage: Create Dbevent

In an embedded Create Dbevent SQL statement, event_name cannot be
specified using a host language variable. Event_name can be specified as the
target of a dynamic SQL statement string.

Locking: Create Dbevent

The Create Dbevent statement locks pages in the iievent catalog.

Create Dbevent

320 SQL Reference Guide

Related Statements: Create Dbevent

For related information on the Create Dbevent SQL statement, see the
following SQL statement descriptions:

Drop Dbevent (see page 439)

Grant (privilege) (see page 480)

Raise Dbevent (see page 555)

Register Dbevent (see page 560)

Remove Dbevent (see page 566)

Create Group

Using SQL Statements 321

Create Group
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_users privileges and be working
in a session connected with the iidbdb.

The Create Group statement establishes a group identifier and associates it
with the specified list of users. Group identifiers enable the database
administrator (or user that has the security privilege) to grant identical
privileges to a group of users. For a complete discussion of group identifiers
and their use, see the Database Administrator Guide.

After creating a group identifier and specifying its members, the system
administrator can grant privileges to the group identifier. When a member of
the group begins a session, the group identifier can be specified in the sql or
connect statement (or on the operating system command line, using the -G
flag) to obtain the privileges associated with the group.

The Create Group statement has the following format:

[exec sql] create group group_id {, group_id}
 [with users = (user_id {, user_id})]

group id

Is the group identifier. It must be a valid object name that is unique
among all user, group, and role identifiers in the installation. If an invalid
identifier is specified in the list of group identifiers, the DBMS Server
returns an error but processes all valid group identifiers. Group identifier
names are stored in the iiusergroup catalog in the iidbdb database.

user id

Must be a valid user name. If an invalid user identifier is specified, the
DBMS Server issues an error but processes all valid user identifiers. A
group can contain any number of users. A group identifier can be created
without specifying a user list. To add users to an existing group identifier,
use the alter group statement.

Embedded Usage: Create Group

In an embedded Crete Group SQL statement, neither group_id nor user_id can
be specified using host language variables.

Create Group

322 SQL Reference Guide

Locking: Create Group

The Create Group statement locks pages in the iiusergroup catalog in the
iidbdb. This can cause sessions attempting to connect to the server to be
suspended until the create group statement is completed.

Related Statements: Create Group

For related information on the Create Group SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Group (see page 258)

Drop Group (see page 440)

Examples: Create Group

The following are Create Group SQL statement examples:

1. Create a group identifier for the telephone sales force of a company and
put the user IDs of the salespeople in the user list of the group.

create group tel_sales with users = (harryk,
 joanb, jerryw, arlenep);

2. In an application, create a group identifier for the inventory clerks of a
store and place their user IDs in the user list of the group.

exec sql create group inv_clerk with users =
 (jeanies, louisem, joep);

Create Index

Using SQL Statements 323

Create Index
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be the owner of a table. Users cannot update
indexes directly. When a table is changed, the DBMS Server updates indexes
as required. To create indexes on system tables, the effective user of the
session must be $ingres. For information about the $ingres user, see the
System Administrator Guide.

The Create Index statement creates an index on an existing base table. The
index contains the columns specified. Any number of indexes can be created
for a table, but each index can contain no more than 32 columns. The contents
of indexes are sorted in ascending order by default.

Indexes can improve query processing. To obtain the greatest benefit, create
indexes that contain all of the columns that are generally queried. The index
must be keyed on a subset of those columns.

By default, the index is keyed on the columns in the column list, in the order
they are specified. If the key option is specified, the index is keyed on the
columns specified in the key list, in the order specified. For example, if you
issue the statement:

create index nameidx on employee
 (last, first, phone);

you create an index called, nameidx, on the employee table that is keyed on
the columns last, first, and phone in that order.

However, if you issue the statement:

create index nameidx on employee
(last, first, phone)
 with key = (last, first);

the index is keyed only on the two columns, last and first.

The columns specified in the key column list must be a subset of the columns
in the main column list. A long varchar column cannot be specified as part of a
key.

The Create Index statement has the following format:

[exec sql] create [unique] index [schema.]index_name
 on [schema.]table_name
 (column_name {, column_name})[unique]
 [with with-clause]

Create Index

324 SQL Reference Guide

To build a set of indexes on the same table in parallel:

[exec sql] create [unique] index [schema.]index_name
 on [schema.] table_name
 (column_name [asc|desc]{, column_name..})[unique]
 [with with-clause]){, ([schema.]index_name }

or
[exec sql] create [unique] index ([schema.] index_name
 on table_name
 (column_name [asc|desc]{, column_name..})
 [unique]) {,([schema.]index_name…}
 [with with-clause]

Note: When using parallel index syntax, concurrent access is not allowed on
readonly tables.

index_name

Specifies the name of the index. This must be a valid object name.

table_name

Specifies the table on which the index is to be created. Must be an existing
table.

column_name

A list of columns from the specified table to be included in the index. If the
key option is used, the columns specified as keys must head this list and
must appear in the same order in which they are specified in the key
option. If the structure is rtree, only one column can be named.

structure = btree | isam | hash | rtree

This option specifies the storage structure of the index. The default is isam
if this is not included. If the structure is rtree, unique cannot be specified.

The with-clause consists of the word with followed by a comma-separated list
of any of the following items:

key = (columnlist)

Specifies the columns on which the index is keyed. If this is not included,
the index is keyed on the columns in the index definition. If the structure
is rtree, only one column can be named.

fillfactor = n

Specifies the percentage of each primary data page that can be filled with
rows. The percentage can range from 1 to 100 and must be expressed as
an integer literal or integer variable. Default values differ for each storage
structure.

Create Index

Using SQL Statements 325

minpages = n

Defines the minimum number of primary pages a hash or compressed
hash index table must have. The value can be expressed as an integer
literal or integer variable. The default for a hash table is 16 and for a
compressed hash table, 1.

maxpages = n

Defines the maximum number of primary pages that a hash or
compressed hash index can have. The value can be expressed as an
integer literal or integer variable. There are no default limits for this
option.

leaffill = n

Defines how full each leaf index page is when the index is created. The
value is expressed as a percentage, from 1 to 100 and must be an integer
literal or integer variable. This option can be used when creating an index
with a btree or compressed btree structure.

nonleaffill = n

Specifies how full each nonleaf index page is when the index is created.
The value is expressed as a percentage, from 1 to 100, and must be an
integer literal or integer variable. This option can be used when creating
an index with a btree or compressed btree structure.

location = (location_name {, location_name})

Specifies the areas on which the index is created. Location_name must be
a string literal or string variable. The default location is the default area for
the database.

allocation = n

Specifies the number of pages initially allocated for the index. Must be an
integer between 4 and 8,388,607. The default is 4.

extend = n

Specifies the number of pages by which the index is extended when more
space is required. Must be an integer between 1 and 8,388,607. The
default is 16.

compression
[= ([[no]key] [,[no|hi]data])] |
nocompression

Specifies whether the index key and data are to be compressed. By default
indexes are not compressed. If the structure is rtree, compression cannot
be specified.

[no]persistence

Specifies whether the modify statement recreates the index when its base
table is modified. The default is nopersistence (indexes are not recreated).

Create Index

326 SQL Reference Guide

unique_scope = statement | row

For unique indexes only: specifies whether rows are checked for
uniqueness one-by-one as they are inserted or after the update is
complete. The default is unique_scope = row. If the structure is rtree,
unique_scope cannot be specified.

range=((min_x, min_y), (max_x, max_y))

For rtree indexes only. Specify the minimum and maximum values of the
index column. The values must have the same data type as the index
column, either integer4 or float8. The range parameter must be specified if
the structure is rtree.

page_size = n

Specifies page size.

priority = cache_priority

Allows tables to be assigned fixed priorities (must be an integer between 0
and 8).

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space.

For example:
select col1, ifnull(col2, 0), left(col4, 22) from t1:

Parameters: Create Index

The following is a list of the parameters for the Create Index statement:

structure = btree | isam | hash | rtree

This option specifies the storage structure of the index. The default is isam
if this is not included. If the structure is rtree, unique cannot be specified.

key = (columnlist)

Specifies the columns on which the index is keyed. If this is not included,
the index is keyed on the columns in the index definition. If the structure
is rtree, only one column can be named.

fillfactor = n

Specifies the percentage of each primary data page that can be filled with
rows. The percentage can range from 1 to 100 and must be expressed as
an integer literal or integer variable. Default values differ for each storage
structure. For details (see page 524) about defaults, see Modify.

Create Index

Using SQL Statements 327

minpages = n

Defines the minimum number of primary pages a hash or compressed
hash index table must have. The value can be expressed as an integer
literal or integer variable. The default for a hash table is 16 and for a
compressed hash table, 1.

maxpages = n

Defines the maximum number of primary pages that a hash or
compressed hash index can have. The value can be expressed as an
integer literal or integer variable. There are no default limits for this
option.

leaffill = n

Defines how full each leaf index page is when the index is created. The
value is expressed as a percentage, from 1 to 100 and must be an integer
literal or integer variable. This option can be used when creating an index
with a btree or compressed btree structure.

nonleaffill = n

Specifies how full each nonleaf index page is when the index is created.
The value is expressed as a percentage, from 1 to 100, and must be an
integer literal or integer variable. This option can be used when creating
an index with a btree or compressed btree structure.

location = (location_name {, location_name})

Specifies the areas on which the index is created. Location_name must be
a string literal or string variable. The default location is the default area for
the database.

allocation = n

Specifies the number of pages initially allocated for the index. Must be an
integer between 4 and 8,388,607. The default is 4.

extend = n

Specifies the number of pages by which the index is extended when more
space is required. Must be an integer between 1 and 8,388,607. The
default is 16.

compression[= ([[no]key] [,[no|hi]data])] |

nocompressionSpecifies whether the index key and data are to be
compressed. By default indexes are not compressed. For details about
compression, see Compression (see page 537). If the structure is rtree,
compression cannot be specified.

[no]persistence

Specifies whether the modify statement recreates the index when its base
table is modified. The default is nopersistence (indexes are not recreated).

Create Index

328 SQL Reference Guide

unique_scope = statement | row

For unique indexes only: specifies whether rows are checked for
uniqueness one-by-one as they are inserted or after the update is
complete. The default is unique_scope = row. If the structure is rtree,
unique_scope cannot be specified.

range=((min_x, min_y), (max_x, max_y))

For rtree indexes only. Specify the minimum and maximum values of the
index column. The values must have the same data type as the index
column, either integer4 or float8. The range parameter must be specified if
the structure is rtree.

Page_size = n

Specifies page size. For more information, see the Page_size (see
page 539) option of the Modify command in this chapter.

priority = cache_priority

Allows tables to be assigned fixed priorities (must be an integer between 0
and 8). For more information, see the Create Table (see page 369) SQL
statement in this chapter.

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space.

For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

To build a set of indexes on the same table in parallel:
[exec sql] create [unique] index [schema.]index_name
 on [schema.] table_name
 (column_name [asc|desc]{, column_name..})[unique]
 [with with-clause]){, ([schema.]index_name }

or
[exec sql] create [unique] index ([schema.] index_name
 on table_name
 (column_name [asc|desc]{, column_name..})
 [unique]) {,([schema.]index_name…}
 [with with-clause]

Note: When using parallel index syntax, concurrent access is not allowed on
readonly tables.

Create Index

Using SQL Statements 329

A with-clause consists of the word with followed by a comma-separated list of
any of the following items:

 structure = btree | isam | hash | rtree

 key = (columnlist)

 fillfactor = n

 minpages = n

 maxpages = n

 leaffill= n

 nonleaffill= n

 location = (location_name {, location_name})

 allocation = n

 extend = n

 compression[= ([[no]key] [,[no|hi]data])] | nocompression

 [no]persistence

 unique_scope = statement | row

 range=((min_x, min_y),(max_x, max_y))

 page_size = n

 priority = cache_priority

Index Storage Structure

By default, indexes are created with an isam storage structure. There are two
methods to override this default:

 To specify the default index storage structure for indexes created during
the session, use the -n flag when issuing the command that opens the
session (sql, isql, or connect). For more information about this flag, see
the System Administrator Guide.

 To override the session default when creating an index, specify the desired
storage structure using the structure option when issuing the create index
statement.

To specify whether the index is to be compressed, use the with
[no]compression clause. By default, indexes are not compressed. If with
compression is specified, the structure clause must be specified. An rtree index
cannot be compressed. To change the storage structure of an index, use the
modify statement. For details about table storage struct (see page 524)ures,
see Modify.

Create Index

330 SQL Reference Guide

Unique Indexes

To prevent the index from accepting duplicate values in key fields, specify the
unique option. If the base table on which the index is being created has
duplicate values for the key fields of the index, the create index statement
fails. Similarly, if an insert or update is attempted that violates the uniqueness
constraint of an index created on the table, the insert or update fails. This is
true for an update statement that updates multiple rows: the update
statement fails when it attempts to write a row that violates the uniqueness
constraint.

Effect of the Unique_Scope Option on Updates

The unique_scope option can affect the outcome of an update. For example,
suppose you create an index on the employee numbers in an employee table,
and the table contains employee numbers in sequence from 1 to 1000. If you
issue an update statement that increments all employee numbers by 1,
uniqueness is checked according to the unique_scope option as follows:

 unique_scope = row - Employee number 1 is incremented to 2. The row
is checked for uniqueness-of course, employee number 2 already exists.
Result: the update fails.

 unique_scope = statement - Employees 1 through 1000 are
incremented before uniqueness is checked. All employee numbers remain
unique. Result: the update succeeds.

Index Location

Location_name refers to the areas where the new index is created. The
location_names must be defined on the system, and the database must have
been extended to the corresponding areas. If no location_name is specified,
the index is created in the default database area. If multiple location_names
are specified, the index is physically partitioned across the locations. For more
information about creating locations and extending databases, see the
Database Administrator Guide.

Parallel Index Building

Use parallel index to more efficiently create indexes in parallel. Each of these
indexes can also be marked as persistent, which means that if the underlying
base structure of the table is reorganized (or modified), the indexes are
recreated automatically.

Note: Unique cannot be specified before both the index keyword and with an
individual index specification. If unique is used before index, all the indexes
being created are unique indexes. See the Examples (see page 332) included
later in this section.

Create Index

Using SQL Statements 331

Embedded Usage: Create Index

In an embedded Create Index SQL statement, the following elements can be
replaced with host language variables:

Elements Description

location_name Specifies the location of the index; must be a string
variable.

N Specifies fill and page values; must be an integer variable.

The preprocessor does not validate the with clause syntax. The with clause can
be specified using a host string variable (with :hostvar).

Locking: Create Index

Creating an index on a table requires an exclusive lock on the table. This lock
prevents other sessions, even those using the readlock=nolock option, from
accessing the table until create index completes and the transaction containing
it is completed.

Related Statements: Create Index

For related information on the Create Index SQL statement, see the following
SQL statement descriptions in this chapter:

Create Table (see page 369)

Drop (see page 437)

Modify (see page 524)

Create Index

332 SQL Reference Guide

Examples: Create Index

The following are Create Index SQL statement examples:

1. Create an index for the columns, ename and age, on the employee table.
The index is recreated when the table is modified.

create index ename on employee (ename, age)
 with persistence;

2. Create an index called ename and locate it on the area referred to by the
location_name, remote.

create index ename on employee (ename, age)
 with location = (remote);

3. Create a btree index on the ename and eage columns, keyed on ename
with leaf index pages filled 50 percent.

create index ename2 on employee (ename, eage)
 with key = (ename),
 structure = btree,
 leaffill = 50;

4. Create a unique index, specifying that uniqueness is checked after any
update statements are completed.

create unique index ename3 on employee (ename, empno)
 with key = (ename, empno),
 unique_scope = statement;

5. Create a single, unique index on column c1 in table tl.

create index i1 on t1 (c1) unique

6. Create a unique index using the with clause to override default index
structure.

create unique index (i1 on t1(c1) with structure=hash)

7. Create multiple indexes at one time using the unique qualifier before the
index keyword. All indexes created by this statement are unique.

create unique index (i1 on t1(c1) with structure=hash,persistence),
 (i2 on t1(c2) with structure=btree)

8. Create multiple indexes at one time using the unique keyword within each
index specification.

create index (i1 on t1 (c1) unique with structure=hash,persistence), (i2 on
 t1(c2) unique with structure=btree)

9. Create both unique and non-unique indexes.

create index (i1 on t1(c1) unique with structure=hash,persistence),
 (i2 on t1(c2) with structure=btree)

Create Integrity

Using SQL Statements 333

Note: Examples 7 and 8 perform the same operation, while 9 demonstrates
individual control of the UNIQUE attribute.

Create Integrity
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission: You must be the owner of the specified table.

The Create Integrity statement creates an integrity constraint for the specified
base table.

The Create Integrity statement has the following format:

[exec sql] create integrity on table_name [corr_name]
 is search_condition

table_name

Specifies the table for which the constraint is defined.

corr name

Can be specified for the table for use in the search condition. For a
definition of correlation names and discussion of their use, see the chapter
“Overview of SQL.”

search condition

Defines the actual constraint. For example, if you want to create a
constraint on the employee table so that no employee can have a salary of
greater than $75,000, issue the following statement:
create integrity on employee is salary <= 75000;

The search condition must reference only the table on which the integrity
constraint is defined, and cannot contain a subselect or any aggregate (set)
functions.

At the time the create integrity statement is executed, the search condition
must be true for every row in the table, or the DBMS Server issues an error
and aborts the statement. If the search condition is defined on a column that
contains nulls, the statement fails unless the is null predicate is specified in the
statement.

After the constraint is defined, all updates to the table must satisfy the
specified search condition. Integrity constraints that are violated are not
specifically reported: updates and inserts that violate any integrity constraints
are simply not performed.

Create Integrity

334 SQL Reference Guide

Embedded Usage: Create Integrity

In an embedded Create Integrity SQL statement, variables can be used to see
constant values in the search condition.

Locking: Create Integrity

The Create Integrity SQL statement takes an exclusive lock on the specified
table.

Performance: Create Integrity

The time required to execute the Create Integrity SQL statement varies with
the size of the table, because the DBMS Server must check the specified base
table to ensure that each row initially conforms to the new integrity constraint.

Related Statements: Create Integrity

For related information on the Create Integrity SQL statement, see Drop
Integrity (see page 441) .

Examples: Create Integrity

The following are Create Integrity SQL statement examples:

1. Make sure that the salaries of all employees are no less than 6000.

create integrity on employee is salary >= 6000;

2. In an embedded application, define an integrity using a host language
variable.

exec sql create integrity on employee
 is sal < :sal_limit;

Create Location

Using SQL Statements 335

Create Location
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_locations privileges and be
working in a session that is connected to the iidbdb.

The Create Location statement assigns a name to a physical disk and directory
location.

Locations can be assigned when creating tables or indexes, using the following
statements:

Create Index (see page 323)

Create Table (see page 369)

Declare Global Temporary Table (see page 420)

Modify...to Relocate (see page 532)

Modify...to Relocate (see page 532)

Work Locations (see page 627)

To change the characteristics of an existing location, use the alter location
statement. To delete an existing location, use the drop location statement. For
detailed information about locations, see the Database Administrator Guide. To
specify the work (sorting) locations for a session, use the set work locations
statement.

The Create Location statement has the following format:

[exec sql] create location location_name
with area = area_name,
usage = (usage_type {, usage_type}) | nousage
rawpct = 0-100

location_name

Specifies the name to be assigned to the disk and directory combination.
Must be a valid object name.

area_name

Specifies the disk and directory location to which the location is mapped.
Must be a valid operating-system specification. This parameter can be
specified using a quoted string or an unquoted string that does not include
special (nonalphanumeric) characters.

Create Location

336 SQL Reference Guide

usage_type

Specifies the types of file that can be stored at this location. Valid values
are:

database

work

journal

checkpoint

dump

all

nousage

To prevent any files from being stored at the location, specify with nousage.

rawpct

Defines the relative amount of the area to be allocated to the location, 1 to
100 percent; rawpct = 0 is equivalent to omitting the parameter, resulting
in a cooked definition. When rawpct is greater than zero, the only valid
usage is database.

Embedded Usage: Create Location

In an embedded Create Location SQL statement, the with clause can be
specified using a host string variable (with :hostvar). Usage_type and
area_name can be specified using host string variables.

Locking: Create Location

The Create Location SQL statement locks pages in the iilocation_info catalog.

Create Location

Using SQL Statements 337

Related Statements: Create Location

For related information on the Create Location SQL statement, see the
following SQL statement descriptions in this chapter:

Alter Location (see page 260)

Create Index (see page 323)

Create Table (see page 369)

Declare Global Temporary Table (see page 420)

Drop Location (see page 442)

Grant (privilege) (see page 480)

Modify (see page 524)

Work Locations (see page 627)

Examples: Create Location

The following are Create Location SQL statement examples:

VMS platforms:

Create a new location for databases; allow all types of files to be stored.

create location accounting_db with area = 'disk1:',

usage = (all);

Create a new location, but prevent any files from being created there.

create location new_db with area = 'disk2:',

nousage;

UNIX platforms:

Create a location using a UNIX path.

create location extraloc

with area = '/usr/ingres_extra',

usage = journal, checkpoint;

Create Procedure

338 SQL Reference Guide

Create Procedure
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have permission to access the tables and views
specified in queries issued by the procedure. If the procedure uses database
events owned by other users, you must have the required permissions (raise
and register) on the database events. If the procedure executes database
procedures owned by other users, you must have execute permission for those
procedures.

If permissions are changed after the procedure is created and the creator of
the procedure no longer has permissions to access the tables and views, a
runtime error results when the procedure is executed.

The grant statement can be used to assign the [no]create_procedure privilege
to specific users, groups, and roles.

The Create Procedure statement creates a database procedure that is
managed as a named database object by the DBMS Server. A database
procedure can be executed directly, using the execute procedure statement or
can be invoked by a rule.

A procedure that is directly executed can contain any of the following
statements:

 commit

 delete

 endloop

 execute procedure

 for

 if

 insert

 message

 raise dbevent

 raise error

 register dbevent

 remove dbevent

 return

 return row

 rollback

 select

Create Procedure

Using SQL Statements 339

 update

 while

 assignment statements

Procedures that are invoked by rules must not issue the Commit and Rollback
SQL statements, and cannot use the Return SQL statement to return values to
an application. Procedures invoked by DELETE or UPDATE rules must not
reference the old blob column values. Procedures invoked by rules can use the
Raise Error SQL statement to signal error conditions.

A procedure cannot contain any data definition statements, such as create
table, nor can a procedure create or drop another procedure. Database
procedures can execute other database procedures.

The repeated clause cannot be used in a statement in the procedure body.
However, database procedures confer the same performance benefits as the
repeated clause.

Within a procedure, Select SQL statements must assign their results to local
variables. Also, select statements can return only a single row of data. If more
rows are returned, no error is issued, but only the first row retrieved is in the
result variables.

Both procedure parameters and local variables can be used in place of any
constant value in statements in the procedure body. The DBMS Server treats
procedure parameters as local variables inside the procedure body, although
they have an initial value assigned when the procedure is invoked. Preceding
colons (:) are only necessary if the referenced name can be interpreted to see
more than one object.

Assignment statements assign values to local variables and procedure
parameters in the body of the procedure. Local variables are variables that are
declared using the declare statement in the database procedure. The scope of
these variables is the database procedure in which they are declared. Variable
assignment statements use the '=' or ':=' operator to assign values to local
variables. The value assigned can be a constant or the result of the evaluation
of an expression. The data types of the value and the local variable must be
compatible. For a description of assignment operations, see the chapter
“Elements of SQL Statements.”

All statements, except a statement preceding an end, endfor, or endif, must
be terminated with a semicolon.

If working interactively, the begin and end keywords can be replaced with
braces { }, but the terminating semicolon must follow the closing brace if
another statement is entered after the create procedure statement and before
committing the transactions.

Create Procedure

340 SQL Reference Guide

The Create Procedure statement has the following format:
[exec sql] [create] procedure [schema.]proc_name
 [[(set_param_name [=] set of]
 (param_name [=] param_type [with | not default] [with | not null]
 {, param_name [=] param_type [with | not default] [with | not
null]})[)]]
 [result row (result_type [with | not default] [with | not null]
 {, result_type [with | not default] [with | not null]}) =|as
 [declare_section]
begin
 statement {; statement}[;]
end

proc name

The name of the procedure. This must be a valid object name.

set_param_name

The name of the set of parameter. This must be a valid object name. The
set of parameters are referenced like base tables in the body of the
procedure.

param_name

The name of a procedure parameter. This must be a valid object name.
Parameters can be passed by value or by reference.

param_type

The data type of the associated parameter. The data type can be any legal
SQL data type, and the with|not null clause can be part of the
specification.

declare_section

A list of local variables for use in the procedure. For details, see Declare
(see page 408).

statement

Local variable assignments and any of the statements listed in the text of
the create procedure description.

result_type

The data type of the associated entry in a return row statement. The data
type can be any legal SQL data type, and the with | not null clause can be
part of the specification. For details, see Return Row (see page 569).

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax
requires a comma (such as a list of table columns or SQL functions with
several parameters), that the comma is followed by a space. For example:
select col1, ifnull(col2, 0), left(col4, 22) from t1:

Create Procedure

Using SQL Statements 341

Nullability and Default Values for Parameters

Database procedures can be called from embedded SQL applications or from
interactive SQL. The caller supplies values for procedure parameters. The with
default, not default, with null, and not null clauses can be used to specify
whether parameters have default values and whether they are nullable. These
clauses have the following meanings for database procedure parameters:

 with default-The caller does not have to specify a value for the
parameter. If the parameter is nullable, its default value is null. If the
parameter is not nullable, its default value is 0 (for numeric data types) or
blanks (for character data types).

 not default-The caller must specify a value for the parameter. If no value
is specified, the DBMS Server issues an error.

 with null-The parameter can be null.

 not null-The parameter cannot be null.

The following table lists the combined effects of these clauses:

Parameter Description

with null The parameter can be null. If no value is provided,
the DBMS Server passes a null.

not null with default The parameter does not accept nulls. If no value is
provided, the DBMS Server passes 0 for numeric and
money columns, or an empty string for character and
date columns.

not null not default or
not null

The parameter is mandatory and does not accept
nulls.

with null with default Not allowed.

with null not default Not allowed.

with default Not allowed without not null clause.

not default Not allowed without not null clause.

Create Procedure

342 SQL Reference Guide

Set Of Parameters

A set of parameter is required either when a global temporary table is being
passed to the procedure or when the procedure is invoked by the triggering of
a statement level rule. Also, a set of parameter declaration consists of a set of
parameter name and an accompanying elements list. For more information,
see Create Rule (see page 352).

In the case of a procedure invoked by an execute procedure statement with a
global temporary table parameter, the set of elements correspond to the
temporary table columns. For more information, see Temporary Table
Parameter (see page 468) under Execute Procedure (see page 465).

In the case of a procedure invoked by a statement level rule, the set of
element list consists of one entry for each actual parameter in the create rule
execute procedure clause. The syntax of these entries is identical to that of
normal (that is, non-set of) formal parameters. The type definitions must be
compatible with (though not necessarily identical to) the corresponding actual
parameters. The names must be the same, however, as this is how the
equivalence between the actual parameters and the set of elements is
determined.

Once a set of parameter is defined in a create procedure statement, it can be
treated exactly like any base table or view from within the procedure. The set
of elements are the columns of the table and the parameter name is the
surrogate name of the table. The parameter name can be used as a table
name in any select, delete, update, or insert statement within the procedure.

For example, it can be used in an “insert...select...” statement to return the
multi-row result of a complex select statement with a single procedure call, or
it can be used in the from clause of an update to effect the update of many
rows with a single procedure call.

For example:

create procedure gttproc (gtt1 set of (coll int, col2 float not null, col3
char(8))) as begin
....
insert into table select * from gtt1;
....
end;

gtt1 is defined as a “set of” parameter to procedure gttproc and is used in the
from clause of a select statement in the body of the procedure.

Create Procedure

Using SQL Statements 343

Embedded Usage: Create Procedure

The embedded Create Procedure SQL statement is identical to its interactive
version, with the following exceptions and additions:

 Braces {} cannot be used in place of the begin and end clauses.

 All statements within the procedure must be separated by semicolons. The
statement terminator after the final end clause follows the syntax of the
host language.

 The Create Procedure SQL statement cannot contain any references to
host language variables.

 The rules for the continuation of statements over multiple lines follow the
embedded SQL host language rules. String literals, continued over multiple
lines, also follow the host language rules. For details about the
continuation of database procedure statements and string literals, see the
Embedded SQL Companion Guide.

 Comments within a procedure body follow the comment rules of the host
language.

 The Include SQL statement cannot be issued inside a database procedure.
However, an include file can contain an entire Create Procedure SQL
statement.

The preprocessor does not validate the SQL syntax of the Create Procedure
SQL statement. The syntax is validated at runtime.

Related Statements: Create Procedure

For related information on the Create Procedure SQL statement, see the
following SQL statement descriptions in this chapter:

Create Rule (see page 352)

Declare (see page 408)

Drop Procedure (see page 443)

Execute Procedure (see page 465)

Grant (privilege) (see page 480)

Create Procedure

344 SQL Reference Guide

Examples: Create Procedure

The following are Create Procedure SQL statement examples:

1. This database procedure, mark_emp, accepts an employee ID number and
a label string as input. The employee matching that ID is labeled and an
indication is returned.

create procedure mark_emp
 (id integer not null, label varchar(100)) as
begin
 update employee
 set comment = :label
 where id = :id;
 if iirowcount = 1 then
 message 'Employee was marked';
 commit;
 return 1;
 else
 message'Employee was not marked - record error';
 rollback;
 return 0;
 endif;
end;

2. In this example, the database procedure, add_n_rows, accepts as input a
label, a base number, and a number of rows. It inserts the specified
number of rows into the table blocks, starting from the base number. If an
error occurs, the procedure terminates and the current row number is
returned.

create procedure add_n_rows
 (base integer not null, n integer,
 label varchar(100)) as
declare
 limit integer;
 err integer;
begin
 limit = base + n;
 err = 0;
 while (base < limit) and (err = 0) do
 insert into blocks values (:label, :base);
 if iierrornumber > 0 then
 err = 1;
 else
 base = base + 1;
 endif;
 endwhile;
 return :base;
end;

Create Profile

Using SQL Statements 345

3. The following example illustrates the use of global temporary tables as
procedure parameters. The database procedure, gttproc, accepts as input
a surrogate table name; gtt1 is defined as a “set of” parameter to the
gttproc procedure and is used in the from clause of a select statement in
the body of the procedure.
create procedure gttproc
 (gtt1 set of (col1 int, col2 float not null, col3 char(8))) as
begin
...
 insert into table1
 select * from gtt1;
...
end;

Create Profile
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have maintain_users privileges and be
connected to the iidbdb database. Additional privileges are required to perform
certain operations, as summarized in this table:

Action Privilege Required

Set security audit attributes Maintain_audit

The Create Profile statement creates a new user profile. User profiles are a set
of subject privileges and other attributes that can be applied to a user or set of
users. A profile includes:

 Subject privileges

 Default subject privileges

 Default user groups

 Security auditing attributes

 Expire date

Create Profile

346 SQL Reference Guide

Each user can be given a profile, which provides the default attributes for that
user. A default profile, changeable by the system administrator, is created
during installation that determines the default user attributes when no profile
is explicitly specified. The initial default profile is:

 noprivileges

 nodefault_privileges

 noexpire_date

 nogroup

 nosecurity_audit

The Create Profile statement has the following format:

[exec sql] create profile profile_name [with with_item {,with_item}]

with_item = noprivileges | privileges = (priv {, priv})
 | nogroup | group = default_group
 | security_audit = (audit_opt {, audit_opt})
 | noexpire_date | expire_date = 'expire_date'
 | default_privileges = (priv {, priv}) | all
 | nodefault_privileges

profile_name

Specifies the name of the profile that is being created. Must be a valid
object name that is unique in the installation.

priv

Must be one of the following:

createdb-Allows users to create databases.

trace-Allows users to use tracing and debugging features.

security-Allows the user to perform security-related functions (such as
creating and dropping users).

operator-Allows the user to perform database backups and other
database maintenance operations.

maintain_locations-Allows the user to create and change the
characteristics of database and file locations.

auditor-Allows the user to register or remove audit logs and to query
audit logs.

maintain_audit-Allows users to change the alter user security audit and
alter profile security audit privileges. Also, the user can to enable, disable,
or alter security audit.

maintain_users-Allows the user to perform various user-related
functions, such as creating or altering users, profiles, group and roles, and
to grant or revoke database and installation resource controls.

Create Profile

Using SQL Statements 347

The above privileges are referred to as subject privileges, and apply to the
user regardless of the database to which the user is connected. If the
privileges clause is omitted, the default is noprivileges.

default_group

Specifies the default group for users with this profile. Must be an existing
group. For details about groups, see Create Group (see page 321). To
specify that the user is not assigned to a group, use the nogroup option. If
the group clause is omitted, the default is nogroup.

audit_opt

If security_audit=(all_events) is specified, all activity by the user is
audited.

If security_audit = (default_events) is specified, only default security
auditing is performed, as specified with the enable and disable
security_audit statements.

If security_audit=(query_text) is specified, auditing of the query text
associated with specific user queries is performed. Security auditing of
query text must be enabled as a whole, using the enable and disable
security_audit statements with the query_text option, for example enable
security_audit query_text.

expire_date

Specifies an optional expiration date associated with each user using this
profile. Any valid date can be used. Once the expiration date is reached,
the user is no longer able to log on. If noexpire_date is specified, this
profile has no expiration limit.

default_privileges =
(priv {, priv}) | all| nodefault_privileges

Defines the privileges initially active when connecting to Ingres. Thee must
be a subset of those privileges granted to the user. If all is specified, all
the privileges held by the profile are initially active. Use nodefault_
privileges to specify that no privileges are initially active.

Embedded Usage: Create Profile

The with clause in the embedded Create Profile SQL statement can be
specified using a host string variable (with :hostvar).

Locking: Create Profile

The Create Profile SQL statement locks the iiprofile system catalog exclusively.

Create Role

348 SQL Reference Guide

Related Statements: Create Profile

For related information on the Create Profile SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Profile (see page 261)

Alter User (see page 282)

Create User (see page 400)

Drop Profile (see page 444)

Drop User (see page 451)

Examples: Create Profile

The following are Create Profile SQL statement examples:

1. Specifiy a profile for a particular user.

create profile dbop;
 create user bspring with profile = dbop;

2. Create a dbop profile with the appropriate privileges to maintain a
database.

create profile dbop with
privileges = (operator, maintain_locations, trace),
group = dbopgroup;

Create Role
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the maintain_users privilege and be
connected to the iidbdb database. Additional privileges are required to perform
certain operations, as summarized in the table below:

Action Privilege Required

Set security audit attributes maintain_audit

Create Role

Using SQL Statements 349

The Create Role statement defines one or more role identifiers and their
associated password. Role identifiers are used to associate privileges with
applications. After the role identifiers are created and privileges have been
granted to them, use them with the connect statement to associate those
privileges with the session. For a discussion of role identifiers, see the
Database Administrator Guide. For information about the privileges granted to
role identifiers, see Grant (role) (see page 496) .

Only users who have been granted access to a role can use a role. The creator
of a role is automatically granted access to that role.

The Create Role statement has the following format:

[exec sql] create role role_id {, role_id}
[with with_option {,with_option}]

with_option = nopassword | password = 'role_password'

 | password = X'encrypted_role_password'
 | external_password
 | noprivileges | privileges = (priv {,priv})
 | nosecurity_audit|security_audit

role_id

Specifies the user name to be created. Must be a valid object name that is
unique among all role, group, and user identifier names in the installation.

If an invalid role identifier is specified, the DBMS Server returns an error
but processes all valid role identifiers.

Role identifiers are stored in the iirole catalog of the iidbdb. For details
about system catalogs, see the Database Administrator Guide.

role_password

Allows a user to change his or her own password. In addition, users with
the maintain_users privilege can change or remove any password.
Role_password must be no longer than 24 characters. If role_password
contains uppercase or special characters, enclose it in single quotes. Any
blanks in the password are removed when the password is stored. If the
password clause is omitted, the default is nopassword.

To remove the password associated with role_id, specify nopassword.

To allow a user's password to be passed to an external authentication
server for authentication, specify external_ password.

priv

Must be one of the following:

createdb-Allows the user to create databases.

trace-Allows the user to use tracing and debugging features.

Create Role

350 SQL Reference Guide

security-Allows the user to perform security-related functions (such as
creating and dropping users).

operator-Allows the user to perform database backups and other
database maintenance operations.

maintain_locations-Allows the user to create and change the
characteristics of database and file locations.

auditor-Allows the user to register or remove audit logs and to query
audit logs.

maintain_audit-Allows the user to change the alter user security audit
and alter profile security audit privileges. Also allows the user to enable,
disable, or alter security audit.

maintain_users-Allows the user to perform various user-related
functions, such as creating, altering or dropping users, profiles and group
and roles, and to grant or revoke database and installation resource
controls.

These privileges are referred to as subject privileges, and apply to the user
regardless of the database to which the user is connected. If the privileges
clause is omitted, the default is noprivileges.

nosecurity_audit| security_audit

If nosecurity_audit is specified (the default if neither nosecurity_audit nor
security_audit is specified), the security_audit level for the user using the
role is assumed.

If security_audit is specified, all activity is audited for anyone who uses the
role, regardless of any security_audit level that has been set for an
individual user.

Embedded Usage: Create Role

The with clause in an embedded Create Role SQL statement can be specified
using a host string variable (with :hostvar).

Locking: Create Role

The Create Role SQL statement locks pages in the iirole catalog of the iidbdb.
This can cause sessions attempting to connect to the server to suspend until
the statement is completed.

Create Role

Using SQL Statements 351

Related Statements: Create Role

For related information on he Create Role SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Role (see page 265)

Drop Role (see page 445)

Grant (role) (see page 496)

Examples: Create Role

The following are Create Role SQL statement examples:

1. Create a role identifier and password for the inventory application of a
bookstore.

create role bks_onhand with password = 'hgwells';

2. Create a role identifier with no password for the daily sales application of
the bookstore.

create role dly_sales with nopassword;

3. Create a role identifier and its password for the new employee application
of the bookstore.

create role new_emp with password = 'good luck';

4. In an application, create a role identifier and its password for an accounts
payable application.

exec sql create role acct_pay with
 password = piper;

5. Create a role with a password and additional privileges.

create role sysop
 with password = 'sysoppwd',
 privileges = (operator, createdb, maintain_locations);

6. Create a role with external password verification.

create role sysop
 with external_password;

Create Rule

352 SQL Reference Guide

Create Rule
Valid in: Interactive sessons (SQL) and embedded programs (ESQL).

Permission required: To create a rule against a table, you must:

 Own the table, and

 Have execute privileges for the procedure invoked by the rule

Once a rule is applied to a table, any user who has permission to access that
table using the operation specified by the rule has permission to fire the rule
and consequently execute its associated procedure.

Create Rule statement defines an Ingres rule. A rule executes a specified
database procedure whenever a specified condition is true. For a detailed
discussion of the use of rules to enforce referential integrity and security, see
the Database Administrator Guide.

The Create Rule statement has the following format:

[exec sql] create rule [schema.]rule_name table_condition
 [for each {row | statement}]
 execute procedure [schema.]proc_name[(parameter = value
 {, parameter = value})]

rule_name

Specifies the name of the rule. The rule name must be a valid object name
of no more than 32 characters that is unique within the set of rules owned
by the user issuing the create rule statement. Rules cannot be defined
against views, only against base tables.

table_condition

Specifies the action that fires the rule.

This action can be an insert, update, or delete performed on any column of
the specified table.

For example, the following rule fires whenever an insert is executed
against the employee table:

create rule insert_emp after insert into employee
 execute procedure new_emp (name = new.name,
 addr = new.address);

Note: If a column name is not specified after update, the rule fires after
an update to any column in the table.

An update performed on specified columns in a table.

For example, the following rule fires whenever the salary column in the
employee table is changed.

Create Rule

Using SQL Statements 353

create rule emp_salary after update(salary)
 of employee
 execute procedure check_sal
 (name = old.name, oldsal = old.salary,
 newsal = new.salary);

Up to 1024 columns can be specified in the update clause. The rule is fired
whenever one or more of the columns is updated.

A change to the table that satisfies the specified where clause qualification.

For example, the following rule fires whenever an update to the quantity
column of the parts table results in a quantity value of less than 50:

create rule few_parts after update(quantity)
 of parts
 where new.quantity < 50
 execute procedure issue_order
 (name = old.name,
 quantity = new.quantity);

The qualification must evaluate to true or false. Any column references in
qualification must be qualified by the correlation names defined in the
referencing clause or by the default correlation names, old and new.

The qualification cannot include a subselect or an aggregate (set) function
such as count or sum.

The statement_type in the table_condition must be one of the following:

insert

update[(column_name {, column_name})]

delete

Note: The table_condition can include more than one statement_type, but
it cannot include two of the same statement_types. For example, it can
include a delete and an insert but it cannot include two insert
statement_types.

The syntax of table_condition is:

after statement_type {, statement_type} on|of|from|into [schema.]table_name
 [referencing [old as old_corr_name] [new as new_corr_name]]
 [where qualification]

proc_name

Specifies the procedure to be executed when a statement fires the rule.
The procedure must exist at the time the rule is created.

Create Rule

354 SQL Reference Guide

parameter

Specifies one or more values to be passed to the procedure. Not all of the
parameters appearing in the definition of the invoked procedure have to
be included. However, those that are included must match in name and
data type. Parameters can be specified using host language variables.
Parameters cannot be passed by reference to a procedure that is executed
by a rule.

value

Contains a constant or an old or new value in the row that caused the rule
to fire. Constant values cannot contain function expressions. If value
represents a row value, it must be qualified by a correlation name. For
details, see the description of the referencing clause.

statement_type

Part of the syntax of table_condition. Specifies the type of statement that
fires the rule. There are three valid statement_types:

 insert

 update[(column_name {, column_name})]

 delete

More than one of each statement type cannot be included in a single
table_condition.

table_name

Part of the syntax of table_condition. Specifies the table against which the
rule is created.

old_corr_name

Part of the syntax of table_condition. Specifies the correlation name for old
(prior to change) values in a row. The name specified is used to qualify
references to old values in the parameter list and the qualification. The
default is old.

new_corr_name

Part of the syntax of table_condition. Specifies the correlation name for
new (after the change) values in a row. The name specified is used to
qualify new values in the parameter list and qualification. The default is
new.

qualification

Part of the syntax of table_condition. Indicates the specific change that
must occur to the table to fire the rule. All column references in the
expression must be qualified by a correlation name. The expression cannot
include a subselect or aggregate function.

Create Rule

Using SQL Statements 355

Row and Statement Level Rules

The for each clause optionally allows defining a row or statement rule; for each
row is the default.

When the row level rule is executed, a parameter list is built and the
procedure is invoked for each row touched by the statement. If a single delete
or update statement affects 100 rows, the procedure invocation occurs 100
times.

When the statement level rule is executed, the parameters passed in the
procedure invocation for each qualifying row of the triggering statement are
accumulated in an internal temporary table. The temporary table, containing
information from all rows touched by the triggering statement, is passed with
a single call to the rule procedure. This can potentially save many calls to the
rule procedure.

All qualifying rows contained in an internal temporary table are processed by
the triggering statement so that the rule procedure is invoked just once.

Examples of both row and statement level rules follow.

In this example, a row level rule (the default) executes the ruleproc1
procedure for every insert into table_x in which col1 > 5000:

create rule r1 after insert into table_x where new.col1> 5000
 execute procedure ruleproc1 (p1 = new.col1, p2 = new.col5);

The following example is an exact equivalent of the preceding one; either
version can be used:

create rule r1 after insert into table_x where new.col1> 5000
 for each row execute procedure ruleproc1 (p1 = new.col1, p2 = new.col5);

In this example, a statement level rule executes the procedure ruleproc2 after
each delete of table_y. The col1 and col2 values for each row deleted by a
single statement are accumulated in an internal temporary table and are
passed together to ruleproc2 with a single call:

create rule r2 after delete from table_y
 for each statement execute procedure ruleproc2 (q1 = old.col1, q2 =
old.col2);

Create Rule

356 SQL Reference Guide

Database Procedures

Proc_name is the name of the database procedure that is executed whenever
the rule fires. The specified procedure must exist when the rule is created. For
information about defining database procedures, see Create Procedure (see
page 338).

To execute a database procedure owned by another user, specify
schema.procedurename, where schema is the user identifier of the owner of
the procedure; you must have execute privilege for the procedure.

The parameter list allows values to be passed to the invoked procedure. The
number and type of the parameters must be consistent with the number and
type in the definition of the invoked procedure.

The values can include constants, expressions, or references to (old and new)
values in the row that caused the rule to fire. (Old and new see values in the
row before and after the specified change.) When the value is a constant, the
keywords, user and null, are acceptable values. A constant value cannot be a
function expression, such as date('now').

Whenever value refers to a value in a row, it must be referenced by a
correlation name. The referencing clause allows you to choose these
correlation names. For example, the following statement establishes the
correlation name, first, for referencing old values and, second, for referencing
new values:

create rule r1 after update on table1
referencing old as first new as second
execute procedure p1
 (a = first.c1, b = second.c1);

Old and new correlation names can be specified in any order in the referencing
clause. If correlation names are not chosen, the default is as follows:

referencing old as old new as new

If the name of the table is used as the correlation name, the DBMS Server
assumes that the values referenced are new values.

If the statement_type in the table condition is insert, only new column values
are available for the procedure. If the statement_type is delete, only old
column values are available.

If both old and new correlation names are specified in a rule that includes an
insert or a delete, or in the statement_type list, the DBMS Server assumes
that both the old and new correlation names see the same set of values when
the rule fires as a result of an insert or delete.

Create Rule

Using SQL Statements 357

For example, assume the following rule:

create rule few_parts after update, delete
from parts
 execute procedure check_change
 (name = old.name, pre = old.quantity,
 post = new.quantity)

If an update fires the rule, the values passed to the procedure are the old and
new values. However, if a delete fires the rule, the DBMS Server assumes that
the correlation names are both old because the new value does not exist in a
delete operation.

Embedded Usage: Create Rule

In an embedded Create Rule SQL statement, host language variables can be
used to represent the procedure's parameters.

Locking: Create Rule

The Create Rule SQL statement takes an exclusive lock on the specified table.

Related Statements: Create Rule

For related information on the Create Rule SQL statement, see the following
SQL statement descriptions in this chapter:

Delete (see page 427)

Execute Procedure (see page 465)

Insert (see page 517)

Update (see page 637)

Create Rule

358 SQL Reference Guide

Examples: Create Rule

The following are Create Rule SQL statement examples:

1. The following two rules are applied to the employee table. The first rule
fires whenever a change is made to an employee record, to log the action.
The second rule fires only when a salary is increased. An update statement
that increases the salary fires both the rules-in this case, the order of
firing is not defined.

create rule emp_updates after delete, insert,
 update of employee
 execute procedure track_emp_updates
 (name = new.name);

create rule emp_salary after update(salary, bonus)
 of employee
 where new.salary > old.salary
 execute procedure check_sal
 (name = old.name,
 oldsal = old.salary,
 newsal = new.salary,
 oldbonus = old.bonus,
 newbonus = new.bonus);

2. The following two rules track changes to personnel numbers. When an
employee is removed, an entry is made into the manager table, which in
turn causes an entry to be made into the director table. Even if an entry is
made directly into the manager table, the director table is still notified.

create procedure manager_emp_track
 (ename varchar(30), mname varchar(30)) as
begin
 update manager set employees = employees - 1
 where name = :mname;
 insert into mgrlog values
 ('Manager: ' + :mname +
 '. Deleted employee: ' + :ename);
end;

create rule emp_delete after delete from employee
 execute procedure manager_emp_track
 (ename = old.name, mname = old.manager);

create procedure director_emp_track
 (dname varchar(30)) as
begin
 update director set employees = employees - 1
 where name = :dname;
end;

Create Schema

Using SQL Statements 359

create rule manager_emp_delete
 after update(employees) of manager
 where old.employees - 1 = new.employees
 execute procedure director_emp_track
 (dname = old.director);

Create Schema
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: All users.

The Create Schema statement creates a named collection of database objects
(tables, views, and privileges). Each user has a maximum of one schema per
database. If an error occurs within the create schema statement, the entire
statement is rolled back.

The statements within the create schema statement must not be separated by
semicolon delimiters, however, the create schema statement must be
terminated by placing a semicolon after the last object definition statement
(create table, create view, or grant).

If object definitions are omitted, an empty schema is created. For details
about the statements used to create tables, views, and privileges, see Create
Table (see page 369), Create View (see page 405), and Grant (privilege) (see
page 480).

To issue grant statements within a create schema statement, you must have
the required privileges-specifically, to grant a privilege on an object you do not
own, you must have been granted the privilege with grant option. For details,
see Grant Option Clause (see page 493).

If an invalid grant statement is issued within a create schema statement, the
outcome is determined as follows:

 If you have no privileges whatsoever on the object against which you issue
the grant statement, the entire create schema statement is aborted.

 If you have any privilege whatsoever on the object, a warning is issued
and the invalid portions of the grant do not succeed. The valid portions of
the grant do succeed, and the create schema statement is not aborted.

For example, if user andre has been granted select with grant option on table
tony.mytable and issues the following grant statement within a create schema
statement:

grant select, insert on tony.mytable to fred

Create Schema

360 SQL Reference Guide

user fred is granted select privilege but not insert privilege, and a warning is
issued.

If a create schema is issued specifying an existing schema (schema_name),
the DBMS Server issues an error. To add objects to an existing schema, issue
the required create statements outside of a create schema statement.

If no schema exists for the effective user identifier, one is implicitly created
when any database object is created. If a create schema statement is
subsequently issued for the user, the DBMS Server returns an error.

If, within a create schema statement, tables are created that have referential
constraints, the order of create table statements is not significant. This differs
from the requirements for creating tables with referential constraints outside
of a create schema statement, where the referenced table must exist before
creating a constraint that references it. For details about referential
constraints, see Create Table (see page 369).

Other users can reference objects in your schema if you have granted them
the required permissions. To access an object in a schema other than the
schema for the effective user of the session, specify the object name as
follows:

schema.object

For example, user harry can select data from the employees table of the
accounting group (if accounting has granted harry select permission). Harry
can issue the following select statement:

select lname, fname from accounting.employees

The Create Schema statement has the following format:

[exec sql] create schema authorization schema_name [object_definition
{object_definition}];

schema_name

Must be the same as the effective user for the session issuing the create
schema statement.

object_definition

Is a create table, create view, or grant statement.

Embedded Usage: Create Schema

You cannot use host language variables in an embedded Create Schema SQL
statement.

Create Schema

Using SQL Statements 361

Locking: Create Schema

The Create Schema SQL statement takes an exclusive lock on a page in the
iischema catalog. Locking for the individual statements (create table, create
view, and grant) is described in the individual statement descriptions in this
chapter. Locks are acquired by the individual create statements within the
Create Schema SQL statement, but released only when the create schema
statement itself is committed. If the Create Schema SQL statement contains
create statements that acquire locks in excess of the maximum configured for
the DBMS Server, the create schema statement is aborted.

Related Statements: Create Schema

For related information on the Create Schema SQL statement, see the
following SQL statement descriptions in this chapter:

Create Table (see page 369)

Create View (see page 405)

Grant (privilege) (see page 480)

Example: Create Schema

Create a schema for the accounting user:

create schema authorization accounting
 create table employees (lname char(30) not null,
 fname char(30) not null,
 salary money,
 dname char(10)
 references dept(deptname),
 primary key (lname, fname)

 create table dept(deptname char(10) not null unique,
 location char(15),
 budget money,
 expenses money default 0)

 create view mgr(mlname, mfname, mdname) as
 select lname, fname, deptname from employees,dept
 where dname = deptname

 grant references(lname, fname)
 on table employees to harry;

Create Security_Alarm

362 SQL Reference Guide

Create Security_Alarm
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be the owner of a table.

The Create Security_Alarm statement specifies databases or the current
installation the conditions that cause records to be written to the security log
for one or more tables.

Security logging is enabled using the enable security_audit statement. To
delete a security alarm, use the drop security_alarm statement. To determine
what security alarms have been created for a table, use the help
security_alarm statement.

The Create Security_Alarm statement has the following format:

[exec sql] create security_alarm [alarm_name] on
 [table | database] [schema.]object_name {, [schema.]object_name} |
current installation
 [if success | failure | success, failure]
 [when select | delete | insert | update | connect |disconnect]
 [by [user | group | role] auth_id{, auth_id} | public;]
 [raise dbevent [dbevent_owner.]dbevent_name [dbevent_text]]

object_name

Specifies the table or database for which security events are logged. The if
clause success and failure parameters specify when logging occurs:

 Success-Create a log record when a user succeeds in performing the
specified type of access.

 Failure-Create a log record when a user attempts to perform the
specified type of access and fails (the query is aborted). Users can fail
to gain access to a table because they lack the required permissions.

To log all attempts to access the tables, specify both success and failure.

The when clause specifies the types of access to be logged. Any combination
of the access types shown in the syntax diagram can be specified, in a comma
separated list.

The by clause specifies the user names of the users for whom logging is
performed. The default value for the by clause is public. To log access
attempts for all users, specify public.

Create Security_Alarm

Using SQL Statements 363

Embedded Usage: Create Security_Alarm

You cannot use host language variables in an embedded Create
Security_Alarm SQL statement.

Locking: Create Security_Alarm

The Create Security_Alarm SQL statement locks the specified table, the
iisecurity_alarms catalog, the iipermits catalog, and the iiprotect catalog.

Related Statements: Create Security_Alarm

For related information on the Create Security_Alarm SQL statement, see the
following SQL statement descriptions in this chapter:

Disable Security_Audit (see page 433)

Enable Security_Audit (see page 452)

Drop Security_Alarm (see page 447)

Examples: Create Security_Alarm

The following are Create Security_Alarm SQL statement examples:

1. Log all successful changes to the employee table.

create security_alarm on table employee
 if success when insert, update, delete by public;

2. Specify alarms for a specific user group or application role.

create security_alarm clerk_update on table secure_data if failure when
update by group clerk

These alarms are fired when a session connects as the specified group or
role.

3. Specify alarm on a particular database or the current installation to raise
an alarm when user, spy, connects to any database.

create security_alarm secconnect on current installation when connect by user
spy

4. Raise an optional database event, secconnect, as the result of an alarm
firing when user, spy, connects to database sec1.

create security_alarm secconnect on database sec1
when connect by user spy
raise dbevent secconnect 'user spy connected to sec1 database';

Create Sequence

364 SQL Reference Guide

Create Sequence
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have ”create_sequence” privileges. You must
also have the “next” privilege to retrieve values from a defined sequence. For
information on the (see page 480) “next” privilege, see Grant (privilege).

The Create Sequence statement creates new sequences. Sequences are
defined database entities that are used to supply a set of integer values to an
application in sequential order according to a set of definition parameters.
These parameters are set by specifying sequence_options as explained below.

The Create Sequence statement has the following format:

[exec sql] create sequence [schema.]sequence_name [sequence_options]

sequence options

Consists of a blank-space separated list containing zero or more of the
following options:

 as data type

 start with number

 restart with number

 increment by number

 maxvalue number

 no maxvalue/nomaxvalue

 minvalue number

 no minvalue/nominvalue

 cache number

 no cache/nocache

 cycle

 no cycle/nocycle

 order

 no order/noorder

Create Sequence

Using SQL Statements 365

Sequence_Options Specification

The sequence_options specification allows you to define parameters that
control how the sequence supplies data when requested by an application.
Note that the following options can be specified in any order, and that none of
these options are required.

As Option

To specify whether the data type is an integer (default) or a decimal (with
some precision and 0 scale).

Start With Option

To specify the start of the sequence as some integer constant. The default
value is 1 for positive sequences (positive increment) and -1 for negative
sequences (negative increment). (This option is only valid with the create
sequence statement.)

Restart With Option

To specify a new start value for the sequence. (This option is only valid with
the alter sequence statement.)

Increment By Option

To specify the increment value (positive or negative) that produces successive
values of the sequence. The default value is 1.

Maxvalue Option

To specify the maximum value allowed for the sequence. The default value is
2**31-1 for positive integer sequences, 10**(n+1)-1 for positive decimal(n)
sequences and -1 for negative sequences.

No Maxvalue/NoMaxvalue Option

To specify that sequences can generate values with an upper bound equivalent
to that of the data type chosen to hold the sequence (for example, 2**31-1
for integers).

Minvalue Option

To specify the minimum value allowed for the sequence. The default value is 1
for positive sequences, -2**31 for negative integer sequences and -
(10**(n+1)-1) for negative decimal(n) sequences.

Create Sequence

366 SQL Reference Guide

No Minvalue/NoMinvalue Option

To specify that sequences can generate values with a lower bound equivalent
to that of the data type chosen to hold the sequence (for example, -2**31 for
integers).

Cache Option

To specify the number of sequence values held in server memory. Once the
supply of numbers is exhausted, Ingres requires a catalog access to acquire
the next set. The default value is 20.

No Cache/NoCache Option

To specify that sequence values are not to be cached by the server. When this
option is selected, a catalog access is required for each request for a sequence
value. This can severely degrade application performance.

The default (when neither cache nor nocache are specified) is cache 20, which
ensures that the catalog overhead will be reasonably small.

Cycle Option

To specify that the sequence restarts at the beginning value once it reaches
the minimum value (negative increment) or maximum value (positive
increment). The default is No Cycle.

No Cycle/NoCycle Option

To specify that the sequence is not cycled when the last valid value is
generated. An error is issued to the requesting transaction.

[No]Order Option

These options are included solely for syntax compatibility with other DBMS'
that implement sequences, and are not currently supported in Ingres. The
default is NoOrder.

Locking: Create Sequence

Within applications, sequences use logical locks that allow multiple
transactions to retrieve and update the sequence value while preventing
changes to the underlying sequence definition. The logical lock is held until the
end of the transaction.

Create Synonym

Using SQL Statements 367

Related Statements: Create Sequence

For related information on the Create Sequence SQL statement, see the
following SQL statement descriptions in this chapter:

Alter Sequence (see page 271)

Drop Sequence (see page 449)

Examples: Create Sequence

The following are Create Sequence SQL statement examples:

1. Define the start value for sequence “XYZ” as 10.

create sequence XYZ start_with 10

2. Define the increment value for sequence “XYZ” as 10 and the number of
cached values as 500.

create sequence XYZ increment_by 10 cache 500

Create Synonym
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
databases procedures (DB Proc).

Permission required: All users.

The Create Synonym statement defines a synonym for a table, view, or index.
A synonym is an alias (alternate name) for an object.

References to synonyms in applications are resolved to their base objects at
runtime. References to synonyms in definitions of database procedures, views,
and permissions are resolved at the time the procedure, view, or permission is
defined. For this reason, the synonym must be valid at definition time and at
runtime, but can be dropped and recreated in between.

The Create Synonym statement has the following format:

[exec sql] create synonym synonym_name
 for [schema.]object

synonym_name

Must be a valid object name and must not conflict with the names of other
tables, views, indexes, or synonyms owned by the user issuing the
statement. Synonyms can be used any place that table, view, or index
identifiers are required.

Create Synonym

368 SQL Reference Guide

Embedded Usage: Create Synonym

You cannot use host language variables in an embedded Create Synonym SQL
statement.

Locking: Create Synonym

The Create Synonym SQL statement locks the iisynonym system catalog, and
takes an exclusive lock on the table, view, or index for which a synonym is
being created.

Related Statements: Create Synonym

For related information on the Create Synonym SQL statement, see Drop
Synonym (see page 450) .

Examples: Create Synonym

The following are Create Synonym SQL statement examples:

1. Create a synonym for the authors table.

create synonym writers for authors;

2. Create a synonym for the composers table, owned by another user.

create synonym cmp for tony.composers;

Create Table

Using SQL Statements 369

Create Table
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permssion: All users. Using the grant statement, the DBA can control whether
specific users, groups, or roles can create tables.

The Create Table statement creates a base table. A base table contains rows
independently of other tables (unlike a view, which has no independent
existence of its own). Rows in a base table are added, changed, and deleted
by the user (unlike an index, which is automatically maintained by the DBMS
Server).

The default page size is the smaller of either 2048 (2 KB)-unless changed by
the system administrator-or the smallest page size configured in the system
that holds the record. For example, let's say an installation is configured to
allocate buffer pools for 2048 (2 KB), 8192 (8 KB), and 65536 (64 KB). A table
is created with a row size of 2500 bytes and if a specific page size is not
requested, the table is created with an 8 KB-page size. Similarly, if 4096 byte
(4 KB) pages are also configured, the table is created with 4 KB pages instead
of 8 KB pages because 4 KB is the smallest configured page size capable of
containing the row. If the row is larger than any page size configured, or if a
page size too small is specified with the page_size clause, the table create
fails.

The default storage structure for tables is heap. To create a table that has a
different storage structure, specify the structure option in the with clause.

To create a table that is populated with data from another table, specify create
table...as select. The resulting table contains the results of the select
statement.

To specify an expiration date for a table, use the save statement (described in
this chapter). By default, tables are created without an expiration date. To
delete expired tables, use the verifydb utility. For details, see the System
Administrator Guide.

A maximum of 1024 columns can be specified for a base table.

The following table shows the maximum row length when rows do not span
pages.

Page Size Max Row Length

2048 (2 KB) 2008 bytes

4096 (4 KB) 3988 bytes

8192 (8 KB) 8084 bytes

Create Table

370 SQL Reference Guide

Page Size Max Row Length

16384 (16 KB) 16276 bytes

32768 (32 KB) 32660 bytes

65536 (64 KB) 65428 bytes

You can create a table with row size greater than the maximum documented
above, up to 256 KB. If the “with page_size” clause is not specified, the table
is created with the default page size.

Note: Ingres is more efficient when row size is less than or equal to the
maximum row size for the corresponding page size.

Long varchar and long byte columns can contain a maximum of 2 GB
characters and bytes, respectively. The length of long varchar or long byte
columns cannot be specified.

The following data types require space in addition to their declared size:

 A varchar or text column consumes two bytes (in addition to its declared
length) to store the length of the string.

 Nullable columns require one additional byte to store the null indicator.

 In tables created with compression, c columns require one byte in addition
to the declared length, and char columns require two additional bytes.

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

The Create Table statement has the following format:

[exec sql] create table [schema.] table_name
 (column_specification {, column_specification }
 [, [constraint constraint_name] table_constraint
 {, [constraint constraint_name] table_constraint}])
 [with with_clause]

Create Table

Using SQL Statements 371

table_name

Specifies the name of the new table, and must be a valid object name.

To create a table and load rows from another table:

[exec sql] create table table_name
 (column_name {, column_name}) as
 subselect
 {union [all]
 subselect}
 [with with_clause]

For the syntax of subselect, see Select (interactive) (see page 582). Subselect
cannot be used when creating a table in one or more raw locations. (create
table raw_table as select ... with location = (raw_loc)).

The with_clause consists of a comma-separated list of one or more of the
following options:

 location = (location_name {, location_name})

 [no]journaling

 [no]duplicates

 page_size = n

 label_granularity = table | row | system_default

 security_audit = (audit_opt {, audit_opt})

 security_audit_key = (column)

 nopartition

 partition = (partitioning-scheme)

Additional with_clause options for create table...as select:

 structure = hash | heap | isam | btree

 key = (column_name {, column_name})

 fillfactor = n

 minpages = n

 maxpages = n

 leaffill = n

 nonleaffill = n

 compression[= ([[no]key] [,[no]data])] | nocompression

 allocation = n

 extend = n

 priority = n

Create Table

372 SQL Reference Guide

The column_specification has the following syntax:

column_name datatype
[[with] default default_spec | with default | not default]
[with null | not null]
[[constraint constraint_name] column_constraint
{ [constraint constraint_name] column_constraint}]

[collate collation_name]

where column_constraint is one or more of the following:

 unique [with constraint_with_clause]

 primary key [with constraint_with_clause]

 references [schema.]table_name[(column_name)]
 [with constraint_with_clause]

Table constraints must be specified as one or more of the following:

 unique (column_name {, column_name}) [with constraint_with_clause]

 primary key (column_name {, column_name}) [with
constraint_with_clause]

 foreign key (column_name {, column_name})
references [schema.]table_name [(column_name
{, column_name})] [with constraint_with_clause]

Column collation name must be specified as unicode,
unicode_case_insensitive, or sql_character. For details, see Column
Specifications.

Constraints and collations are described in detail later in this statement
description.

Create Table

Using SQL Statements 373

Column Specifications

The following characteristics of a new column can be specified:

 Name-Assign a valid name to each column. For details about valid object
names, see the chapter “Overview of SQL.”

 Data type-Assign a valid data type to each column. For details about valid
data types, see the chapter “Overview of SQL.” If create table...as select is
specified, the new table takes its column names and formats from the
results of the select clause of the subselect specified in the as clause
(unless different column names are specified).

 Nullability and defaults-Specify:

– Whether a column accepts nulls

– Whether the column is mandatory

– The value to be assigned if no value is specified by the user (the
default value)

 Constraints-Specify checks to be performed on the contents of a column.
When the table is updated, if the column fails the checks, the DBMS
Server issues an error and aborts the statement that attempted to insert
the invalid value.

 Collation-Specify a collation sequence to be used on the column. Specify
one of the following:

– unicode-Specifies collation for columns containing Unicode data (nchar
and nvarchar data types). This is the default collation for Unicode
columns.

– unicode_case_insensitive-Specifies case insensitive collation for
columns containing Unicode data (nchar and nvarchar data types).

– sql_character-Specifies the collation for columns containing char, C,
varchar, and text data. This is the default collation for non-Unicode
columns.

Column Defaults and Nullability

The following section explains how to specify whether columns accept nulls
and how default values are assigned to columns.

Create Table

374 SQL Reference Guide

Default Values

To specify whether a column requires an entry (is mandatory), use the with |
not default clause. If the column does not require an entry, a value can be
specified to be inserted if none is provided by the user (a default value).

Valid options are:

 not default-The column is mandatory.

 with default-If no value is provided, the DBMS Server inserts 0 for
numeric and money columns, or an empty string for character and date
columns.

 [with] default default_spec-If no value is provided, the DBMS Server
inserts the default value. The default value must be compatible with the
data type of the column. Valid default values include (for character
columns) the following constants:

– user

– current_user

– system_user

The following is an example of the default option:

create table dept(dname char(10),
 location char(10) default 'NY',
 creation date default '01/01/03',
 budget money default 10000);

The following considerations and restrictions apply when specifying a default
value for a column:

 The data type and length of the default value must not conflict with the
data type and length of the column.

 The maximum length for a default value is 1500 characters.

 For fixed-length string columns, if the column is wider than the default
value, the default value is padded with blanks to the declared width of the
column.

 For numeric columns that accept fractional values (floating point and
decimal), the decimal point character specified for the default value must
match the decimal point character in effect when the value is inserted. To
specify the decimal point character, set II_DECIMAL.

 For money columns, the default value can be exact numeric (integer or
decimal), approximate numeric (floating point), or a string specifying a
valid money value. The decimal point and currency sign characters
specified in the default value must match those in effect when the value is
inserted.

Create Table

Using SQL Statements 375

 For date columns, the default value must be a string representing a valid
date. If the time zone is omitted, the time zone defaults to the time zone
of the user inserting the row.

For user-defined data types (UDTs), the default value must be specified using
a literal that makes sense to the UDT. A default value cannot be specified for a
logical key column.

Nullability

To specify whether a column accepts null values, specify the with|not null
clause:

Null Clause Description

with null The column accepts nulls. If no value is supplied by the user,
null is inserted. For all data types except a
system_maintained logical key, with null is the default.

not null The column does not accept nulls. If with default is specified,
numeric and money columns default to 0, and string and date
columns default to a blank string. If the default clause or
specify not default is omitted, the column is mandatory.

The with | not null clause works in combination with the with | not default
clause, as shown in the following table:

Null Clause Description

with null The column accepts nulls. If no value is provided, the DBMS
Server inserts a null.

with null with
default

The column accepts null values. If no value is provided, the
DBMS Server inserts a 0 or blank string, depending on the
data type.

with null not
default

The column accepts null values. The user must provide a
value (mandatory column).

not null with
default

The column does not accept nulls. If no value is provided, the
DBMS Server inserts 0 for numeric and money columns, or an
empty string for character and date columns.

not null not
default or not
null

The column is mandatory and does not accept nulls, typical
for primary key columns.

Create Table

376 SQL Reference Guide

System_Maintained Logical Keys

System_maintained logical key columns are assigned values by the DBMS
Server, and cannot be assigned values by applications or end users. The
following restrictions apply to logical keys specified as with
system_maintained:

 The only valid default clause is with default. If the default clause is
omitted, with default is assumed.

 The only valid nullability clause for system_maintained logical keys is not
null. If a column constraint or nullability clause is not specified, not null is
assumed.

 No table constraint can include a system_maintained logical key column.
For details about table constraints, see Column-Level Constraints and
Table-Level Constraints (see page 385).

System_Maintained Clause Null Clause Valid?

With system_maintained not null Yes

 with null No

 not null with default Yes

 not null not default No

 (none specified) Yes

Not system_maintained not null Yes

 with null Yes

 not null with default Yes

 not null not default Yes

Create Table

Using SQL Statements 377

Constraints

To ensure that the contents of columns fulfill your database requirements,
specify constraints. The types of constraints are:

 Unique constraints-Ensures that a value appears in a column only once.
Unique constraints are specified using the unique option.

 Check constraints-Ensures that the contents of a column fulfills user-
specified criteria (for example, “salary >0”). Check constraints are
specified using the check option.

 Referential constraints-Ensures that a value assigned to a column
appears in a corresponding column in another table. Referential
constraints are specified using the references option.

 Primary key constraints-Declares one or more columns for use in
referential constraints in other tables. Primary keys must be unique.

Constraints are checked at the end of every statement that modifies the table.
If the constraint is violated, the DBMS Server returns an error and aborts the
statement. If the statement is within a multi-statement transaction, the
transaction is not aborted.

Note: Constraints are not checked when adding rows to a table using the copy
statement.

Each type of constraint is described in detail in the following sections.
Constraints can be specified for individual columns or for the entire table. For
details, see Column-Level Constraints and Table-Level Constra (see
page 385)ints .

Create Table

378 SQL Reference Guide

Unique Constraint

To ensure that no two rows have the same value in a particular column or set
of columns, specify unique not null. (If a column is specified as unique, not
null must also be specified.) The following is an example of a column-level
unique constraint:

create table dept (dname char(10) unique not null, ...);

In the preceding example, the unique constraint ensures that no two
departments have the same name.

To ensure that the data in a group of columns is unique, specify the unique
constraint at the table level (rather than specifying unique constraints for
individual columns). A maximum of 32 columns can be specified in a table-
level unique constraint.

The following is an example of a table-level unique constraint:

create table project (
 proj_id int not null not default,
 proj_dept_id int not null with default,
 proj_name char(25) not null,
 unique (proj_id) with structure = hash);

In the preceding example, the unique constraint ensures that no two
departments in the same location have the same name. The columns are
declared not null, as required by the unique constraint.

Any column or set of columns that is designated as the primary key is
implicitly unique and must be specified as not null. A table can have only one
primary key, but can have any number of unique constraints. For example:

create table project (
 proj_id int not null not default,
 proj_dept_id int not null with default,
 proj_name char(25) not null unique,
 unique (proj_dept_id) with structure = hash,
 primary key (proj_id));

Note: Unique constraints create system indexes that cannot be explicitly
dropped by the table owner. The indexes are used to enforce the unique
constraint.

Create Table

Using SQL Statements 379

Check Constraint

To create conditions that a particular column or set of columns must fulfill,
specify a check constraint using the check option. For example, to ensure that
salaries are positive numbers:

create table emps (name char(25), sal money,
constraint check_salary check (sal > 0));

The expression specified in the check constraint must be a Boolean expression.
For details about expressions, see the chapter “Elements of SQL Statements.”

To specify a check constraint for a group of columns, specify the check
constraint at the table level (as opposed to specifying check constraints for
individual columns). The following is an example of a table-level check
constraint:

create table dept (dname char(10),
 location char(10),
 budget money,
 expenses money,
constraint check_amount check (budget > 0 and
expenses <= budget));

The preceding example ensures that each department has a budget and that
expenses do not exceed the budget.

Note: The way nullability is specified for a column determines whether you
can change the nullability of the column. If check...is not null is specified for a
column, use the alter table...drop constraint statement to remove the
constraint (because the column is created as nullable-that is, with an
additional byte for the null indicator-and the check constraint is used to
prevent nulls from being inserted). However, if not null is specified (as
opposed to a check...is not null constraint), the constraint cannot be removed
using the alter table...drop constraint statement because the column was
created without the additional byte for the null indicator, and the additional
byte cannot be added.

Check constraints cannot include the following:

 Subselects

 Set functions (aggregate functions)

 Dynamic parameters

 Host language variables

Column-level check constraints cannot reference other columns.

Create Table

380 SQL Reference Guide

Referential Constraint

To validate an entry against the contents of a column in another table (or
another column in the same table), specify a referential constraint using the
references option. The references option maintains the referential integrity of
your tables.

The column-level referential constraint uses the following syntax:

references [schema.] table_name (column_name)[referential actions]
[constraint_with_clause]

This is an example of a column-level referential constraint:

create table emp (ename char(10),
edept char(10) references dept(dname));

In the preceding example, the referential constraint ensures that no employee
is assigned to a department that is not present in the dept table.

The table-level referential constraint uses the following syntax, including the
foreign key… references option:

foreign key (column_name{,column_name})
references [schema.] table_name [(column_name{,column_name}][referential actions]
[constraint_with_clause]

This is an example of a table-level referential constraint:

create table mgr (name char(10),
 empno char(5),
 ...
foreign key (name, empno) references emp);

The preceding example verifies the contents of the name and empno columns
against the corresponding columns in the emp table to ensure that anyone
entered into the table of managers is on file as an employee. This example
omits the names of the referenced column; the emp table must have a
primary key constraint that specifies the corresponding name and employee
number columns.

Referential actions allow the definition of alternate processing options in the
event a referenced row is deleted, or referenced columns are updated when
there are existing matching rows. A referential action specifies either an
update rule or a delete rule, or both, in either sequence.

The on update and on delete rules, use the following syntax:

on update {cascade | set null | restrict | no action}

or

on delete {cascade | set null | restrict | no action}

Create Table

Using SQL Statements 381

The “on update cascade” causes the values of the updated referenced
column(s) to be propagated to the referencing columns of the matching rows
of the referencing table.

The “on delete cascade” specifies that if a delete is attempted on a referenced
row that has matching referencing rows, the delete is “cascaded” to the
referencing table as well. That is, the matching referencing rows are also
deleted. If the referencing table is itself a referenced table in some other
referential relationship, the delete rule for that relationship is applied, and so
forth. (Because rule types can be mixed in a referential relationship hierarchy,
the second delete rule can be different from the first delete rule.) If an error
occurs somewhere down the line in a cascaded operation, the original delete
fails, and no update is performed.

In addition to cascade, the no action, set null, and restrict actions are also
supported for both delete and update.

 No action is the default behavior of returning an error upon any attempt to
delete or update a referenced row with matching referencing rows.

 Restrict is similar to no action with a minor variation; it behaves
identically, but returns a different error code. Both options are supported
for ANSI SQL compliance.

 Set null causes the referencing column(s) of the matching rows to be set
to the null value (signifying that they do not currently participate in the
referential relationship). The column(s) can be updated later to a non-null
value(s), at which time the resulting row must find a match somewhere in
the referenced table.

This is an example of the delete and update rules:

create table employee (empl_no int not nul),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id)
 on delete cascade on update cascade,
 mgrno int references employee (empl_no) on update
 cascade
 on delete set null);

If a department row is deleted, all employees in that department are also
deleted. If a department ID is changed in the department table, it is also
changed in all referencing employee rows.

If a manager's ID is changed, his employees are changed to match. If the
manager is fired, all his employees have mgr_id set to null.

The following considerations apply to the table and column being referenced
(the column specified following the keyword references):

 The referenced table must be an existing base table (it cannot be a view).

 The data types of the columns must be comparable.

Create Table

382 SQL Reference Guide

 You must have references privilege for the referenced columns.

 If the table and column names are specified, the referenced columns must
compose a unique or primary key constraint for the referenced table.

 In a table-level referential constraint, if multiple columns are specified, the
columns specified for the referencing table must correspond in number,
data type, and position to the columns specified for the referenced table,
and must compose a unique or primary key constraint for the referenced
table.

 If the referenced table is specified and the column name is omitted, the
referenced table must have a primary key constraint; the referencing
columns are verified against the primary key of the referenced table.

Primary Key Constraints

The primary key constraint is used to denote one or more columns to which
other tables refer in referential constraints. A table can have only one primary
key; the primary key for a table is implicitly unique and must be declared not
null.

This is an example of a primary key constraint and a related referential
constraint:

Referenced table:

create table partnumbers(partno int primary key...);

Referencing table:

create table inventory(ipartno int...
 foreign key (ipartno) references partnumbers);

In this case, the part numbers in the inventory table are checked against those
in the partnumbers table; the referential constraint for the inventory table is a
table-level constraint and therefore must specify the foreign key clause. The
referential constraint for the inventory does not specify the column that is
referenced in the partnumbers table. By default, the DBMS Server checks the
column declared as the primary key. For related details, see Referential
Constraint (see page 380).

Create Table

Using SQL Statements 383

Constraint Index Options

The primary key/unique and referential constraint definitions can optionally
include a with clause to describe the characteristics of the indexes that are
created by Ingres to enforce the constraints. The constraint with clause can be
appended to both column and table level constraint definitions.

The column_constraint has the following syntax:

unique [with constraint_with_clause]

primary key [with constraint_with_clause]

references [schema.]table_name[(column_name)][referential_actions][with
constraint_with_clause]

The table_constraint has the following syntax:

unique (column_name {,column_name}) [with constraint_with_clause]

primary key (column_name {,column_name}) [with constraint_with_clause]

foreign key (column_name {,column_name})
references [schema.]table_name[(column_name
{,column_name})][referential_actions][with constraint_with_clause]

The constraint with clause consists of one or more of the following options:

 page_size = n

 no index

 index = base table structure

 index = index_name

 structure = hash | btree | isam

 fillfactor = n

 minpages = n

 maxpages = n

 leaffill = n

 nonleaffill = n

 allocation = n

 extend = n

 location = (location_name{, location_name})

Create Table

384 SQL Reference Guide

The no index and index = base table structure options cannot be used in
conjunction with any other constraint with option. All other options can be
used in combination, provided they are separated by commas and enclosed in
parentheses. For example, "with (structure = hash, fillfactor = 70)" is a
sample of the correct syntax to use when more than one option is coded. If
the with clause includes a single option, parentheses are not required.

No Index Option

The no index option indicates that no secondary index is created to support
the constraint. It is only permissible for referential constraints and results in
no index being available to check the integrity of deletes and updates to the
referenced table. The database procedures that perform the integrity checks
still execute in the absence of these indexes. However, the query plan can use
some other user-defined index on the same column(s), or it can resort to a full
table scan of the referencing table, if there is no alternative.

To avoid poor performance, the no index option must only be used if:

 An alternate index on referencing columns is available

 There are very few rows in the referencing table (as in a prototype
application)

 Deletes and updates are rarely (if ever) performed on the referenced table

Index = Base Table Structure Option

The index = base table structure option indicates that the base table structure
of the constrained table be used for integrity enforcement, rather than a newly
created secondary index. Obviously, the base table structure must not be
heap, and it must match the column(s) in the constraint definition. Because
non-heap base table structures can only be specified using the modify
statement (after the table has been created), with index = base table
structure can only be used for table constraints defined with alter table (rather
than the create table statement).

The alter table statement, which adds the constraint, must be preceded by the
with index = base table statement.

For example:
alter table table_name add constraint constraint_name
primary key(column(s))
with (index = base table structure)

which indicates that the uniqueness semantics enforced by the index are
consistent with Ingres and ANSI rules.

Create Table

Using SQL Statements 385

Index = Index_Name Option

The index = index_name option can be used for several purposes. If the
named index already exists and is consistent with the column(s) constrained
by the constraint definition, no new index is created. If the named index does
not already exist, the generated index created for constraint enforcement uses
the name, index_name. Finally, if more than one constraint in the same table
definition specifies index = index_name with the same index_name, an index
is generated with that name and is shared among the constraints.

In any case where an existing index is used for a constraint or a single index is
shared among several constraints, the key columns of the index and the
columns of the constraints must be compatible.

All other constraint with options perform the same function as the
corresponding with options of the create index statement and the index
related with options of the create table ... as select statement. Note, though,
that they are limited to those options documented above. For example, the
key and compression options of create index and create table ... as select are
NOT supported for constraint definition.

Column-Level Constraints and Table-Level Constraints

Constraints for individual columns can be specified as part of the column
specification (column-level constraints) or for groups of columns as part of the
table definition (table-level constraints). Following are examples of each:

Column-level constraints:

create table mytable(name char(10) not null,
 id integer references idtable(id),
 age integer check (age > 0));

Table-level constraints:

create table yourtable(firstname char(20) not null,
 lastname char(20) not null,
 unique(firstname, lastname));

Note: Multiple column constraints are space separated.

Names can be assigned to both column-level and table-level constraints. If the
constraint name is omitted, the DBMS Server assigns one. To drop a constraint
(using the alter table statement), specify the constraint name. It is advisable
to specify a name when creating a constraint-otherwise system catalogs must
be queried to determine the name assigned by the DBMS Server when the
constraint was created.

Create Table

386 SQL Reference Guide

Constraints and Integrities

The two types of integrities for tables are listed here, with their error-handling
characteristics:

Integrities created using the create table and alter table statement options.

These integrities are specified at the time the table is created or altered. An
attempt to update the table with a row containing a value that violates the
constraint causes the DBMS Server to abort the entire statement and issue an
error.

Integrities created using the create integrity statement.

These integrities are specified after the table is created. An attempt to update
the table with a row containing a value that violates the constraint causes the
invalid row to be rejected. No error is issued.

The two types of integrities handle nulls differently: check constraints (created
using the create table or alter table statement) allow nulls by default, whereas
integrities created using the create integrity statement do not allow nulls by
default.

In addition to table constraints, use rules to perform integrity checks when a
table is updated.

Note: The create table and alter table statements are the ANSI/ISO SQL-92-
compliant methods for maintaining database integrity.

Create Table

Using SQL Statements 387

Partitioning Schemes

A table can be partitioned. Partitioning distributes the table's rows among a
number of sub-tables (partitions). A partitioning scheme determines which
rows are sent to which partitions. Once the partitioning scheme is defined,
partitioning is managed automatically by Ingres. To define a table with
partitions, use the partition= option in the table with-clause.

When creating tables, nopartition is the default.

Each dimension of a partitioning scheme defines a rule, or distribution scheme,
for assigning rows to partitions. Conceptually, a dimension defines a set of
logical partitions; each logical partition can then be subdivided according to
the next dimension's rule. Dimensions are evaluated from left to right.

Four distribution scheme types are available; automatic, hash, list, and range.
Hash, list, and range are data-dependent and require the on clause. Automatic
distribution is not data dependent and does not allow the on clause.

An automatic distribution is used when the only goal is to spread rows evenly
among the partitions. Rows are arbitrarily assigned to random partitions.

A hash distribution is used to spread rows evenly among the partitions
deterministically, by use of a hash value (instead of randomly). Given a value
for the partitioning columns, a query can predict which partition contains the
rows which have the matching value. Thus a query can restrict its search to a
subset of partitions.

A list distribution is used to assign rows to partitions based on specific values
in one or more columns. A row's partitioning column values are compared to
each partition's list values, and when a match is found, the row is sent to that
partition. Multiple list values per partition are allowed. If a row matches any of
the list values, that partition is selected. One of the partitions must contain the
default value in its list; this partition is selected if the row matches none of the
list values.

A range distribution is used to assign ranges of values to partitions. The range
containing a row's partitioning column values determines the partition in which
the row is placed. The ranges must be defined in such a way that every
possible value falls into exactly one range. Overlapping ranges are not
allowed. Separate ranges cannot map to the same partition; that is, one
range, one partition.

Create Table

388 SQL Reference Guide

A partition defined with values <rangevalue contains all possible values less
than rangevalue, down to some smaller rangevalue in the scheme. Similarly, a
partition defined with values > rangevalue contains all possible values greater
than rangevalue, up to some larger rangevalue in the scheme. Because all
values must be covered by some range, the smallest rangevalue must have
the operator < (or <=), and the largest rangevalue must have the operator >
(or >=). The partitions need not be defined in order of rangevalue.

Multi-column values are tested from left to right. For example, a three-column
value (1, 10, 5) is greater than (1, 2, 3000).

Null can be incorporated into a rangevalue, but this is not recommended. The
ordering of null relative to non-null values is defined by the SQL standard, so
the resulting partitioning is dependent on server implementation.

The optional logical partition names must be unique for each table. The same
partition name is allowed to occur in other partitioned tables. If a partition
name is omitted, the system generates a name (of the form iipartnn).

If no location= is specified for a partition, the location list is defined by the
enclosing statement's with-clause; that is, the with-clause that contains the
partition= clause.

Create Table

Using SQL Statements 389

Syntax

partition = (dimension) | ((dimension) { subpartition (dimension)})

The syntax for each partition dimension is:

dimension = rule [on column { , column }]
 partitionspec { , partitionspec }

Rule can be specified as automatic, hash, list, or range. For automatic or hash,
the syntax for partitionspec merely defines the number of partitions and
optionally their names:

partitionspec = [nn] patition[s] [(name {, name})] [with-clause]

The option number nn defaults to 1 if omitted.

If rule is specified as list, the syntax for partitionspec defines the list values to
be mapped to each partition:

partitionspec = partition [name] values (listvalue {, listvalue})
 [with-clause]

listvalue = single-constant-value
 |
 (single-constant-value { , single-constant-value })
 |

 default

The first form is used when there is only one partitioning column, while the
second form is used when there are multiple partitioning columns.

If rule is specified as range, the syntax for partitionspec defines the ranges
that map to each partition:

partitionspec = partition [name] values testing-op rangevalue [with-clause]

where testing-op is one of the operators: < , <= , > , or >=

rangevalue = single-constant-value
 |
 (single-constant-value { , single-constant-value })

Range values work like list values; parentheses are needed if there are
multiple on columns. Ranges do not allow the default keyword.

Create Table

390 SQL Reference Guide

with-clause = with with-option
 | with (with-option { , with-option })
with-option = location = (location { , location })

With_Clause Options

Valid options for the create table with_clause include:

 Location

 (No)journaling

 (No)duplicates

 Page_size

 Security_Audit

 Security_Audit_Key

 Partition=

 Nopartition

Location

The location option specifies the locations where the new table is created. To
create locations, use the create location statement. The location_names must
exist and the database must have been extended to the corresponding areas.
If the location option is omitted, the table is created in the default database
location. If multiple location_names are specified, the table is physically
partitioned across the areas. For details about defining location names and
extending databases, see the Database Administrator Guide.

Create Table

Using SQL Statements 391

(No)journaling

To create a table with journaling explicitly enabled, specify the journaling
option. To create a table with journaling explicitly disabled, specify the
nojournaling option. For details about journaling, see the Database
Administrator Guide.

To set the session default for journaling, use the set [no]journaling statement.
The session default specifies the setting for tables created during the current
session. To override the session default, specify the with [no]journaling clause
in the create table statement.

If journaling is enabled for the database and a table is created with journaling
enabled, journaling begins immediately. If journaling is not enabled for the
database and a table is created with journaling enabled, journaling begins
when journaling is enabled for the entire database.

Note: To enable or disable journaling for the database and for system
catalogs, use the ckpdb command. For information about ckpdb, see the
Command Reference Guide.

(No)duplicates

To allow the table to accept duplicate rows, specify with duplicates. To disallow
duplicate rows, specify with noduplicates. This option does not affect a table
created as heap. Heaps always accept duplicate rows regardless of the setting
of this option. If a heap table is created and specified with noduplicates, the
heap table modified to a different table structure, the noduplicates option is
enforced. (By default, all structures accept duplicate rows.)

The duplicates setting can be overridden by specifying a unique key for a table
in the modify statement.

Page_size

To create a table with a specific page size with page_size=n (number of bytes)
where n is the specific page size.

The choices for specifying a page size and page header are:

Page Size Number of Bytes Page Header

2K 2,048 40

4K 4,096 76

8K 8,192 76

16K 16,384 76

Create Table

392 SQL Reference Guide

Page Size Number of Bytes Page Header

32K 32,768 76

64K 65,536 76

The default page size is 2,048. The tid size is 4. The buffer cache for the
installation must also be configured with the page size specified in create table
or an error occurs.

Security_Audit

The security_audit clause specifies row or table level auditing.

If security_audit=(table) is specified, table level security auditing is carried out
on general operations (for example create, drop, modify, insert, or delete)
performed on the table. This is the default.

If security_audit=([no]row) is specified, row-level security auditing is carried
out on operations performed on individual rows, such as insert, delete, update,
or select. If norow is specified the row-level security auditing is not carried
out.

For example, an SQL delete statement that deleted 500 rows from a table with
both table and row auditing generates the following audit events:

 One table delete audit event, indicating the user issued a delete against
the table.

 500 row delete audit events, indicating which rows were deleted.

Note: Either table and row or table and norow auditing can be specified. If
norow is specified, row-level auditing is not performed. If either of these
clauses are omitted, the default installation row auditing is used. The default
can be either row or norow depending on how your installation is configured.

In addition, the with security_audit_key clause allows the user to specify an
optional attribute to be written to the audit log to assist row or table auditing,
for example an employee number can be used as the security audit key:

create table employee (name char(60), emp_no integer)
with security_audit = (table, row),
 security_audit_key = (emp_no);

Create Table

Using SQL Statements 393

If no user-specified attribute is given and the table has row-level auditing, a
new hidden attribute, _ii_sec_tabkey of type table_key system_maintained is
created for the table to be used as the row audit key. Although any user
attribute can be used for the security audit key (security_audit_key clause), it
is strongly recommended that a short, distinctive value is used, allowing the
user to uniquely identify the row when reviewing the security audit log, such
as a social security ID. If an attribute longer than 256 bytes is specified for the
security audit key, only the first 256 bytes are written to the security audit
log.

Security_Audit_Key

To specify an attribute to be written to the audit log to uniquely identify the
row in the security audit log use the security_audit_key clause. For example,
an employee number can be used as the security audit key.

Partition=

Defines a partitioned table. For more information, see Partitioning Schemes
(see page 387).

Nopartition

Indicates that the table is not to be partitioned. This is the default.

Create Table

394 SQL Reference Guide

Create Table...as Select Options

The Create Table...as Select statement accepts the following options:

Allocation

The allocation option specifies the number of pages initially allocated for
the table. It must be an integer between 4 and 8,388,607. The default is
4.

Extend

The extend option specifies the number of pages by which the table is
extended when more space is required. Must be an integer between 1 and
8,388,607. The default is 16.

Structure

To specify the storage structure of the new table, use the with structure
option. The specified structure must be btree, isam, heap, or hash.

Key

Use the key option to specify the columns on which your table is keyed. All
columns in this list must also be specified in the subselect. Be advised that
this option affects the way data is physically clustered on disk.

Fillfactor

Use the fillfactor option to specify the percentage (from 1 to 100) of each
primary data page that must be filled with rows (under ideal conditions).
Fillfactor is not valid if a heap table is being created.

Note: Large fillfactors in combination with a non-uniform distribution of
key values can cause a table to contain overflow pages, increasing the
time required to access the table.

Minpages

Use the minpages option to specify the minimum number of primary pages
a hash table must have when created. The minimum value is 1. If
maxpages is specified, the value cannot exceed the value of maxpages.

Maxpages

Use the maxpages option to specify the maximum number of primary
pages a hash table can have when created. The minimum value is 1.

Compression

Use the compression option to specify whether the key or data is to be
compressed, use the with compression option. If compression is specified,
the structure clause must be specified.

Leaffill

Use the leaffill option to specify how full the leaf index pages can be filled
(btree tables only). Leaf pages are the index pages directly above the data
pages. Specify leaffill as a percentage; the default value is 70%.

Create Table

Using SQL Statements 395

Nonleaffill

Use the nonleaffill option to specify how full the nonleaf index pages can
be filled (btree tables only). Specify nonleaffill as a percentage; the default
value is 80%.

Priority

Use the priority option to specify cache priority. This must be an integer
between 0 and 8, with 0 being the lowest priority and 8 being the highest.
A specification of 0 causes the table to revert to a normal cache
management algorithm and is the default value. If an explicit priority is
not set for an index belonging to a base table to which an explicit priority
has been assigned, the index inherits the priority of the base table.

Using Create Table...as Select

The create table...as select syntax creates a table from another table or
tables. (The create table...as select syntax is an Ingres extension, and is not
part of the ANSI/ISO Entry SQL-92 standard.) The new table is populated with
the set of rows resulting from execution of the specified select statement.

By default, the storage structure of the table is heap with compression. To
override the default, issue the set result_structure statement prior to issuing
the create table...as select statement or specify the with structure option.

By default, the columns of the new table have the same names as the
corresponding columns of the base table from which you are selecting data.
Different names can be specified for the new columns.

The data types of the new columns are the same as the data types of the
source columns. The nullability of the new columns is determined as follows:

 If a source table column is nullable, the column in the new table is
nullable.

 If a source table column is not nullable, the column in the new table is
defined as not null.

If the source column has a default value defined, the column in the new table
retains the default definition. However, if the default value in the source
column is defined using an expression, the default value for the result column
is unknown and its nullability depends on the source columns used in the
expression. If all the source columns in the expression are not nullable, the
result column is not nullable. If any of the source columns are nullable, the
result column is nullable.

A system_maintained logical key column cannot be created using the create
table...as select syntax. When creating a table using create table...as select,
any logical key columns in the source table that are reproduced in the new
table are assigned the format of not system_maintained.

Create Table

396 SQL Reference Guide

Embedded Usage: Create Table

In an embedded Create Table SQL statement:

 Host language variables can be used to specify constant expressions in the
subselect of a create table...as statement.

 Location_name can be specified using a host language string variable.

 The preprocessor does not validate the syntax of the with_clause.

Locking: Create Table

The DBMS Server takes an exclusive table lock when creating a table, which
prevents other sessions, even those using readlock=nolock, from accessing
the table until the transaction containing the create table statement is
committed.

Related Statements: Create Table

For related information on the Create Table SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Table (see page 273)

Create Index (see page 323)

Create Integrity (see page 333)

Create Location (see page 335)

Drop (see page 437)

Grant (privilege) (see page 480)

Help (see page 497)

Modify (see page 524)

Select (interactive) (see page 582)

[No]Journaling (see page 612)

Create Table

Using SQL Statements 397

Examples: Create Table

The following are Create Table SQL statement examples:

1. Create the employee table with columns eno, ename, age, job, salary, and
dept, with journaling enabled.

create table employee
 (eno smallint,
 ename varchar(20) not null with default,
 age integer1,
 job smallint,
 salary float4,
 dept smallint)
 with journaling;

2. Create a table with some other data types.

create table debts
 (acct varchar(20) not null not default,
 owes money,
 logical_key object_key with system_maintained,
 due date not null with default);

3. Create a table listing employee numbers for employees who make more
than the average salary.

create table highincome as
 select eno
 from employee
 where salary >
 (select avg (salary)
 from employee);

4. Create a table that spans two locations. Specify number of pages to be
allocated for the table.

create table emp as
 select eno from employee
 with location = (location1, location2),
 allocation = 1000;

5. Create a table specifying defaults.

create table dept (
 dname char(10)
 location char(10) default 'LA'
 creation_date date default '1/1/93',
 budget money default 100000,
 expenses money default 0);

Create Table

398 SQL Reference Guide

6. Create a table specifying check constraints. In the following example,
department budgets default to $100,000, expenses to $0. The check
constraint insures that expenses do not exceed the budget.

create table dept (
 dname char(10),
 budget money default 100000,
 expenses money default 0,
 check (budget >= expenses));

7. Create a table specifying unique constraints and keys.

create table dept (
 deptno char(5) primary key,
 dname char(10) not null,
 dlocationchar(10) not null,
unique (dname, dlocation));

8. Create a table specifying null constraints.

create table emp (
 salary money with null not default,
 hiredate date with null not default,
 sickdays float with null with default 5.0);

9. Primary key constraint uses hash index structure instead of btree.

create table department (dept_id char(6) not null primary key with structure
= hash, dept_name char(20));

10. Base table structure is hash unique on dept_id.

create table department (dept_id char(6) not null, dept_name char(20));
modify department to hash unique on dept_id;

11. Force ANSI uniqueness semantics.

modify department to unique scope = statement;

12. Unique constraints use base table structure, not a generated index.

alter table department add primary key (dept_id)
 with index = base table structure;

13. Unique constraints generate index in non-default location. First referential
constraint generates no index at all.

create table employee (empl_no int not null
 unique with location = (ixloc1),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id) with no index,
 mgrno int references employee (empl_no));

Create Table

Using SQL Statements 399

14. Referential and primary key constraints share the same named index.

create table assignment (empl_no int not null
 references employee (empl_no) with (index = assnpkix,
 location = (ixloc2)),
 proj_id int not null references project (proj_id),
 task char(20),
 primary key (empl_no, proj_id) with index =
 assnpkix);

Referential action:

create table employee (empl_no int not null
 unique with location = (ixloc1),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id)
 on delete cascade on update cascade with no index,
 mgrno int references employee (empl_no) on update cascade
 on delete set null);

15. Create an automatically-distributed, partitioned table with four partitions.
The last partition is placed in the database's default data location.

CREATE TABLE foo (
 i INTEGER NOT NULL WITH DEFAULT,
 str VARCHAR(10) NOT NULL WITH DEFAULT
) WITH JOURNALING,
 PARTITION = (AUTOMATIC
 PARTITION p1 WITH LOCATION=(ii_database)
 2 PARTITIONS WITH LOCATION=(loc1, loc2)
 PARTITION p4);

16. Create a list-distributed, partitioned table. Partition p1 is stored in location
ii_database. Partition p2 is stored in locations loc1 and loc2. Partition p3 is
stored in the database default data location.

CREATE TABLE table1 (
 i INTEGER NOT NULL WITH DEFAULT,
 str VARCHAR(10) NOT NULL WITH DEFAULT
) WITH PARTITION = (LIST ON i,str

 PARTITION p1 VALUES (1,'one')

 WITH LOCATION=(ii_database),
 PARTITION p2 VALUES ((2,'two'),(3,'three'))
 WITH LOCATION=(loc1, loc2),
 PARTITION p3 VALUES DEFAULT);

Create User

400 SQL Reference Guide

17. Create a range distribution table partition. Partition p1 contains all values
less that A and is stored in location ii_database. Partition p2 contains all
values between 'A' and 'Z' (inclusive) and is stored in locations loc1 and
loc2. Partition p4 contains all values greater than 'Z' and is stored in the
database default location.

CREATE TABLE range (
 i INTEGER NOT NULL WITH DEFAULT,
 str VARCHAR(10) NOT NULL WITH DEFAULT
) WITH PARTITION = (RANGE ON str
 PARTITION p1 VALUES < 'A'
WITH LOCATION=(ii_database),
 PARTITION p2 VALUES <= 'Z'
WITH LOCATION=(loc1, loc2),
 PARTITION p4 VALUES > 'Z');

18. Create a range distribution, sub-partitioned table using hash. In this
example, the physical partitions are all stored in location loc2. There are
32 hash partitions, 8 for each of the ranges.

CREATE TABLE lineitems (
 shipdate DATE NOT NULL WITH DEFAULT,
 partno INTEGER NOT NULL WITH DEFAULT,
 stuff VARCHAR(10) NOT NULL WITH DEFAULT
) WITH PARTITION = (
 (RANGE ON shipdate
 PARTITION p1 VALUES <= '31-Dec-2001',
 PARTITION p2 VALUES <= '31-Dec-2002',
 PARTITION p3 VALUES <= '31-Dec-2003',
 PARTITION p4 VALUES > '31-Dec-2003')
 SUBPARTITION
(HASH ON partno 8 PARTITIONS WITH LOCATION = (loc2)));
);

Create User
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the maintain_users privilege and be
connected to the iidbdb database.

Additional privileges are required to perform certain operations, as
summarized here:

Action Privilege Required

Set security audit attributes maintain_audit

Create User

Using SQL Statements 401

The Create User statement defines a new user.

The Create User statement has the following format:

[exec sql] create user user_name
[with with_item {, with_item}]
with_item = noprivileges | privileges = (priv {, priv})
 | nogroup | group = default_group
 | security_audit= (audit_opt {, audit_opt})
 | noexpire_date | expire_date = 'expire_date'
 | default_privileges = (priv {, priv})| all
 | nodefault_privileges
 | noprofile | profile= profile_name
 | nopassword | password = 'user_password'
 | external_password

user_name

Specifies the user name to be created. Must be a valid object name.

priv

Must be one of the following:

createdb - Allows the user to create databases.

trace - Allows the user to use tracing and debugging features.

security - Allows the user to perform security-related functions (such as
creating and dropping users).

operator - Allows the user to perform database backups and other
database maintenance operations.

maintain_locations - Allows the user to create and change the
characteristics of database and file locations.

auditor - Allows the user to register or remove audit logs and to query
audit logs.

maintain_audit - Allows the user to change the alter user security audit
and alter profile security audit privileges. Also allows the user to enable,
disable or alter security audit.

maintain_users - Allows the user to perform various user-related
functions, such as creating, altering or dropping users, profiles and group
and roles, and to grant or revoke database and installation resource
controls.

These privileges are referred to as subject privileges, and apply to the user
regardless of the database to which the user is connected. If the privileges
clause is omitted, the default is noprivileges.

Create User

402 SQL Reference Guide

default_group

Specifies the default group to which the user belongs. Must be an existing
group. For details about groups, see Create Group (see page 321).

Note: To specify that the user is not assigned to a group, use the nogroup
option. If the group clause is omitted, the default is nogroup.

audit_opt

If security_audit=(all_events) is specified, all activity by the user is
audited.

If security_audit = (default_events) is specified, only default security
auditing is performed, as specified with the enable and disable
security_audit statements.

If security_audit=(query_text) is specified, auditing of the query text
associated with specific user queries is performed.

Security auditing of query text must be enabled as a whole, using the
enable and disable security_audit statements with the query_text option,
for example enable security_audit query_text.

If the security_audit clause is omitted, the default is default_events.

expire_date

Specifies an optional expiration date associated with each user. Any valid
date can be used. Once the expiration date is reached, the user is no
longer able to log on. If the expire_date clause is omitted, the default is
noexpire_date.

default_ privileges

Defines the privileges initially active when connecting to Ingres. These
must be a subset of those privileges granted to the user.

nodefault_ privileges

Specifies that the session is started with no privileges active. Allows
default privileges to be removed.

profile_name

Allows a profile to be specified for a particular user. If the profile clause is
omitted, the default is noprofile.

user_password

Users can change their own password with this parameter. If the
oldpassword clause is missing or invalid the password is unchanged. In
addition, users with the maintain_users privilege can change or remove
any password.

external_ password

Allows a user's password to be authenticated externally to Ingres. The
password is passed to an external authentication server for authentication.

Create User

Using SQL Statements 403

Embedded Usage: Create User

In an embedded Create User SQL statement, specify the with clause using a
host string variable (with :hostvar).

Locking: Create User

The Create User SQL statement locks pages in the iiuser system catalog.

Related Statements: Create User

For related information on the Create User SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Profile (see page 261)

Alter User (see page 282)

Create Profile (see page 345)

Drop Profile (see page 444)

Drop User (see page 451)

Create User

404 SQL Reference Guide

Examples: Create User

The following are Create User SQL statement examples:

1. Create a new user, specifying group and privileges.

create user bspring with
 group = publishing,
 privileges = (createdb, security);

2. Create a new user, group and no privileges.

create user barney with
 group = sales,
 noprivileges;

3. Define user expiration date.

create user bspring
 with expire_date = '6-jun-1995'

4. Define an expiration date relative to the date the statement is executed.

create user bspring
 with expire_date = '1 month'

5. Specify no expiration date for a user.

create user bspring
 with noexpire_date

6. Create a user with a password.

create user bspring
 with password='mypassword';

7. Create a user with several privileges, and a smaller set of default
privileges.

create user bspring
 with privileges=(write_down, write_fixed, trace,
 default_privileges = (trace);

8. Specify a profile for a particular user.

create user bspring with profile = dbop

where dbop is an existing profile.

9. Specify a user with an externally verified password.

create user bspring
 with external_password;

Create View

Using SQL Statements 405

Create View
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have all privileges required to execute the
select statements that define the view.

The Create View statement uses a select statement to define the contents of a
virtual table. The view definition is stored in the system catalogs. When the
view is used in an SQL statement, the statement operates on the underlying
tables. When a table or view used in the definition of a view is dropped, the
view is also dropped.

Data can be selected from a view the same way data is selected from a base
table. However, updates, inserts, and deletes on views are subject to several
restrictions. Updates, inserts, and deletes are allowed only if the view meets
all the following conditions:

 The view is based on a single updateable table or view.

 All columns see columns in the base table or view (no aggregate functions
or derived columns are allowed).

 The select statement omits distinct, group by, union, and having clauses.

Inserts are not allowed if a mandatory (not null not default) column in a base
table is omitted from the view.

The Create View statement has the following format:

[exec sql] create view view_name
 [(column_name {, column_name})]
 as select_stmt
 [with check option]

The syntax of the select_stmt is described in the Select SQL statement
description in this chapter.

Create View

406 SQL Reference Guide

With Check Option Clause

The with check option clause prevents you from executing an insert or update
to a view that creates a row that does not comply with the view definition (the
qualification specified in the where clause). For example, if the following view
is defined with check option:

create view myview
 as select *
 from mytable
 where mycolumn = 10
 with check option;

And the following update is attempted:

update myview set mycolumn = 5;

The update to the mycolumn column is rolled back, because the updated rows
fail the mycolumn = 10 qualification specified in the view definition. If the with
check option is omitted, any row in the view can be updated, even if the
update results in a row that is no longer a part of the view.

The with check option is valid only for updateable views. The with check option
clause cannot be specified if the underlying base table is used in a subselect in
the select statement that defines the view. You cannot update or insert into a
view defined on top of a view specified with check option if the resulting rows
violate the qualification of the underlying view.

Embedded Usage: Create View

In an embedded program, constant expressions can be expressed in the
select_stmt with host language string variables. If the select_stmt includes a
where clause, use a host language string variable to specify the entire where
clause qualification. Specify the with clause using a host string variable (with
:hostvar).

Locking: Create View

The Create View SQL statement requires an exclusive lock on the view's base
tables.

Create View

Using SQL Statements 407

Related Statements: Create View

For related information on the Create View SQL statement, see the following
SQL statement descriptions in this chapter:

Drop (see page 437)

Insert (see page 517)

Select (interactive) (see page 582)

Examples: Create View

The following are Create View SQL statement examples:

1. Define a view of employee data including names, salaries, and name of the
manager.

create view empdpt (ename, sal, dname)
 as select employee.name, employee.salary,
 dept.name
 from employee, dept
 where employee.mgr = dept.mgr;

2. Define a view that uses aggregate functions to display the number of open
orders and the average amount of the open orders for sales representative
that has orders on file. This view is not updateable (because it uses
aggregate functions).

create view order_statistics
 (sales_rep, order_count, average_amt)
 as select salesrep, count(*), avg(ord_total)
 from open_orders
 group by sales_rep;

3. Define an updateable view showing the employees in the southern
division. Specify check option to prevent any update that changes the
region or adds an employee from another region.

create view southern_emps
 as select * from employee
 where region = 'South'
 with check option;

Declare

408 SQL Reference Guide

Declare
Valid in: Database procedures (DB Proc).

Permission required: All users.

The Declare statement describes a list of locl variables for use in a database
procedure.

This statement is used only in a database procedure definition to declare a list
of local variables for use in the procedure. If this statement is to be used,
place it before the begin clause of the database procedure definition.

Nullable variables are initialized to null. Non-nullable variables are initialized to
the default value according to data type: character data types are initialized to
blank, and numeric data types are initialized to zero. Any non-nullable
variables declared without an explicit default value are initialized to the default
value.

The following table lists the effects of the null and default specifications on the
default value of a column.

Nullability Option Default Option Results

with null (none specified) The variable can be null; default
value is null.

not null (none specified) The default is 0 or blank (according
to data type).

(none specified) with default Not valid without a null clause.

(none specified) not default Not valid without a null clause.

with null with default Not valid.

with null not default Not valid.

not null with default The variable defaults to 0 or blank,
according to its data type.

not null not default The variable defaults to 0 or blank,
according to its data type.

Declare

Using SQL Statements 409

The Declare statement has the following format:

 declare var_name {, var_name} [=] var_type
 [not null [with | not default] | with null];
 {var_name {, var_name} [=] var_type
 [not null [with | not default] | with null];}

var_name

Specifies the name of the local variable. A variable name must be unique
within the procedure; it cannot match the name of any other procedure
variable or parameter.

var_type

Is the data type of the variable. A local variable can be any data type
except a system_maintained table_key or object_key.

Related Statements: Declare

For related information on the Declare SQL statement, see the following SQL
statement descriptions in this chapter:

Create Procedure (see page 338)

Prepare (see page 547)

Example: Declare

The following example demonstrates some declarations and uses of local
variables:

create procedure variables (vmny money not null) as
 declare
 vi4 integer not null;
 vf8 float;
 vc11 char(11) not null;
 vdt date;
 begin
 vi4 = 1234;
 vf8 = null;
 vc11 = '26-jun-1957';
 vdt = date(:vc11);
 vc11 = :vmny;--data type conversion error
 vmny = :vf8;--null to non-null conversion
 error
 return :vi4;
end;

Declare Cursor

410 SQL Reference Guide

Declare Cursor
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Declare Cursor statement associates a cursor name with a select
statement. For information about the select statement, see Select (interactive)
(see page 582). Declare cursor is a compile-time statement and must appear
before the first statement that references the cursor. Despite its declarative
nature, a declare cursor statement must not be located in a host language
variable declaration section. A cursor cannot be declared for repeated select.

A typical cursor-based program performs the following steps:

1. Issue a declare cursor statement to associate a cursor with a select
statement.

2. Open the cursor. When the cursor is opened, the DBMS Server executes
the select statement that was specified in the declare cursor statement.

3. Process rows one at a time. The fetch statement returns one row from the
results of the select statement that was executed when the cursor was
opened.

4. Close the cursor by issuing the close statement.

You can use select * in a cursor select statement.

The Declare Cursor statement has the following format:

exec sql declare cursor_name cursor [[no] scroll]
 for select [all | distinct] result_expression {, result_expression}
 from [schema.]table [correlation] {, [schema.]table [correlation]}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by ordering-expression [asc | desc]
 {, ordering-expression [asc | desc]}]
 [for [deferred | direct] update of column {, column}]

cursor_name

Can be specified using a quoted or unquoted string literal or a host
language string variable. If cursor_name is a reserved word, it must be
specified in quotes. The cursor name cannot exceed 32 characters.

Dynamic SQL form:
exec sql declare cursor_name cursor
 for statement_name;

Declare Cursor

Using SQL Statements 411

Cursor Updates

Unless the cursor is explicitly opened in readonly mode or if table level lock
granularity is in effect or if the transaction isolation level is read uncommitted,
an update mode lock is obtained at the row or page level granularity as
appropriate. Which granularity of locking is used depends on many factors,
including the effects of several set options, the estimated selectivity of the
select criteria, various lock configuration parameters, and the page size used
by the table. For a complete explanation, see “Understanding the Locking
System” in the Database Administrator Guide.

If an update is performed, this lock is converted to an exclusive lock. If the
cursor moves off the page or row without performing an update, the lock is
converted to share mode if the isolation level is repeatable read or serializable,
or the lock is released if the isolation level is read committed.

If the isolation level is read uncommitted, updates are implicitly forbidden, and
no logical locks are taken on the table.

If isolation level is not read, uncommitted and table level lock granularity is
used and the cursor was not opened in readonly, a single exclusive lock at the
table level is taken.

If updates are not to be performed with the cursor, cursor performance can be
improved by specifying for readonly when the cursor is opened.

For details, see Open (see page 544). (If the select statement of the cursor
contains one or more aggregate functions, the cursor is read-only.)

For details about updating or deleting table rows using a cursor, see Up (see
page 637)date and Delete (see page 427).

A cursor cannot be declared for update if its select statement refers to more
than one table.

For example, the following cursor declaration causes a compile-time error:

/* illegal join on different tables for update */
exec sql declare c1 cursor for
 select employee.id, accounts.sal
 from employee, accounts
 where employee.salno = accounts.accno
 for update of sal;

This declaration is illegal because two tables were used in the select
statement.

Declare Cursor

412 SQL Reference Guide

For example, if empdept is a read-only view, the following example generates
a runtime error when the open statement is executed. No preprocessor error is
generated, because the preprocessor does not know that empdept is a view.

/* empdept is a read-only view */
exec sql declare c2 cursor for
 select name, deptinfo
 from empdept
 for update of deptinfo;

exec sql open c2;

 Includes a distinct, group by, having, order by, or union clause.

 Includes a column that is a constant or is based on a calculation.

For example, the following cursor declaration causes an error when attempting
to update the column named constant:

/* "constant" cannot be declared for update */
exec sql declare c3 cursor for
 select constant = 123, ename
 from employee
 for update of constant;

If an updateable column has been assigned a result column name using the
syntax:

result_name = column_name

or:

column_name as result_name

The column referred to in the for update list must see the table column name,
and not the result column name.

Declare Cursor

Using SQL Statements 413

Cursor Modes

There are two update modes for cursors: deferred and direct.

Deferred mode

In deferred mode, cursor updates take effect when the cursor is closed.
Only thereafter are the updates visible to the program that opened the
cursor. The actual committal of the changes does not override or interfere
with commit or rollback statements that can be executed subsequently in
the program. Transaction semantics, such as the release of locks and
external visibility to other programs, are not changed by using the
deferred mode of update.

Only one update or delete against a row fetched by a cursor opened in the
deferred mode can be executed. If an attempt to update such a row is
made more than once, or if the row is updated and deleted, the DBMS
Server returns an error indicating that an ambiguous update operation was
attempted.

Only one cursor can be open at a time in the deferred mode.

Direct mode

In direct mode, updates associated with the cursor take effect on the
underlying table when the statement is executed, and can be seen by the
program before the cursor is closed. The actual committal of the changes
does not override or interfere with commit or rollback statements
subsequently executed in the program. Because changes take effect
immediately, avoid updating keys that cause the current row to move
forward with respect to the current position of the cursor, because this can
result in fetching the same row again at a later point.

Multiple update statements can be issued against a row that was fetched
from a cursor opened in the direct mode. This enables a row to be updated
and deleted.

Note: The default cursor mode is specified at the time the DBMS Server is
started. For compliance with the ANSI/ISO SQL-92 standard, the default
cursor mode must be direct mode.

Declare Cursor

414 SQL Reference Guide

Embedded Usage: Declare Cursor

Host language variables can be used in the select statement of a declare
cursor, to substitute for expressions in the select clause or in the search
condition). When the search condition is specified within a single string
variable, all the following clauses, such as the order by or update clause, can
be included within the variable. These variables must be valid at the time of
the open statement of the cursor, because it is at that time that the select is
evaluated - the variables do not need to have defined values at the point of
the declare cursor statement. Host language variables cannot be used to
specify table, correlation, or column names.

Use the dynamic SQL syntax and specify a prepared statement name (see
page 547) instead of a select statement. The statement name must identify a
select statement that has been prepared previously. The statement name
must not be the same as another prepared statement name that is associated
with a currently open cursor.

A source file can have multiple cursors, but the same cursor cannot be
declared twice. To declare several cursors using the same host language
variable to represent cursor_name, it is only necessary to declare the cursor
once, because declare cursor is a compile-time statement. Multiple
declarations of the same cursor_name, even if its actual value is changed
between declarations, cause a preprocessor error.

For example, the following statements cause a preprocessor error:

exec sql declare :cname[i] cursor for s1;
i = i + 1
/* The following statement causes a preprocessor
** error */
exec sql declare :cname[i] cursor for s2;

Declare the cursor only once; the value assigned to the host language variable
cursor_name is determined when the open cursor statement is executed.

For example:

exec sql declare :cname[i] cursor for :sname[i];
loop incrementing I
 exec sql open :cname[i];
end loop;

If a cursor is declared using a host language variable, all subsequent
references to that cursor must use the same variable. At runtime, a
dynamically specified cursor name, that is, a cursor declared using a variable,
must be unique among all dynamically specified cursor names in an
application. Any cursors referenced in a dynamic statement, for example a
dynamic update or delete cursor statement, must be unique among all open
cursors within the current transaction.

Declare Cursor

Using SQL Statements 415

A cursor name declared in one source file cannot be referred to in another file,
because the scope of a cursor declaration is the source file. If the cursor is re-
declared in another file with the same associated query, it still does not
identify the same cursor, not even at runtime. For example, if a cursor c1 is
declared in source file, file1, all references to c1 must be made within file1.
Failure to follow this rule results in runtime errors.

For example, if you declare cursor c1 in an include file, open it in one file and
fetch from it in another file, at runtime the DBMS Server returns an error
indicating that the cursor c1 is not open on the fetch.

This rule applies equally to dynamically specified cursor names. If a dynamic
update or delete cursor statement is executed, the cursor referenced in the
statement must be declared in the same file in which the update or delete
statement appears.

The embedded SQL preprocessor does not generate any code for the declare
cursor statement. In languages that do not allow empty control blocks, (for
example, COBOL, which does not allow empty IF blocks), the declare cursor
statement must not be the only statement in the block.

Locking: Declare Cursor

See the explanation in Cursor Updates (see page 639).

Related Statements: Declare Cursor

For related information on the Delete Cursor SQL statement, see the following
SQL statement descriptions in this chapter:

Close (see page 289)

Fetch (see page 472)

Open (see page 544)

Select (interactive) (see page 582)

Update (see page 637)

Declare Cursor

416 SQL Reference Guide

Examples: Delete Cursor

The following are Delete Cursor SQL statement examples:

1. Declare a cursor for a retrieval of employees from the shoe department,
ordered by name (ascending) and salary (descending). (This can also be
specified as a select loop.)

exec sql declare cursor1 cursor for
 select ename, sal
 from employee
 where dept = 'shoes'
 order by 1 asc, 2 desc;

2. Declare a cursor for updating the salaries and departments of employees
currently in the shoe department.

exec sql declare cursor2 cursor for
 select ename, sal
 from employee
 where dept = 'shoes'
 for update of sal, dept;

3. Declare a cursor for updating the salaries of employees whose last names
are alphabetically like a given pattern.

searchpattern = 'a%';
exec sql declare cursor3 cursor for
 select ename, sal
 from employee
 where ename like :searchpattern
 for update of sal;
...
exec sql open cursor3;

In the above example, the variable, searchpattern, must be a valid
declaration in the host language at the time the statement, open cursor3,
is executed. It also must be a valid embedded SQL declaration at the point
where the cursor is declared.

Declare Cursor

Using SQL Statements 417

4. Declare a cursor to print the results of a retrieval for runtime viewing and
salary changes.

exec sql declare cursor4 cursor for
 select ename, age, eno, sal
 from employee
 for direct update of sal;

exec sql whenever sqlerror stop;
exec sql whenever not found goto close_cursor;
exec sql open cursor4;

loop /* loop is broken when NOT FOUND becomes true. */
exec sql fetch cursor4
 into :name, :age, :idno, :salary;
 print name, age, idno, salary;
 print 'New salary';
 read newsal;
 if (newsal > 0 and newsal <> salary) then
 exec sql update employee
 set sal = :newsal
 where current of cursor4;
 end if;
end loop;
close_cursor:
 exec sql close cursor4;

5. Declare a cursor for retrieval of specific data. The for update clause refers
to column name, sal, and not, res.

exec sql declare cursor5 cursor for
 select ename, sal as res
 from employee
 where eno between :eno_low and :eno_high
 for update of sal;
. . .

loop while more input
 read eno_low, eno_high;

exec sql open cursor5;

print and process rows;
end loop;

Declare Cursor

418 SQL Reference Guide

6. Declare two cursors for the department and employee tables, and open
them in a master-detail fashion.

exec sql declare master_cursor cursor for
 select * from dept
 order by dno;

exec sql declare detail_cursor cursor for
 select * from employee
 where edept = :dno
 order by ename;

exec sql open master_cursor;

loop while more department

exec sql fetch master_cursor
 into :dname, :dno, :dfloor, :dsales;

if not found break loop;

/*
 ** For each department retrieve all the
 ** employees and display the department
 ** and employee data.
*/

exec sql open detail_cursor;

loop while more employees

exec sql fetch detail_cursor
 into :name, :age, :idno, :salary, :edept;
 /*
 ** For each department retrieve all the
 ** employees and display the department
 ** and employee data.
 */

process and display data;

end loop;
 exec sql close detail_cursor;
end loop;

exec sql close master_cursor;

Declare Cursor

Using SQL Statements 419

7. Declare a cursor that is a union of three tables with identical typed
columns (the columns have different names). As each row returns, record
the information and add it to a new table. Ignore all errors.

exec sql declare shapes cursor for
 select boxname, box# from boxes
 where boxid > 100
 union
 select toolname, tool# from tools
 union
 select nailname, nail# from nails
 where nailweight > 4;

exec sql open shapes;
exec sql whenever not found goto done;

loop while more shapes

exec sql fetch shapes into :name, :number;
 record name and number;
 exec sql insert into hardware
 (:name, :number);

end loop;

done:

exec sql close shapes;

Declare Global Temporary Table

420 SQL Reference Guide

Declare Global Temporary Table
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: All users.

The Declare Global Temporary Table statement creates a temporary table, also
referred to as a session-scope table. Temporary tables are useful in
applications that need to manipulate intermediate results and want to
minimize the processing overhead associated with creating tables.

Temporary tables reduce overhead in the following ways:

 No logging is performed on temporary tables.

 No page locking is performed on temporary tables.

 Disk space requirements are minimized. If possible, the temporary table is
created in memory and never written to disk.

 No system catalog entries are made for temporary tables.

Temporary tables have the following characteristics:

 Temporary tables are visible only to the session that created them.

 Temporary tables are deleted when the session ends (unless deleted
explicitly by the session). They do not persist beyond the duration of the
session.

 Temporary tables can be created, deleted, and modified during an online
checkpoint. For details about checkpointing, see the command description
for ckpdb in the Command Reference Guide.

If the location parameter is omitted, the temporary table is located on the
default database location (if the temporary table requires disk space). If the
subselect is omitted, the temporary table is created as a heap.

Temporary tables are assigned the “session” schema. The scope of the session
pseudo schema is limited to the current session only. Thus, two sessions can
each declare a global temporary table with the same name and they do not
conflict with each other, nor with any normal table, because references to the
global temporary table are qualified with the session.table_name schema
identification.

You must always refer to the global temporary table as session.table_name,
even when there is no name conflict. To delete a temporary table, issue the
drop table session.table_name statement.

When a transaction is rolled back, any temporary table that was in the process
of being updated is dropped (because the normal logging and recovery
processes are not used for temporary tables).

Declare Global Temporary Table

Using SQL Statements 421

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from ti:

The Declare Global Temporary Table statement has the following format:

[exec sql] declare global temporary table session.table_name
 (column_name format {, column_name format})
 on commit preserve rows
 with norecovery
 [with_clause]

To create a temporary table by selecting data from another table:

[exec sql] declare global temporary table session.table_name
 (column_name {, column_name})
 as subselect
 on commit preserve rows
 with norecovery
 [with_clause]

For details about subselects, see Select (interactive) (see page 582).

Valid parameters for the with_clause are:

 location = (locationname {, locationname})

 [no]duplicates

 allocation=initial_pages_to_allocate

 extend=number_of_pages_to_extend

For temporary tables created using a subselect, the following additional
parameters can be specified in the with_clause:

 structure = hash | heap | isam | btree

 key = (columnlist)

 fillfactor = n

 minpages = n

 maxpages = n

 leaffill = n

 nonleaffill = n

 compression[= ([[no]key] [,[no]data])] | nocompression

 page_size = n

 priority = cache_priority

Declare Global Temporary Table

422 SQL Reference Guide

Multiple with clause parameters must be specified as a comma-separated list.
For details about these parameters, see Create Table (see page 369) in this
chapter. To delete a temporary table, use the drop statement.

The on commit preserve rows and with norecovery clauses, and the session
table owner are required for the declare global temporary table session
statement; these keywords cannot be omitted. (The on commit preserve rows
clause directs the DBMS Server to retain the contents of a temporary table
when a commit statement is issued. The norecovery suspends logging for the
temporary table.)

Embedded Usage: Declare Global Temporary Table

In an embedded Declare Global Temporary Table SQL statement:

 Host language variables can be used to specify constant expressions in the
subselect of a create table...as statement.

 Locationname can be specified using a host language string variable.

 The preprocessor does not validate the syntax of the with_clause.

 Do not specify the declare global temporary table session statement within
the declare section of an embedded program; place the statement in the
body of the embedded program.

Declare Global Temporary Table

Using SQL Statements 423

Restrictions: Declare Global Temporary Table

Temporary tables are subject to the following restrictions:

 Temporary tables cannot be used within database procedures.

 Temporary tables cannot be used in view definitions.

 Integrities, constraints, or user-defined defaults cannot be created for
temporary tables. (The with|not null and with|not default can be
specified.)

The following SQL statements cannot be used on temporary tables:

 Alter table

 Create index

 Create permit

 Create synonym

 Create view

 Grant

 Help

 Revoke

 Save

 Set journaling

 Set lockmode

 Create security_alarm

 Help

 Create integrity

 Create Rule

 Usermod

 Genxml

 Xmlimport

All other SQL statements can be used with temporary tables.

Note: Repeat queries referencing temporary tables cannot be shared between
sessions.

The following commands cannot be issued with a temporary table name:

 auditdb

 copydb

Declare Global Temporary Table

424 SQL Reference Guide

 optimizedb

 statdump

 verifydb

A temporary table cannot be modified to use a different page size.

Related Statements: Declare Global Temporary Table

For related information on the Declare Global Temporary Table SQL statement,
see the following SQL statement descriptions in this chapter:

Create Table (see page 369)

Delete (see page 427)

Drop (see page 437)

Insert (see page 517)

Select (interactive) (see page 582)

Update (see page 637)

Examples: Declare Global Temporary Table

The following are Declare Global Temporary Table SQL statement examples:

1. Create a temporary table.

exec sql declare global temporary table
 session.emps
 (name char(20) , empno char(5))
 on commit preserve rows
 with norecovery,
 location = (personnel),
 [no]duplicates,
 allocation=100,
 extend=100;

2. Use a subselect to create a temporary table containing the names and
employee numbers of the highest-rated employees.

exec sql declare global temporary table
 session.emps_to_promote
 as select name, empno from employees
 where rating >= 9
 on commit preserve rows
 with norecovery

Declare

Using SQL Statements 425

Declare
Valid in: Embedded programs (ESQL).

Declare statement lists one or more names that are used in a program to
identify prepared SQL statements.

The declaration of prepared statement names is not required; declare
statement is a comment statement, used for documentation in an embedded
SQL program. No syntactic elements can be represented by host language
variables.

The embedded SQL preprocessor does not generate any code for declare
statement. Therefore, in a language that does not allow empty control blocks
(for example, COBOL, which does not allow empty IF blocks), this statement
must not be the only statement in the block.

The Declare statement has the following format:

exec sql declare statement_name {, statement_name) statement

Related Statements: Declare

For related information on the Declare SQL statement, see Prepare (see
page 547) in this chapter.

Example: Declare

The following example declares one statement name for a dynamic statement
that is executed 10 times:

 exec sql declare ten_times statement;

 loop while more input
 print
 'Type in statement to be executed 10 times?';
 read statement_buffer;

 exec sql prepare ten_times
 from :statement_buffer;
 loop 10 times
 exec sql execute ten_times;
 end loop;
end loop;

Declare Table

426 SQL Reference Guide

Declare Table
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Declare Table statement lists the columns and data types associated with
a database table, for the purpose of program documentation. The declare table
statement is a comment statement inside a variable declaration section and is
not an executable statement. You cannot use host language variables in this
statement.

The dclgen utility includes a declare table statement in the file it generates
while creating a structure corresponding to a database table. The dclgen utility
is described in detail in the Embedded SQL Companion Guide.

The embedded SQL preprocessor does not generate any code for the declare
table statement. Therefore, in a language that does not allow empty control
blocks (for example, COBOL, which does not allow empty IF blocks), the
declare table statement must not be the only statement in the block.

The Declare Table statement has the following format:

exec sql declare [schema.]table_name table
 (column_name data_type [with null | not null [with default]]
 {, column_name data_type})

Example: Declare Table

The following is a Declare Table SQL statement example for a database table:

exec sql declare employee table
 (eno integer2 not null,
 ename char(20) not null,
 age integer1,
 job integer2,
 sal float4,
 dept integer2 not null);

Delete

Using SQL Statements 427

Delete
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: You must own the table or have delete permission. If the
delete statement contains a where clause, select and delete permissions are
required; otherwise, delete permission alone is sufficient.

The Delete statement deletes rows from the specified table that satisfy the
search_condition in the where clause. If the where clause is omitted, the
statement deletes all rows in the table. The result is a valid but empty table.

The Delete statement does not automatically recover the space in a table left
by the deleted rows. However, if new rows are added later, the empty space
can be reused. To recover lost space after deleting many rows from a table,
modify the table. To delete all rows from a table, use modify...to truncated.
For more information, see Modify (see page 524).

The Delete statement has the following formats:

Interactive and database procedure version:

[exec sql] delete from [schema.]table_name [corr_name]
 [where search_condition];

table_name

Specifies the table for which the constraint is defined.

Note: A correlation name (corr_name) can be specified for the table for use in
the search_condition.

Embedded non-cursor version:

[exec sql] [repeated] delete from [schema.]table_name [corr_name]
 [where search_condition];

Embedded cursor version:

[exec sql] delete from [schema.]table_name
 where current of cursor_name;

Delete

428 SQL Reference Guide

Embedded Usage: Delete

In an embedded Delete SQL statement, specify the cursor name with a string
constant or a host language variable.

If the Delete SQL statement does not delete any rows, the sqlcode variable in
the SQLCA structure is set to 100. Otherwise, the sqlerrd(3) variable in the
SQLCA structure contains the number of rows deleted.

There are two embedded versions of the delete statement: the first is similar
to the interactive version of the statement, and the second is for use with
cursors.

Non-Cursor Delete

The non-cursor version of the embedded SQL deletestatement is identical to
the interactive delete. Host language variables can be used to represent
constant expressions in the search_condition but they cannot specify names of
database columns or include any operators. The complete search condition can
be specified using a host string variable.

To reduce the overhead required to execute a (non-cursor) delete repeatedly,
specify the keyword repeated. The repeated keyword directs the DBMS Server
to save the execution plan of the delete statement the first time the statement
is executed, thereby improving subsequent executions of the same delete. The
repeated keyword has no effect on the performance of cursor delete
statements. The repeated delete cannot be specified as a dynamic SQL
statement.

If the search_condition is dynamically constructed and the search_condition is
changed after initial execution of the statement, the repeated option cannot be
specified. The saved execution plan is based on the initial values in the
search_condition and changes are ignored. This rule does not apply to simple
variables used in search_conditions.

Delete

Using SQL Statements 429

Cursor Delete

The cursor version deletes the row to which the specified cursor is pointing. If
the cursor is not currently pointing at a row when the delete is executed, the
DBMS Server generates an error.

To position the cursor to a row, issue a fetch statement. After a deletion, the
cursor points to a position after the deleted row, but before the next row, if
any.

If the cursor is opened for direct update, the deletion takes effect immediately.
If the cursor is opened for deferred update, the deletion takes effect when the
cursor is closed. If the cursor is opened for deferred update, a row cannot be
deleted after it has been updated. If an attempt is made to do so, the DBMS
Server returns an error indicating an ambiguous update operation.

Both the commit and rollback statements close all open cursors. A common
programming error is to delete the current row of a cursor, commit the change
and continue in a loop to repeat the process. This process fails because the
first commit closes the cursor.

A cursor delete can be executed dynamically using the prepare and execute
statements. However, a cursor delete can only be prepared after the
referenced cursor is opened. The prepared cursor delete remains valid while
the cursor is open. If the named cursor is closed and reopened, the
corresponding delete statement must be reprepared. If an attempt is made to
execute the delete statement associated with the previously open cursor, the
DBMS Server returns an error.

In performing a cursor delete, make sure that certain conditions are met:

 A cursor must be declared in the same file in which any delete statements
referencing that cursor appear. This applies also to any cursors referenced
in dynamic delete statement strings.

 A cursor name in a dynamic delete statement must be unique among all
open cursors in the current transaction.

 The cursor stipulated in the delete must be open before the statement is
executed.

 The select statement of the cursor must not contain a distinct, group by,
having, order by, or union clause.

 The from clause of the delete and the from clause in the cursor's
declaration must see the same database table.

Delete

430 SQL Reference Guide

Locking: Delete

The Delete SQL statement locks pages as follows:

 If row level locking is in effect, victim rows are X locked, with a weaker IX
lock held on the data page. Also X locks are held on any secondary index
pages affected by the delete.

 If page level locking is in effect, the delete statement locks the pages
containing the rows in the table that are evaluated against the where
clause of the statement. If secondary indexes exist, delete also locks the
pages in the secondary indexes that have pointers to the deleted rows.

 If table level locking is in effect, a single lock on the base table is all that is
needed. For a complete explanation of lock usage, see the chapter “Ingres
Locking” in the Database Administrator Guide.

Related Statements: Delete

For related information on the Delete SQL statement, see the following SQL
statement descriptions in this chapter:

Declare Cursor (see page 410)

Fetch (see page 472)

Select (interactive) (see page 582)

Open (see page 544)

Example: Delete

The following example removes all employees who make over $35,000:

delete from employee where salary > 35000;

Describe

Using SQL Statements 431

Describe
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Describe statement retrieves information about a prepared dynamic SQL
statement. This statement returns the data type, length, and name of the
result columns of the prepared select. If the prepared statement is not a
select, describe returns a zero in the SQLDA sqld field.

The Describe statement has the following format:

exec sql describe statement_name into|using [:]descriptor_name [using names];

statement name

Must specify a valid prepared statement. Specify the statement_name
using a string literal or a host language string variable. If an error occurs
when the specified statement is prepared, the statement is not valid. If a
commit or rollback statement is executed after the statement is prepared
and before it is executed, the statement is discarded and cannot be
described or executed.

descriptor name

Identifies an SQLDA. The actual name can be SQLDA or any other valid
object name defined by the program when the structure is allocated.
Because the SQLDA is not declared in a declaration section, the
preprocessor does not verify that descriptor_name represents an SQLDA
structure. If descriptor_name does not represent an SQLDA structure,
undefined errors occur at runtime. For information about the structure of
an SQLDA and its allocation and inclusion in an embedded program, see
the Embedded SQL Companion Guide.

The using names clause directs the DBMS Server to return the names of result
columns in the descriptor if the described statement is a select statement.
(The using names clause is optional and has no effect on the results of the
describe statement.)

The describe statement cannot be issued until after the program allocates the
SQLDA and sets the value of the SQLDA's sqln field to the number of elements
in the SQLDA's sqlvar array. The results of the describe statement are
complete and valid only if the number of the result columns (from the select)
is less than or equal to the number of allocated sqlvar elements. (The
maximum number of result columns that can be returned is 1024.)

Describe

432 SQL Reference Guide

The prepare statement can also be used with the into clause to retrieve the
same descriptive information provided by describe. For examples of the
describe statement and information about using the information it returns, see
the Embedded SQL Companion Guide.

Related Statements: Describe

For more information, see the following SQL statement descriptions in this
chapter:

Execute (see page 457)

Prepare (see page 547)

Disable Security_Audit

Using SQL Statements 433

Disable Security_Audit
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the maintain_audit privilege and be
working in a session that is connected to the iidbdb.

The Disable Security_Audit statement enables the security administrator to
turn off security logging for the specified type of security event. To turn
security logging on, use the enable security_audit statement.

The Disable Security_Audit statement has the following format:

[exec sql] disable security_audit audit_type | all;

audit type

Valid audit type parameters include:

alarm-Disable logging of all security events generated by create
security_alarm statements issued on tables.

database-Disable logging of all types of access by all users to all database
objects, including use of the ckpdb, rollforwarddb, and auditdb utilities.

dbevent-Disable logging of all create dbevent, raise dbevent, register
dbevent, remove dbevent, and drop dbevent statements.

location-Disable logging of all access to location objects (create location,
alter location, and drop location statements) by all users.

procedure-Disable logging of all access to database procedures (create
procedure and drop procedure statements and procedure execution) by all
users.

role-Disable logging of all role events (set role statement with
-r flag).

rule-Disable logging of rule events (create rule, drop rule, and firing of
rules).

security-Disable logging of all types of access by all users to all security-
related objects.

table-Disable logging of all types of access by all users to all tables.

User-Disable logging of all changes to user and group information,
including runtime verification of user and group names.

View-Disable logging of all types of access by all users to all views.

Level ('security_label')-Disable logging of events that dominate specific
security audit labels.

Row-Disable logging of row-level events.

Disable Security_Audit

434 SQL Reference Guide

Query_text-Disable logging of the detail information for query_text and
events.

Resource-Disable logging of any violation of resource limits.

All-Disable logging of all security events.

To turn off all types of security logging, specify disable security_audit all. After
disabling security logging, the DBMS Server continues to log security events
for users that have the audit_all privilege. (To disable auditing for users that
are assigned the audit_all privilege, use Ingres configuration tools, described
in the System Administrator Guide.)

Embedded Usage: Disable Security_Audit

You cannot use host language variables in an embedded Disable
Security_Audit SQL statement.

Locking: Disable Security_Audit

The Disable Security_Audit SQL statement locks pages in the iisecuritystate
system catalog.

Related Statements: Disable Security_Audit

For related information on the Disable Security_Audit SQL statement, see the
following SQL statement descriptions in this chapter:

Create Security_Alarm (see page 362)

Drop Security_Alarm (see page 447)

Enable Security_Audit (see page 452)

Example: Disable Security_Audit

The following example turns off logging of database events:

disable security_audit dbevent;

Disconnect

Using SQL Statements 435

Disconnect
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Disconnect statement terminates a session connected to a database. The
disconnect statement implicitly closes any open cursors, and commits any
pending updates.

To disconnect a session other than the current session in a multi-session
application, specify the session session_identifier clause or the connection
name. (Connection names and session identifiers are specified using the
connect statement.) To determine the numeric session identifier for the
current session, use the inquire_sql(:session_id = session) statement.

To determine the connection name for the current session, use the
inquire_sql(connection_name) statement. If an invalid session is specified, the
DBMS Server issues an error and does not disconnect the session.

To disconnect all open sessions, specify disconnect all.

The Disconnect statement has the following format:

exec sql disconnect [current] | connection_name |[session session_identifier |
all];

Locking: Disconnect

When the Disconnect statement is issued, all locks held by the session are
dropped.

Related Statements: Disconnect

For related information on the Disconnect SQL statement, see the following
SQL statement descriptions in this chapter:

Connect (see page 294)

Set (see page 610)

Disconnect

436 SQL Reference Guide

Examples: Disconnect

The following are Disconnect SQL statement examples:

1. Disconnect from the current database.

exec sql disconnect;

2. Disconnect a session in a multi-session application by specifying the
connection name.

exec sql disconnect accounting;

3. Disconnect a session by specifying its session identifier.

exec sql disconnect session 99;

4. On an error, roll back pending updates, disconnect the database session.

exec sql whenever sqlerror goto err;
 ...
 err:
 exec sql rollback;
 exec sql disconnect;

Drop

Using SQL Statements 437

Drop
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be the owner of a table, view, or index.

The Drop statement removes the specified tables, indexes, and views from the
database. Any synonyms and comments defined for the specified table, view,
or index are also dropped. If the object is a table, any indexes, views,
privileges, and integrities defined on that table are automatically dropped.

If the keyword (table, view, or index) indicating the object type is specified,
the DBMS Server checks to make sure that the object named is the specified
type. If more than one object is listed, only objects of the specified type are
dropped. For example, if employee is a base table and emp_sal is a view on
the base table salary, the following statement:

drop table employee, emp_sal;

drops only the employee base table (because the keyword table was specified
and emp_sal is a view, not a base table).

To drop a combination of table, views, and indexes in a single statement, omit
the table | view | index keyword. For example:

drop employee, emp_sal;

If an object that is used in the definition of a database procedure is dropped,
all permits on the procedure are dropped (the procedure is not dropped). The
procedure cannot be executed, nor can the execute privilege be granted on
the procedure until all the objects required by its definition exist.

To delete a temporary table before the session ends, specify the keyword
session as the schema. For example, if you want to delete a temporary table
named, emp, created using the declare global temporary table statement,
issue the following statement:

drop table session.emp

All temporary tables are deleted automatically at the end of the session.

The Drop statement has the following format:

[exec sql] drop objecttype [schema.]objectname {, [schema.]objectname};

objecttype

Is either a table, view, or index.

objectname

Is the name of a table, view, or index.

Drop

438 SQL Reference Guide

Embedded Usage: Drop

You cannot use host language variables in an embedded Drop SQL statement.
However, the Drop SQL statement can be used in an embedded SQL execute
immediate statement.

Locking: Drop

The Drop SQL statement takes an exclusive lock on the specified table.

Related Statements: Drop

For related information on the Drop SQL statement, see the following SQL
statement descriptions in this chapter:

Create Table (see page 369)

Declare Global Temporary Table (see page 420)

Create View (see page 405)

Examples: Drop

The following are Drop SQL statement examples:

1. Drop the employee and dept tables.

drop table employee, dept;

2. Drop the salary table and its index, salidx, and the view, emp_sal.

drop salary, salidx,
 accounting.emp_sal;

3. In an embedded program, drop two views.

exec sql drop view tempview1, tempview2;

Drop Dbevent

Using SQL Statements 439

Drop Dbevent
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be the owner of a database event. If
applications are currently registered to receive the database event, the
registrations are not dropped. If the database event was raised prior to being
dropped, the database event notifications remain queued, and applications can
receive them using the get dbevent statement.

The Drop Dbevent statement drops the specified database event.

The Drop Dbevent statement has the following format:

[exec sql] drop dbevent [schema.]event_name;

Embedded Usage: Drop Dbevent

In an embedded Drop Dbevent SQL statement, event_name cannot be
specified using a host string variable. Event_name can be specified as the
target of a dynamic SQL statement string.

Related Statements: Drop Dbevent

For related information on the Drop Dbevent SQL statement, see the following
SQL statement descriptions in this chapter:

Create Dbevent (see page 319)

Grant (privilege) (see page 480)

Raise Dbevent (see page 555)

Register Dbevent (see page 560)

Remove Dbevent (see page 566)

Example: Drop Location

The following example deletes the specified location:

drop location extra_work_disk;

Drop Group

440 SQL Reference Guide

Drop Group
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the maintain_users privilege and be
working in a session connected with the iidbdb.

The Drop Group statement removes the specified group identifiers from the
installation. The drop group statement If any of the specified identifiers does
not exist, the DBMS Server returns an error but does not abort the statement.
Other valid existing group_ids in the statement are deleted.

A group identifier must be empty, that is, have no users in its user list, before
it can be dropped. If an attempt is made to drop a group identifier that still
has members in its user list, the DBMS Server returns an error and does not
delete the identifier. However, the statement is not aborted. Other group
identifiers in the list, if they are empty, are deleted. (Use the alter group
statement to drop all the users from a group's user list.)

Any session using a group identifier when the identifier is dropped continues to
run with the privileges defined for that group.

For more information about group identifiers, see the Database Administrator
Guide.

The Drop Group statement has the following format:

[exec sql] drop group group_id {, group_id};

Embedded Usage: Drop Group

In an embedded Drop Group SQL statement, group_id cannot be specified
using a host language variable.

Locking: Drop Group

The Drop Group SQL statement locks pages in the iiusergroup catalog of the
iidbdb.

Drop Integrity

Using SQL Statements 441

Related Statements: Drop Group

For related information on the Drop Group SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Group (see page 258)

Create Group (see page 321)

Examples: Drop Group

The following are Drop Group SQL statement examples:

1. Drop the group identifier, acct_clerk.

drop group acct_clerk;

2. In an application, drop the group identifiers, tel_sales and temp_clerk.

exec sql drop group tel_sales, temp_clerk;

Drop Integrity
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must own the specified table.

The Drop Integrity statement removes the specified integrity constraints from
the specified table. To remove all the constraints currently defined for the
specified table, use the keyword all. To remove individual constraints, use the
integer list. To obtain the integer equivalents for integrity constraints, execute
the help integrity statement.

When integrities are dropped from a table, the DBMS Server updates the date
and timestamp of that table.

After integrities are dropped from a table, the DBMS Server recreates query
plans for repeat queries and database procedures when an attempt is made to
execute the repeat query or database procedure.

Note: The drop integrity statement does not remove constraints defined using
the create table and alter table statements.

The Drop Integrity statement has the following format:

[exec sql] drop integrity on table_name all | integer {, integer};

Drop Location

442 SQL Reference Guide

Embedded Usage: Drop Integrity

In an embedded Drop Integrity SQL statement, table_name or integer cannot
be represented with host language variables.

Related Statements: Drop Integrity

See Create Integrity (see page 333) in this chapter.

Examples: Drop Integrity

The following are Drop Integrity SQL statement examples:

1. Drop integrity constraints 1, 4, and 5 on job.

drop integrity on job 1, 4, 5;

2. In an application, drop all the constraints against the exhibitions table.

exec sql drop integrity on exhibitions all;

Drop Location
Valid in : Interactive sessions (SQL) and emvbedded programs (ESQL).

Permission required: You must have the maintain_locations privilege and be
working in a session that is connected to the iidbdb.

The Drop Location statement deletes a name that was assigned to a physical
disk location using the create location statement. Note that you can only drop
a data or work location if no currently existing database has been extended to
it. You cannot drop other types of locations.

The Drop Location statement has the following format:

[exec sql] drop location location_name;

Embedded Usage: Drop Location

You cannot use host language variables in an embedded Drop Location SQL
statement.

Drop Procedure

Using SQL Statements 443

Locking: Drop Location

The Drop Location SQL statement locks pages in the iilocation_info catalog.

Related Statements: Drop Location

For related information on the Drop Location SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Location (see page 260)

Create Location (see page 335)

Modify (see page 524)

Drop Procedure
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be the owner of a database procedure.

The Drop Procedure statement removes a database procedure definition from
the database. Sessions that are executing the procedure are allowed to
complete before the procedure's query plan is removed from memory.

 If a procedure that is executed from another procedure is removed, the
calling procedure is retained but marked dormant, and cannot be executed
until the called procedure is restored.

The Drop Procedure statement has the following format:

[exec sql] drop procedure proc_name;

proc name

Must specify the name of the procedure to be removed.

Embedded Usage: Drop Procedure

In an embedded Drop Procedure SQL statement, a host language variable
cannot be used to represent proc_name.

Drop Profile

444 SQL Reference Guide

Related Statements: Drop Procedure

For related information on the Drop Procedure SQL statement, see the
following SQL statement descriptions in this chapter:

Create Procedure (see page 338)

Execute (see page 457)

Grant (privilege) (see page 480)

Example: Drop Procedure

The following example removes the procedure named salupdt:

drop procedure salupdt;

Drop Profile
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be a user with maintain_user privileges and be
connected to the iidbdb database.

The Drop Profile statement drops a user profile that is no longer needed.

User profiles are a set of subject privileges and other attributes that can be
applied to a user or set of users. Each user can be given a profile, which is
used to provide the default attributes for that user. A default profile,
changeable by the system administrator, is provided to determine the default
user attributes when no profile is explicitly specified.

This statement is available in dynamic SQL. It is not available in database
procedures. There are no dynamic parameters in embedded SQL.

The following table lists the drop profile statement parameters:

Parameter Description

cascade The cascade clause specifies that any users with this
profile have their profile reset to the default profile.

restrict The restrict clause specifies that if any users have this
profile the statement is rejected. This clause is the default.

The Drop Profile statement has the following format:

[exec sql] drop profile profile_name [cascade | restrict]

Drop Role

Using SQL Statements 445

Locking: Drop Profile

The Drop Profile SQL statement locks iiprofile.

Related Statements: Drop Profile

For related information on the Drop Profile SQL statement, see the following
SQL statement descriptions in this chapter:

Alter Profile (see page 261)

Create Profile (see page 345)

Example: Drop Profile

The following example drops the myprofile profile:

drop profile myprofile cascade

Drop Role
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the maintain_users privilege and be
working in a session connected with the iidbdb.

The Drop Role statement removes the specified role identifiers from the
installation. Any session using a role identifier when the identifier is dropped
continues to run with the privileges defined for that identifier. For more
information about role identifiers, see the Database Administrator Guide.

The Drop Role statement has the following format:

[exec sql] drop role role_id {, role_id};

role_id

Must be an existing role identifier. If the list of role_ids contains any that
do not exist, the DBMS Server returns an error for each non-existent
role_id, but does not abort the statement. Others in the list that are valid,
existing role identifiers, are removed.

Drop Rule

446 SQL Reference Guide

Embedded Usage: Drop Role

In an embedded Drop Role SQL statement, role_id cannot be represented with
a host language variable.

Locking: Drop Role

The Drop Role SQL statement locks pages in the iirole catalog in the iidbdb.

Related Statements: Drop Role

For related information on the Drop Role SQL statement, see the following SQL
statement descriptions in this chapter:

Create Role (see page 348)

Alter Role (see page 265)

Example: Drop Role

The following example drops the sales_report role identifier:

drop role sales_report;

Drop Rule
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be the owner of a rule.

The Drop Rule statement removes the specified rule from the database. (A
rule is dropped automatically if the table on which the rule is defined is
dropped.)

The Drop Rule statement has the following format:

[exec sql] drop rule [schema.]rulename;

Embedded Usage: Drop Rule

In an embedded Drop Rule SQL statement, a host language variable cannot be
used to represent the rule name.

Drop Security_Alarm

Using SQL Statements 447

Related Statements: Drop Rule

For related information on the Drop Rule SQL statement, see the following SQL
statement descriptions in this chapter:

Create Rule (see page 352)

Create Procedure (see page 338)

Example: Drop Rule

The following example drops the chk_name rule:

drop rule chk_name;

Drop Security_Alarm
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must be the owner of the tables. To drop database or
installation security alarms, you must have security privilege and be connected
to the iidbdb.

The Drop Security_Alarm statement deletes one or more security alarms for
the specified table. To create security alarms, use the create security_alarm
statement. To display the security alarms defined for a table, use the help
security_alarm statement.

The Drop Security Alarm statement allows alarms to be dropped by name or
by numeric ID, and to allow alarms on a database or installation to be
specified. (To see the numeric ID, use the help security_alarm statement.) To
drop all security alarms defined for a table, specify all.

The Drop Security Alarm statement has the following format:

[exec sql] drop security_alarm on [table] table_name |database
 dbname | current installation
all | integer | alarmname {, integer | alarmname}

Embedded Usage: Drop Security_Alarm

You cannot use host language variables in an embedded Drop Security_Alarm
SQL statement.

Drop Security_Alarm

448 SQL Reference Guide

Locking: Drop Security_Alarm

The Drop Security_Alarm SQL statement locks the tables on which the security
alarms were created, and the iirelation, iiqrytext, and iiprotect system
catalogs.

Related Statements: Drop Security_Alarm

For related information on the Drop Security_Alarm SQL statement, see the
following SQL statement descriptions in this chapter:

Disable Security_Audit (see page 433)

Create Security_Alarm (see page 362)

Enable Security_Audit (see page 452)

Examples: Drop Security_Alarm

The following are Drop Security_Alarm SQL statement examples:

1. Delete a security alarm for the employee table.

drop security_alarm employee 1;

2. Drop a table security alarm and an installation alarm.

drop security_alarm on emp 2;
drop security_alarm on current installation bad_update ;

Drop Sequence

Using SQL Statements 449

Drop Sequence
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the ”create_sequence” privilege.

The Drop Sequence statement deletes a sequence from the database catalog.

For more information about sequences, see the Database Administrator Guide.

The Drop Sequence statement has the following format:

[exec sql] drop sequence [schema.]sequence_name;

sequence_name

Must map to an existing sequence. If the sequence name list contains any
that do not exist, the DBMS Server returns an error for each non-existent
sequence name, but does not abort the statement. Others in the list that
are valid, existing sequences are removed.

Locking: Drop Sequence

The Drop Sequence SQL statement uses logical locks that allow multiple
transactions to retrieve and update the sequence value while preventing
changes to the underlying sequence definition. The logical lock is held until the
end of the transaction.

Related Statements: Drop Sequence

For related information on the drop Sequence SQL statement, see the
following SQL statement descriptions in this chapter:

Alter Sequence (see page 271)

Create Sequence (see page 364)

Examples: Drop Sequence

The following example deletes sequence “XYZ”:

drop sequence XYZ

Drop Synonym

450 SQL Reference Guide

Drop Synonym
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: To drop a synonym that resides in a schema owned by
the session's effective user, omit the schema parameter. To drop a synonym
that resides in a schema owned by the session's effective group or role,
specify the schema parameter.

The Drop Synonym statement deletes one or more synonyms from a database.
A synonym is an alias (alternate name) for a table, view, or index; synonyms
are created using the Create Synonym (see page 367)

Dropping a synonym causes the DBMS Server to re-compile any repeat query
or database procedure that references the alias. Dropping a synonym has no
effect on views or permissions defined using the synonym.

When a table, view, or index is dropped (using the drop statement), all
synonyms that have been defined for it are dropped.

The Drop Synonym statement has the following format:

[exec sql] drop synonym [schema.]synonym_name {, [schema.]synonym_name};

Embedded Usage: Drop Synonym

You cannot use host language variables in an embedded Drop Synonym SQL
statement.

Locking: Drop Synonym

The Drop Synonym SQL statement takes an exclusive lock on the object for
which the synonym was defined.

Related Statements: Drop Synonym

For related information on the Drop Synonym SQL statement, see Create
Synonym (see page 367) in this chapter.

Example: Drop Synonym

The following example deletes a synonym for the authors table:

drop synonym writers;

Drop User

Using SQL Statements 451

Drop User
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the maintain_users privilege and be
working in a session that is connected to the iidbdb.

The Drop User statement deletes an existing user. To define a new user, use
the create user statement. To change the characteristics of an existing user,
use the alter user statement. For details about users, see the Database
Administrator Guide.

Users that own databases cannot be dropped. If a user that owns database
objects is dropped, the objects are not dropped.

The Drop User statement has the following format:

[exec sql] drop user user_name;

Embedded Usage: Drop User

You cannot use host language variables in an embedded Drop User SQL
statement.

Locking: Drop User

The Drop User SQL statement locks pages in the iiuser system catalog in the
iidbdb.

Related Statements: Drop User

For related information on the Drop User SQL statement, see the following SQL
statement descriptions in this chapter:

Alter User (see page 282)

Create User (see page 400)

Grant (privilege) (see page 480)

Example: Drop User

The following example drops a user:

drop user betsy;

Enable Security_Audit

452 SQL Reference Guide

Enable Security_Audit
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the maintain_audit privilege and be
working in a session that is connected to the iidbdb.

The Enable Security_Audit statement enables the security administrator to
turn on security logging for the specified type of security event.

To turn security logging off, use the disable security_audit statement. This
statement cannot be issued from within a multi-statement transaction.

The following table lists valid audit_type parameters:

Parameter Description

Alarm Log all security events generated by create security_alarm
statements issued on tables.

Database Log all types of access by all users to all database objects,
including use of the ckpdb, rollforwarddb, and auditdb
utilities.

Dbevent Log all create dbevent, raise dbevent, register dbevent,
remove dbevent, and drop dbevent statements.

Location Log all access to location objects (create location, alter
location and drop location statements) by all users.

Procedure Log all access to database procedures (create procedure
and drop procedure statements and procedure execution)
by all users.

Role Log role events (set role statement with -r flag)

Rule Log rule events (create rule, drop rule, and firing of rules)

Security Log all types of access by all users to all security-related
objects.

Table Log all types of access by all users to all tables.

User Log all changes to user and group information, including
runtime verification of user and group names.

View Log all types of access by all users to all views.

Level
('security_label')

Log all types of access by all users to all events that
dominate specific security audit labels.

Row Log all types of access by all users to all row-level events.

Query_Text Log all types of access by all users to all the detail
information for querytext events.

Enable Security_Audit

Using SQL Statements 453

Parameter Description

Resource Log all types of access by all users to violations of
resource limits.

All Logs all types of security events.

To turn on all the preceding types of auditing, specify enable security_audit all.
For users that are assigned the audit_all privilege (using the create user or
grant statement), all security events are logged, regardless of the types of
security logging enabled using the enable security_audit statement.

The Enable Security_Audit statement has the following format:

[exec sql] restrictions:enable security_audit statement in transactionsenable
security_audit audit_type | all;

Embedded Usage: Enable Security_Audit

You cannot use host language variables in an embedded Enable Security_Audit
SQL statement.

Locking: Enable Security_Audit

The Enable Security_Audit SQL statement locks pages in the iisecuritystate
system catalog.

Related Statements: Enable Security_Audit

For related information on the Enable Security_Audit SQL statement, see the
following SQL statement descriptions in this chapter:

Drop Security_Alarm (see page 447)

Disable Security_Audit (see page 433)

Create Security_Alarm (see page 362)

Example: Enable Security_Audit

The following example turns on all forms of auditing:

enable security_audit all;

Enddata

454 SQL Reference Guide

Enddata
Valid in : Embedded programs (ESQL).

Permission required: Available for all users.

The Enddata statement terminates retrieval of long varchar or long byte data
in a data handler routine. Long varchar and long byte data is retrieved using
the get data statement, described in this chapter.

The Enddata statement has the following format:

exec sql enddata;

Examples: Enddata

For examples of the Enddata SQL statement in the context of a data handler
routine, see the chapter “Embedded SQL.”

End Declare Section
Valid in: Embedded programs (ESQL).

Permission required: Available for all users.

The End Declare Section statement marks the end of a host language variable
declaration section.

A host language variable declaration section contains declarations of host
language variables for use in an embedded SQL program. The begin declare
section statement starts each variable declaration section. For more
information about declaration sections and host language variables, see Begin
Declare (see page 286).

The End Declare Section statement has the following format:

exec sql end declare section;

Endselect

Using SQL Statements 455

Related Statements: End Declare Section

For related information on the End Declare Section, see the following SQL
statement descriptions in this chapter:

Begin Declare (see page 286)

Declare Table (see page 426)

Include (see page 506)

Endselect
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Endselect statement terminates embedded SQL select loops. A select loop
is a block of code delimited by begin and end statements and associated with a
select statement. As the select statement retrieves rows from the database,
each row is processed by the code in the select loop. For more information
about select loops, see Select Loops (see page 603).

When the endselect statement is executed, the program stops retrieving rows
from the database and program control is transferred to the first statement
following the select loop.

The endselect statement must be inside the select loop that it is intended to
terminate. If an endselect statement is placed inside a forms code block that is
syntactically nested within a select loop, the statement ends the code block as
well as the select loop.

The statement must be terminated according to the rules of the host language.

Note: To find out how many rows were retrieved before the endselect
statement was issued, check the sqlerrd(3) variable of the SQLCA. For details
about the SQLCA, see the chapter “Embedded SQL.”

The Endselect statement has the following format:

exec sql endselect;

Locking: Endselect

If autocommit is off (default behavior), the Endselect SQL statement does not
affect locking. All locks held before the Endselect SQL statement remain. If
autocommit is on, the Endselect SQL statement ends the query and locks are
dropped.

Endselect

456 SQL Reference Guide

Related Statements: Endselect

For related information on the Endselect SQL statement, see Select Loops (see
page 603).

Example: Endselect

The following example breaks out of a select loop on a data loading error:

exec sql select ename, eno into :ename, :eno
 from employee;
exec sql begin;
 load ename, eno into data set;
 if error then
 print 'Error loading ', ename, eno;
 exec sql endselect;
 end if
exec sql end;
/* endselect transfers control to here */

Execute

Using SQL Statements 457

Execute
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Execute statement executes the prepared statement specified by
statement_name. Execute can be used to carry out any statement that can be
prepared, with the exception of the select statement.

Note: To execute a prepared select statement, use the execute immediate
statement. For more information, see Execute Immediate (see page 461).

The Execute statement has the following format:

exec sql execute statement_name
 [using variable {, variable} | using descriptor descriptor_name];

statement_name

Must be a valid object name specified using a regular or delimited
identifier or a host language variable. It must identify a valid prepared
statement. If the statement identified by statement_name is invalid, the
DBMS Server issues an error and aborts the execute statement. (A
prepared statement is invalid if a transaction was committed or rolled back
after the statement was prepared or if an error occurred while preparing
the named statement.) Similarly, if the statement name refers to a cursor
update or delete whose associated cursor is no longer open, the DBMS
Server issues an error. For more information, see Update (see page 637)
and Delete (see page 427).

Within the prepared statement, question marks (?) can be used as
placeholders for parameters to be specified at runtime. If question marks
are used for replaceable parameters, the using clause must be specified in
the statement. If the number and data types of the expressions specified
by question marks in the prepared statement are known, use the using
variable_list alternative. The number of the variables listed must
correspond to the number of question marks in the prepared statement,
and each must be type-compatible with its usage in the prepared
statement.

Note: To use long varchar columns as variables in the using clause, specify a
datahandler clause in place of the host language variable. For details about
data handler routines, see the Embedded SQL Companion Guide. The syntax
for the datahandler clause is as follows:

datahandler(handler_routine ([handler_arg]))[:indicator_var]

Execute

458 SQL Reference Guide

The following example prepares a statement containing one question mark
from a buffer and executes it using a host language variable:

statement_buffer =

 'delete from ' + table_name +

 ' where code = ?';

exec sql prepare del_stmt from :statement_buffer;

...

exec sql execute del_stmt using :code;

The value in the variable, code, replaces the '?' in the where clause of the
prepared delete statement.

If the number and data types of the parameters in the prepared statement are
not known until runtime, the using descriptor alternative must be used. In this
alternative, the descriptor_name identifies an SQLDA, a host language
structure that must be allocated prior to its use. The SQLDA includes the
sqlvar array. Each element of sqlvar is used to describe and point to a host
language variable. The execute statement uses the values placed in the
variables pointed to by the sqlvar elements to execute the prepared
statement.

When the SQLDA is used for input, as it is in this case, your application
program must set the sqlvar array element type, length and data area for
each portion of the prepared statement that is specified by question marks
prior to executing the statement. Your application program can use one of the
following methods to supply that information:

 When preparing the statement, the program can request all type and
length information from the interactive user.

 Before preparing the statement, the program can scan the statement
string, and build a select statement out of the clauses that include
parameters. The program can prepare and describe this select statement
to collect data type information to be used on input.

 If another application development tool is being used to build the dynamic
statements (such as an 4GL frame or a VIFRED form), the data type
information included in those objects can be used to build the descriptor.
An example of this method is shown in the examples.

In addition, the program must also correctly set the sqld field in the SQLDA
structure.

Execute

Using SQL Statements 459

The variables used by the using clause can be associated with indicator
variables if indicator variables are permitted with the same statement in the
non-dynamic case.

For example, because indicator variables are permitted in the insert statement
values clause, the following dynamically defined insert statement can include
indicator variables (name_ind and age_ind) in the execute statement:

statement_buffer = 'insert into employee (name, age) values (?, ?)';
exec sql prepare s1 from :statement_buffer;
exec sql execute s1 using :name:name_ind, :age:age_ind;

However, a host structure variable cannot be used in the using clause, even if
the named statement refers to a statement that allows a host structure
variable when issued non-dynamically.

This statement must be terminated according to the rules of the host
language.

Locking: Execute

The locking behavior of the Execute SQL statement depends on the statement
that is executed.

Related Statements: Execute

For related information on the Execute SQL statement, see the following SQL
statement descriptions in this chapter:

Describe (see page 431)

Prepare (see page 547)

Execute

460 SQL Reference Guide

Examples: Execute

The following are Execute SQL statement examples:

1. Even though the commit statement can be prepared, once the statement
is executed, the prepared statement becomes invalid.

For example, the following code causes an error on the second execute
statement.

statement_buffer = 'commit';

 exec sql prepare s1 from :statement_buffer;

 process and update data;
 exec sql execute s1;
 /* Once committed, 's1' is lost */

 process and update more data;
 exec sql execute s1;
 /* 's1' is NOT a valid statement name */

2. When leaving an application, each user deletes all their rows from a
working table. User rows are identified by their different access codes. One
user can have more than one access code.

read group id from terminal;
statement_buffer =
 'delete from ' + group_id +
 ' where access_code = ?';

exec sql prepare s2 from :statement_buffer;

read access_code from terminal;
loop while (access_code <> 0)

exec sql execute s2 using :access_code;
 read access_code from terminal;

end loop;
exec sql commit;

Execute Immediate

Using SQL Statements 461

Execute Immediate
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Execute Immediate statement executes an SQL statement specified as a
string literal or in a host language variable.

Unlike the prepare and execute sequence, this statement does not name or
encode the statement and cannot supply parameters.

The Execute Immediate statement is equivalent to the following statements:

exec sql prepare statement_name
 from :statement_buffer;
exec sql execute statement_name;
'Forget' the statement_name;

The execute immediate can be used:

 If a dynamic statement needs to be executed just once in your program

 When a dynamic select statement is to be executed and the result rows
are to be processed with a select loop

 In drop statements, where the name of the object to be dropped is not
known at the time the program is compiled

If the statement string is to be executed repeatedly and it is not a select
statement, use the prepare and execute statements instead. For more
information about the alternatives available for executing dynamic statements,
see the chapter “Embedded SQL.”

The execute immediate statement must be terminated according to the rules
of the host language. If the statement string is blank or empty, the DBMS
Server returns a runtime syntax error.

The following SQL statements cannot be executed using execute immediate:

 call

 close

 connect

 declare

 disconnect

 enddata

 fetch

 get data

Execute Immediate

462 SQL Reference Guide

 get dbevent

 help

 include

 inquire_sql

 open

 prepare to commit

 put data

 set_sql

 whenever

 other dynamic SQL statements

The statement string must not include exec sql, any host language
terminators, or references to variable names. If your statement string includes
embedded quotes, it is easiest to specify the string in a host language
variable. If a string that includes quotes as a string constant is to be specified,
remember that quoted characters within the statement string must follow the
SQL string delimiting rules.

If your host language delimits strings with double quotes, the quoted
characters within the statement string must be delimited by the SQL single
quotes. For complete information about embedding quotes within a string
literal, see the Embedded SQL Companion Guide.

If the statement string is a cursor update or cursor delete, the declaration of
the named cursor must appear in the same file as the execute immediate
statement executing the statement string.

The into or using clause can only be used when the statement string is a select
statement. The into clause specifies variables to store the values returned by a
select. Use this option when the program knows the data types and lengths of
the result columns before the select executes. The data type of the variables
must be compatible with the associated result columns. For information about
the compatibility of host language variables and SQL data types, see the
Embedded SQL Companion Guide.

Note: To use long varchar variables in the into clause, specify a datahandler
clause in place of the host language variable. The syntax for the datahandler
clause is as follows:

datahandler(handler_routine ([handler_arg]))[:indicator_var]

Execute Immediate

Using SQL Statements 463

If the program does not know the types and lengths of the result columns until
runtime, specify the using clause. The using clause specifies an SQL Descriptor
Area (SQLDA), a host language structure having, among other fields, an array
of sqlvar elements. Each sqlvar element describes and points to a host
language variable. When specifying the using clause, the result column values
are placed in the variables to which the sqlvar elements point.

If the using clause is to be used, the program can first prepare and describe
the select statement. This process returns data type, name, and length
information about the result columns to the SQLDA. Your program can use
that information to allocate the necessary variables before executing the
select.

If the select statement returns more than one row, include the begin and end
statement block. This block defines a select loop. The DBMS Server processes
each row that the select returns using the program code that you specify in
the select loop. The program code inside the loop must not include any other
database statements, except the endselect statement. If the select returns
multiple rows and a select loop is not supplied, the application receives only
the first row and an error to indicate that others were returned but unseen.

The Execute Immediate statement has the following format:

exec sql execute immediate statement_string
 [into variable {, variable} | using [descriptor] descriptor_name
 [exec sql begin;
 program_code
 exec sql end;]]

Locking: Execute Immediate

The locking behavior of the Execute Immediate SQL statement is dependent
on which statement is executed.

Related Statements: Execute Immediate

For related information on the Execute Immediate SQL statement, see these
SQL statement descriptions in this chapter:

Execute (see page 457)

Prepare (see page 547)

Execute Immediate

464 SQL Reference Guide

Examples: Execute Immediate

The following are Execute Immediate SQL statement examples:

1. The following example saves a table until the first day of the next year.
Next_year and current_year are integer variables.

/* There is no need for a FROM clause in this
** SELECT
*/
exec sql select date_part('year', date('now'))
 into :current_year;

next_year = current_year + 1;

statement_buffer = 'save ' + table_name +
 ' until Jan 1 ' + next_year;
exec sql execute immediate :statement_buffer;

2. The following example reads an SQL statement from the terminal into a
host string variable, statement_buffer. If the statement read is 'quit' the
program ends. If an error occurs upon execution, the program informs the
user.

exec sql include sqlca;

read statement_buffer from terminal;
loop while (statement_buffer <> 'QUIT')

exec sql execute immediate :statement_buffer;
 if (sqlcode = 0) then
 exec sql commit;
 else if (sqlcode = 100) then
 print 'No qualifying rows for statement:';
 print statement_buffer;
 else
 print 'Error :', sqlcode;
 print 'Statement :', statement_buffer;
 end if;
 read statement_buffer from terminal;
end loop;

Execute Procedure

Using SQL Statements 465

Execute Procedure
Valid in : Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: To execute a procedure that you do not own, you must
specify the schema parameter, and must have execute privilege for the
procedure.

The Execute Procedure statement executes the database procedure identified
by proc_name. Proc_name can be specified using a literal or a host string
variable. Database procedures can be executed from interactive SQL (the
Terminal Monitor), an embedded SQL program, or from another database
procedure. The first execution of the database procedure can take slightly
longer than subsequent executions. For the first execution, the DBMS Server
must create a query execution plan.

This statement can be executed dynamically or non-dynamically. When
executing a database procedure, you generally provide values for the formal
parameters specified in the definition of the procedure. (To define a database
procedure, use the create procedure statement.)

If an execute procedure statement includes a result row clause, it can only be
executed non-dynamically.

The Execute Procedure statement has the following formats:

Non-dynamic version:

[exec sql] execute procedure [schema.]proc_name
 [(param_name=param_spec {,param_name= param_spec})] |
 [(parm = session.global temporary table_name)]
 [result row (variable [:indicator_var] {,
variable[:indicator_var]})]
 [into return_status]
 [exec sql begin;program code;
 exec sql end;]

global temporary table_name

Is the name of a global temporary table already declared in the session in
which the execute procedure is issued; it must be preceded by the
“session.” qualifier (as are all other references to global temporary tables
in an SQL session).

param_spec

Is a literal value, a host language variable containing the value to be
passed (:hostvar), or a host language variable passed by reference
(byref(:host_variable)).

Execute Procedure

466 SQL Reference Guide

Dynamic version:

[exec sql] execute procedure [schema.]proc_name
 [using [descriptor] descriptor_name]
 [into return_status]

Passing Parameters - Non-Dynamic Version

In the non-dynamic version of the execute procedure statement, parameters
can be passed by value or by reference.

By value - To pass a parameter by value, specify param_name = value. When
passing parameters by value, the database procedure receives a copy of the
value. Values can be specified using:

 Numeric or string literals

 SQL constants (such as today or user)

 Host language variables

 Arithmetic expressions

The data type of the value assigned to a parameter must be compatible with
the data type of the corresponding parameter in the procedure definition.
Specify date data using quoted character string values, and money using
character strings or numbers. If the data types are not compatible, the DBMS
Server issues an error and does not execute the procedure.

By reference - To pass a parameter by reference, specify the parameter as
param_name = byref(:host_variable). When passing parameters by reference,
the database procedure can change the contents of the variable. Any changes
made by the database procedure are visible to the calling program.
Parameters cannot be passed by reference in interactive SQL.

Each param_name must match one of the parameter names in the parameter
list of the definition of the procedure. Param_name must be a valid object
name, and can be specified using a quoted or unquoted string or a host
language variable.

Execute Procedure

Using SQL Statements 467

Passing Parameters - Dynamic Version

In the dynamic version of the execute procedure statement, the
descriptor_name specified in the using clause identifies an SQL Descriptor Area
(SQLDA), a host language structure allocated at runtime.

Prior to issuing the execute procedure statement, the program must place the
parameter names in the sqlname fields of the SQLDA sqlvar elements and the
values assigned to the parameters must be placed in the host language
variables pointed to by the sqldata fields. When the statement is executed, the
using clause directs the DBMS Server to use those parameter names and
values.

Parameter names and values follow the same rules for use and behavior when
specified dynamically as those specified non-dynamically. For example,
because positional referencing is not allowed when you issue the statement
non-dynamically, when you use the dynamic version, any sqlvar element
representing a parameter must have entries for both its sqlname and sqldata
fields. Also, the names must match those in the definition of the procedure
and the data types of the values must be compatible with the parameter to
which they are assigned.

The DBMS Server assigns a null or a default value to any parameter in the
definition of the procedure that is not assigned an explicit value when the
procedure is executed. If the parameter is not nullable and does not have a
default, an error is issued.

For example, for the create statement

create procedure p (i integer not null,
 d date, c varchar(100)) as ...

the following associated execute statement implicitly assigns a null to
parameter d.

exec sql execute procedure p (i = 123,
 c = 'String');

When executing a procedure dynamically, set the SQLDA sqld field to the
number of parameters that you are passing to the procedure. The sqld value
tells the DBMS Server how many sqlvar elements the statement is using (how
many parameters are specified). If the sqld element of the SQLDA is set to 0
when you dynamically execute a procedure, it indicates that no parameters
are being specified, and if there are parameters in the formal definition of the
procedure, these are assigned null or default values when the procedure
executes. If the procedure parameter is not nullable and does not have a
default, an error is issued.

A parameter cannot be specified in the execute statement that was not
specified in the create statement.

Execute Procedure

468 SQL Reference Guide

Return_status is an integer variable that receives the return status from the
procedure. If a return_status is not specified in the database procedure, or the
return statement is not executed in the procedure, 0 is returned to the calling
application.

Note: The into clause cannot be used in interactive SQL.

The statement must be terminated according to the rules of the host language.

Temporary Table Parameter

The temporary table must have been declared prior to procedure execution.
However, it does not have to be populated (because the procedure itself can
place rows into the table). Upon invocation of the procedure, Ingres binds the
executing procedure unambiguously to the global temporary table instance of
the invoking session. This permits any number of users, each with their own
temporary table instance, to execute the procedure concurrently.

Example:

execute procedure gttproc (parm1 = session.mygtt1);

This statement invokes the procedure gttproc, passing the global temporary
table session.mygtt1 as its parameter. (The name used for the actual
parameter is inconsequential.)

Limitations of Temporary Table Parameter

When a global temporary table is passed as a procedure parameter, it must be
the only parameter in both the calling and called parameter list (that is, in
both the execute procedure and create procedure statements).

The columns of the temporary table declaration and the elements in the set of
parameter definition must exactly match in degree (number), name, type, and
nullability. A check is performed during the execute procedure compile to
assure that this constraint is met.

Temporary table parameters cannot be used in nested procedure calls. Global
temporary tables cannot be declared within a procedure; hence no locally
created temporary table can be passed in an execute procedure statement
nested in another procedure. Likewise, a set of parameter cannot be specified
in a nested execute procedure statement.

Execute Procedure

Using SQL Statements 469

Execute Procedure Loops

Use an execute procedure loop to retrieve and process rows returned by a row
producing procedure using the result row clause. The result row clause
identifies the host variables into which the values produced by the procedure
return row statement are loaded. The entries in the result row clause must
match in both number and type the corresponding entries in the result row
declaration of the procedure. For more information, see Create Procedure (see
page 338).

The begin-end statements delimit the statements in the execute procedure
loop. The code is executed once for each row as it is returned from the row
producing procedure. Statements cannot be placed between the execute
procedure statement and the begin statement.

During the execution of the execute procedure loop, no other statements that
access the database can be issued - this causes a runtime error. However, if
your program is connected to multiple database sessions, you can issue
queries from within the execute procedure loop by switching to another
session. To return to the outer execute procedure loop, switch back to the
session in which the execute procedure statement was issued. To avoid
preprocessor errors, the nested queries cannot be within the syntactic scope of
the loop but must be referenced by a subroutine call or some form of a goto
statement.

There are two ways to terminate an execute procedure loop: run it to
completion or issue the endexecute statement. A host language goto
statement cannot be used to exit or return to the execute procedure loop.

To terminate an execute procedure loop before all rows are retrieved the
application must issue the endexecute statement. The endexecute statement
must be syntactically within the begin-end block that delimits the endxecute
procedure loop. For more information, see (see page 465)Execute Procedure.

The following example retrieves a set of rows from a row producing procedure:

exec sql execute procedure deptsal_proc (deptid = :deptno)
result row (:deptname, :avgsal, :empcount);
exec sql begin;
 browse data;
if error condition then
exec sql endexecute;
 end if;
exec sql end;”

Locking: Execute Procedure

The locks taken by the Execute Procedure SQL statement depend on the
statements that are executed inside the procedure. All locks are taken
immediately when the procedure is executed.

Execute Procedure

470 SQL Reference Guide

Related Statements: Execute Procedure

For related information on the Execute Procedure SQL statement, see the
following SQL statement descriptions in this chapter:

Create Procedure (see page 338)

Drop Procedure (see page 443)

Grant (privilege) (see page 480)

Examples: Execute Procedure

The following examples assume the following Create Procedure statement has
been successfully executed:

exec sql create procedure p
 (i integer not null,
 d date,
 c varchar(100)) as ...

1. The following example uses a host language variable, a null constant, and
an empty string.

exec sql execute procedure p
 (i=:ivar, d=null, c='')
 into :retstat;

2. The following example assumes the c parameter is null and uses a null
indicator for the d parameter.

exec sql execute procedure p
 (i=:ivar, d=:dvar:ind)
 into :retstat;

3. The following example demonstrates the use of the whenever statement
for intercepting errors and messages from a database procedure.

exec sql whenever sqlerror goto err_exit;
exec sql whenever sqlmessage call sqlprint;

exec sql execute procedure p into :retstat;
...

err_exit:
exec sql inquire_sql (:errbug = errortext);

4. The following example demonstrates a dynamically-executed execute
procedure statement. The example creates and executes the dynamic
equivalent of the following statement.

exec sql execute procedure enter_person
 (age = :i4_var, comment = :c100_var:indicator);

Execute Procedure

Using SQL Statements 471

Dynamic version:

exec sql include sqlda;
allocate an SQLDA with 10 elements;
sqlda.sqln = 10;
sqlda.sqld = 2;

/* 20-byte character for procedure name */
proc_name = 'enter_person';

/* 4-byte integer to put into parameter "age" */
sqlda.sqlvar(1).sqltype = int;
sqlda.sqlvar(1).sqllen = 4;
sqlda.sqlvar(1).sqldata = address(i4_var)
sqlda.sqlvar(1).sqlind = null;
sqlda.sqlvar(1).sqlname ='age';

/* 100-byte nullable character to put into the
** parameter "comment"
*/
sqlda.sqlvar(2).sqltype = char;
sqlda.sqlvar(2).sqllen = 100;
sqlda.sqlvar(2).sqldata = address(c100_var);
sqlda.sqlvar(2).sqlind = address(indicator);
sqlda.sqlvar(2).sqlname = 'comment';

exec sql execute procedure :proc_name
 using descriptor sqlda;

5. Call a database procedure, passing parameters by reference. This enables
the procedure to return the number of employees that received bonuses
and the total amount of bonuses conferred.

exec sql execute procedure grant_bonuses
 (ecount = byref(:number_processed),
 btotal = byref (:bonus_total));

Fetch

472 SQL Reference Guide

Fetch
Valid in : Embedded programs (ESQL).

Permission required: All users.

The Fetch statement retrieves the results of the select statement that is
executed when a cursor is opened. When a cursor is opened, the cursor is
positioned immediately before the first result row. The fetch statement
advances the cursor to the first (or next) row and loads the values in that row
into the specified variables. Each fetch statement advances the cursor one
row.

There must be a one-to-one correspondence between variables specified in the
into or using clause of fetch and expressions in the select clause of the declare
cursor statement. If the number of variables does not match the number of
expressions, the preprocessor generates a warning and, at runtime, the
SQLCA variable sqlwarn3 is set to W.

The variables listed in the into clause can include structures that substitute for
some or all of the variables. The structure is expanded by the preprocessor
into the names of its individual variables; therefore, placing a structure name
in the into clause is equivalent to enumerating all members of the structure in
the order in which they were declared.

The Fetch statement has the following formats:

Non-dynamic version:

exec sql fetch [fetch_orientation] [from] cursor_name
 into variable[:indicator_var] {, variable[:indicator_var]};

fetch_orientation

Is optional. The accepted orientations are next, prior, first, last, absolute n
and relative n (where n is a postive or negative integer or 0). The default
is next. The row retrieved is based upon the current position of the cursor
in the result set.

Note: To retrieve long varchar columns, specify a datahandler clause in
place of the host language variable. For details about data handler
routines, see the chapter “Embedded SQL” and the Embedded SQL
Companion Guide. The syntax for the datahandler clause is as follows:

datahandler(handler_routine ([handler_arg]))[:indicator_var]

Dynamic version:

exec sql fetch [from] cursor_name using descriptor descriptor_name;

Fetch

Using SQL Statements 473

The descriptor associated with the using descriptor clause must identify an
SQLDA that contains type descriptions of one or more host language variables.
Each element of the SQLDA is assigned the corresponding value in the current
row of the cursor. For details, see the chapter “Embedded SQL.”

The variables listed in the into clause or within the descriptor must be type-
compatible with the values being retrieved. If a result expression is nullable,
the host language variable that receives that value must have an associated
null indicator.

If the statement does not fetch a row-a condition that occurs after all rows in
the set have been processed-the sqlcode of the SQLCA is set to 100 (condition
not found) and no values are assigned to the variables.

The cursor identified by cursor_name must be an open cursor. Cursor_name
can be either a string constant or a host language variable.

The statement must be terminated according to the rules of the host language.

Readonly Cursors and Performance

The performance of the fetch statement is improved if the cursor associated
with the statement is opened as a read-only cursor.

For read-only cursors, the DBMS Server prefetches rows to improve
performance. To disable prefetching or specify the number of rows that are
prefetched, use the set_sql(prefetchrows) statement.

Related Statements: Fetch

For related information on the Fetch SQL statement, see the following SQL
statement descriptions in this chapter:

Delete Cursor (see page 410)

Open (see page 544)

Close (see page 289)

Select (interactive) (see page 582)

Update (see page 637)

Fetch

474 SQL Reference Guide

Examples: Fetch

The following are Fetch SQL statement examples:

1. Typical fetch, with associated cursor statements.

exec sql begin declare section;
 name character_string(20);
 age integer;
exec sql end declare section;

exec sql declare cursor1 cursor for
 select ename, age
 from employee
 order by ename;

...

exec sql open cursor1 for readonly;

loop until no more rows
 exec sql fetch cursor1
 into :name, :age;
 print name, age;
end loop;

exec sql close cursor1;

Assuming the structure:

Emprec
 name character_string(20),
 age integer;

the fetch in the above example can be written as:

exec sql fetch cursor1
 into :emprec;

The preprocessor interprets that statement as though it had been written:

exec sql fetch cursor1
 into :emprec.name, :emprec.age;

2. Fetch, using an indicator variable.

exec sql fetch cursor2 into :name,
 :salary:salary_ind;

For-EndFor

Using SQL Statements 475

For-EndFor
Valid in: Database procedures (DB Proc).

Permission required: Anyone with permission to create procedures.

The For-EndFor statement define a program loop driven by the rows retrieved
by the select_stmt. These statements can only be used inside a database
procedure. Repeats a series of statements while a specified condition is true.

The select statement must have an into clause so that it can return result
values into local variables in the procedure. The statement list can include any
series of legal database procedure statements, including another for
statement. The statement list is executed once for each row returned by the
select statement. After the last row from the result set of the select statement
is processed through the statement list, the for loop is terminated and
execution continues with the first statement following the endfor.

The endloop statement also terminates a for loop. When endloop is
encountered, the loop is immediately closed, the remaining rows in the result
set of the select statement (if any) are discarded, and execution continues
with the first statement following endfor. For example,

 for select_1 do

 statement_list_1

 if condition_1 then

 endloop;

 endif;

 statement_list_2;
endfor;

In this case, statement_list_1 and statement_list_2 are executed once for
each row returned by select_1. As soon as condition_1 is true,
statement_list_2 is not executed in that pass through the loop, select_1 is
closed and the entire loop is terminated.”

A for statement can be labeled. The label enables the endloop statement to
break out of a nested series of for statements to a specified level. The label
precedes for and is specified by a unique alphanumeric identifier followed by a
colon, as in the following:

A: for...

The label must be a legal object name. The endloop statement uses the label
to indicate which level of nesting to break out of. If no label is specified after
endloop, only the innermost loop currently active is closed.

For-EndFor

476 SQL Reference Guide

The following example illustrates the use of labels in nested for statements:
label_1: for select_1 do
 statement_list_1
label_2: for select_2 do
 statement_list_2
 if condition_1 then
 endloop label_1;
 elseif condition_2 then
 endloop label_2;
 endif;
 statement_list_3
 endfor;
 statement_list_4
 endfor;

In this example, there are two possible breaks out of the inner loop. If
condition_1 is true, both loops are closed, and control resumes at the
statement following the outer loop. If condition_1 is false but condition_2 is
true, the inner loop is exited and control resumes at statement_list_4.

If an error occurs during the evaluation of a for statement, the database
procedure terminates and control returns to the calling application.

The For - EndFor statement has the following format:

[label:] for select_stmt do
 statement; {statement;}
 endfor;

For-EndFor

Using SQL Statements 477

Example: For-EndFor

The following database procedure, avgsal_by_dept, returns rows containing
the department name, average salary in the department and count of
employees in the department. Any unexpected error from the select statement
terminates the loop:

create procedure avgsal_by_dept
 result row (char(15), float, int) as
declare
 deptname char(15);
 avgsal float;
 empcount int;
 err int;
begin
 err = 0;
 for select d.dept, avg(e.salary), count(*) into :deptname, :avgsal,
:empcount
 from department d, employee e
 where e.deptid = d.deptid
 group by d.deptid do
 if iierrornumber > 0 then
 err = 1;
 endloop;
 endif;
 return row(:deptname, :avgsal, :empcount);
 endfor;
return :err;
end”

Get Data

478 SQL Reference Guide

Get Data
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Get Data statement reads a segment of a long varchar or long byte
column from a table to an embedded SQL program. The get data statement is
used in data handler routines. For details about data handler routines, see and
the Embedded SQL Companion Guide.

If a data handler routine attempts to exit without issuing an enddata
statement, the DBMS Server issues a runtime error.

The host language variables for col_value, length_value, and dataend_value
must be declared to the ESQL preprocessor (in a begin declare-end declare
block).

The Get Data statement has the following format:

exec sql get data(:col_value = segment
 [, :length_value = segmentlength]
 [, :dataend_value = dataend])
 [with maxlength = maxlength_value;]

col_value

Specifies the variable to which the value from the column is assigned. The
maximum length of a long varchar or long byte column is two gigabytes.

length_value

Optional; signed 4-byte integer to which the length of the data segment is
assigned when the segment is read. If the maxlength parameter is
specified, the value returned in the segmentlength variable is less than
maxlength when the last segment is read. If the maxlength parameter is
omitted, the value returned in the segmentlength variable is either the
length of the segment variable or the number of remaining bytes,
whichever is smaller. Maxlength can be specified using a literal or a host
language variable.

dataend_value

Optional: signed 4-byte integer returns 1 if the segment is the last
segment, 0 if the segment is not the last.

maxlength_value

Optional: signed 4-byte integer specifying the number of bytes to be
returned. This value must not exceed the length of the segment variable.
Maxlength_value can be specified using a literal or a host language
variable.

Get Dbevent

Using SQL Statements 479

Related Statements: Get Data

For more information, see Put Data (see page 554).

Get Dbevent
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Get Dbevent statement receives database events for which an application
is registered. The get dbevent statement returns the next database event from
the database event queue. To obtain database event information, issue the
inquire_sql statement.

The Get Dbevent statement has the following format:
exec sql get dbevent [with nowait | wait [= wait_value]];

To specify whether the get dbevent statement waits for database events or
checks the queue and returns immediately, specify the with [no]wait clause.
By default, get dbevent checks and returns immediately.

If with wait is specified, get dbevent waits indefinitely for the next database
event to arrive. If with wait = wait_value is specified, get dbevent returns
when a database event arrives or when wait_value seconds have passed,
whichever occurs first. If get dbevent times out before a database event
arrives, no database event is returned. Wait_value can be specified using an
integer constant or integer host language variable.

The with wait option cannot be used within a select loop or a database
procedure message processing routine called as the result of the whenever
sqlmessage condition.

Related Statements: Get Dbevent

For more information, see the following SQL statement descriptions:

Create Dbevent (see page 319)

Drop Dbevent (see page 439)

Raise Dbevent (see page 555)

Register Dbevent (see page 560)

Remove Dbevent (see page 566)

Grant (privilege)

480 SQL Reference Guide

Grant (privilege)
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: Database privileges are not enforced if the user has the
security privilege or is the DBA of the current database. The grant statement
can be executed by a user who is either the owner of the target object, or has
been granted permission (using WITH GRANT Option) to use the statement on
the specific target object by another user.

The Grant (privilege) statement grants privileges on the database as a whole
or on individual tables, views, sequences or procedures. It controls access to
database objects, roles, and DBMS resources. Details about using the grant
statement with role objects (see page 496) is described in Grant (role).

To remove privileges, use the revoke statement. To determine the privileges in
effect for a session, use the dbmsinfo function. In some cases granting a
privilege imposes a restriction, and revoking the privilege removes the
restriction. For example, grant nocreate_table prevents the user from creating
tables.

Note: The grant statement is the ISO/ANSI-compliant method for controlling
access to database objects and resources.

To display granted database privileges, select data from the iidbprivileges
system catalog. For details about system catalogs, see the Database
Administrator Guide.

The Grant (privilege) statement has the following format:

[exec sql] grant all [privileges] | privilege {, privilege}
 [on [object_descriptor] [schema.]object_name {,
[schema.]object_name}]
 to public | [auth_type] auth_id {, auth_id} [with grant option];

privilege

Privileges are classed according to the type of objects they affect:

Table Privileges Control access to individual tables or views

Database Privileges Control access to database resources

Database Procedure
Privileges

Control who can execute individual database
procedures

Database Event Privileges Control who can register for and raise specific
database events

Grant (privilege)

Using SQL Statements 481

Table Privileges Control access to individual tables or views

Database Sequence
Privileges

Control who can retrieve values from individual
database sequences

object_descriptor

Specifies the type of object on which you are granting privileges.
Object_descriptor must be one of the following:

 table

 procedure

 database

 dbevent

 sequence

 current installation

The default object_descriptor is table. The object_descriptor must agree
with the privilege being granted (for example, execute privilege cannot be
granted on a table).

Privileges cannot be defined for more than one type of object in a single
grant statement. If object_descriptor is current installation, object_name
must be omitted.

object_name

Name of the table, view, procedure, database event, sequence or database
for which the privilege is being defined. The object must correspond to the
object_descriptor. For example, if object_descriptor is table, object_name
must be the name of an existing table or view.

auth_type

The type of authorization to which you are granting privileges. A grant
statement cannot contain more than one auth_type. Valid auth_types are:

 user

 group

 role

The auth_ids specified in the statement must agree with the specified
auth_type. For example, if you specify auth_type as group all of the
auth_ids listed in the statement must be group identifiers. The default
auth_type is user.

Grant (privilege)

482 SQL Reference Guide

auth_id

The name of the users, groups, or roles to which you are granting
privileges, or public. If public is specified for the auth_id parameter, omit
the auth_type parameter. To grant a privilege to all users, specify public
and omit the auth_type parameter. Both public and a list of auth_ids can
be specified in the same grant statement. If the privilege is subsequently
revoked from public, the individual privileges still exist.

Types of Privileges

Privileges are classed according to the type of objects they affect:

Table Privileges Control access to individual tables or views

Database Privileges Control access to database resources

Database Procedure
Privileges

Control who can execute individual database
procedures

Database Event Privileges Control who can register for and raise specific
database events

Database Sequence
Privileges

Control who can retrieve values from individual
database sequences

Table Privileges

Table privileges control access to tables and views. By default, only the owner
of the table has privileges for the table. To enable others to access the table,
the owner must grant privileges to specific authorization IDs or to public. Table
privileges must be granted explicitly. The following table lists valid table
privileges:

Privilege Description

Select Allows grantee to select rows from the table.

Insert Allows grantee to add rows to the table.

Grant (privilege)

Using SQL Statements 483

Privilege Description

Update Allows grantee to change existing rows. To limit the
columns that the grantee can change, specify a list of
columns to allow or a list of columns to exclude.

To grant the privilege for specific columns, use the
following syntax after the update keyword in the
grant statement:

(column_name {, column_name)

To grant the privilege for all columns except those
specified, use the following syntax after the update
keyword in the grant statement:

excluding (column_name {, column_name})

If the column list is omitted, update privilege is
granted to all columns of the table or, for views, all
updateable columns.

Delete Allows grantee to delete rows from the table.

References Allows grantee to create referential constraints that
reference the specified tables and columns. For
details about referential constraints, see Create Table
(see page 369). A list of columns to allow or to
exclude can optionally be specified.

To grant the privilege for specific columns except
those specified, use the following syntax after the
references keyword in the grant statement:

(column_name {, column_name})

To grant the privilege for all columns except those
specified, use the following syntax after the
references keyword in the grant statement:

excluding (column_name {, column_name})

If the column list is omitted, references privilege is
granted to all columns of the table. The references
privilege cannot be granted on a view.

Copy_into Allows the grantee to issue the copy...into statement
on a table. This privilege can be granted on tables
only.

Copy_from Allows the grantee to issue the copy...from statement
on a table. This privilege can be granted on tables
only.

Grant (privilege)

484 SQL Reference Guide

Privilege Description

All [privileges] All grants the subset of select, insert, update, delete,
and references privileges for which the grantor has
grant option. For details, see Grant All Privileges
Option (see page 491).

When privileges are granted against a table, the date and timestamp of the
specified table is updated, and the DBMS Server recreates query plans for
repeat queries and database procedures that see the specified table.

Table Privileges for Views

The following table lists the privileges required to enable the owner of a view
to grant privileges on the view:

Privilege Description

Select View owner must own all tables and views used in the view
definition, or view owner or public must have grant option for
select for the tables and views used in the view definition.

Insert View owner must own all tables and views used in the view
definition, or view owner or public must have grant option for
insert for the tables and views used in the view definition.

Update View owner must own all tables and updateable columns in
views used in the view definition, or view owner or public must
have grant option for update for the tables and updateable
columns in views used in the view definition.

Delete View owner must own all tables and views used in the view
definition, or view owner or public must have grant option for
delete for the tables and views used in the view definition.

To grant privileges for views the grantor does not own, the grantor must have
been granted the specified privilege with grant option.

Grant (privilege)

Using SQL Statements 485

Database Privileges

Database privileges control the consumption of computing resources. Valid
database privileges are:

 [no]access

 [no]create_procedure

 [no]create_sequence

 [no]create_table

 [no]db_admin

 [no]lockmode

 [no]query_cost_limit

 [no]query_cpu_limit

 [no]query_io_limit

 [no]query_page_limit

 [no]query_row_limit

 [no]update_syscat

 [no]select_syscat

 [no]connect_time_limit

 [no]idle_time_limit

 [no]session_priority

 [no]table_statistics

To override the default for a database privilege, grant a specific value to
public. For example, by default, everyone (public) has the privilege to create
database procedures. To override the default, grant nocreate_procedure to
public, and grant the create_procedure privilege to any user, group, or role
that you want to have this privilege. (Users, groups, and roles are referred to
collectively as authorization IDs.)

Grant (privilege)

486 SQL Reference Guide

The database privileges in effect for a session are determined by the values
that were granted to the authorization IDs in effect for the session, according
to the following hierarchy:

 High

 role

 user

 group

 public

 Low

For example, if different values for query_row_limit are granted to public, and
to the user, group, and role that are in effect for a session, the value for the
role of the session prevails.

This table describes database privileges in detail:

Privilege Description

access Access allows the specified authorization IDs to
connect to the specified database. Noaccess prevents
the specified authorization IDs from connecting.

create_procedure Create_procedure allows the specified authorization
IDs to create database procedures in the specified
database. Nocreate_procedure prevents the specified
users, groups, or roles from creating database
procedures. By default, all authorization IDs can
create database procedures.

create_sequence Create_sequence allows the specified authorization
IDs to create, alter and drop sequences in the
specified database. Nocreate_sequence prevents the
specified authorization IDs from creating sequences.
By default, all authorization IDs can create, alter and
drop sequences.

create_table Create_table allows the specified authorization IDs to
create tables in the specified database. Nocreate_table
prevents the specified authorization IDs from creating
tables. By default, all authorization IDs can create
tables.

Grant (privilege)

Using SQL Statements 487

Privilege Description

db_admin Db_admin confers unlimited database privileges for
the specified database and the ability to specify
effective user (using the -u flag). A session that has
the db_admin privilege does not have all the rights
that a DBA has; some utilities can be run only by a
DBA. The DBA of a database and users with the
security privilege have the db_admin privilege by
default. For all other users, the default is nodb_admin.

lockmode Lockmode allows the specified authorization IDs to
issue the set lockmode statement. Nolockmode
prevents the specified users, groups, or roles from
issuing the set lockmode statement. By default,
everyone can issue the set lockmode statement.

query_cost_limit Specifies the maximum cost per query on the
database, in terms of disk I/O and CPU usage. By
default, authorization identifiers are allowed an
unlimited cost per query.

query_cpu_limit Specifies the maximum CPU usage per query on the
database. By default, authorization identifiers are
allowed unlimited CPU usage per query.

query_io_limit Query_io_limit specifies the maximum estimated
number of I/O requests allowed for a single query for
the specified authorization IDs when connected to the
specified database. Integer must be a non-negative
integer (or 0 to specify that no I/O is performed).
Noquery_io_limit grants an unlimited number of I/O
requests per query. Noquery_io_limit is the default.

query_page_limit Specifies the maximum number of pages per query on
the database. By default, authorization identifiers are
allowed an unlimited number of pages per query.

query_row_limit Query_row_limit integer specifies the maximum
estimated number of rows returned by a single query
for the specified authorization IDs when connected to
the specified database. Integer must be a positive
number (or 0 to specify that no rows are returned).
Noquery_row_limit allows a single query to return an
unlimited number of rows. Noquery_row_limit is the
default.

update_syscat Update_syscat allows the specified authorization IDs
to update system catalogs when working in a session
connected to the iidbdb.

Grant (privilege)

488 SQL Reference Guide

Privilege Description

select_syscat Select_syscat allows a session to query system
catalogs to determine schema information. When
connected to the iidbdb database, this includes the
master database catalogs such as iiuser and
iidatabase. Select_syscat can be granted to user,
group, role or public, and can only be issued when
connected to the iidbdb database.

This privilege restricts user queries against the core
DBMS catalogs containing schema information, such
as iirelation and iiattribute. Standard system catalogs
such as iitables can still be queried.

connect_time_limit Connect_time_limit limits the total connect time that a
session can consume. The default is no limit, that is, a
session can remain connected indefinitely. The connect
time is checked periodically by the DBMS Server and if
the limit has been exceeded for a session, it is
disconnected, rolling back any open database
transactions.

The units are seconds. The maximum connection time
limit is approximately 130 years. The minimum
connection time limit is 1 second.

As with other database privileges this can be granted
to user, group, role or public, and can only be issued
when connected to the iidbdb database.

Idle_time_limit Idle_time_limit specifies the time that a session can
take between issuing statements. The default is no
limit, that is, a session can remain idle indefinitely
without being disconnected. The idle time for each
session is checked periodically by the DBMS Server,
and if a session exceeds its idle time limit it is
disconnected, rolling back any open database
transactions.

The units are seconds. The maximum idle time limit is
approximately 130 years. The minimum idle time limit
is 1 second. Idle_time_limit can be granted to user,
group, role or public, and can only be issued when
connected to the iidbdb database.

Grant (privilege)

Using SQL Statements 489

Privilege Description

session_priority Session_priority determines whether or not a session
is allowed to change its priority, and if so what its
initial and highest priority can be.

If nosession_priority (the default) is specified, users
can not alter their session priority.

If session_priority is specified, users can alter their
session priority, up to the limit determined by the
privilege.

table_statistics Table_statistics allows users to view (by way of SQL
and statdump) and create (by way of optimizedb)
database table statistics.

If statistics exist in the database catalogs the DBMS
Server automatically uses them when processing
queries, even if the user does not possess this
privilege.

Note: About query_cost_limit, query_cpu_limit, query_io_limit,
query_page_limit, and query_row_limit: restrictions are enforced based on
estimates from the DBMS query optimizer. If the optimizer predicts that a
query consumes more I/O's than allowed by the session, the query is aborted
prior to execution. The accuracy of the optimizer's estimates can be impeded
by out-of-date or insufficient statistics about the contents of tables. For details
about table statistics, see the description of the optimizedb command in the
Command Reference Guide and the information on the query optimizer in the
Database Administrator Guide.

Database Procedure Privileges

The execute privilege allows the grantee to execute the specified database
procedures. To grant the execute privilege on database procedures, the owner
of the procedure must have grant option for all the privileges required to
execute the procedure. To grant the execute privilege on database procedures
that the grantor does not own, the grantor must have execute privilege with
grant option for the database procedure.

Database Event Privileges

Valid database event privileges are as follows:

 Raise - Allows the specified authorization IDs to raise the database event
(using the raise dbevent statement).

 Register - Allows the specified authorization IDs to register to receive a
specified database event (using the register dbevent statement).

Grant (privilege)

490 SQL Reference Guide

Database Sequence Privileges

The next privilege allows the grantee to execute the next value and current
value functions on the specified sequences. To grant the next privilege on
sequences, the grantor must either own the sequence or have next privilege
with grant option for the sequence.

Privilege Defaults

This table lists privilege defaults:

Privilege Default

� Select

� Insert

� Delete

� Update

Only the owner can perform select, insert, delete, or
update operations on objects it owns.

References Only the table owner can create referential constraints
that see its tables.

Execute Only the owner of a database procedure can execute
the procedure.

Raise Only the owner of a database event can raise the
event.

Register Only the owner of a database event can register to
receive the event.

Next Only the owner of a database sequence can execute the
next value and current value operators on the
sequence.

This table lists database privileges:

Privilege Description

query_io_limit Any user can perform unlimited I/O (noquery_io_limit)

query_row_limit Any user can obtain unlimited rows
(noquery_row_limit).

create_table Any user can create tables (create_table).

create_procedure Any user can create database procedures
(create_procedure).

Grant (privilege)

Using SQL Statements 491

Privilege Description

create_sequence Any user can create database sequences
(create_sequence).

lockmode Any user can issue the set lockmode statement
(lockmode).

db_admin For a specified database, the DBA of the database and
users that have the security privilege have the
db_admin privilege. All other users of the database
have nodb_admin privilege.

Grant All Privileges Option

The following sections describe the results of the grant all privileges option.

Installation and Database Privileges

If grant all privileges on database or grant all privileges on current installation
is specified, the grantees receive the following database privileges:

 noquery_io_limit

 noquery_row_limit

 create_table

 create_procedure

 lockmode

 raise dbevent

 register dbevent

Privileges granted on a specific database override privileges granted on current
installation.

Grant (privilege)

492 SQL Reference Guide

Other Privileges

The requirements for granting all privileges on tables, views, database
procedures, and database events depend on the type of object and the owner.
To grant a privilege on an object owned by another user, the grantor or public
must have been granted the privilege with grant option. Only the privileges for
which the grantor or public has grant option are granted.

The following example illustrates the results of the grant all privileges option.
The accounting_mgr user creates the following employee table:

create table employee (name char(25), department char(5),
 salary money)...

and, using the following grant statement, grants the accounting_supervisor
user the ability to select all columns but only allows accounting_supervisor to
update the department column (to prevent unauthorized changes of the salary
column):

grant select, update (department) on table employees to accounting_supervisor
with grant option;

If the accounting_supervisor user issues the following grant statement:

grant all privileges on table employees to accounting_clerk;

the accounting_clerk user receives select and update(department) privileges.

Granting All Privileges on Views

The results of granting all privileges on a view you do not own are determined
as shown in this table:

Privilege Results

Select Granted if the grantor can grant select privilege on all tables
and views in the view definition.

Update Granted for all columns for which the grantor can grant update
privilege. If the grantor was granted update...with grant option
on a subset of the columns of a table, update is granted only
for those columns.

Insert Granted if the grantor can grant insert privilege on all tables
and views in the view definition.

Delete Granted if the grantor can grant delete privilege on all tables
and views in the view definition.

References The references privilege is not valid for views.

Grant (privilege)

Using SQL Statements 493

Grant Option Clause

To enable an authorization ID to grant a privilege to another authorization ID,
specify the with grant option clause. The owner of an object can grant any
privilege to any authorization ID (or to public). The authorization ID to whom
the privilege is granted with grant option can grant only the specified privilege.
Any authorization ID can grant privileges that were granted to public with
grant option to any other authorization ID.

The grant option cannot be specified for database privileges.

For example, if user, tony, creates a table called mytable and issues the
following statement:

grant select on tony.mytable to laura
 with grant option;

User, laura, can select data from tony.mytable and can authorize user evan to
select data from tony.mytable by issuing the following statement:

grant select on tony.mytable to evan;

Because user laura did not specify the with grant option clause, user evan
cannot authorize another user to select data from tony.mytable. User laura
can grant select privilege, but cannot grant, for example, insert privilege. If
user tony revokes select permission from user laura (using the revoke
statement), user tony must specify how the DBMS must handle any dependent
privileges that user laura has issued.

The choices are:

 revoke...cascade - Revokes all dependent privileges. In the preceding
example, select permission is revoked from user evan.

 revoke...restrict - Do not revoke specified privileges if there are
dependent privileges. In the preceding example, select privileges are not
revoked from user laura because her grant to user evan depends on the
privileges she received from user tony.

For more details, see “Ensuring Access Security” in the Database Administrator
Guide.

Embedded Usage: Grant (privilege)

In an embedded Grant (privilege) SQL statement, the with clause can be
specified using a host string variable (with :hostvar).

Grant (privilege)

494 SQL Reference Guide

Locking: Grant (privilege)

Granting privileges on a table takes an exclusive lock on that table. Granting
privileges on the database as a whole locks pages in the iidbpriv catalog of the
iidbdb.

Related Statements: Grant (privilege)

For related information on the Grant (privilege) SQL statement, see the
following SQL statement descriptions in this chapter:

Create Dbevent (see page 319)

Create Group (see page 321)

Create Procedure (see page 338)

Create Table (see page 369)

Create User (see page 400)

Create View (see page 405)

Grant (role) (see page 496)

Revoke (see page 570)

Grant (privilege)

Using SQL Statements 495

Examples: Grant (privilege)

The following are Grant (privilege) SQL statement examples:

1. Grant select and update privileges on the salary table to the group,
acct_clerk.

grant select, update on table salary
 to group acct_clerk;

2. Grant update privileges on the columns, empname and empaddress, in the
employee table to the users, joank and gerryr.

grant update(empname, empaddress)
 on table employee
 to joank, gerryr;

3. Grant permission to the public to execute the monthly_report procedure.

grant execute on procedure monthly_report
 to public;

4. Define a query_row_limit privilege of 100 rows on the new_accts database
for users in the group, new_emp.

grant query_row_limit 100 on database new_accts
 to group new_emp;

5. Grant unlimited rows to the role identifier, update_emp, which allows
unlimited rows to be returned to any application that is associated with the
role identifier, update_emp.

grant noquery_row_limit on database new_acct
 to role update_emp;

6. Enable the inventory_monitor role to register for and raise the stock_low
database event.

grant register, raise on dbevent stock_low
 to role inventory_monitor

7. Enable any employee in accounting to change columns containing salary
information.

grant update on employee.salary, employee.socsec
 to group accounting;

8. Enable the accounting manager, rickr, complete access to salary
information and to grant permissions to other user.

grant all on employee to rickr with grant option;

9. Enable any user to create a table constraint that references the employee
roster.

grant references on emp_roster to public;

Grant (role)

496 SQL Reference Guide

Grant (role)
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: If the indicated role(s) have security audit attributes, the
session must also have maintain_audit privilege.

The Grant (role) statement controls additional access to role objects created
by the create role command. (When a role is created, an implicit grant is
issued on the role to the user creating the role.) Role access can only be
granted to specific users or to public.

The Grant (role) statement has the following format:

[exec sql] grant role {, role}
 to public | [user] auth_id {, auth_id};

Related Statements: Grant (role)

For related information on the Grant (role) SQL statement, see the following
SQL statement descriptions in this chapter:

Create Role (see page 348)

Grant (privilege) (see page 480)

Example: Grant (role)

The following example enables the user, bspring, to access sysop role:

grant sysop to bspring

Help

Using SQL Statements 497

Help
Valid in: Interactive sessions (SQL).

Permission required: All users.

The Help statement displays information about database objects and SQL
statements, including object name, owner, and type for all tables, views, and
indexes to which the user has access, and all synonyms owned by the user.
System tables and temporary tables are not listed. Information is displayed in
a one-line-per-object format.

In general, to display high-level information, specify help objectname (for
example, help mytable). To display detailed information, specify help
objecttype objectname (for example, help table mytable).

The asterisk wildcard character can be used in object name specifications to
display information about a selected set of objects. For details, see Wildcards
and Help (see page 500) .

The Help statement has the following format:

help [[schema.]objectname {, [schema.]objectname}]
help comment column [schema.]table column_name {, column_name}
help comment table [schema.]table {, [schema.]table }
help constraint [schema.]table_name
 {, [schema.]constraint_name}
help default [schema.]table_name
help help
help index [schema.]indexname {, [schema.]indexname}
help integrity [schema.]table_name {, [schema.]table_name}
help permit on dbevent
 [schema.]objectname {, [schema.]objectname}
help permit on procedure | table | view
 [schema.]object_name {, [schema.]object_name}
help procedure [schema.]procedurename
 {, [schema.]procedurename}
help register [schema.]objectname
help rule [schema.]rulename, {[schema.]rulename}
help security_alarm [on table] table_name
help security_alarm on database database_name
help security_alarm on current installation
help sql [sql_statement]
help synonym [schema.]synonym {, [schema.]synonym}
help table [schema.]table_name {, [schema.]table_name}
help table|index name
help view [schema.]view_name {, [schema.]view_name}

Help

498 SQL Reference Guide

Help Options

The following table lists help options:

Option Description

Help Displays detailed information for specified objects
(where objectname is the name of a table, view, or
index); display format is block-style.

comment column Displays any comments defined for the specified
columns.

comment table Displays any comments defined for the specified
tables.

constraint Displays any constraints defined on columns of the
specified table or on the entire table. For details about
table constraints, see Create Table (see page 369).

These constraints are not the same as the integrities
displayed by the help integrities statement.

default Displays any user-defined defaults defined on columns
of the specified table

Help help Displays valid help statements.

index Displays detailed information about the specified
indexes.

integrity Displays any integrity constraints defined on the
specified tables or indexes. Integrity constraints are
defined using the create integrity statement, described
in this chapter.

permit on dbevent Displays information about the specified database
event.

permit on procedure
| table | view

For tables, displays the permit text. For other objects,
displays the values required by the corresponding drop
permit statement.

procedure Displays detailed information about the specified
procedure.

register Displays information about registered objects. For
details about registering objects, see Register Table
(see page 562).

Rule Displays the text of the create rule statement that
defined the rule.

Help

Using SQL Statements 499

Option Description

security_alarm [on
table]

Displays all security alarms defined for the specified
table. The information includes an index number that
can be used to delete the security alarm (using the
drop security_alarm statement).

security_alarm on
database

Displays all security alarms defined for the specified
database. The information includes an index number
that can be used to delete the security alarm (using
the drop security_alarm statement).

security_alarm on
current installation

Displays all security alarms defined for the current
installation. The information includes an index number
that can be used to delete the security alarm (using
the drop security_alarm statement).

sql If the sql_statement parameter is omitted, a list of
SQL statements displays for which help information is
available. If the sql_statement parameter is specified,
information displays about the specified statement.

synonym Displays information about the specified synonyms. To
display all the synonyms you own, specify help
synonym *. To display all the synonyms you own plus
all the synonyms to which you have access, specify
help synonym *.*.

table Displays detailed information about the specified
tables.

table |index Displays the cache priority.

View Displays detailed information about the specified
views.

Help

500 SQL Reference Guide

Wildcards and Help

The asterisk (*) wildcard can be used to specify all or part of the owner or
object name parameters in a help statement. The help statement displays only
objects to which the user has access, which are:

 Objects owned by the user

 Objects owned by other users that have granted permissions to the user

 Objects owned by the DBA to which you have access

If wildcards are specified for both the owner and object name (*.*), help
displays all objects to which you have access. To display help information
about objects you do not own, specify the owner name (using the
schema.objectname syntax). If the owner name wildcard is omitted (that is, *
is specified instead of *.*), help displays the objects that can be accessed
without the owner prefix.

The following examples illustrate the effects of the wildcard character:

Wildcard Description

Help * Display objects owned by the effective user of the session.

Help davey.* Display all objects owned by davey.

Help *.mytable Display all objects named, mytable, regardless of owner.

Help d*.* Display all objects owned by users beginning with d.

Help *.d* Display all objects beginning with d regardless of owner.

Help *.* Display all objects regardless of owner.

Locking: Help

The Help SQL statement does not take read locks on system catalogs. As a
result, if the Help SQL statement is issued while a Create Schema or Create
Table as Select statement is executing, the Help SQL statement can display
results that do not reflect the final results of the Create SQL statements.

Help

Using SQL Statements 501

Related Statements: Help

For related information on the Help SQL statement, see the following SQL
statement descriptions in this chapter:

Comment On (see page 290)

Create Dbevent (see page 319)

Create Index (see page 323)

Create Integrity (see page 333)

Create Procedure (see page 338)

Create Rule (see page 352)

Create Security_Alarm (see page 362)

Create Synonym (see page 367)

Create Table (see page 369)

Create View (see page 405)

Examples: Help

The following are Help SQL statement examples:

1. Display a list of all tables, views, and indexes to which the user has
access.

help;

2. Display help about all tables starting with “e” to which the user has access.

help *.e*;

3. Display help about the employee and dept tables.

help employee, dept;

4. Display the definition of the view, highpay.

help view highpay;

5. Display all permits issued on the job and employee tables.

help permit on table job, employee;

6. Display all integrity constraints issued on the dept and employee tables.

help integrity dept, employee;

7. Display information on the select statement.

help sql select;

If-Then-Else

502 SQL Reference Guide

If-Then-Else
Valid in: Database procedures (DB Proc).

Permission required: All users.

The If-Then-Else statement chooses between alternate execution paths inside
a database procedure.

The If-Then-Else statement can only be issued from within the body of a
database procedure.

A Boolean expression (boolean_expr) must always evaluate to true or false. A
Boolean expression can include comparison operators ('=', '<>', and so on)
and the logical operators and, or, not. Boolean expressions involving nulls can
evaluate to unknown. Any Boolean expression whose result is unknown is
treated as if it evaluated to false.

If an error occurs during the evaluation of an if statement condition, the
database procedure terminates and control returns to the calling application.
This is true for both nested and non-nested if statements.

The If-Then-Else statement has the following format:

if boolean_expr then statement; {statement;}
 {elseif boolean_expr then statement; {statement;}}
 [else statement;{statement;}]
endif

If Statement

The simplest form of the if statement performs an action if the Boolean
expression evaluates to true. The syntax follows:

if boolean_expr then
 statement; {statement;}
endif

If the Boolean expression evaluates to true, the list of statements is executed.
If the expression evaluates to false (or unknown), the statement list is not
executed and control passes directly to the statement following the endif
statement.

If-Then-Else

Using SQL Statements 503

If...Then Statement

The second form of the if statement includes the else clause. The syntax
follows:

if boolean_expr then
 statement; {statement;}
else
 statement; {statement;}
endif

In this form, if the Boolean expression is true, the statements immediately
following the keyword are executed. If the expression is false (or unknown),
the statements following the keyword else are executed. In either case, after
the appropriate statement list is executed, control passes to the statement
immediately following endif.

If-Then-Else

504 SQL Reference Guide

If...Then...Elseif Statement

The third if variant includes the elseif clause. The elseif clause allows the
application to test a series of conditions in a prescribed order. The statement
list corresponding to the first true condition found is executed and all other
statement lists connected to conditions are skipped. The elseif construct can
be used with or without an else clause, which must follow all the elseif clauses.
If an else clause is included, one statement list is guaranteed to be executed,
because the statement list connected to the else is executed if all the specified
conditions evaluate to false.

The simplest form of this variant is:

if boolean_expr then
 statement; {statement;}
elseif boolean_expr then
 statement; {statement;}
endif

If the first Boolean expression evaluates to true, the statements immediately
following the first then keyword are executed. In such a case, the value of the
second Boolean expression is irrelevant. If the first Boolean expression proves
false, however, the next Boolean expression is tested. If the second
expression is true, the statements under it are executed. If both Boolean
expressions test false, neither statement list is executed.

A more complex example of the elseif construct is:

if boolean_expr then
 statement; {statement;}
elseif boolean_expr then
 statement; {statement;}
elseif boolean_expr then
 statement; {statement;}
else
 statement; {statement;}
endif

In this case, the first statement list is executed if the first Boolean expression
evaluates to true. The second statement list is executed if the first Boolean
expression is false and the second true. The third statement list is executed
only if the first and second Boolean expressions are false and the third
evaluates to true. Finally, if none of the Boolean expressions is true, the fourth
statement list is executed. After any of the statement lists is executed, control
passes to the statement following the endif.

If-Then-Else

Using SQL Statements 505

Nesting IF Statements

Two or more if statements can be nested. In such cases, each if statement
must be closed with its own endif.

This example illustrates nested if statements in outline form:

if (condition1)

code for condition1

if (condition2)

code for condition2

endif /* condition2 */

more code for condition1

endif /* condition1 */

Example: If-Then-Else

The following if statement performs a delete or an insert and checks to make
sure the statement succeeded:

if (id > 0) and (id <= maxid) then
 delete from emp where id = :id;
 if iierrornumber > 0 then
 message 'Error deleting specified row';
 return 1;
 elseif iirowcount = 0 then
 message 'Specified row does not exist';
 return 2;
 endif;
elseif (id < maxid) then
 insert into emp values (:name, :id, :status);
 if iierrornumber > 0 then
 message 'Error inserting specified row';
 return 3;
 endif;
else
 message 'Invalid row specification';
 return 4;
endif;

Include

506 SQL Reference Guide

Include
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Include statement incorporates external files into your program's source
code. The include statement is typically used to include variable declarations,
although it is not restricted to such use. When used to include variable
declarations, it must be inside an embedded SQL declaration section.

Note: The file generated by dclgen must be specified using the include
statement. For details about dclgen, see the Embedded SQL Companion Guide.

The file specified by the SQL include statement must contain complete
statements or declarations. For example, it is illegal to use include in the
following manner, where the file, predicate, contains a common predicate for
select statements:

exec sql select ename
 from employee
 where
 exec sql include 'predicate';

Filename must be a quoted string constant specifying a file name or a logical
or environment variable that contains a file name. If a file name is specified
without an extension, the DBMS Server assumes the default extension of your
host language.

The specified file can contain declarations, host language statements,
embedded SQL statements, and nested includes. When the original source file
is preprocessed, the include statement is replaced by a host language include
directive, and the included file is also preprocessed.

There are two special instances of the include statement:

 include sqlca - Includes the SQL Communications Area.

 include sqlda - Include the definitions associated with the SQL Descriptor
Area.

Both these statements must be placed outside all declaration sections,
preferably at the start of the program. The statement must be terminated as
required by the rules of your host language.

The Include statement has the following format:

exec sql include filename | sqlca | sqlda;

Include

Using SQL Statements 507

Related Statements: Include

For related information on the Include SQL statement, see Declare (see
page 408) in this chapter.

Examples: Include

The following are Include SQL statement examples:

1. Include the SQLCA in the program.

exec sql include sqlca;

2. Include global variables.

exec sql begin declare section;
 exec sql include 'global.var';
 exec sql end declare section;

Inquire_sql

508 SQL Reference Guide

Inquire_sql
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Inquire_sql statement enables an embedded SQL program to retrieve a
variety of runtime information, such as:

 Information about the last executed database statement

 The message number and text from a message statement executed by a
database procedure

 Status information, such as the current session ID, the type of error (local
or generic) being returned to the application, and whether a transaction is
currently open

 Information about the last event removed from the event queue

 The value of the last single logical key inserted into the database by the
application

 Provides an application program with a variety of runtime information.
(Inquire_sql is a synonym for inquire_ingres.)

The inquire_sql statement does not execute queries; the information
inquire_sql returns to the program reflects the results of the last query that
was executed. For this reason, the inquire_sql statement must be issued after
the database statement about which information is desired, and before
another database statement is executed (and resets the values returned by
inquire_sql). variable is the name of a program variable.

To retrieve error or message information about database procedure
statements, issue the inquire_sql statement inside an error or message
handler called by the whenever sqlerror or whenever sqlmessage statement.

Some of the information returned by inquire_sql is also available in the
SQLCA. For example, the error number returned by the object errorno is also
available in the SQLCA sqlcode field. Similarly, when an error occurs, the error
text can be retrieved using inquire_sql with the errortext object or it can be
retrieved from the SQLCA sqlerrm variable. Errortext provides the complete
text of the error message, which is often truncated in sqlerrm.

This statement must be terminated according to the rules of your host
language.

The Inquire_sql statement has the following format:

exec sql inquire_sql (variable = object {, variable = object});

Inquire_sql

Using SQL Statements 509

Inquiring About Logical Keys

To obtain the last logical key added by an insert statement, issue the following
inquire_sql statement:

exec sql inquire_sql

 (:key_variable:null_indicator = key_type)

where:

key_type is object_key or table_key.

This inquiry must be issued after an insert that adds a single row containing a
logical key. In the case of the insert...as select statement,
inquire_sql(:row_variable=rowcount) can be used to determine the number of
rows added. Inquire_sql cannot be used to obtain individual logical key values
for multiple rows inserted as the result of an insert...as select statement.

A null indicator variable must be specified when inquiring about logical keys.
Inquire_sql returns the following values:

Null Indicator Key Variable Returned When..

0 Logical key value Inquiry is issued after an insert
statement that added a single row
containing a system_maintained table
or object key column.

-1 Unchanged Inquiry is issued after:

� Inserting a row that did not contain
the specified type of logical key

� A non-insert database statement

� An insert that failed, or added
either 0 or more than 1 rows.

Inquire_sql

510 SQL Reference Guide

Inquiring About Database Events

The following table lists the inquire_sql parameters that return information
about a database event. All character values are returned in lower case. If no
event is queued, an empty or blank string is returned (depending on your host
language conventions).

Object Data Type Description

dbeventname Character The name of the event (assigned using the
create dbevent statement). The receiving
variable must be large enough for the full
event name; if the receiving variable is too
small, the event name is truncated to fit.

dbeventowner Character The creator of the event.

dbeventdatabase Character The database in which the event was
raised.

dbeventtime Date The date and time at which the event was
raised.

dbeventtext Character The text (if any) specified as the
event_text parameter when the event was
raised. The receiving value must be a 256-
character string; if the receiving variable is
too small, the text is truncated to fit.

Types of Inquiries

The following table lists the valid inquiries that can be performed using the
inquire_sql statement:

Object Data Type Description

column_name Character Valid only in a data handler routine that
retrieves data (in conjunction with a select
or fetch statement); returns the name of
the column for which the data handler was
invoked. The receiving variable must be a
minimum of 32 bytes; if the host language
uses null-terminated strings, an additional
byte is required.

Inquire_sql

Using SQL Statements 511

Object Data Type Description

columntype Integer Valid only in a data handler routine that
retrieves data (in conjunction with a select
or fetch statement); returns an integer
indicating the data type of the column for
which the data handler was invoked.

connection_target Character Returns the node and database to which
the current session is connected; for
example, 'bignode::mydatabase'.

dbmserror Integer Returns the number of the error caused by
the last query. This number corresponds to
the value of sqlerrd(1), the first element of
the sqlerrd array in the SQLCA. To specify
whether a local or generic error is
returned, use the set_sql(errortype)
statement.

endquery Integer Returns 1 if the previous fetch statement
was issued after the last row of the cursor,
0 if the last fetch statement returned a
valid row. This is identical to the NOT
FOUND condition (value 100) of the SQLCA
variable sqlcode, which can be checked
after a fetch statement is issued. If
endquery returns '1', the variables
assigned values from the fetch are left
unchanged.

Inquire_sql

512 SQL Reference Guide

Object Data Type Description

errorno Integer Returns the error number of the last query
as a positive integer. The error number is
cleared before each embedded SQL
statement. Errorno is meaningful only
immediately after the statement in
question. This error number is the same as
the positive value returned in the SQLCA
variable sqlcode, except in two cases:

A single query generates multiple different
errors, in which case the sqlcode identifies
the first error number, and the errorno
object identifies the last error.

After switching sessions. In this case,
sqlcode reflects the results of the last
statement executed before switching
sessions, while errorno reflects the results
of the last statement executed in the
current session.

If a statement executes with no errors or if
a positive number is returned in sqlcode
(for example, +100 to indicate no rows
affected), the error number is set to 0.

errortext Character Returns the error text of the last query.
The error text is only valid immediately
after the database statement in question.
The error text that is returned is the
complete error message of the last error.
This message can have been truncated
when it was deposited into the SQLCA
variable sqlerrm. The message includes the
error number and a trailing end-of-line
character. A character string result variable
of size 256 must be sufficient to retrieve all
error messages. If the result variable is
shorter than the error message, the
message is truncated. If there is no error
message, a blank message is returned.

errortype Character Returns 'genericerror' if generic errors are
returned to errorno and sqlcode, or
'dbmserror' if local DBMS Server errors are
returned to errorno and sqlcode. For
information about generic and local errors,
see the chapter “Transactions and Error
Handling.”

Inquire_sql

Using SQL Statements 513

Object Data Type Description

messagenumber Integer Returns the number of the last message
statement executed inside a database
procedure. If there was no message
statement, a zero is returned. The
message number is defined by the
database procedure programmer.

messagetext Character Returns the message text of the last
message statement executed inside a
database procedure. If there is no text, a
blank is returned. If the result variable is
shorter than the message text, the
message is truncated. The message text is
defined by the database procedure
programmer.

object_key Character Returns the logical object key added by the
last insert statement, or -1 (in the
indicator variable) if no logical key was
assigned.

prefetchrows Integer Returns the number of rows the DBMS
Server buffers when fetching data using
readonly cursors. This value is reset every
time a readonly cursor is opened. If your
application is using this feature, be sure to
set the value before opening a readonly
cursor. For details, see the chapter
“Embedded SQL.”

programquit Integer Returns 1 if the programquit option is
enabled (using set_sql(programquit). If
programquit is enabled, the following
errors cause embedded SQL applications to
abort:

� Issuing a query when not connected to
a database

� Failure of the DBMS Server

� Failure of communications services

� Returns 0 if applications continue after
encountering such errors.

Inquire_sql

514 SQL Reference Guide

Object Data Type Description

querytext Character Returns the text of the last query issued;
valid only if this feature is enabled. To
enable or disable the saving of query text,
use the set_sql(savequery=1|0)
statement.

A maximum of 1024 characters is
returned; if the query is longer, it is
truncated to 1024 characters. If the
receiving variable is smaller than the query
text being returned, the text is truncated
to fit.

If a null indicator variable is specified in
conjunction with the receiving host
language variable, the indicator variable is
set to -1 if query text cannot be returned,
0 if query text is returned successfully.
Query text cannot be returned if (1)
savequery is disabled, (2) no query has
been issued in the current session, or (3)
the inquire_sql statement is issued outside
of a connected session.

rowcount Integer Returns the number of rows affected by
the last query. The following statements
affect rows: insert, delete, update, select,
fetch, modify, create index, create table as
select, and copy. If any of these
statements runs successfully, the value
returned for rowcount is the same as the
value of the SQLCA variable sqlerrd(3). If
these statements generate errors, or if
statements other than these are run, the
value of rowcount is negative and the
value of sqlerrd(3) is zero.

Exception: for modify to truncated,
inquire_sql(rowcount) always returns 0.

savequery Integer Returns 1 if query text saving is enabled, 0
if disabled.

session Integer Returns the session identifier of the current
database session. If the application is not
using multiple sessions or there is no
current session, session 0 is returned.

Inquire_sql

Using SQL Statements 515

Object Data Type Description

table_key Character Returns the logical table key added by the
last insert statement, or -1 (in the
indicator variable) if no logical key was
assigned.

transaction Integer Returns a value of 1 if there is a
transaction open.

Related Statements: Inquire_sql

For related information on the Inquire_sql SQL statement, see the following
SQL statement descriptions in this chapter:

Delete (see page 427)

Insert (see page 517)

Message (see page 521)

Raise Dbevent (see page 555)

Select (interactive) (see page 582)

Set_sql (see page 633)

Update (see page 637)

Inquire_sql

516 SQL Reference Guide

Examples: Inquire_sql

The following are Inquire_sql SQL statement examples:

1. Execute some database statements, and handle errors by displaying the
message and aborting the transaction.

exec sql whenever sqlerror goto err_handle;

exec sql select name, sal
 into :name, :sal
 from employee
 where eno = :eno;

if name = 'Badman' then
 exec sql delete from employee
 where eno = :eno;
else if name = 'Goodman' then
 exec sql update employee set sal = sal + 3000
 where eno = :eno;
end if;

exec sql commit;

...

err_handle:

exec sql whenever sqlerror continue;
exec sql inquire_sql (:err_msg = errortext);
print 'INGRES error: ', sqlca.sqlcode;
print err_msg;
exec sql rollback;

2. The following example demonstrates the use of the whenever statement
for intercepting trace messages from a database procedure. The messages
are written to a trace file.

exec sql whenever sqlerror stop;
exec sql whenever sqlmessage call trace_message;

exec sql execute procedure proc1 into :retstat;
...

/* Inside the "trace_message" host language
 procedure */
exec sql inquire_sql (:msgnum = messagenumber,
 :msgtxt = messagetext);

if (msgnum = 0) then

 print logfile, msgtxt;

Insert

Using SQL Statements 517

else

 print logfile, msgnum, '-'msgtxt;

end if;

Insert
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: You must own the table or have insert privilege. To insert
into a view you must be able to insert into the underlying base tables or views.
If you do not own the view, you must have insert privilege for the view.

The Insert statement inserts new rows into the specified table. Use either the
values list or specify a subselect. When using the values list, insert only a
single row with each execution of the statement. If specifying a subselect, the
statement inserts all the rows that result from the evaluation of the subselect.
For the syntax of subselect, see Select (interactive) (see page 582).

The column list identifies the columns of the specified table into which the
values are placed. When including the column list, the DBMS Server places the
result of the first expression in the values list or subselect into the first column
named, the second value into the second column named, and so on. The data
types of the values must be compatible with the data types of the columns in
which they are placed.

The list of column names can be omitted under the following circumstances:

 A subselect is specified that retrieves a value for each column in
table_name. The values must be of an appropriate data type for each
column and must be retrieved in an order corresponding to the order of
the columns in table_name.

 There is a one-to-one correspondence between the expressions in the
values list and the columns in the table. That is, the values list must have
a value of the appropriate data type for each column and the values must
be listed in an order corresponding to the order of the columns in the
table.

A value cannot be specified to be inserted into a system_maintained table_key
or object_key column (because the values for these data types are system-
generated). For this reason, the column names must be specified when
inserting into a table that has logical key columns.

When including the column list, any columns in the table that are not specified
in the column list are assigned a default value or a null, depending on how the
column was defined when the table was created. For details about column
defaults, see Create Table (see page 369).

Insert

518 SQL Reference Guide

Expressions in the values list can only be constants (including the null
constant), scalar functions on constants, or arithmetic operations on
constants.

Note: To insert long varchar or long byte columns, specify a datahandler
clause in place of the host language variable in the values clause. For details
about data handler routines, see the chapter “Embedded SQL” and the
Embedded SQL Companion Guide. The syntax for the datahandler clause is as
follows:
datahandler(handler_routine ([handler_arg]))[:indicator_var]

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

The Insert statement has the following format:

[exec sql [repeated]]insert into [schema.]table_name
 [(column {, column})]
 [values (expr{, expr})] | [subselect];

Embedded Usage: Insert

Host language variables can be used within expressions in the values clause or
in the search condition of the subselect. Variables used in search conditions
must denote constant values, and cannot represent names of database
columns or include any operators. A host string variable can also replace the
complete search condition of the subselect, as when it is used in the forms
system query mode. Host language variables that correspond to column
expressions can include null indicator variables.

The columns in the subselect must correspond in sequence to the columns into
which values are being inserted. For example:

insert into emps (entryclerk, sicktime, ename)
 select :yourname, 0, newename from newemps

In the previous example, the entryclerk column is filled from the form field,
yourname, the sicktime column is initialized to 0 using a constant; and the
ename column is filled from the names in the newename column of the
newemps table.

The values clause can include structure variables that substitute for some or
all of the expressions. The structure is expanded by the preprocessor into the
names of its individual members; therefore, placing a structure name in the
values clause is equivalent to enumerating all members of the structure in the
order in which they were declared.

Insert

Using SQL Statements 519

Repeated Queries

The keyword repeated directs the DBMS Server to encode the insert and save
its execution plan when it is first executed. This encoding can account for
significant performance improvements on subsequent executions of the same
insert.

Do not specify the repeated option for insert statements that are constructed
using dynamic SQL. A dynamic where clause cannot be used in a repeated
insert: the query plan is saved when the query is first executed, and
subsequent changes to the where clause are ignored.

Error Handling

The sqlerrd(3) of the SQLCA indicates the number of rows inserted by the
statement. If no rows are inserted (for example, if no rows satisfied the
subselect search condition), the sqlcode variable of the SQLCA is set to 100.

If an insert statement attempts to add a duplicate key to a column that has a
unique constraint, a duplicate key error is returned, the current transaction is
aborted, and any open cursors are closed.

Locking: Insert

Pages affected by the insert are locked in exclusive mode. When necessary,
locking is escalated to the table level.

Related Statements: Insert

For related information on the Insert SQL statement, see the following SQL
statement descriptions in this chapter:

Delete (see page 427)

Select (interactive) (see page 582)

Update (see page 637)

Insert

520 SQL Reference Guide

Examples: Insert

The following are Insert SQL statement examples:

1. Add a row to an existing table.

insert into emp (name, sal, bdate)
 values ('Jones, Bill', 10000, 1944);

2. Insert all rows from the newjob table where the job title is not janitor into
the job table insert into job (jid, jtitle, lowsal, highsal).

select job_no, title, lowsal, highsal
from newjob
where title <> 'Janitor';

3. Add a row to an existing table, using the default columns.

insert into emp
 values ('Jones, Bill', 10000, 1944);

4. Use a structure to insert a row.

 /* Description of table employees from
 database deptdb */

 exec sql declare employees table
 (eno smallint not null,
 ename char(20) not null,
 age smallint,
 jobcode smallint,
 sal float not null,
 deptno smallint);

exec sql begin declare section;

 emprec
 int eno;
 char ename[21];
 int age;
 int job;
 float sal;
 int deptno;

Message

Using SQL Statements 521

exec sql end declare section;

 /* Assign values to fields in structure */

 eno = 99;
 ename = "Arnold K. Arol”;
 age = 42;
 jobcode = 100;
 sal = 100000;
 deptno=47;

 exec sql connect deptdb;
 exec sql insert into employees values (:emprec);
 exec sql disconnect;

Message
Valid in: Database procedures (DB Proc).

Permission required: All users.

The Message statement returns message text and a message number from a
database procedure to an application program. The message statement can
only be issued from a database procedure.

The Message statement has the following format:

message message_text | message_number | message_number
 message_text
 [with destination =([session][, error_log] [, audit_log]]);

message_text

Can be specified using a string literal or a non-null host string variable.
Message_number can be specified using an integer literal or a non-null
host integer variable. Neither message_text nor message_number can be
expressions. The values for these parameters do not correspond to DBMS
server error codes or messages-the message statement simply returns the
specified values to the receiving application. If the message_number
parameter is omitted, the DBMS Server returns a value of 0.

Database procedures can be executed directly by an application (using the
execute procedure statement), or as the result of a rule fired by a
database statement that was issued by the application.

Message

522 SQL Reference Guide

By default, messages from database procedures are displayed in a window
at the bottom of the screen. This default behavior can be changed as
follows:

 To direct the output of the message statement to the security audit
log, specify the with destination = (audit_log) clause.

 To direct the output of the message statement to the error log, specify
the with destination = (error_log) clause.

The message number and text is written to errlog.log with message
identifier E_QE0300. To restore the default behavior (messages are
displayed and not written to the error log), specify with destination =
(session). To both log and return messages to the application, specify with
destination = (session, error_log).

To specify an action to be performed when an application receives a
message from a database procedure, use the whenever sqlmessage
statement. For details about using the whenever sqlmessage statement,
see Whenever (see page 642).

To specify a routine that is called when an application receives a message
from a database procedure, use the set_sql(messagehandler) statement.
For details (see page 633), see Set_sql.

Related Statements: Message

For related information on the Message SQL statement, see the following SQL
statement descriptions in this chapter:

Create Procedure (see page 338)

Inquire_sql (see page 508)

Message

Using SQL Statements 523

Examples: Message

The following are Message SQL statement examples:

1. The following example turns debugging text to the application.

message 'Inserting new row';
 insert into tab values (:val);
 message 'About to commit change';
 commit;
 message 'Deleting newly inserted row';
 delete from tab where tabval = :val;
 message 'Returning with pending change';
 return;

2. The following example returns a message number to the application. The
application can extract the international message text out of a message
file.

if iierrornumber > 0 then
 message 58001;
 elseif iirowcount <> 1 then
 message 58002;
 endif;

3. The following example sends a message to the error log file.

message 'User attempting to update payroll table'
 with destination = (error_log);

Modify

524 SQL Reference Guide

Modify
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must own it or have the security privilege and
connect as the owner.

The Modify statement changes properties of a table or index.

The Modify statement enables the following operations to be performed:

 Change the storage structure of the specified table or index

 Specify the number of pages allocated for a table or index, and the
number of pages by which it grows when it requires more space

 Add pages to a table

 Reorganize a btree index

 Move a table or index, or portion thereof, from one location to another

 Spread a table over many locations or consolidate a table onto fewer
locations

 Delete all rows from a table and release its file space back to the operating
system

 Specify whether an index is recreated when its base table is modified

 Specify how unique columns are checked during updates: after each row is
inserted or after the update statement is completed

 Mark table as physically or logically consistent or inconsistent

 Mark table as allowed/disallowed for table-level recovery

 Defer uniqueness check until the end of statement execution

 Mark a table as readonly

 Assign a table fixed cache priority

 Change a table's partitioning scheme

 Enable modify table to be performed online

You can change a table's location and storage structure in the same modify
statement.

The Modify statement operates on existing tables and indexes. When
modifying a table to change, truncate, or reconstruct the storage structure,
the DBMS Server destroys any indexes that exist for the specified table (unless
the index was created with persistence, or the table is a btree and the table
being modified to reorganize its index).

Modify

Using SQL Statements 525

The partition partition-name clause after the modify table name allows the
modify action to be applied specifically to the named partition(s). The partition
partition-name clause can be applied to the following modify statement
variants only: modify to:, reconstruct, relocate, reorganize, merge,
add_extend, and table_debug. The table debug variant against a partitioned
table requires the partition clause, and a logical partition name for each
dimension is required. (In other words, the table debug operation can only
operate on one specific physical partition.)

For a partitioned table with multiple dimensions, partition names are listed in
the same order that dimensions were defined. It is not necessary to name a
logical partition for every dimension; if any dimension is omitted it is
translated as “all logical partitions in this dimension.”

Note: All other variants of the modify statement can be applied only to the
partitioned table as a whole, not to individual partitions.

The Modify statement has the following format:

[exec sql] modify [schema.]table_name|[schema.]indexname
 |
 [schema.]table-name partition partition-name { . partition-name }
 to modify-action [unique]
 [on column_name [asc|desc]{, column_name [asc|desc]}]
 [with_clause]

The unique clause is only used with the isam, hash, or btree modify-actions.
The on column-name clause is only used with isam, hash, btree, or heapsort
actions.

The modify-action is a keyword selected from the following table:

Action Keyword Description

isam Modify the table storage structure to the ISAM
structure.

hash Modify the table storage structure to the HASH
structure

heap Modify the table storage structure to the HEAP
structure

heapsort Modify the table storage structure to the HEAP
structure, and additionally sort the rows in the
table as directed

btree Modify the table storage structure to the
BTREE structure

reconstruct Modify the table storage structure to what it
currently is (the table is physically rebuilt)

Modify

526 SQL Reference Guide

Action Keyword Description

truncated Truncate the table, deleting all data

reorganize Move the data to a different location

relocate Move the table to a different location

merge Shrink a btree index

add_extend Add disk pages to the table

[no]readonly Mark the table readonly or not readonly

phys_[in]consistent Mark the table physically consistent or
inconsistent

log_[in]consistent Mark the table logically consistent or
inconsistent

table_recovery_[dis]allowed Allow or disallow table level rollforward

[no]persistence Mark the index to be recreated automatically
as needed (secondary indexes only)

unique_scope = row |
statement

Define when uniqueness must be checked

table_debug Display internal table data structures

priority=n Set the table's buffer cache priority

Modify

Using SQL Statements 527

The additional action_keywords cheap, chash, cisam, and cbtreeare accepted.
Cheap is a synonym for heap with compression=(data), and the others
similarly. These forms are deprecated; the with compression= clause should
be used instead.

A with_clause consists of the word, with, followed by a comma-separated list
of any number of the following items:

 allocation = n

 extend = n

 fillfactor = n (isam, hash, and btree only)

 minpages = n (hash only)

 maxpages = n (hash only)

 leaffill = n (btree only)

 nonleaffill = n (btree only)

 blob_extend = n (btree only)

 newlocation = (locationname {, locationname})

 oldlocation = (locationname {, locationname})

 location = (locationname {, locationname})

 compression [= ([[no]key] [,[no|hi]data])] | nocompression

 [no]persistence

 unique_scope = row | statement

 page_size = n

 priority = cache_priority

 nopartition

 partition = (partitioning-scheme)

 concurrent_updates

Use the syntax shown below to perform the listed operation:

 Reorganize a btree table's index:
[exec sql] modify table_name|indexname to merge

 Move a table:
[exec sql] modify table_name|indexname to relocate
 with oldlocation = (locationname {, locationname}),
 newlocation = (locationname {, locationname}),

 Change locations for a table:
[exec sql] modify table_name|indexname to reorganize
 with location = (locationname {, locationname})

Modify

528 SQL Reference Guide

 Delete all data in a table:
[exec sql] modify table_name|indexname to truncated

 Add pages to a table:
[exec sql] modify table_name|indexname to add_extend
 [with extend = number_of_pages]

where:

number_of_pages is 1 to 8,388,607.

 Add pages to blob extension table:
[exec sql] modify table_name|indexname with blob_extend
 [with extend = number_of_pages]

where:

number_of_pages is 1 to 8,388,607.

 Mark a table as physically consistent/inconsistent:
[exec sql] modify table_name|indexname to phys_consistent|phys_inconsistent

 Mark a table as logically consistent/inconsistent:
[exec sql] modify table_name|indexname to log_consistent| log_inconsistent

 Mark a table as allowed/disallowed for table-level recovery:
[exec sql] modify table_name|indexname to
 table_recovery_allowed|table_recovery_disallowed

 Defer the uniqueness check until the end of statement execution:
[exec sql] modify table_name to unique_scope = statement

 Mark a table as readonly:
[exec sql] modify table_name to [no]readonly

 Assign a table fixed cache priority:
[exec sql] modify table_name to priority = cache_priority

 Change a table's partitioning scheme:
[exec sql] modify table_name to reconstruct
with partition = (partitioning-scheme)

 Enable a table modification to be performed online:
[exec sql] modify table_name with concurrent_updates

One of the storage structure actions (heap, hash, isam, btree) can be used
instead of reconstruct.

Modify

Using SQL Statements 529

Storage Structure Specification

Changing the storage structure of a table or index is most often done to
improve the performance of access to the table. For example, to improve the
performance of copy change, the structure of a table to heap before
performing a bulk copy into the table.

The storage_structure parameter must be one of the following:

Storage
Structure

Description

isam Indexed Sequential Access Method structure, duplicate
rows allowed unless the with noduplicates clause is
specified when the table is created.

hash Random hash storage structure, duplicate rows allowed
unless the with noduplicates clause is specified when the
table is created

heap Unkeyed and unstructured, duplicated rows allowed,
even if the with noduplicates clause is specified when
the table is created.

heapsort Heap with rows sorted and duplicate rows allowed unless
the with noduplicates clause is specified when the table
is created (sort order not retained if rows are added or
replaced).

btree Dynamic tree-structured organization with duplicate
rows allowed unless the with noduplicates clause is
specified when the table is created.

Modify

530 SQL Reference Guide

An index cannot be modified to heap, heapsort, or rtree.

The DBMS Server uses existing data to build the index (for isam and btree
tables), calculate hash values (for hash tables) or for sorting (heapsort tables).

To optimize the storage structure of heavily used tables (tables containing
data that is frequently added to, changed, or deleted), modify those tables
periodically.

The optional keyword unique requires each key value in the restructured table
to be unique. (The key value is the concatenation of all key columns in a row.)
If unique is specified on a table that contains non-unique keys, the DBMS
Server returns an error and does not change the table's storage structure. For
the purposes of determining uniqueness, a null is considered to be equal to
another null.

Use unique only with isam, hash, and btree tables.

The optional on clause determines the table's storage structure keys. This
clause can only be specified when modifying to one of the following storage
structures: isam, hash, heapsort, or btree. When the table is sorted after
modification, the first column specified in this clause is the most significant
key, and each successive specified column is the next most significant key.

If the on clause is omitted when modifying to isam, hash, or btree, the table is
keyed, by default, on the first column. When a table is modified to heap, the
on clause must be omitted.

When modifying a table to heapsort, specify the sort order as asc (ascending)
or desc (descending). The default is ascending. When sorting, the DBMS
Server considers nulls greater than any non-null value.

In general, any MODIFY.. TO <storage_structure> ... of a table or index
assigned to a raw location must include WITH LOCATION=(...) syntax to move
the table or index to another set of locations because modify semantics involve
a create, rename, and delete file, which works efficiently for cooked locations,
but does not adapt to raw locations.

If unique is used with a partitioned table, the new storage structure must be
compatible with the table's partitioning scheme. This means that given a value
for the unique storage structure key columns, it must be possible to determine
that a row with that key will be in one particular physical partition. In practice,
this rule means that the partitioning scheme columns must be the same as (or
a subset of) the storage structure key columns. It also means that unique
cannot be used with AUTOMATIC partitioning. A modify to unique that violates
the partitioning rule will be rejected with an error.

Modify

Using SQL Statements 531

Note that it is still possible to enforce an arbitrary uniqueness constraint on a
partitioned table, regardless of the partitioning scheme, by adding a UNIQUE
or PRIMARY KEY constraint, or a unique secondary index, to the table.

Modify...to Reconstruct

To rebuild the existing storage structure for a table or partition, use the
modify…to reconstruct option.

The reconstruct action allows the table or partitions to be rebuilt, maintaining
the existing storage structure, key columns, and storage attributes. Any
overrides specified in the modify statement with-clause are applied.

The reconstruct variant provides a simple means for partitioning or
unpartitioning a table without affecting its other attributes. Partitioning or
unpartitioning a table requires rewriting its storage structure, which is why
partitioning is limited to restructuring variants of the modify statement.

The heapsort structure is not really a storage structure, in the sense that the
sort criteria are not remembered in any system catalog. Therefore
reconstruction of a table originally modified to heapsort simply remodifies the
table to heap with no additional sorting.

When operating on specific logical partitions instead of an entire table, the
reconstruct modify does not permit any override with-attributes except for the
location option.

The partition name clause allows the modify statement to operate on specific
named logical partitions. Partition names must be listed from outer dimension
to inner dimension.

Note: Modify...to reconstruct does not work on secondary indexes.

Modify...to Merge

To shrink a btree index, use the modify... to merge option. When data is
added to a btree table, the index automatically expands. However, a btree
index does not shrink when rows are deleted from the btree table.

Modify...to merge affects only the index, and therefore usually runs a good
deal faster than the other modify variants. Modify...to merge does not require
any temporary disk space to execute.

Modify

532 SQL Reference Guide

Modify...to Relocate

To move the data without changing the number of locations or storage
structure, specify relocate.

For example, to relocate the employee table to three different areas:

modify employee to relocate
 with oldlocation = (area1, area2, area3),
 newlocation = (area4, area5, area6);

The data in area1is moved to area4, the data in area2 is moved to area5, and
the data on area3 is moved to area6. The number of areas listed in the
oldlocation and newlocation options must be equal. The data in each area
listed in the oldlocation list is moved “as is” to the corresponding area in the
newlocation list. The oldlocation and newlocation options can only be used
when relocate is specified.

To change some but not all locations, specify only the locations to be changed.
For example, you can move only the data in area1 of the employee table:

modify employee to relocate
 with oldlocation = (area1),
 newlocation = (area4);

Areas 2 and 3 are not changed.

The DBMS Server is very efficient at spreading a table or index across multiple
locations. For example, if a table is to be spread over three locations:

create table large (wide varchar(2000),
 with location = (area1, area2, area3);

rows are added to each location in turn, in 16 page (approximately 32K for the
default 2K page size) chunks. If it is not possible to allocate 16 full pages on
an area when it is that area's turn to be filled, the table is out of space, even if
there is plenty of room in the table's other areas.

Modify...to Reorganize

To move the data and change the number of locations without changing
storage structure, specify reorganize. For example, to spread an employee
table over three locations:

modify employee to reorganize
 with location = (area1, area2, area3);

When specifying reorganize, the only valid with clause option is location.

Modify

Using SQL Statements 533

Modify...to Truncated

To delete all the rows in the table and release the file space back to the
operating system, specify modify...to truncated. For example, the following
statement deletes all rows in the acct_payable table and releases the space:

modify acct_payable to truncated;

Using truncated converts the storage structure of the table to heap. The
with_clause options cannot be specified when using modify…to truncated.

Modify...to Add_extend

To add pages to a table, specify modify...to add_extend. To specify the
number of pages to be added, use the extend=number_of_pages option. If the
with extend=number_of_pages option is omitted, the DBMS Server adds the
default number of pages specified for extending the table. To specify the
default, use the modify...with extend statement. If no default has been
specified for the table, 16 pages are added.

The modify...to add_extend option does not rebuild the table or drop any
secondary indexes.

Modify...with Blob_extend

To add pages to a blob extension table, specify modify...with blob_extend. To
specify the number of pages to be added, use the extend=number_of_pages
option. If the with extend=number_of_pages option is omitted, the DBMS
Server adds the default number of pages specified for extending the table. To
specify the default, use the modify...with extend statement. If no default has
been specified for the table, 16 pages are added.

The modify...with blob_extend option does not rebuild the table or drop any
secondary indexes.

Modify...to Phys_consistent|Phys_inconsistent

A physically inconsistent table has some form of physical corruption. A table is
marked physically inconsistent if rollforwarddb of that table fails for some
reason, or if the table is a secondary index and point-in-time recovery has
occurred only on the base table.

The modify…to phys_consistent command marks the table as physically
consistent but does not change the underlying problem.

Modify

534 SQL Reference Guide

Modify...to Log_consistent|Log_inconsistent

A logically inconsistent table is out-of-step in some way with one or more
logically related tables. A table is marked logically inconsistent if the table is
journaled and the user enters rollforwarddb +c -j on the table, or if the table is
journaled and the user rolls forward to a point-in-time. For example, if two
tables are logically related through referential constraints, and only one is
moved to a specific point-in-time, the table is marked logically inconsistent.

The modify to log_consistent command marks the table as logically consistent
but does not fix the underlying problem.

Modify...to Table_recovery_allowed|Table_recovery_disallowed

To prevent the possibility of logically or physically inconsistent tables due to
table-level recovery, table-level recovery can be disallowed for any table with
the modify to table_recovery_disallowed command.

Modify…to Unique_scope = Statement|Row

To defer the uniqueness check until the end of statement execution (for unique
indexes or base table structures), specify the modify…to unique_scope =
statement|row option. This statement allows more than one row to contain the
same value for a declared unique column during the processing of an update
statement, as long as the column values are unique at the end of the
statement. These semantics are required to support ANSI uniqueness
constraints.

This modify statement is necessary when using a pre-existing secondary index
or the base table structure for a unique constraint. When an index is
constructed specifically for a unique constraint definition (even when the
definition includes a constraint with clause), the unique_scope attribute is set
automatically.

Modify…to [No]Readonly

This option marks the table readonly and returns an error if insert, delete, or
update operations are performed. Additionally, all transactions that use the
readonly table take a shared table lock.

Modify

Using SQL Statements 535

Modify…to Priority=n

This modify statement permits the assignment of a cache priority without
having to also change the storage structure. This must be an integer between
0 and 8, with 0 being the lowest priority and 8 being the highest. A
specification of 0 causes the table to revert to a normal cache management
algorithm and is the default value. If an explicit priority is not set for an index
belonging to a base table to which an explicit priority has been assigned, the
index inherits the priority of the base table.

With Clause Options

The remaining with clause options for the Modify statement are described
below.

Fillfactor, Minpages, and Maxpages

Fillfactor specifies the percentage (from 1 to 100) of each primary data page
that must be filled with rows, under ideal conditions. For example, if you
specify a fillfactor of 40, the DBMS Server fills 40% of each of the primary
data pages in the restructured table with rows. You can specify this option with
the isam, hash, or btree structures. Take care when specifying large fillfactors
because a non-uniform distribution of key values can later result in overflow
pages and thus degrade access performance for the table.

Minpages specifies the minimum number of primary pages a hash table must
have. Maxpages specifies the maximum number of primary pages a hash table
can have. Minpages and maxpages must be at least 1. If both minpages and
maxpages are specified in a modify statement, minpages must not exceed
maxpages.

For best performance, the values for minpages and maxpages must be a
power of 2. If a number other than a power of 2 is chosen, the DBMS Server
can change the number to the nearest power of 2 when the modify executes.
To ensure that the specified number is not changed, set both minpages and
maxpages to that number.

By default, modify to storage-structure resets these attributes back to their
defaults (listed below). The modify to reconstruct operation does not affect
these attributes.

Modify

536 SQL Reference Guide

Default values for fillfactor, minpages and maxpages are listed in this table:

Fillfactor Minpages Maxpages

hash 50 16 no limit

compressed hash 75 1 no limit

Isam 80 n/a n/a

compressed isam 100 n/a n/a

btree 80 n/a n/a

compressed btree 100 n/a n/a

Leaffill and Nonleaffill

For btree tables, the leaffill parameter specifies how full to fill the leaf index
pages. Leaf index pages are the index pages that are directly above the data
pages. Nonleaffill specifies how full to fill the non-leaf index pages; non-leaf
index pages are the pages above the leaf pages. Specify leaffill and nonleaffill
as percentages. For example, if you modify a table to btree, specifying
nonleaffill=75, each non-leaf index page is 75% full when the modification is
complete.

The leaffill and nonleaffill parameters can assist with controlling locking
contention in btree index pages. If some open space is retained on these
pages, concurrent users can access the btree with less likelihood of contention
while their queries descend the index tree. Strike a balance between
preserving space in index pages and creating a greater number of index
pages. More levels of index pages require more I/O to locate a data row.

By default, modify to storage-structure resets these attributes back to their
defaults (listed below). Default values for leaffill and nonleaffill are 70% and
80%, respectively. The modify to reconstruct operation does not affect these
attributes.

Allocation Option

Use the with allocation option to specify the number of pages initially allocated
to the table or index. By pre-allocating disk space to a table, runtime errors
that result from running out of disk space can be avoided. If the table is
spread across multiple locations, space is allocated across all locations.

The number of pages specified must be between 4 and 8,388,607 (the
maximum number of pages in a table). If the specified number of pages
cannot be allocated, the modify statement is aborted.

Modify

Using SQL Statements 537

A table can be modified to a smaller size. If the table requires more pages that
you specify, the table is extended and no data is lost. A table can be modified
to a larger size to reserve disk space for the table.

If not specified, a modify does not change a table's allocation.

Extend

To specify the number of pages by which a table or index grows when it
requires more space, use the with extend clause. The number of pages
specified must be between 1 and 8,388,607 (the maximum number of pages
in a table). If the specified number of pages cannot be allocated when the
table must be extended (for example, during an insert operation), the DBMS
Server aborts the statement and issues an error. By default, tables and
indexes are extended by groups of 16 pages.

If not specified, a modify does not change a table's extend attribute.

Compression

To specify data and key compression, use the with compression clause.
Compression removes the string trim from variable character data. The
following table lists valid compression options:

Storage
Structure

Base Table or
Secondary Index

Can Compress
Data?

Can Compress
Key?

hash Base Table Yes No

 Secondary Index Yes No

heap Base Table Yes No

 Secondary Index No No

btree Base Table Yes Yes

btree Secondary Index No Yes

Isam Base Table Yes No

 Secondary Index Yes No

Modify

538 SQL Reference Guide

To specify an uncompressed storage structure, specify with nocompression.

To compress both key and data for tables where this is valid (primarily btree),
specify with compression, omitting the key and data clause. To compress data
or keys independently of one another, specify with compression = (key|data).
To compress data using bit compression, specify with compression = hidata.
To explicitly suppress compression of data or keys, specify with compression =
(nokey | nodata).

If not specified, modify to storage-structure removes compression, unless the
c-prefix variants are used (cbtree and so on). Other variants of modify
preserve the table's compression type.

Location

To change the location of a table when modifying its storage structure, specify
the location option. This option specifies one or more new locations for the
table. The locations specified must exist when the statement executes and the
database must have been extended to those locations. For information about
areas and extending databases, see the Database Administrator Guide.

Unique_scope

The unique_scope option specifies, for tables or indexes with unique storage
structures, how uniqueness is checked during an update option.

There are two options:

 unique_scope = row - Uniqueness is checked as each row is inserted.

 unique_scope = statement - Uniqueness is checked after the update
statement is completed.

The default when first imposing uniqueness on a table is unique_scope = row.
Specify the unique_scope option only when modifying to a unique storage
structure. For example:

modify mytable to btree unique with unique_scope = row;

If not otherwise specified, a modify does not change the unique_scope setting.

Modify

Using SQL Statements 539

(No)persistence Option

The [no]persistence option specifies whether an index is recreated when its
related base table is modified. The [no]persistence option is valid only for
indexes. There are two options:

 with persistence - The index is recreated when its base table is modified.

 with nopersistence - The index is dropped when its base table is
modified.

By default, a modify to storage structure sets an index to nopersistence. Other
modify actions (including modify to reconstruct) do not change an index's
persistence.

Page_size

Specify page size using page_size= n where n can be the page size in the
following table:

Page Size Number of Bytes

2K 2,048

4K 4,096

8K 8,192

16K 16,384

32K 32,768

64K 65,536

The default page size is 2,048. The tid size is 4. The buffer cache for the
installation must also be configured with the page size you specify in create
table or an error occurs.

The page size of a session temporary table cannot be changed by a modify.

Modify

540 SQL Reference Guide

NopartitionPartition=

The partition= clause allows a table's partitioning scheme to be changed. The
table need not be partitioned initially. The nopartition clause removes
partitioning from a table. For the syntax of a partition= specification, see
Partitioning Schemes (see page 387).

When the partition= or nopartition with-clause options are used in a modify
statement, they are permitted only if the modify statement specifies a storage
structure (this includes the reconstruct action). Other forms of the modify
statement (for example, modify to truncated) do not allow either partition= or
nopartition clauses.

The default for the modify statement is to not change the table's partitioning
scheme.

Concurrent_updates

Specify a table modify is to be performed online. Unlike a regular modify,
which locks out all other access to the table for the entire duration, an online
modify permits normal read and update access to the table for most of the
modify. There is a brief period at the end of the modify operation where
exclusive access to the table is still required.

Online modification of tables cannot be accomplished in the following:

 Ingres clusters

 Temporary tables

 System catalogs

 Partitioned tables

 Secondary indices

Note: To use online modification, a database must be journaled.

Embedded Usage: Modify

When using the Modify SQL statement in an application, the DBMS Server
returns the number of rows modified in the SQLCA's sqlerrd(3) field. If the
statement does not modify any rows, the DBMS Server sets the SQLCA's
sqlcode to 100.

The preprocessor does not verify the syntax of the with_clause. The values in
the with_clause options can be specified using host language variables. Any
other parameters cannot be specified using host language variables.

Modify

Using SQL Statements 541

Locking: Modify

The Modify SQL statement requires an exclusive table lock. Other sessions,
even those using readlock=nolock, cannot access the table until the
transaction containing the modify statement is committed.

Two exceptions are the modify to table_debug variant, which takes a shared
table lock, and the concurrent_updates option, which takes only a brief
exclusive lock at the end of the modify operation.

Related Statements: Modify

For related information on the Modify SQL statement, see the following SQL
statement descriptions in this chapter:

Copy (see page 300)

Create Index (see page 323)

Create Location (see page 335)

Create Table (see page 369)

Modify

542 SQL Reference Guide

Examples: Modify

The following are Modify SQL statement examples:

1. Modify the employee table to an indexed sequential storage structure with
eno as the keyed column.

modify employee to isam on eno;

If eno is the first column of the employee table, the same result can be
achieved by:

modify employee to isam;

2. Redo the isam structure on the employee, but request a 60% occupancy
on all primary pages.

modify employee to reconstruct
 with fillfactor = 60;

3. Modify the job table to compressed hash storage structure with jid and
salary as keyed columns.

modify job to hash on jid, salary
 with compression;

4. Perform the same modify, but also request 75% occupancy on all primary
pages, a minimum of 7 primary pages and a maximum of 43 primary
pages.

modify job to hash on jid, salary
 with compression, fillfactor = 75,
 minpages = 7, maxpages = 43;

5. Perform the same modify again but only request a minimum of 16 primary
pages.

modify job to hash on jid, salary
 with compression, minpages = 16;

6. Modify the dept table to a heap storage structure and move it to a new
location.

modify dept to heap with location=(area4);

7. Modify the dept table to a heap again, but have rows sorted on the dno
column and have any duplicate rows removed.

modify dept to heapsort on dno;

8. Modify the employee table in ascending order by ename, descending order
by age, and have any duplicate rows removed.

modify employee to heapsort on ename asc,
 age desc;

Modify

Using SQL Statements 543

9. Modify the employee table to btree on ename so that data pages are 50%
full and index pages are initially 40% full.

modify employee to btree on ename
 with fillfactor = 50, leaffill = 40;

10. Modify a table to btree with data compression, no key compression. This is
the format used by the (obsolete) cbtree storage structure.

modify table1 to btree
 with compression=(nokey, data);

11. Modify an index to btree using key compression.

modify index1 to btree with compression=(key);

12. Modify an index so it is retained when its base table is modified. Its
current table structure is unchanged.

modify empidx to reconstruct with persistence;

13. Modify a table, specifying the number of pages to be initially allocated to it
and the number of pages by which it is extended when it requires more
space.

modify inventory to btree
 with allocation = 10000, extend = 1000;

14. Modify an index to have uniqueness checked after the completion of an
update statement.

modify empidx to btree unique on empid
 with unique_scope = statement;

15. Move all physical partitions of the table in Example 17 in Examples (see
page 397): Create Table that contain 2001 and earlier ship-dates to the
history_loc location.

MODIFY lineitems PARTITION p1 TO REORGANIZE

WITH LOCATION = (history_loc);

16. Remove partitioning from a table.

modify lineitems to reconstruct with nopartition;

Open

544 SQL Reference Guide

Open
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Open statement executes the select statement specified when the cursor
was declared and positions the cursor immediately before the first row
returned. (To actually retrieve the rows, use the fetch statement.) A cursor
must be opened before it can be used in any data manipulation statements
such as fetch, update, or delete and a cursor must be declared before it can be
opened.

When a cursor that was declared for a dynamically prepared select statement
is opened, use the using clause if the prepared select statement contains
constants specified with question marks. For information about using question
marks to specify constants in prepared statements, see Prepare (see
page 547).

The using clause provides the values for these “unspecified” constants in the
prepared select so that the open statement can execute the select. For
example, assume that your application contains the following dynamically
prepared select statement:

statement_buffer =
 'select * from' + table_name + 'where low < ?
 and high > ?';
exec sql prepare sel_stmt from :statement_buffer;

When opening the cursor for this prepared select statement, values for the
question marks must be provided in the where clause. The using clause
performs this task. For example:

declare the cursor for sel_stmt;
assign values to variables named "low" and "high";
exec sql open cursor1
 using :low, :high;

The values in the low and high variables replace the question marks in the
where clause and the DBMS Server evaluates the select statement
accordingly. If an SQLDA is used, the values that replace the question marks
are taken from variables to which the sqlvar elements point. Before using the
descriptor in an open cursor statement, allocate the SQLDA and the variables
to which the sqlvar elements point, and place values in the variables. For more
information about the SQLDA and its sqlvar elements, see the chapter
“Embedded SQL.”

Open

Using SQL Statements 545

More than one cursor can be opened at the same time, but only one cursor
that has been declared for update in deferred mode can be open at a time. If a
cursor that has been declared for update in deferred mode is open, all other
open cursors must have been declared for readonly or for update in direct
mode.

The same cursor can be opened and closed (with the close statement)
successive times in a single program. An open cursor must be closed before it
can be reopened.

A string constant or a host language variable can be used to specify the
cursor_name. The open statement must be terminated according to the rules
of your host language.

The Open statement has the following format:

Non-dynamic version:

exec sql open cursor_name [for readonly];

The for readonly clause indicates that, though the cursor can have been
declared for update, the cursor is being opened for reading only. The for
readonly clause improves the performance of data retrieval, and must be used
whenever appropriate.

Dynamic version:

exec sql open cursor_name [for readonly]
 [using variable {, variable} |
 using descriptor descriptor_name];

The for readonly clause indicates that, though the cursor can have been
declared for update, the cursor is being opened for reading only. The for
readonly clause improves the performance of data retrieval, and must be used
whenever appropriate.

Locking: Open

If for readonly is not specified, the DBMS Server can take exclusive locks while
the cursor is open.

Open

546 SQL Reference Guide

Related Statements: Open

For related information on the Open SQL statement, see the following SQL
statement descriptions in this chapter:

Close (see page 289)

Declare Cursor (see page 410)

Fetch (see page 472)

Update (see page 637)

Examples: Open

The following are Open SQL statement examples:

1. Declare and open a cursor.

exec sql declare cursor1 cursor for
 select :one + 1, ename, age
 from employee
 where age :minage;
...
exec sql open cursor1;

When the open statement is encountered, the variables, one and minage,
are evaluated. The first statement that follows the opening of a cursor
must be a fetch statement to define the cursor position and retrieve data
into the indicated variables:

exec sql fetch cursor1
 into :two, :name, :age;

The value of the expression, :one + 1, is assigned to the variable, two, by
the fetch.

2. The following example demonstrates the dynamic SQL syntax. In a typical
application the prepared statement and its parameters are constructed
dynamically.

select_buffer =
 'select * from employee where eno = ?';
exec sql prepare select1 from :select_buffer;
exec sql declare cursor2 cursor for select1;
eno = 1234;
exec sql open cursor2 using :eno;

Prepare

Using SQL Statements 547

Prepare
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Prepare statement encodes the dynamically constructed SQL statement
string in the from clause and assigns it the specified statement_name.

When the program subsequently executes the prepared statement, it uses the
name to identify the statement, rather than the full statement string. Both the
name and statement string can be represented by either a string constant or a
host language variable. The maximum length of a statement name is 32
characters. If the statement string is blank or empty, the DBMS Server returns
a runtime syntax error.

Within the statement string, replace constant expressions in where clauses,
insert values clauses, and update set clauses with question marks. When the
statement executes, these question marks are replaced with specified values.
Question marks cannot be used in place of table or column names or reserved
words.

To illustrate, the following example prepares and executes a delete statement
on a dynamically defined table:

statement_buffer = 'delete from ' + table_name +
 ' where code = ?';
exec sql prepare del_stmt from :statement_buffer;
...

exec sql execute del_stmt using :code;

The value in the variable, code, replaces the '?' in the where clause of the
prepared delete statement.

Illustrating incorrect usage, the following example is not accurate because it
includes a parameter specification in place of the table name:

exec sql prepare bad_stmt
 from 'delete from ? where code = ?';

Whenever an application executes a prepared statement that contains
parameters specified with questions marks, the program must supply values
for each question mark.

If the statement name identifies an existing prepared statement, the existing
statement is destroyed and the new statement takes effect. This rule holds
across the dynamic scope of the application. The statement name must not
identify an existing statement name that is associated with an open cursor.
The cursor must be closed before its statement name can be destroyed. Once
prepared, the statement can be executed any number of times.

Prepare

548 SQL Reference Guide

However, if a transaction is rolled back or committed, the prepared statement
becomes invalid. If the prepared statement is to be executed only once,
execute immediate must be used on the statement string. If the prepared
statement is to be executed repeatedly, the prepare and execute sequence
must be used.

The following statements cannot be prepared and executed dynamically:

 call

 close

 connect

 create procedure

 declare

 disconnect

 enddata

 execute immediate

 execute procedure

 execute

 fetch

 get data

 get dbevent

 include

 inquire_sql

 open

 prepare to commit

 prepare

 put data

 set

 whenever

In addition, the following types of statements cannot be prepared and
dynamically executed:

 Dynamic SQL statements

 SQL statements that include the keyword repeated

If the statement string is a select statement, the select must not include an
into clause. The select statement string can include the different clauses of the
cursor select statement, such as the for update and order by clauses.

Prepare

Using SQL Statements 549

As with execute immediate, the statement string must not include exec sql,
any host language terminators, or references to variable names. If your
statement string includes embedded quotes, it is easiest to specify the string
in a host language variable. If specifying a string that includes quotes as a
string constant, remember that quoted characters within the statement string
must follow the SQL string delimiting rules.

If your host language delimits strings with double quotes, the quoted
characters within the statement string must be delimited by the SQL single
quotes. For complete information about embedding quotes within a string
literal, see the Embedded SQL Companion Guide.

The into descriptor_name clause is equivalent to issuing the describe
statement after the statement is successfully prepared. For example, the
following prepare statement:

exec sql prepare prep_stmt
 into sqlda from :statement_buffer;

is equivalent to the following prepare and describe statements:

exec sql prepare prep_stmt from :statement_buffer;
exec sql describe prep_stmt into sqlda;

The into clause returns the same information as does the describe statement.
If the prepared statement is a select, the descriptor contains the data types,
lengths, and names of the result columns. If the statement was not a select,
the descriptor's sqld field contains a zero. For more information about the
results of describing a statement, see the chapter “Working with Embedded
SQL” and Describe (see page 431) .

This statement must be terminated according to the rules of your host
language.

The Prepare statement has the following format:

exec sql prepare statement_name
 [into descriptor_name [using names]]
 from string_constant | string_variable;

Related Statements: Prepare

For related information on the Prepare SQL statement, see the following SQL
statement descriptions in this chapter:

Describe (see page 431)

Execute (see page 457)

Prepare

550 SQL Reference Guide

Example: Prepare

A two-column table, whose name is defined dynamically but whose columns
are called high and low, is manipulated within an application, and statements
to delete, update and select the values are prepared.

get table_name from a set of names;

statement_buffer = 'delete from ' + table_name +
 ' where high = ? and low = ?';
exec sql prepare del_stmt from :statement_buffer;

statement_buffer = 'insert into ' + table_name +
 ' values (?, ?)';
exec sql prepare ins_stmt from :statement_buffer;

statement_buffer = 'select * from ' + table_name
 + ' where low ?';
exec sql prepare sel_stmt from :statement_buffer;

...

exec sql execute del_stmt using :high, :low;

...

exec sql execute ins_stmt using :high, :low;

...

exec sql declare sel_csr cursor for sel_stmt;
exec sql open sel_csr using :high, :low;
loop while more rows
 exec sql fetch sel_csr into :high1, :low1;
 ...
end loop;

Prepare to Commit

Using SQL Statements 551

Prepare to Commit
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Prepare to Commit statement provides support for the two-phase commit
functionality. This statement polls the local DBMS server to determine the
commit status of the local transaction associated with the specified distributed
transaction. The distributed transaction is identified by its distributed
transaction ID, a unique, 8-byte integer that is generated by the coordinator
application. For a discussion of two phase commit, see the chapter
“Transactions and Error Handling.”

Dynamic SQL cannot be used to execute this statement. This statement must
be terminated according to the rules of your host language.

Note: The only SQL statements that can follow the prepare to commit
statement are commit or rollback.

The Prepare to Commit statement has the following format:

exec sql prepare to commit
 with highdxid = value, lowdxid = value;

value

Can be an integer constant or integer variable. The value associated with
highdxid must be the high-order 4 bytes of the distributed transaction ID.
The value associated with lowdxid must be the low-order 4 bytes of the
distributed transaction ID.

Related Statements: Prepare to Commit

For related information on the Prepare to Commit SQL statement, see the
following SQL statement descriptions in this chapter:

Commit (see page 292)

Rollback (see page 577)

Prepare to Commit

552 SQL Reference Guide

Example: Prepare to Commit

The following example shows a portion of a banking application that uses the
prepare to commit statement:

...
exec sql begin declare section;
 from_account integer;
 to_account integer;
 amount integer;
 high integer;
 low integer;
 acc_number integer;
 balance integer;
exec sql end declare section;

define sf_branch 1
define bk_branch 2
define before_willing_commit 1
define willing_commit 2

exec sql whenever sqlerror stop;

/* connect to the branch database in s.f */

exec sql connect annie session :sf_branch;

/* program assigns value to from_account,
** to_account, and amount
*/

/* begin a local transaction on s.f branch to
** update the balance in the from_account.
*/

exec sql update account
 set balance = balance - :amount
 where acc_number = :from_account;

/* connect to the branch database in berkeley. */

exec sql connect aaa session :bk_branch;

/* begin a local transaction on berkeley branch
** to update the balance in the to_account.
*/

exec sql update account
 set balance = balance + :amount
 where acc_number = :to_account;

/* ready to commit the fund transfer transaction.
** switch to s.f branch to issue the prepare to
** commit statement.*/

exec sql set_sql (session = :sf_branch);

Prepare to Commit

Using SQL Statements 553

/* store the transaction state information */

store_state_of_xact(sf_branch,
 before_willing_commit, high, low, "annie"

exec sql prepare to commit with highdxid = :high,
 lowdxid = :low;

/* store the transaction state information */
store_state_of_xact(sf_branch, willing_commit,
 high, low, "aaa");

/* switch to berkeley branch to issue the prepare
** to commit statement.*/

exec sql set_sql (session = :bk_branch);

/* store the transaction state information */

store_state_of_xact(bk_branch,
 before_willing_commit, high, low, "aaa");

exec sql prepare to commit with highdxid = :high,
 lowdxid = :low;

 /* store the transaction state information */

store_state_of_xact(bk_branch, willing_commit,
 high, low, "aaa");

/* both branches are ready to commit; commit the
** fund transfer transaction. */
/* switch to s.f branch to commit the
** local transaction. */

exec sql set_sql (session = :sf_branch);

exec sql commit;

/* switch to berkeley branch to commit the
** local transaction. */

exec sql set_sql (session = :bk_branch);

exec sql commit;

/* distributed transaction complete */

Put Data

554 SQL Reference Guide

Put Data
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Put Data statement writes a segment of a long varchar or long byte
column from an embedded program to a table. The put data statement is valid
only in data handler routines. For details about data handler routines, see the
chapter “Embedded SQL” and the Embedded SQL Companion Guide.

The Put Data statement has the following format:

exec sql put data(segment = col_value
 [, segmentlength = length_value]
 [, dataend = dataend_value]);

col value

Specifies the value to be assigned to the column. The maximum length of
a long varchar or long byte column is two gigabytes.

length_value

Optional; signed 4-byte integer specifying the length of the data segment
being written.

dataend_value

Optional; signed 4-byte integer specifying whether the segment is the last
segment to be written. To indicate end-of-data, specify 1. To indicate that
the segment is not the last, specify 0.

The host language variables for col_value, length_value, and dataend_value
must be declared to the ESQL preprocessor (in a begin declare-end declare
block).

The data handler must issue a put data statement with dataend set to 1 before
exiting; if the routine attempts to exit without issuing this statement, the
DBMS Server issues a runtime error.

Related Statements: Put Data

For related information on the Put Data SQL statement, see Get Data (see
page 478).

Raise Dbevent

Using SQL Statements 555

Raise Dbevent
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission: To raise a database event you do not own, specify the schema
parameter and have raise privilege for the database event. To assign the raise
privilege to another user, use the grant statement.

The Raise Dbevent statement enables a session to communicate status
information to other sessions that are registered to receive event_name.

If schema is omitted, the DBMS Server checks first for the specified database
event owned by the effective user of the session. If the current effective user
does not own the database event, the DBMS Server seeks the specified
database event in the database events owned by the DBA.

Use the optional event_text parameter to pass a (maximum 256 character)
string to receiving applications; to obtain the text, receiving applications must
use the inquire_sql(dbeventtext) statement.

To restrict database event notification to the session that raised the database
event, specify with noshare. To notify all registered sessions, specify with
share or omit this clause. The default is share.

If a database event is raised from within a transaction and the transaction is
subsequently rolled back, the database event notification is not rolled back.

The Raise Dbevent statement has the following format:

[exec sql] raise dbevent [schema.]event_name [event_text]
 [with [no]share];

event_name

Must specify an existing database event name.

Embedded Usage: Raise Dbevent

In an embedded Raise Dbevent SQL statement, event_name cannot be
specified using a host language variable, though event_text can be specified
using a host string variable.

Raise Error

556 SQL Reference Guide

Related Statements: Raise Dbevent

For related information on the Raise Dbevent SQL statement, see the following
SQL statement descriptions in this chapter:

Create Dbevent (see page 319)

Get Dbevent (see page 479)

Inquire_sql (see page 508)

Register Dbevent (see page 560)

Remove Dbevent (see page 566)

Raise Error
Valid in: Database procedures (DB Proc).

Permission required: Anyone with permission to create procedures can use this
statement.

The Raise Error statement notifies the DBMS Server and the application that a
database procedure has encountered an error. The raise error statement can
only be issued inside a database procedure. This statement is particularly
useful when using a rule and its associated database procedure to apply an
integrity constraint.

When this statement is issued, the DBMS Server responds as if the database
procedure has encountered an error. If the procedure was invoked by a rule,
the DBMS Server rolls back any changes made to the database by the original
user statement and any made by the database procedure and issues an error
to the application. If the raise error statement is issued in a procedure that is
executed directly by the execute procedure statement, the error is processed
in the same manner as are other errors in a database procedure. (For details,
refer Database Procedures.)

When executing a Raise Error statement with associated errortext, both the
errornumber and errortext are returned to the application. However, only the
errortext is displayed. In embedded SQL and 4GL applications, this can be
changed by using inquire_sql to retrieve the error number and text (dbmserror
and errortext). Additionally, in embedded SQL, use the whenever statement
with the sqlerror condition to inhibit the automatic display of the errortext and
provide an alternate error handling mechanism.

Raise Error

Using SQL Statements 557

The errornumber is considered a local DBMS server error and, by default, is
returned to SQLCA variable sqlerrd(1) and to dbmserror, which is accessible
using inquire_sql. The generic error number corresponding to a raise error is
41300. This number is returned, by default, to errorno, which is accessible
using inquire_sql, and to sqlcode, another SQLCA variable. The number in
sqlcode is negative (-41300).

If you have specified that local errors are returned to errorno and sqlcode (by
issuing the set_sql(dbmserror) statement), the locations described above for
the errornumber and its generic error number are reversed also. In such
cases, it is not necessary to provide a negative number for the errornumber;
the DBMS Server automatically negates the number when it places the number
in sqlcode. For a complete discussion of local and generic error numbers, see
the chapter “Transactions and Error Handling.”

In interactive applications that rely on default error messages, such as QBF,
the errornumber must be included as part of the errortext to display the
number. For example, assume that you are working in QBF and a rule fires
and, as a result, the following statement executes:

raise error 123445 'Invalid value inserted';

When the statement is executed, QBF displays a pop-up window with the
message:

'Invalid value inserted'

If it is important to display the error number also, it must be included as part
of the errortext in addition to specifying it as the errornumber:

raise error 123445
 'Error 123445: Invalid value inserted';

To direct the output of the raise error statement to the error log, specify with
destination = (error_log). The error number and text are written to the
“errlog.log” file with message identifier E_QE0300. To direct output to the
session (the default behavior), specify with destination = (session). To both
log an error and return it to an application, specify with destination = (session,
error_log).

To direct the output of the raise error statement directly to the audit log,
specify with destination=(audit_log). Any such messages are regarded as
security audit events. The description indicates the source of the event (for
example: message, raise error). The message text and error number are
available in the detail information for the event.

Raise Error

558 SQL Reference Guide

The Raise Error statement has the following format:

raise error errornumber [errortext]
 [with destination = ([session] [, error_log] [, audit_log])];

errornumber

Can be an integer constant, a local variable, or a parameter in the invoked
database procedure. If it is a local variable, it must be either a non-
nullable integer or smallint type.

errortext

Is an optional text string that describes the error associated with
errornumber. It can be a string constant, a local string variable, or a
parameter in the invoked database procedure. If errortext is not specified,
interactive applications such as QBF display a default error message.

Related Statements: Raise Error

For related information on the Raise Error SQL statement, see the following
SQL statement descriptions in this chapter:

Execute Procedure (see page 465)

Inquire_sql (see page 508)

Message (see page 521)

Raise Error

Using SQL Statements 559

Example: Raise Error

The following example enforces a relationship (or integrity constraint) between
an employee and a manager. When an employee is entered into the database,
a check is performed to enforce the existence of the manager of the employee.
If the manager is not found, the Raise Error SQL statement returns a message
to the user and rolls back the changes made to the database by the statement
that fired the rule.

create procedure validate_manager
 (mname varchar(30)) as
declare
 msg varchar(80) not null;
 check_val integer;
begin
 select count(*) into :check_val from manager
 where name = :mname;
 if check_val = 0 then
 msg = 'Error 99999: Manager "' + :mname +
 '" not found.';
raise error 99999 :msg;
endif;
end;

create rule check_emp after insert into employee
execute procedure validate_manager
 (mname = new.manager);

Register Dbevent

560 SQL Reference Guide

Register Dbevent
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: To register for an event you do not own, you must
specify the schema parameter, and must have register privilege for the
database event. To assign the register privilege, use the grant statement.

The Register Dbevent statement enables a session to specify the database
events it intends to receive.

A session receives only the database events for which it has registered. To
remove a registration, use the remove statement. After registering for a
database event, the session receives the database event using the get dbevent
statement.

A session can register for events owned by the session's effective user or for
which register privilege has been granted. If an attempt is made to register for
a nonexistent event, for an event for which register privilege has not been
granted, or twice for the same event, the DBMS Server issues an error.

If the schema parameter is omitted, the DBMS Server first checks the events
owned by the current user. If the specified event is not found, the DBMS
Server checks the events owned by the DBA.

If the register dbevent statement is issued from within a transaction that is
subsequently rolled back, the registration remains in effect.

The Register Dbevent statement has the following format:

[exec sql] register dbevent [schema.]event_name;

Embedded Usage: Register Dbevent

In an embedded Register Dbevent SQL statement, event_name cannot be
specified using a host language variable, though event_text can be specified
using a host string variable.

Register Dbevent

Using SQL Statements 561

Related Statements: Register Dbevent

For related information on the Register Dbevent SQL statement, see the
following SQL statement descriptions in this chapter:

Create Dbevent (see page 319)

Get Dbevent (see page 479)

Inquire_sql (see page 508)

Raise Dbevent (see page 555)

Remove Dbevent (see page 566)

Register Table

562 SQL Reference Guide

Register Table
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: The session must have the maintain_audit privilege. To
query the audit log, the auditor privilege is required.

The Register Table statement maps the fields in a file to columns in a virtual
table. After registering the file as a table, use SQL to manipulate the contents
of the file. To delete a registration, use the remove table statement. The
registered table can be referred to within database procedures.

Note: This statement is not the same as the Star register...as link statement.
The register...as import statement obtains access to security log files using
SQL.

The following statements can be performed against registered tables:

 create view

 create synonym

 create rule

 comment

 select

 insert, update and delete (if they are from an updateable Enterprise
Access product)

 drop

 save

 register...link (Star)

 register...index (Star)

The following statements cannot be performed against registered tables:

 Modify

 Create Index

The Register Table statement has the following format:

[exec sql] register table [schema.]table_name
 (column_name col_type [is 'external_name']
 {, column_name col_type [is 'external_name']})
 as import from 'security_log_file_name'
 with dbms=sxa
 [, rows = integer_value];

Register Table

Using SQL Statements 563

Security Log Files

The security log is created and written when security logging is enabled (using
the enable security_audit statement). The security log file has the following
format:

Field Name Data Type Description

audittime Date Date and time of the audit event

User_name char(32) Effective user name

Real_name char(32) Real user name

userprivileges char(32) User privileges

objprivileges char(32) Object privileges

database char(32) Database

auditstatus char(1) Status of event; Y for success or N
for failure

auditevent char(24) Type of event

objecttype char(24) Type of object

objectname char(32) Name of object

description char(80) Text description of event

objectowner char(32) Owner of the object being audited

detailnum Integer(4) Detail number

detailinfo varchar(256) Detail textual information

sessionid char(16) Session identifier

querytext_ sequence Integer(4) Sequence number for query text
records, where applicable

Register Table

564 SQL Reference Guide

Note: When registered, a security log is read-only.

To map the columns in the virtual table to the fields in the log file, specify the
is clause in the column list and the field name from the preceding table. For
example:

db_name char(32) is 'database'

maps the table column, db_name, to the security log field, database.

At least one column must be specified. If the is clause is omitted, the column
names must correspond to the field names listed in the preceding table.
Columns can be specified in any order.

The security log file name must be specified as a quoted string, and must be a
valid operating system file specification. To dynamically register whatever log
file is in use, specify as import from current. If current is specified, SQL
operations on the virtual log table always see the log file in use, even if the
physical log file changes.

By default, the security log shows security events for the entire Ingres
installation. If the database field is omitted, the security log contains records
only for the database in which the log is registered.

With Clause Options

The rows option in the with clause specifies the number of records the log is
expected to contain; the default is 1000. This value is displayed by the help
table statement as Rows:, and is used by the DBMS query optimizer to
produce query plans for queries that see the registered table.

The dbms option specifies the origin of the table being registered. To register a
security log, specify sxa.

Embedded Usage: Register Table

The with clause in an embedded Register Table SQL statement can be
specified using a host string variable (with :hostvar).

Locking: Register Table

The Register Table SQL statement locks pages in the iiregistrations, iirelation,
iiattributes, and iiaudittables catalogs.

Register Table

Using SQL Statements 565

Related Statements: Register Table

For related information on the Register Table SQL statement, see Remove
Table (see page 567) in this chapter.

Example: Register Table

The following example registers a security audit log with various attributes:

REGISTER TABLE aud1 (
 audittime date not null,
 user_name char(32) not null,
 real_name char(32) not null,
 userprivileges char(32) not null,
 objprivileges char(32) not null,
 database char(32) not null,
 auditstatus char(1) not null,
 auditevent char(24) not null,
 objecttype char(24) not null,
 objectname char(32) not null,
 objectowner char(32) not null,
 description char(80) not null,
 objectlabel security_label not null,
 detailinfo varchar(256) not null,
 detailnum integer4 not null,
 sessionid char(16) not null,
 querytext_sequence integer4 not null
) AS IMPORT FROM 'myfile'
 WITH DBMS=sxa; rows=2000

Remove Dbevent

566 SQL Reference Guide

Remove Dbevent
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: All users.

The Remove Dbevent statement specifies that an application no longer intends
to receive the specified database event.

If the database event has been raised before the application removes the
registration, the database event remains queued to the application and is
received when the application issues the get dbevent statement.

If the remove dbevent statement is issued from within a transaction that is
subsequently rolled back, the remove dbevent statement is not rolled back. If
an application issues the remove dbevent statement for a database event for
which it has not registered, the DBMS Server returns an error.

The Remove Dbevent statement has the following format:

[exec sql] remove dbevent [schema.]event_name;

Related Statements: Remove Dbevent

For related information on the Remove Dbevent SQL statement, see the
following SQL statement descriptions in this chapter:

Register Dbevent (see page 560)

Create Dbevent (see page 319)

Get Dbevent (see page 479)

Inquire_sql (see page 508)

Raise Dbevent (see page 555)

Remove Table

Using SQL Statements 567

Remove Table
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must have the security privilege. However, if the
target table being removed is a security audit gateway table (that is, was
registered with DBMS=SXA), you must have the maintain_audit privilege.

The Remove Table statement removes the mapping of a file to a virtual table.
To map files to virtual tables, use the register table statement.

Note: This statement is not the same as the Star remove statement. The
remove statement removes security log files that were registered using the
register...as import statement, described in this chapter.

The Remove Table statement has the following format:

[exec sql] remove table [schema.]table_name
 {, [schema.]table_name}C2 security;

Embedded Usage: Remove Table

No portion of an embedded Remove Table SQL statement can be specified
using host language variables.

Locking: Remove Table

The Remove Table SQL statement locks the iirelation, iiattribute, iiqrytext, and
iiregistrations catalogs.

Related Statements: Remove Table

For related information on the Remove Table SQL statement, see Register
Table (see page 562).

Example: Remove Table

The following example removes a security log registration:

remove table logfile_xyz;

Return

568 SQL Reference Guide

Return
Valid in: Database procedures (DB Proc).

Permission required: All users.

The Return statement terminates a currently executing database procedure
and gives control back to the calling application, and, optionally, returns a
value. The return statement can only be used inside a database procedure.
The statement terminates the procedure and returns control to the application.
(The calling application resumes execution at the statement following execute
procedure.)

The optional return_status returns a value to the calling application when the
return statement executes. Return_status must be a non-null integer constant,
variable, or parameter whose data type is comparable with the data type of
the variable to which its value is assigned. If the return_status is not specified
or if a return statement is not executed, the procedure returns 0 to the calling
application.

The into clause of the execute procedure statement allows the calling
application to retrieve the return_status once the procedure has finished
executing.

The Return statement has the following format:

return [return_status];

Example: Return

The following database procedure example, emp_sales_rank, returns rows
containing the employee ID, total sales, and rank of sales amongst current
salesmen:

create procedure emp_sales_rank
 result row (int, int, money) as
declare
 sales_tot money;
 empid int;
 sales_rank int;
begin
 sales_rank = 0;
 for select e.empid, sum(s.sales) as sales_sum into :empid, :sales_tot
 from employee e, sales s
 where e.job = 'sales' and e.empid = s.empid
 group by e.empid order by sales_sum do
 sales_rank = sales_rank + 1;
 return row(:sales_rank, :empid, :tot_sales);
 endfor;
end”

Return Row

Using SQL Statements 569

Return Row
Valid in: Database procedures (DB Proc).

Permission required: Anyone with permission to create procedures.

The Return Row statement composes a row using the values computed by the
result expressions and returns it to the caller of the procedure in which it is
contained. It can only be used within a database procedure. A return row
statement can be executed more than once in a single procedure invocation
(for example, from within a for or while loop) and offers a mechanism for
passing multiple row images back to the caller.

Procedures containing return row statements must also contain a result row
clause and the number of expressions in each return row statement must be
equal to the number of entries in the result row clause. The data type of the
result expressions must also be compatible with the corresponding entries in
the result clause.

The return row statement can only be used in a procedure called directly from
a host language program. It cannot be used in a procedure that is called from
another database procedure.”

The Return Row statement has the following format:

return row (result_expression {,result_ expression});

Related Statements: Return Row

For related information on the Return Row SQL statement, see the following
statement descriptions in this chapter:

Create Procedure (see page 338)

For-EndFor (see page 475)

Revoke

570 SQL Reference Guide

Example: Return Row

The following is a Return Row example:

Create procedure rowproc … as
 … result row (char(8), int, float) …
 begin
 …
 for select department, count(*), avg(salary) into :a, :b, :c from personnel
 group by deptname do
 …
 return row (:a, :b, :c);
 endfor;
 …
 end;

Revoke
Valid in: Interactive sessions (SQL) and embedded procedures (ESQL).

Permission required: The revoke statement can be executed by a user who is
either the owner of the target object, or has been granted permission (using
WITH GRANT Option) to use the statement on the specific target object by
another user. To revoke database privileges, you must be working in a session
that is connected to the iidbdb. If the indicated role(s) have security audit
attributes, the session must also have maintain_audit privilege.

The Revoke statement removes database privileges or role access granted to
the specified users, groups, roles, or public. (To confer privileges, use the
grant statement.) You cannot revoke privileges granted by other users.

Revoking a database privilege makes that privilege on the specified database
undefined for the specified grantee (auth_id). If an attempt is made to revoke
a privilege that was not granted to a specified auth_id, no changes are made
to the privileges of that auth_id.

Privileges granted on specific databases are not affected by revoke...on
current installation, and privileges granted on current installation are not
affected by revoke...on database. Revoking privileges from public does not
affect privileges granted to specific user.

Revoke

Using SQL Statements 571

If a privilege was granted using its “no” form (for example, nocreate_table or
noquery_io_limit), the same form must be used when revoking the privilege.
For example, the following grant prevents a user from creating tables:

grant nocreate_table on database employee
 to user karenk;

To remove this restriction:

revoke nocreate_table on database employee
 from user karenk;

For more information about privileges, see Grant (privilege) (see page 480).
For a description of group and role identifiers, and details about privilege
dependencies, see the Database Administrator Guide.

Note: In some cases granting a database privilege imposes a restriction, and
revoking the privilege removes the restriction. For example, grant
nocreatetable prevents the user from creating tables.

The Revoke statement has the following format:

[exec sql] revoke [grant option for]
 all [privileges] | privilege {, privilege} | role {, role}
 [on [objecttype] [schema.]objectname {, [schema.]objectname} |
 current installation]
 from public | [auth_type] auth_id {, auth_id}
 [cascade | restrict];

privilege

Specifies the privileges to revoke (to revoke all privileges, use all). The
privileges must agree with the objecttype as follows:

Object Type Valid Privileges

Table (omit
objecttype)

copy_into

copy_from

delete

excluding

insert

references

select

update

Revoke

572 SQL Reference Guide

Database (or current
installation)

[no]access

[no]connect_time_limit

[no]create_procedure

[no]create_table

[no]db_admin

[no]idle_time_limit

[no]lockmode

[no]query_io_limit

[no]query_row_limit

[no]select_syscat

[no]session_priority

[no[table_statistics

[no]update_syscat

Procedure execute

Event register

raise

Role omit this clause

objecttype

Specifies the type of object on which the privileges were granted. To
revoke permission on a table, omit the objecttype parameter. Valid
objecttypes are:

 dbevent

 procedure

objectname

The name of the table, database procedure, database event, or role on
which the privileges were granted.

auth_type

Specifies the type of authorization identifier to which privileges were
granted. Auth_type must be user, group, or role. The default is user. More
than one auth_type cannot be specified.

auth_id

Specifies the users, groups, or roles from which privileges are being
revoked. The auth_ids must agree with the type specified by the
auth_type.

Revoke

Using SQL Statements 573

For example, if you specify group as auth_type, the auth_id list must be a
list of group identifiers. If you specify public for the auth_id, you must
omit auth_type. You can revoke from users and public in the same revoke
statement.

Revoking Grant Option

The grant statement grant option enables users other than the owner of an
object to grant privileges on that object. For example:

grant select on employee_roster to mike with grant option;

enables mike to grant the select privilege (with or without grant option) to
other users.

The grant option can be revoked without revoking the privilege with which it
was granted. For example:

revoke grant option for select on employees from mike...

means that mike can still select data from the employees table, but cannot
grant the select privilege to other users. (The grant option cannot be specified
for database privileges.)

Revoke

574 SQL Reference Guide

Restrict versus Cascade

The restrict and cascade options specify how the DBMS Server handles
dependent privileges. The cascade option directs the DBMS Server to revoke
the specified privileges plus all privileges and objects that depend on the
privileges being revoked. The restrict option directs the DBMS Server not to
revoke the specified privilege if there are any dependent privileges or objects.

The owner of an object can grant privileges on that object to any user, group,
or role. Privileges granted by users who do not own the object are dependent
on the privileges granted with grant option by the owner.

For example, if user jerry owns the employees table, he can grant tom the
ability to select data from the table and to enable other users to select data
from the table:

grant select on employees to tom with grant option;

User tom can now enable another user to select data from the employees
table:

grant select on employees to sylvester with grant option;

The grant tom conferred on sylvester is dependent on the grant the table's
owner jerry conferred on tom. In addition, sylvester can enable other users to
select data from the employees table.

If sylvester creates a view on the employees table, that view depends on the
select privilege that tom granted to sylvester. For example:

create view njemps as select * from employees where state='New Jersey'

To remove his grant to tom, all grants tom can have issued, and any
dependent objects, jerry must specify revoke...cascade:

revoke select on employees from tom cascade;

As a result of this statement, the select privilege granted by tom to sylvester
is revoked, as are any select grants issued by sylvester to other users
conferring select privilege for the employees table. The njemps view is
destroyed.

To prevent dependent privileges from being revoked, jerry must specify
revoke... restrict:

revoke select on employees from tom restrict;

Because there are dependent privileges (tom has granted select privilege on
the employees table to sylvester), this revoke statement fails, and no
privileges are revoked. The njemps view is not destroyed.

Revoke

Using SQL Statements 575

Note: If privileges are revoked from specific authorization IDs (users, groups,
and roles) that were also granted to public, privileges and objects that depend
on the grants persist (until the privileges are revoked from public).

The restrict and cascade parameters have the same effect whether revoking a
specific privilege or the grant option for a specific privilege. In either case,
restrict prevents the operation from occurring if there are dependent
privileges, and cascade causes dependent privileges to be deleted. When
revoking a grant option with cascade, all dependent privileges are revoked,
not just the grant option portion of the dependent privileges.

Restrict or cascade must be specified when revoking privileges on tables,
database procedures, or database events. When revoking database privileges,
cascade, restrict, or grant option cannot be specified (because database
privileges cannot be granted with grant option).

Embedded Usage: Revoke

You cannot use host language variables in an embedded Revoke SQL
statement.

Locking: Revoke

The Revoke SQL statement locks pages in the iidbpriv catalog (if revoking
database privileges) or iiprotect catalog, plus pages in the system catalogs
that correspond to the object type (table, view, database event, or database
procedure).

Related Statements: Revoke

For related information on the Revoke SQL statement, see the following SQL
statement descriptions in this chapter:

Create Group (see page 321)

Create Role (see page 348)

Create User (see page 400)

Grant (privilege) (see page 480)

Revoke

576 SQL Reference Guide

Examples: Revoke

The following are Revoke SQL statement examples:

1. Revoke the query_row_limit privilege defined for the role identifier,
review_emp, on the employee database.

revoke query_row_limit on database employee
 from role review_emp;

2. Prevent any user from granting any form of access to the payroll table
(assuming no privileges were granted to specific users, groups, or roles).
Delete all dependent grants.

revoke grant option for all on payroll
 from public cascade;

3. Prevent user joeb from running the manager bonus database procedure.
Fail if joeb has granted execute privilege to other users.

revoke execute on procedure mgrbonus
 from joeb restrict;

4. Prevent user harry from selecting rows from the employees table
(assuming the same privilege was not granted to public).

revoke select on employees
 from harry cascade;

5. Prevent user roger from using role manager.

revoke manager from roger

Rollback

Using SQL Statements 577

Rollback
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: All users.

The Rollback statement aborts part or all of the current transaction. If rollback
is issued without the optional to clause, the statement terminates the
transaction and rolls back any changes made by the transaction.

If the to savepoint_name clause is included, the transaction is not terminated
and only those changes made after the specified savepoint are rolled back.
Processing resumes with the statement following the rollback to
savepointname statement. If autocommit is enabled, the rollback statement
has no effect.

Only the rollback statement without the optional to clause can be used in
database procedures, and only in procedures which are directly executed. A
database procedure that is invoked by a rule cannot contain either version of
the rollback statement.

If a database event registration is removed (using the remove dbevent
statement), and the transaction is subsequently rolled backed, the database
event registration is not restored.

Note: The optional keyword work is included for compatibility with the ISO
and ANSI SQL standards.

The Rollback statement has the following format:

[exec sql] rollback [work] [to savepoint_name];

Embedded Usage: Rollback

In addition to aborting all or part of the current transaction, an embedded
Rollback SQL statement:

 Closes all open cursors

 Discards all statements that were prepared in the current transaction

The to savepoint_name clause cannot be included if there are open cursors in
the transaction. Also, when a savepoint is specified in the rollback statement,
the DBMS Server discards only those statements that were prepared after the
specified savepoint's declaration.

Savepoint_name cannot be specified using a host language variable.

Rollback

578 SQL Reference Guide

Locking: Rollback

If the Rollback statement is issued without the to savepoint option, the
statement terminates the transaction and releases all locks held during the
transaction. If the to savepoint_name option is included, no locks are released.

Performance: Rollback

Executing a rollback undoes some or all of the work done by a transaction. The
time required to do this is generally the same amount of time taken to perform
the work.

Related Statements: Rollback

For related information on the Rollback SQL statement, see the following SQL
statement descriptions in this chapter:

Commit (see page 292)

Syntax (see page 389)

Save

Using SQL Statements 579

Save
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: You must own the table.

The Save statement directs the DBMS Server to save the specified table until
the given expiration date. By default, base tables have no expiration date. An
expiration date cannot be assigned to a system table.

The Save statement has the following format:

[exec sql] save [schema.]table_name [until month day year];

month

Must be specified as an integer from 1 through 12, or the name of the
month, abbreviated or spelled out.

day

Must be a valid day of the month (1 to 31), and year must be a fully
specified year, for example, 2001. The range of valid dates is January 1,
1970 through December 31, 2035, inclusive.

Note: If the until clause is omitted, the expiration date is set to no expiration
date. To purge expired tables from the database, use the verifydb command.
Expired tables are not automatically purged.

Embedded Usage: Save

Syntax elements cannot be represented with host language variables in an
embedded Save SQL statement.

Locking: Save

The Save SQL statement takes an exclusive lock on the specified table.

Example: Save

The following example saves the employee table until the end of February
2001:

save employee until feb 27 2001;

Savepoint

580 SQL Reference Guide

Savepoint
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: All users.

The Savepoint statement declares a named savepoint marker within a
transaction. Savepoints can be used in conjunction with the rollback statement
to rollback a transaction to the specified savepoint when necessary. Using
savepoints can eliminate the need to roll back an entire transaction if it is not
necessary.

The Savepoint statement has the following format:

[exec sql] savepoint savepoint_name;

savepoint_name

Can be any unquoted character string conforming to rules for object
names, except that the first character need not be alphabetic. This enables
numeric savepoint names to be specified.

Any number of savepoints can be declared within a transaction, and the
same savepoint_name can be used more than once. However, if the
transaction is aborted to a savepoint whose name is used more than once,
the transaction is backed out to the most recent use of the
savepoint_name.

All savepoints of a transaction are rendered inactive when the transaction
is terminated (with either a commit, a rollback, or a system intervention
upon deadlock). For more information on deadlock, see Commit (see
page 292) and Rollback (see page 577) and the chapter “Working with
Transactions and Handling Errors.”

Embedded Usage: Savepoint

An embedded Savepoint SQL statement cannot be issued when a cursor is
open. Savepoint_name cannot be specified with a host language variable.

Related Statements: Savepoint

For related information on the Savepoint SQL statement, see the following SQL
statement descriptions in this chapter:

Commit (see page 292)

Rollback (see page 577)

Savepoint

Using SQL Statements 581

Example: Savepoint

The following example declares savepoints among other SQL statements:

exec sql insert into emp (name, sal, bdate)
 values ('Jones,Bill', 10000, 1945);
/*set first savepoint marker */
exec sql savepoint setone;
exec sql insert into emp (name, sal, bdate)
 values ('Smith,Stan', 20000, 1948);
/* set second savepoint marker */
exec sql savepoint 2;
exec sql insert into emp (name, sal, bdate)
 values ('Engel,Harry', 18000, 1954);
/* undo third append;first and second remain */
exec sql rollback to 2;
/* undoes second append; first remains */
exec sql rollback to setone;
exec sql commit;
/* only the first append is committed */

Select (interactive)

582 SQL Reference Guide

Select (interactive)
Valid in: Interactive sessions (SQL) and database procedures (DB Proc).

Permission required: You can select from tables in schemas owned by the
effective user, group, and role of the session. To select rows from tables in
schemas owned by other users, groups, and roles:

 The schema parameter must be specified.

 The effective user, group, or role of the session must have select
permission.

The Select (interactive) statement returns values from one or more specified
tables or views, in the form of a single result table. Using the various clauses
of the select statement, the following can be specified:

 Criteria for the values to be returned in the result table

 How the values in the result table are to be sorted and grouped

This statement description presents details of the select statement in
interactive SQL (ISQL). In ISQL the results of a query are displayed on your
terminal. In embedded SQL (ESQL), results are returned in host language
variables. For details about using the select statement in ESQL, see Select
(embedded) (see page 601).

Tip: User consumption of computing resources can be restricted during
queries (selects) using the grant statement. Specifically, limits can be specified
for I/O and for the number of rows returned. If the DBMS query optimizer
estimates that a select exceeds the specified limits, the query is not executed.
For details, see Grant (privilege) (see page 480).

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:

select col1, ifnull(col2, 0), left(col4, 22) from t1:

The following sections describe the clauses of the select statement, explain
how to create simple queries, and explain how the results of a query are
obtained.

Select (interactive)

Using SQL Statements 583

The Select (interactive) statement has the following format:

select [first rowCount] [all | distinct] * | expression [as result_column]
 {, expression [[as] result_column]}
 [from from_source {, from_source}
 [where search_condition] where (clause)
 [group by expression{, expression}] group by (clause)
 [having search_condition] having (clause)
 {union [all]
 (select)
 [order by ordering-expression [asc | desc]
 {, ordering-expression [asc | desc]}];

Select Statement Clauses

The select statement has the following clauses:

 Select

 From

 Where

 Group by

 Having

 Order by

 Union

The following sections describe how the clauses are processed and explain
each clause in detail.

Select (interactive)

584 SQL Reference Guide

Select

The select clause specifies which values are to be returned. To display all the
columns of a table, use the asterisk wildcard character (*). For example, the
following query displays all rows and columns from the employees table:

select * from employees;

To select specific columns, specify the column names. For example, the
following query displays all rows, but only two columns from the employees
table:

select ename, enumber from employees;

To specify the table from which the column is to be selected, use the
table.column_name syntax. For example:

select managers.name, employees.name
 from managers, employees...

In the preceding example, both source tables contain a column called name.
The column names are preceded by the name of the source table; the first
column of the result table contains the values from the name column of the
managers table, and the second column contains the values from the name
column of the employees table. If a column name is used in more than one of
the source tables, qualify the column name with the table to which it belongs,
or with a correlation name. For details, see From (see page 587).

The number of rows in the result table can be limited using the first clause.
RowCount is a positive integer value that indicates the maximum rows in the
result table. The query is effectively evaluated without concern for the first
clause, but only the first “n” rows (as defined by rowCount) are returned. Note
that this clause cannot be used in a where clause subselect and it can only be
used in the first of a series of union'ed selects. However, it can be used in the
create table, as select and insert into, select statements.

To eliminate duplicate rows from the result table, specify the keyword distinct.
To preserve duplicate rows, specify the keyword all. By default, duplicate rows
are preserved.

Select (interactive)

Using SQL Statements 585

For example, the following table contains order information; the partno column
contains duplicate values, because different customers have placed orders for
the same part:

partno customerno qty unit_price

123-45 101 10 10.00

123-45 202 100 10.00

543-21 987 2 99.99

543-21 654 33 99.99

987-65 321 20 29.99

The following query displays the part numbers for which there are orders on
file:

select distinct partno from orders

The result table looks like this:

Partno

123-45

543-21

987-65

A constant value can be included in the result table. For example:

select 'Name:', ename, date('today'),
 ifnull(edept,'Unassigned')
 from employees;

The preceding query selects all rows from the employees table; the result
table is composed of the string constant 'Name:', the name of the employee,
today's date (specified using today), and the employee's department, or if
there is no department assigned, the string constant 'Unassigned'.

Select (interactive)

586 SQL Reference Guide

The result table looks like this (depending, of course, on the data in the
employees table):

COL1 Ename COL3 COL4

Name: Mike Sannicandro Aug 8, 1998 Shipping

Name: Dave Murtagh Aug 8, 1998 Purchasing

Name: Benny Barth Aug 8, 1998 Unassigned

Name: Dean Reilly Aug 8, 1998 Lumber

Name: Al Obidinski Aug 8, 1998 Unassigned

The select clause can be used to obtain values calculated from the contents of
a table. For example:

select ename, annual_salary/52 from employees;

The preceding query calculates the weekly salary of each employee based on
his/her annual salary. Aggregate functions can be used to calculate values
based on the contents of column. For example:

select max(salary), min(salary), avg(salary)
 from employees;

The preceding query returns the highest, lowest, and average salary from the
employees table; these values are based on the amounts stored in the salary
column.

To specify a name for a column in the result table, use the as result_column
clause. For example:

select ename, annual_salary/52 as weekly_salary
from employees;

In the preceding example the name, weekly_salary, is assigned to the second
result column. If a result column name is omitted for columns that are not
drawn directly from a table (for example, calculated values or constants), the
result columns are assigned the default name COLn, where n is the column
number; result columns are numbered from left to right. Column names
cannot be assigned in select clauses that use the asterisk wildcard (*) to select
all the columns in a table.

Select (interactive)

Using SQL Statements 587

From

The from clause specifies the source tables and views from which data is to be
read. The specified tables and views must exist at the time the query is issued.
The from_source parameter can be:

One or more tables or views, specified using the following syntax:
[schema.]table [[as] corr_name]

where table is the name of a table or view, or a synonym for a table or view.

A join between two or more tables or views, specified using the following
syntax:
source join_type join source on search_condition

or
source join_type join source using (column {, column})

or
source cross join source

For details about specifying join sources, see ANSI/ISO Join Syntax (see
page 598).

A maximum of 126 tables can be specified in a query, including the tables in
the from list, tables in subselects, and tables and views resulting from the
expansion of the definitions of any views included in the query.

Where

The where clause specifies criteria that restrict the contents of the results
table. Tests can be performed for simple relationships or, using subselects, for
relationships between a column and a set of columns.

Select (interactive)

588 SQL Reference Guide

Simple Where Clauses

Using a simple where clause, the contents of the results table can be
restricted, as follows:

Comparisons:

select ename from employees
 where manager = 'Jones';
select ename from employees
 where salary > 50000;

Ranges:

select ordnum from orders
 where odate between date('jan-01-1993') and
 date('today');

Set membership:

select * from orders
 where partno in ('123-45', '678-90');

Pattern matching:

select * from employees
 where ename like 'A%';

Nulls:

select ename from employees
 where edept is null;

Combined restrictions using logical operators:

select ename from employees
 where edept is null and
 hiredate = date('today');

Note: Aggregate functions cannot appear anywhere in a where clause.

Select (interactive)

Using SQL Statements 589

Group By

The group by clause combines the results for identical values in a column or
expression. This clause is typically used in conjunction with aggregate
functions to generate a single figure for each unique value in a column or
expression. For example, to obtain the number of orders for each part number
in the orders table:

select partno, count(*) from orders
group by partno;

The preceding query returns one row for each part number in the orders table,
even though there can be many orders for the same part number.

Nulls are used to represent unknown data, and two nulls are typically not
considered to be equal in SQL comparisons. However, the group by clause
treats nulls as equal and returns a single row for nulls in a grouped column or
expression.

Grouping can be performed on multiple columns or expressions. For example,
to display the number of orders for each part placed each day:

select odate, partno, count(*) from orders
group by odate, partno;

If you specify the group by clause, all columns in the select clause must be
aggregate functions, columns specified in the group by clause or expressions,
all of whose column references also appear in the columns or expressions of
the group by clause.

Note: Aggregate functions cannot appear anywhere in a group by clause.
Derived columns may appear in a group by clause, but must be referenced by
their ordinal number in the column list.

Having

The having clause filters the results of the group by clause, in the same way
the where clause filters the results of the select...from clauses. The having
clause uses the same restriction operators as the where clause.

For example, to return orders for each part for each day in the past week:

select odate, partno, count(*) from orders
group by odate, partno
having odate >= (date('today') - '1 week');

Any columns or expressions contained in the having clause must follow the
same limitations previously described for the Select clause.

Select (interactive)

590 SQL Reference Guide

Order By

The order by clause allows you to specify the columns on which the results
table is to be sorted. For example, if the employees table contains the
following data:

ename edept emanager

Murtagh Shipping Myron

Obidinski Lumber Myron

Reilly Finance Costello

Barth Lumber Myron

Karol Editorial Costello

Smith Shipping Myron

Loram Editorial Costello

Delore Finance Costello

Kugel food prep Snowden

then this query:

select emanager, ename, edept from employees
order by emanager, edept, ename

produces the following list of managers, the departments they manage, and
the employees in each department:

Manager Department Employee

Costello Editorial Karol

Costello Editorial Loram

Costello Finance Delore

Costello Finance Reilly

Myron Lumber Barth

Myron Lumber Obidinski

Myron Shipping Murtagh

Myron Shipping Smith

Snowden food prep Kugel

Select (interactive)

Using SQL Statements 591

and this query:

select ename, edept, emanager from employees
order by ename

produces this alphabetized employee list:

Employee Department Manager

Barth Lumber Myron

Delore Finance Costello

Karol Editorial Costello

Kugel food prep Snowden

Loram Editorial Costello

Murtagh Shipping Myron

Obidinski Lumber Myron

Reilly Finance Costello

Smith Shipping Myron

Select (interactive)

592 SQL Reference Guide

To display result columns sorted in descending order (reverse numeric or
alphabetic order), specify order by column_name desc. For example, to display
the employees in each department from oldest to youngest:

select edept, ename, eage from employees
order by edept, eage desc;

If a nullable column is specified in the order by clause, nulls are sorted to the
end of the results table.

Note: If the order by clause is omitted, the order of the rows in the results
table is not guaranteed to have any relationship to the storage structure or
key structure of the source tables.

In union selects, the result column names must either be the column names
from the select clause of the first select statement, or the number of the result
column. For example:

select dcolumn from dtest
union
select zcolumn from ztest
order by dcolumn

In addition to specifying individual column names as the ordering-expressions
of the order by clause, the results table can also be sorted on the value of
some expression.

For example, the query:

select ename, edept, emanager from employees
 order by emanager+edpt

produces the employee list ordered on the concatenation of the emanager and
edept values.

ename edept emanager

Murtagh Shipping Myron

Obidinski Lumber Myron

Reilly Finance Costello

Barth Lumber Myron

Karol Editorial Costello

Smith Shipping Myron

Loram Editorial Costello

Delore Finance Costello

Kugel food prep Snowden

Select (interactive)

Using SQL Statements 593

The only requirement when specifying column names or expressions in the
order by clause is that all referenced columns must exist in one of the tables
contained in the from clause.

Union

The union clause combines the results of select statements into a single result
table. For example, to list all employees in the table of active employees plus
those in the table of retired employees:

select ename from active_emps
union
select ename from retired_emps;

By default, the union clause eliminates any duplicate rows in the result table.
To retain duplicates, specify union all. Any number of select statements can be
combined using the union clause, and both union and union all can be used
when combining multiple tables.

Unions are subject to the following restrictions:

 The select statements must return the same number of columns.

 The columns returned by the select statements must correspond in order
and data type, although the column names do not have to be identical.

 The select statements cannot include individual order by clauses.

To sort the result table, specify the order by clause following the last select
statement. The result columns returned by a union are named according to the
first select statement.

By default, unions are evaluated from left to right. To specify a different order
of evaluation, use parentheses.

Any number of select statements can be combined using the union clause.
There is a maximum of 126 tables allowed in any query.

Select (interactive)

594 SQL Reference Guide

Query Evaluation

This section describes the logic applied to the evaluation of select statements.
This logic does not precisely reflect how the DBMS Server evaluates your
query to figure out the fastest and most efficient way to return results.
However, by applying the logic presented here to your queries and data, the
results of your query can be anticipated.

1. Evaluate the from clause. Combine all the sources specified in the from
clause to create a Cartesian product (a table composed of all the rows and
columns of the sources). If joins are specified, evaluate each join to obtain
its results table, combine it with the other sources in the from clause. If
select distinct is specified, discard duplicate rows.

2. Apply the where clause. Discard rows in the result table that do not
fulfill the restrictions specified in the where clause.

3. Apply the group by clause. Group results according to the columns
specified in the group by clause.

4. Apply the having clause. Discard rows in the result table that do not
fulfill the restrictions specified in the having clause.

5. Evaluate the select clause. Discard columns that are not specified in the
select clause.

6. Perform any unions. Combine result tables as specified in the union
clause.

7. Apply the order by clause. Sort the result rows as specified.

Select (interactive)

Using SQL Statements 595

Specifying Tables and Views

The following section describes how to specify table names in queries. The
same rules apply to views.

To select data from a table you own, specify the name. To select data from a
table you do not own, specify schema.table, where schema is the name of the
user that owns the table. However, if the table is owned by the database DBA,
the schema qualifier is not required. You must have the appropriate
permissions to access the table (or view) granted by the owner.

A correlation name can be specified for any table in the from clause. A
correlation name is an alias (or alternate name) for the table. For example:

select... from employees e, managers m...

The preceding example assigns the correlation name 'e' to the employees table
and 'm' to the managers table. Correlation names are useful for abbreviating
long table names and for queries that join columns in the same table.

If a correlation name is assigned to a table, the table must be referred to by
the correlation name. For example:

Correct:

select e.name, m.name
from employees e, managers m...

Incorrect:

select employees.name, managers.name
from employees e, managers m...

Joins

Joins combine information from multiple tables and views into a single result
table, according to column relationships specified in the where clause. For
example, given the following two tables:

ename edeptno

Benny Barth 10

Dean Reilly 11

Rudy Salvini 99

Tom Hart 123

Select (interactive)

596 SQL Reference Guide

ename edeptno

ddeptno dname

10 Lumber

11 Sales

99 Accounting

123 Finance

The following query joins the two tables on the relationship of equality
between values in the edeptno and ddeptno columns. The result is a list of
employees and the names of the departments in which they work:

select ename, dname from employees, departments
 where edeptno = ddeptno;

A table can be joined to itself using correlation names; this is useful when
listing hierarchical information. For example, the following query displays the
name of each employee and the name of the manager for each employee.

select e.ename, m.ename
 from employees e, employees m
 where e.eno = m.eno

Tables can be joined on any number of related columns. The data types of the
join columns must be comparable.

Join Relationships

The simple joins illustrated in the two preceding examples depend on equal
values in the join columns. This type of join is called an equijoin. Other types
of relationships can be specified in a join. For example, the following query
lists salespersons who have met or exceeded their sales quota:

select s.name, s.sales_ytd
 from sales s, quotas q
 where s.empnum = d.empnum and
 s.sales_ytd >= d.quota;

Select (interactive)

Using SQL Statements 597

Subselects

Subselects are select statements placed in a where or having clause; the
results returned by the subselect are used to evaluate the conditions specified
in the where or having clause. Subselects are also referred to as subqueries.

Subselects must return a single column, and cannot include an order by or
union clause.

The following example uses a subselect to display all employees whose salary
is above the average salary:

select * from employees where salary >
 (select avg(salary) from employees);

In the preceding example, the subselect returns a single value: the average
salary. Subselects can also return sets of values. For example, the following
query returns all employees in all departments managed by Barth.

select ename from employees where edept in
 (select ddept from departments
 where dmgr = 'Barth');

For details about the operators used in conjunction with subselects, see the
chapter “Elements of SQL Statements.”

Select (interactive)

598 SQL Reference Guide

ANSI/ISO Join Syntax

In addition to performing joins using the approach described in the Joins
section, new syntax introduced with the 1992 ANSI/ISO SQL standard can be
used. The new syntax provides a more precise way of specifying joins that are
otherwise identical to those produced from the old syntax. However, it also
allows the specification of outer joins.

An outer join returns not only the rows of the join sources that join together
according to a specified search condition, but also rows from one or both
sources that do not have a matching row in the other source. For rows
included in the outer join that do not have a matching row from the other
source, null values are returned in all columns of the other source.

An outer join is the union of two select statements: the first query returns
rows that fulfill the join condition and the second query returns nulls for rows
that do not fulfill the join condition.

The new syntax is specified entirely in the from clause, as follows:

source join_type join source on search_condition

or

source join_type join source using (column {,column})

or

source cross join source

where:

 The source parameter is the table, view, or join where the data for the
left or right side of the join originates.

 The join_type parameter specifies inner, left [outer], right [outer], or full
[outer] join. The default join type is inner.

 The search_condition is a valid restriction, subject to the rules for the
where clause. The search condition must not include aggregate functions
or subselects. Matching pairs of rows in the join result are those that
satisfy the search_condition.

 The using clause is an alternate form of the search_condition. Each column
in the using clause must exist unambiguously in each join source. An on
clause is effectively generated in which the search condition compares the
columns of the using clause from each join source.

 The cross join is simply a cross product join of all rows of the join sources.

There are three types of outer joins:

 Left outer join - Returns all values from the left source

Select (interactive)

Using SQL Statements 599

 Right outer join - Returns all values from the right source

 Full outer join - Returns all values from both sources

Note: Right and left joins are the mirror image of one another: (table1 right-
join table2) returns the same results as (table2 left-join table1).

By default, joins are evaluated left to right. To override the default order of
evaluation, use parentheses. A join source can itself be a join, and the results
of joins can be joined with the results of other joins, as illustrated in the
following pseudocode:

(A join B) join (C join D)

The placement of restrictions is important in obtaining correct results. For
example:

A join B on cond1 and cond2

does not return the same results as:

A join B on cond1 where cond2

In the first example, the restriction determines which rows in the join result
table are assigned null values; in the second example, the restriction
determines which rows are omitted from the result table.

The following examples are identical and use an outer join in the from clause
to display all employees along with the name of their department, if any. One
uses the on clause and the other uses an equivalent using clause:

select e.ename, d.dname from
(employees e left join departments d
on e.dept = d.dept);

select e.ename, d.dname from
(employees e left join departments d
using (dept));

Select (interactive)

600 SQL Reference Guide

Examples: Select (interactive)

The following are Select (interactive) SQL statement examples:

1. Find all employees who make more than their managers. This example
illustrates the use of correlation names.

select e.ename
from employee e, dept, employee m
where e.dept = dept.dno and dept.mgr = m.eno
and e.salary > m.salary;

2. Select all information for employees that have salaries above the average
salary.

select * from employee
where salary > (select avg(salary) from employee);

3. Select employee information sorted by department and, within
department, by name.

select e.ename, d.dname from employee e, dept d
where e.dept = d.dno
order by dname, ename;

4. Select lab samples analyzed by lab #12 from both production and archive
tables.

select * from samples s
here s.lab = 12

union
select * from archived_samples s
where s.lab = 12

5. Select the current user name.

select dbmsinfo('username');

6. Display the day of the week that is three days from today.

select dow(date('today') + date('3 days'));

Select (embedded)

Using SQL Statements 601

Select (embedded)
Valid in: Embedded programs (ESQL).

Permission required:

The Select (embedded) statement returns values from tables to host language
variables in an embedded SQL program. For details about the various clauses
of the select statement, see Select (interactive) (see page 582). The following
sections discuss details of interest to the embedded SQL programmer.

The Select (embedded) statement has the following format:

Non-cursor version:

exec sql [repeated] select [first rowCount] [all | distinct]
 select [first rowCount] [all | distinct]
 into variable[:indicator_var] {, variable[:indicator_var]}
 [from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]]
 [union [all] full_select]
 [order by ordering-expression [asc | desc]
 {, ordering-expression [asc | desc]}]
[exec sql begin;
 program code;
exec sql end;]

To retrieve long varchar or long byte columns, specify a data handler routine
in the into clause. For details, see Retrieving Values into Host Language
Variables (see page 604).

Cursor version (embedded within a declareexpression | result_name =
expression | expression as result_name cursor statement):

select [all|distinct]
 select [first rowCount] [all | distinct]
 [from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by result_column [asc|desc]
 {, result_column [asc|desc]}]
 [for [deferred | direct] update of column {, column}];

where result_expression is:

expression | result_name = expression | expression as result_name

Select (embedded)

602 SQL Reference Guide

Non-Cursor Select

The non-cursor version of the embedded SQL select statement can be used to
retrieve a single row or a set of rows from the database.

If the optional begin-end block syntax is not used, the embedded select
statement can retrieve only one row from the database. This kind of select
statement is called the singleton select and is compatible with the ANSI
standard. If the singleton select does try to retrieve more than one row, an
error occurs and the result variables hold information from the first row.

For example, the following example retrieves a single row from the database:

exec sqlselect ename, sal
 into :ename, :sal
 from employee
 where eno = :eno;

Select (embedded)

Using SQL Statements 603

Select Loops

Use a select loop to read a table and process its rows individually. When a
program needs to read a table without issuing any other database statements
during the retrieval (such as for report generation), use a select loop. If other
tables must be queried while the current retrieval is in progress, use a cursor.

The begin-end statements delimit the statements in the select loop. The code
is executed once for each row as it is returned from the database. Statements
cannot be placed between the select statement and the begin statement.

During the execution of the select loop, no other statements that access the
database can be issued becaue this causes a runtime error. For information
about manipulating and updating rows and tables within the database while
data is being retrieved, see the chapter “Embedded SQL.”

However, if your program is connected to multiple database sessions, you can
issue queries from within the select loop by switching to another session. To
return to the outer select loop, switch back to the session in which the select
statement was issued.

To avoid preprocessor errors, the nested queries cannot be within the
syntactic scope of the loop but must be referenced by a subroutine call or
some form of a go to statement.

There are two ways to terminate the select loop: run it to completion or issue
the endselect statement. A host language goto statement cannot be used to
exit or return to the select loop.

To terminate a select loop before all rows are retrieved the application must
issue the endselect statement. The endselect statement must be syntactically
within the begin-end block that delimits the select loop. For more information,
see Endselect (see page 455).

The following example retrieves a set of rows from the database:

exec sql select ename, sal, eno
 into :ename, :sal, :eno
 from employee
 order by eno;
exec sql begin;
 browse data;
 if error condition then
 exec sql endselect;
 end if;
exec sql end;

Select (embedded)

604 SQL Reference Guide

Retrieving Values into Host Language Variables

The into clause specifies the host program variables into which the values
retrieved by the select are loaded. There must be a one-to-one
correspondence between expressions in the select clause and the variables in
the into clause. If the statement does not retrieve any rows, the variables are
not modified. If the number of values retrieved from the database is different
from the number of columns, an error is issued and the sqlwarn3 variable of
the SQLCA is assigned the value W. Each result variable can have an indicator
variable for null data.

Host language variables can be used as expressions in the select clause and
the search_condition, in addition to their use in the into clause. Variables used
in search_conditions must denote constant values and cannot represent names
of database columns or include any operators. Host string variables can also
substitute for the complete search condition.

The into clause can include a structure that substitutes for some or all of the
variables. The structure is expanded by the preprocessor into the names of its
individual variables. Therefore, placing a structure name in the into clause is
equivalent to enumerating all members of the structure in the order in which
they were declared.

If using a select * to retrieve into a structure, ensure that the members of the
structure have a one-to-one correspondence to the columns in the result table.

Retrieving Long Varchar and Long Byte Values

To retrieve long varchar and long byte columns, specify a datahandler clause
in place of the host language variable in the into clause. For details about data
handler routines, see the chapter “Embedded SQL” and the Embedded SQL
Companion Guide. The syntax for the datahandler clause is as follows:

datahandler(handler_routine ([handler_arg]))[:indicator_var]

Select (embedded)

Using SQL Statements 605

Host Language Variables in Union Clause

When select statements are combined using the union clause, the into clause
must appear only after the first list of select result expressions, because all
result rows of the select statements that are combined by the union clause
must be identical. The following example shows the correct use of host
language variables in a union; result variables are specified only for the first
select statement:

exec sql select ename, enumber
 into :name, :number
 from employee
 union
 select dname, dnumber
 from directors
 where dnumber < 100;

Repeated Queries

To reduce the overhead required to repeatedly execute a select query
statement, specify the query as a repeated query. For repeated queries, the
DBMS Server saves the query execution plan after the first time the query is
executed. This can account for significant performance improvements on
subsequent executions of the same select.

If your application needs to be able to change the search conditions,
dynamically constructed search conditions cannot be used with repeated
queries. The saved execution plan is based on the initial value of the search
condition and subsequent changes are ignored.

Cursor Select

The cursor select statement is specified as part of a declare cursor statement.
Within the declare cursor statement, the select statement is not preceded by
exec sql. The cursor select statement specifies the data to be retrieved by the
cursor. When executed, the declare cursor statement does not perform the
retrieval-the retrieval occurs when the cursor is opened. If the cursor is
declared for update, the select cannot see more than one table, cannot see a
view and cannot include a group by, having, order by, or union clause.

The cursor select can return multiple rows, because the cursor provides the
means to process and update retrieved rows one at a time. The correlation of
expressions to host language variables takes place with the fetch statement,
so the cursor select does not include an into clause. The rules for the
remaining clauses are the same as in the non-cursor select.

Select (embedded)

606 SQL Reference Guide

Error Handling

If the select statement retrieves no rows, the SQLCA variable sqlcode is set to
100. The number of rows returned from the database is in the SQLCA variable
sqlerrd(3). In a select loop, if the endselect statement was issued, sqlerrd(3)
contains the number of rows retrieved before endselect was issued.

Embedded Usage: Select (embedded)

Host language variables can be used as expressions in the select clause and
the search_conditions. Variables used in search_conditions must specify
constant values and cannot represent names of database columns or include
any operators. Host string variables can also substitute for the complete
search condition.

Related Statements: Select (embedded)

For related information on the Select (embedded) SQL statement, see the
following SQL statement descriptions in this chapter:

Create Index (see page 323)

Create Table (see page 369)

Create View (see page 405)

Delete (see page 427)

Endselect (see page 455)

Insert (see page 517)

Update (see page 637)

Select (embedded)

Using SQL Statements 607

Examples: Select (embedded)

The following examples illustrate the non-cursor Select SQL statement:

1. Retrieve the name and salary of an employee. Drop locks by committing
the following transaction.

exec sql select ename, sal
 into :namevar, :salvar
 from employee
 where eno = :numvar;
exec sql commit;

2. Select all columns in a row into a host language variable structure. (The
emprec structure has members that correspond in name and type to
columns of the employee table.)

exec sql select *
 into :emprec
 from employee
 where eno = 23;

3. Select a constant into a variable.

exec sql select 'Name: ', ename
 into :title, :ename
 from employee
 where eno >= 148 and age = :age;

4. Select the row in the employee table whose number and name correspond
to the variables, numvar and namevar. The columns are selected into a
host structure called emprec. Because this statement is issued many times
(in a subprogram, perhaps), it is formulated as a repeat query.

exec sql repeated select *
 into :emprec
 from employee
 where eno = :numvar and ename = :namevar;

5. Example of a select loop: insert new employees, and select all employees
and generate a report. If an error occurs during the process, end the
retrieval and back out the changes. No database statements are allowed
inside the select loop (begin-end block).

Select (embedded)

608 SQL Reference Guide

error = 0;
exec sql insert into employee
 select * from newhires;
exec sql select eno, ename, eage, esal, dname
 into :eno, :ename, :eage, :esal, :dname
 from employee e, dept d
 where e.edept = d.deptno
 group by ename, dname
exec sql begin;
 generate report of information;
 if error condition then
 error = 1;
 exec sql endselect;
 end if;
exec sql end;
/*
** Control transferred here by completing the
** retrieval or because the endselect statement
** was issued.
*/
if error = 1
 print 'Error encountered after row',
 sqlca.sqlerrd(3);
 exec sql rollback;
else
 print 'Successful addition and reporting';
 exec sql commit;
end if;

6. The following select statement uses a string variable to substitute for the
complete search condition. The variable search_condition is constructed
from an interactive forms application in query mode, and during the select
loop the employees who satisfy the qualification are displayed.

run forms in query mode;
construct search_condition of employees;

exec sql select *
 into :emprec
 from employee
 where :search_condition;
exec sql begin;
 load emprec into a table field;
exec sql end;
display table field for browsing;

7. This example illustrates session switching inside a select loop. The main
program processes sales orders and calls the new_customer subroutine for
every new customer.

The main program:

Select (embedded)

Using SQL Statements 609

...
exec sql include sqlca;
exec sql begin declare section;

/* Include output of dclgen for declaration of
** record order_rec */
exec sql include 'decls';
exec sql end declare section;

exec sql connect customers session 1;
exec sql connect sales session 2;
...

exec sql select * into :order_rec from orders;
exec sql begin;

if (order_rec.new_customer = 1) then

 call new_customer(order_rec);

 endif

 process order;

exec sql end;
...

exec sql disconnect;

The subroutine, new_customer, which is from the select loop, contains the
session switch:

subroutine new_customer(record order_rec)
begin;

exec sql set_sql(session = 1);
 exec sql insert into accounts
 values (:order_rec);

process any errors;

exec sql set_sql(session = 2);

/* Reset status information before resuming
** select loop */

sqlca.sqlcode = 0;
 sqlca.sqlwarn.sqlwarn0 = ' ';

end subroutine;

Set

610 SQL Reference Guide

Set
Valid in: Interactive sessions (SQL) and embedded programs (ESQL).

Permission required: Permissions are assigned to users by a DBA. For more
information on privileges, see the Database Administrator Guide.

 To issue the set [no]printqry, set [no]printrules, and set [no]rules
statements, you must have trace permissions.

 To issue the set [no]rules statement, you must be the DBA of the
database to which the session is attached when the statement is issued.

 To issue the set lockmode statement, the effective user of the session
must have lockmode privilege. Lockmode privilege is assigned using the
grant statement. For more information, see Grant (privilege) (see
page 480).

The Set statement specifies a runtime option for the current session. The
selected option remains in effect until the session is terminated or the option is
changed using another set statement.

The Set statement has the following format:

[exec sql] set autocommit on |off
[exec sql] set connection connection_name
[exec sql] set connection none
[exec sql] set joinop [no]timeout

[exec sql] set joinop [no]greedy
[exec sql] set journaling | nojournaling [on table_name]
[exec sql] set result_structure
 heap|cheap|heapsort|cheapsort|hash|chash|isam
 |cisam |btree |cbtree
[exec sql] set lockmode session|on table_name where
 [level = page|table|session|system|row]
 [, readlock = nolock|shared|exclusive
 | session|system]
 [, maxlocks = n|session|system]
 [, timeout = n|session|system|nowait]
[exec sql] set [no]lock_trace
[exec sql] set [no]logging
[exec sql] set [no]optimizeonly

[exec sql] set [no]parallel [degree of parallelism]
[exec sql] set [no]printqry
[exec sql] set [no]qep

Set

Using SQL Statements 611

[exec sql] set session
 [add privileges (priv {,priv})
 | drop privileges (priv {,priv})]
 [with
 on_error = rollback statement| transaction
 | description ='session_description'
 | nodescription
 | priority = initial | minimum
 | maximum |priority
 | privileges = (priv {, priv})| all | default
 | noprivileges
 on_logful = commit | abort | notify]
[exec sql] set session read only | write
 [, isolation level serializable | repeatable read | read committed
|
 read uncommitted]
[exec sql] set update_rowcount changed | qualified

[exec sql] set work locations add | drop | use
 location {, location}
[exec sql] set transaction read only | read write
[exec sql] set transaction isolation level
 read uncommitted
 | read committed
 | repeatable read
 | serializable
[exec sql] set [no]rules
[exec sql] set [no]printrules
[exec sql] set nomaxcost | maxcost value
[exec sql] set nomaxcpu | maxcpu value
[exec sql] set nomaxio | maxio value
[exec sql] set nomaxpage | maxpage value
[exec sql] set nomaxquery | maxquery value
[exec sql] set nomaxrow | maxrow value
[exec sql] set [no]printdbevents
[exec sql] set [no]logdbevents
[exec sql] set random_seed [value]
[exec sql] nomaxidle | set maxidle value
[exec sql] nomaxconnect | set maxconnect value
[exec sql] set unicode_substitution [<substitution character>]
[exec sql] set nounicode_substitution
[exec sql] set role none | rolename [with password = 'pwd'];

Embedded Usage: Set

When using the set lockmode statement in an embedded Set SQL statement,
host language variables can be used to specify elements to the right of the
equal sign (=) in the where clause.

Set

612 SQL Reference Guide

Autocommit

The set autocommit on statement directs the DBMS Server to treat each query
as a single-query transaction. Set autocommit off, the default, means an
explicit commit statement is required to commit a transaction.

The set autocommit statement cannot be issued in a multi-statement
transaction. For a description of multi-statement transaction behavior, see the
chapter “Transactions and Error Handling.”

[No]Lock_Trace

The set lock_trace statement enables the display of ongoing locking activity for
the current session, including information about the locks used and released
by your statements. Lock tracing can be started or stopped at any time during
a session. For additional information regarding the usage and output of this
statement, see the Database Administrator Guide.

Important! Use set lock_trace as a debugging or tracing tool only. The
lock_trace option is not a supported feature. This means that you must not
include this feature in any application-dependent procedure.

[No]Journaling

The [no]journaling statement controls the default journaling status for
permanent tables subsequently created in the session. If you specify the with
nojournaling clause in the create table statement, the default setting is
ignored. If you do not issue the [no] journaling statement, the default
established for the server class that this session is attached to is used.

Important! Regardless of whether journaling is enabled for any specific table
in a database, journaling occurs only when journaling is enabled for the
database. Journaling for the entire database is turned on or off using the
ckpdb command. For details about ckpdb, see the Command Reference Guide.

If the current journaling status of the table is not enabled, and you want to
enable journaling for this table after the next checkpoint, use the set
journaling on tablename statement.

Note: Journaling status can be enabled only when table is first created (in
which case, a complete journal history of all files exists) or after a checkpoint
(in which case the checkpoint and associated dump files have a consistent
version of the table against which the subsequent journals can be applied).

To immediately cease journaling against a table, use the set nojournaling on
tablename clause. The help table tablename statement shows that journaling
is disabled.

Set

Using SQL Statements 613

Result_Structure

The set result_structure statement sets the default storage structure for tables
created with the as clause of the create table statement. This storage
structure can be any of the structures described in the modify statement, that
is, heap, cheap, heapsort, cheapsort, hash, chash, btree, cbtree, isam or
cisam.

For example, this first sequence of statements

set result_structure hash;
create temp as select id ... ;

does the same as this second sequence of statements

create temp as select id ... ;
modify temp to hash;

Either sequence results in the “temp” table being stored in a hash structure,
hashed on the first column, “id” in this case. For hash, chash, isam, and cisam,
the newly created table is automatically indexed on the first column.

The heap and cheap structures provide the best performance results for the
create table as statement. However, these choices allow duplicate rows in the
new table, even if noduplicates is specified in the create table as statement.

If a set result_structure statement is not executed, the default storage
structure for a table created by the create table as statement is cheap.

Set

614 SQL Reference Guide

Lockmode

The set lockmode statement sets different types and levels of locks that
override the default locking strategy. Use this statement to optimize
performance or enforce stricter validation and concurrency controls.

When beginning a session, the system defaults are in effect. Using the set
lockmode statement, these defaults can be changed.

Note: The system defaults are taken from the config.dat file. Specific default
values mentioned in this description are the initial system defaults.

One set of locking parameters can be established for all tables accessed during
the session, or different locking parameters can be established for different
tables. You can also return to the default parameters for one or all tables. The
set lockmode statement cannot be issued within a transaction, except for the
following statement: set lockmode … with
timeout=<n|session|system|nowait>.

Set lockmode has five parameters that control locking for a session:

level: Specifies locking behavior; must be one of the following locking levels:

Locking Level Description

Row Take row-level locks.

If row-level locking is specified, and the number of locks
granted during a query exceeds the system-wide lock limit,
or if the locking resources of the operating system are
depleted, locking escalates to table level. This escalation
occurs automatically and is independent of the user.

Take page-level locks.

If page-level locking is specified, and the number of locks
granted during a query exceeds the system-wide lock limit,
or if the locking resources of the operating system are
depleted, locking escalates to table level. This escalation
occurs automatically and is independent of the user. Page is
the default.

table Take table-level locks.

session Take locks according to the default in effect for the session.

system Start with page-level locking; if the optimizer estimates
that more than maxlocks pages are referenced, use table
level locking.

Set

Using SQL Statements 615

readlock: This parameter applies when accessing the table only to read its
data. It does not apply if planning to update data in the table. Any of the
following modes can be specified:

Mode Description

nolock Take no locks when reading data.

shared Take shared locks when reading data; this is the default mode
of locking when reading data.

exclusive Take exclusive locks when reading data; useful in “select-for-
update” processing within a multi-statement transaction.

session Take locks according to the current readlock default for your
session.

system Take locks according to the readlock default, which is shared
locks.

maxlocks: Specifies the maximum number of page locks taken on a table
before locking escalates to a table lock. The number of locks available is
dependent upon your system configuration. The following maxlocks escalation
factors can be specified:

Escalation
Factors

Description

n Specifies the number of page locks to allow before escalating
to table level locking. n must be an integer greater than 0.

session Specifies the current maxlocks default for your session.

system Specifies the maxlocks default, which is 50.

timeout: Specifies how long, in seconds, a lock request can remain pending.
If the DBMS Server cannot grant the lock request within the specified time, the
query that requested the lock aborts. Valid settings are:

Settings Description

n Specifies the number of seconds to wait; n must be a non-
negative integer. If 0 is specified, the DBMS Server waits
indefinitely for the lock.

nowait Specifies that when a lock request is made that cannot be
granted without incurring a wait, control is immediately
returned to the application that issued the request.

session Specifies the current timeout default for your session.

Set

616 SQL Reference Guide

Settings Description

system Specifies the default: no timeout.

[No]Printqry Option

The set printqry statement displays each query and its parameters as it is
passed to the DBMS Server for processing. The set [no] printqry option
disables this feature.

[No]Qep Option

The set qep statement displays a summary of the query execution plan chosen
for each query by the optimizer. To disable this option, The set [no] qep option
disables this option. For a discussion of query execution plans, see the
Database Administrator Guide.

Joinop [No]Timeout

This statement turns the timeout feature of the optimizer on and off. When the
optimizer is checking query execution plans, it stops when it believes that the
best plan that it has found takes less time to execute than the amount of time
already spent searching for a plan. If a set joinop notimeout statement is
issued, the optimizer continues searching query plans. This option is often
used with the set qep option to ensure that the optimizer is picking the best
possible query plan.

To restore the default behavior, issue the set joinop timeout statement.

Joinop [No]Greedy

This statement enables or disables the complex query enumeration heuristic of
the Ingres optimizer. The greedy heuristic enables the optimizer to produce a
query plan much faster than with its default technique of exhaustive searching
from queries that reference large numbers of tables. For a discussion of the
greedy optimization heuristic, see the Database Administrator Guide.

Set

Using SQL Statements 617

[No]Rules Option

The set [no] rules option disables any rules that apply to statements executed
during the session or to the tables affected by the statements. Existing rules
as well as rules created during the session are disabled. To reenable rules,
issue the set rules statement. By default, rules are enabled.

The set norules statement enables DBAs to turn off rules when necessary. For
example, when using a utility that loads or unloads a database where tables
can be modified from scripts and files prior to their processing by applications.
To issue this statement, you must be the DBA of the database to which the
session is connected.

Caution! After issuing the set norules statement, the DBMS Server does not
enforce check and referential constraints on tables nor the check option for
view.

[No]Printrules

The set printrules statement causes the DBMS Server to send a trace message
to the application each time a rule is fired. This message identifies the rule and
the associated database procedure that is invoked as a result of the rule's
firing.

To disable rule-related trace messages, issue the set noprintrules statement.
By default, rule-related trace messages are not displayed.

[No]Maxcost

The set maxcost statement restricts the maximum cost per query on the
database in terms of disk I/O and CPU usage. Value must be less than or equal
to the session's value for query_cost_limit. When maxcost is set, it remains in
effect until another set maxcost statement or the set nomaxcost statement is
issued, or the session terminates. If a set nomaxcost statement is issued, the
allowed cost of disk I/O and CPU usage becomes equivalent to the value
enforced for query_cost_limit. If no query_cost_limit is set, there is no limit on
cost usage per query. To set query_cost_limit for a user, use the grant
statement.

For more information, see query_cost_limit in the description of Grant
(privilege) (see page 480).

Set

618 SQL Reference Guide

[No]Maxcpu

The set maxcpu statement restricts the maximum CPU usage per query on the
database. Value must be less than or equal to the session's value for
query_cpu_limit. When maxcpu is set, it remains in effect until another set
maxcpu statement or the set nomaxcpu statement is issued, or the session
terminates. If a set nomaxcpu statement is issued, the allowed cpu usage
becomes equivalent to the value enforced for query_cpu_limit. If no
query_cpu_limit is set, there is no limit on cpu usage per query. To set
query_cpu_limit for a user, use the grant statement.

For more information, see query_cpu_limit in the description of Grant
(privilege) (see page 480).

[No]Maxio

The set maxio statement restricts the estimated number of I/O operations that
can be used by each subsequent query to the value specified. Value must be
less than or equal to the session's value for query_io_limit. When maxio is set,
it remains in effect until another set maxio statement or the set nomaxio
statement is issued, or the session terminates. If a set nomaxio statement is
issued, the allowed number of I/O operations becomes equivalent to the value
enforced for query_io_limit. If no query_io_limit is set, there is no limit on the
amount of I/O performed.

To set query_io_limit for a user, use the grant statement. For more
information, (see page 480) see Grant (privilege)

[No]Maxpage

The set maxpage statement restricts the maximum number of pages per query
on the database. Value must be less than or equal to the session's value for
query_page_limit. When maxpage is set, it remains in effect until another set
maxpage statement or the set nomaxpage Statement is issued, or the session
terminates. If a set nomaxpage statement is issued, the allowed number of
pages becomes equivalent to the value enforced for query_page_limit. If no
query_page_limit is set, there is no limit on max page usage per query. To set
query_page_limit for a user, use the grant statement.

Set

Using SQL Statements 619

[No]Maxquery

The set maxquery statement is an alias for the set maxio statement. When
maxquery is set, it remains in effect until another set maxquery or the set
nomaxquery statement is issued, or the session terminates. If a set
nomaxquery statement is issued, the allowed number of I/O operations
becomes equivalent to the value enforced for query_io_limit. If no
query_io_limit is set, there is no limit on the amount of I/O performed.

[No]Maxrow

The set maxrow statement restricts the estimated number of rows that can be
returned to the application by each subsequent query. Value must be less than
or equal to the session's value for query_row_limit. When maxrow is set, it
remains in effect until another set maxrow statement or the set nomaxrow
statement is issued, or the session terminates. If a set nomaxrow statement is
issued, the allowed number of rows returned becomes equivalent to the value
enforced for query_row_limit. If no query_row_limit is set, there is no limit on
the number of rows returned.

For more information, see query_row_limit in the description of Grant
(privilege) (see page 480).

[No]Maxidle Option

The set [no] maxidle option specifies whether a time limit is in force, and how
long it is in seconds. The value entered must be less than that defined by the
idle_time_limit session privilege.

For more information, see idle_time_limit in the description of Grant
(privilege) (see page 480).

[No]Maxconnect Option

The set [no] maxconnect option specifies whether a current session connect
time limit is in force, and how long it is in seconds. The value entered must be
less than that defined by the connect_time_limit session privilege. Specifying
nomaxconnect resets the connection time limit to its default. For details, see
[No]Maxidle (see page 619).

Set

620 SQL Reference Guide

[No]Parallel

The set parallel statement controls the generation of parallel query plans by
the optimizer. The optional degree of parallelism value indicates the number of
exchange nodes (or points of concurrency) built into the plan. The default
value is four. The set no parallel statement prevents the optimizer from
creating parallel query plans.

Note: When tracing the I/O or the locks of a parallel query (using set io_trace
or set lock_trace with set parallel n), the trace messages from child threads of
the QEP are logged to the II_DBMS_LOG. The trace messages for the main
thread are sent to the user session in the normal manner.

For a discussion of parallel query plans, see the Database Administrator Guide.

Set Role

The set role option allows the session role to be changed during the life of the
session using the set role statement, with the following syntax:

set role none | role [with password = 'role_password’']

If set role none is specified, the session has no active role. If set role role is
specified, the current session role is set to the indicated role, if the user is
authorized to use that role. Additionally, if the role has a password, that
password must also be specified correctly using the with password clause. If
either the user is not authorized to use the role, or the password is incorrectly
specified, the session role is unchanged.

If a role has associated subject privileges or security audit attributes these are
added to the maximum privilege set for the session when the role is activated,
and removed from the privilege set when role is inactivated. Role security
audit attributes can increase auditing over the current session value, but not
decrease it.

[No]Printdbevents Option

The set [no]printdbevents option enables or disables display of event trace
information for the application that raises events.

To enable the display of trace information, specify set printdbevents. To
disable the display of trace information, specify set noprintdbevents. This
option displays only events raised by the application issuing the set statement,
and does not display events received by the application.

Set

Using SQL Statements 621

[No]Logdbevents Option

The set [no]logdbevents option enables or disables logging of event trace
information for the application that raises events. When logging is enabled,
event trace information is written to the installation log file. Specify set
logdbevents to enable logging; specify set nologdbevents to disable logging.
Only events raised by the application issuing the set statement are logged.
Events received by the application are not logged.

Random_seed

This statement sets the beginning value for the random functions. There is a
global seed value and local seed values. The global value is used until you
issue “set random_seed,” which changes the value of the local seed. Once
changed, the local seed is used for the whole session. If you are using the
global seed value, the seed is changed whenever a random function executes.
This means that other users issuing random calls enhances the “randomness”
of the returned value. Note that the seed value can be any integer.

If you omit the value, Ingres multiplies the process ID by the number of
seconds past 1/1/1970 until now.

Session with Add Privileges

The set session with add privileges option obtains a requestable privilege while
connected to Ingres. A requestable privilege is defined in the privileges list of
the alter profile, alter user, create profile, or create user statements, but is not
defined in the corresponding default privileges list.

Session with Drop Privileges

The set session with drop privileges option removes all privileges (including
default and requestable) for the current session.

Set

622 SQL Reference Guide

Session with On_error

The set session with on_error option specifies how transaction errors are
handled in the current session. To direct the DBMS Server to roll back the
effects of the entire current transaction if an error occurs, specify rollback
transaction. To direct the DBMS Server to rollback only the current statement
(the default setting), specify rollback statement. To determine the current
status of transaction error handling, issue the select
dbmsinfo('on_error_state') statement.

Specifying rollback transaction reduces logging overhead, and can help
performance. The performance gain is offset by the fact that, if an error
occurs, the entire transaction is rolled back, not the single statement that
caused the error.

The following errors always roll back the current transaction, regardless of the
current transaction error-handling setting:

 Deadlock

 Forced abort

 Lock quota exceeded

To determine if a transaction was aborted as the result of a database
statement error, issue the select dbmsinfo('transaction_state') statement. If
the error aborted the transaction, this statement returns 0, indicating that the
application is currently not in a transaction.

The set session with on_error statement cannot be issued from within a
database procedure or multi-statement transaction.

Note: SQL syntax errors (including most messages beginning with E_US) do
not cause a rollback. Only errors that occur during execution of the SQL
statement cause rollback.

Session with On_user_error

The set session with on_user_error option enables you to specify how user
errors are handled in the current session. To direct the DBMS to roll back the
effects of the entire transaction if a user error occurs, specify rollback
transaction. To revert back to default behavior, specify norollback.

Set

Using SQL Statements 623

Session with [No]Description

The set session with [no] description statement is used to identify the session
to system administrators and other users who can monitor Ingres activity.

If nodescription is specified, the session description is set empty. If description
is specified, text entered by the user is used as the session description.

The current session description can be displayed using iimonitor, ipm and ima.
This description is visible in Ingres management and administration tools. The
maximum length of a session description is 256 characters.

In ESQL, the session description can be specified using a string variable.

Session with Priority

The session_priority option sets the relative importance of various sessions. A
session can have a higher (more important) or lower (less important) priority
than a session with the base, or normal, priority.

Only users with the session_priority resource privilege can change their
session priority, subject to the limit defined by the system administrator.
Three fixed settings and one variable setting are available:

 Initial - If initial is specified, the value known at session startup time is
used.

 Minimum - If minimum is specified, the lowest (least important) priority
is used.

 Maximum - If maximum is specified, the highest (most important)
priority is used.

 Priority (variable) - The priority variable is specified as an integer. If
priority is specified, the variable used defines the requested session
priority. A positive value sets a higher priority than the base priority; a
negative value sets a lower priority than the base priority. Due to
operating system restrictions, the number of values above and below the
base priority can be limited.

Set

624 SQL Reference Guide

Session with [No]Privileges

When an Ingres session starts, it receives a default set of privileges. The set
session with [no]privileges statement can be used to add, drop or set the
session effective privileges.

The following options are available:

 add privilege-The listed privileges are added to the pre-existing effective
privileges for that session, provided the user has permission to use them.

 drop privilege-The listed privileges are removed from the effective
privileges for that session.

 with noprivileges-The session has no effective privileges.

 with privileges=(priv {,priv})-The session privileges are replaced by the
privileges listed, provided the user has permission to use them.

 with privileges=all-All granted privileges are added to the effective
privileges for that session.

 with privileges=default-The session privileges are reset to the default
privileges available at session start.

Note: Only one of these options can be specified. Ingres applications that
require certain privileges must use this command to ensure the session has
the required privileges prior to executing a privileged operation.

Session with on_logfull

When the transaction log file fills, the oldest transaction is, by default, aborted
to free up log space. The set session with on_logfull statement can be used to
modify the default behavior.

Parameter Description

abort The transaction is aborted.

commit The transaction is silently committed without notification.

notify The transaction is committed and notification of the
commit is written to the dbms log.

Set

Using SQL Statements 625

On_logfull can appear any number of times during a transaction, either within
or without the scope of the transaction.

When specifying commit or notify, the multi-row updates can be partially
committed if a logfull condition occurs. For example, using the following syntax
commits the rows deleted up to the moment the logfull condition is detected.

[exec sql] delete from [schema.]table_name [corr_name]
 [where search_condition]

If the transaction is aborted after the commit point, only the post-commit
updates are rolled back.

[No]Logging

The set nologging statement allows a database administrator to bypass the
logging and recovery system. This can be speed up certain types of batch
update operations but must always be used with extreme care.

The set nologging statement is intended to be used solely for large database
load operations for which the reduction of logging overhead and log file space
usage outweigh the benefits of having the system recover automatically from
update errors.

Set

626 SQL Reference Guide

Set Nologging

To disable transaction logging, issue the following set statement:

set nologging

When transaction logging is disabled, the standard Ingres tools and
procedures cannot be used to recover from transaction errors. Any error that
occurs when the database is being updated (including interrupts, deadlock,
lock timeout, and forced abort), or any attempt to rollback a transaction
causes the DBMS Server to mark the database inconsistent.

To use the set nologging option, the DBA must:

 Obtain exclusive access on the database to ensure that no updates (other
than those performed by the batch update operation) can occur during the
operation.

 Prepare to recover the database before suspending logging. There are two
cases:

 For existing databases, checkpoint the database prior to executing the
operations that use the set nologging statement. If an error halts
processing, the database can be restored from the checkpoint and the
process restarted.

 If loading a new database, no checkpoint is required. To correct
consistency errors, destroy the inconsistent database, create a new
database, and restart the load operation.

Caution! Do not use the set nologging statement in an attempt to improve
performance during everyday use of a production database.

Set Logging

To reenable transaction logging, issue the following set statement:

set logging

This set statement can only be issued by the DBA of the database on which
the session is operating and cannot be issued within a multi-statement
transaction. After set logging is executed, automatic database recovery is
again guaranteed.

If set nologging is used on a journaled database, take a new checkpoint
immediately after completion of the set nologging operations to establish a
new base from which to journal updates.

When a session in set nologging mode disconnects from a database, the DBMS
Server executes a set logging operation to bring the database to a guaranteed
consistent state before completing the disconnect.

Set

Using SQL Statements 627

[No]Optimizeonly

Specifies whether query execution halts after the optimization phase. To halt
execution after the query has been optimized, specify set optimizeonly. To
continue query execution after the query is optimized, specify set
nooptimizeonly. To view query execution plans (QEP's) without executing a
query, use set optimizeonly in conjunction with set qep.

Connection

The set connection statement switches the current session to a database
connection previously established using the connect statement. To determine
the current connection name, use the dbmsinfo(connection_name) statement.

Issuing the set connection none statement results in the state being identical
to prior to the first connect statement or following a disconnect statement: no
current session.

Work Locations

The set work locations statement adds, removes, or changes the set of (disk
and directory) locations that the DBMS Server uses for sorting. Sorting can
occur when queries are executed (select or fetch statements with order by
clauses) or tables are restructured (for example, using the modify statement).
Work locations are defined using the create location statement.

To add work locations to the list of locations currently in use, issue the set
work locations add statement and specify the locations to be added. To
remove locations from the set of locations currently in use, issue the set work
locations drop statement. To replace the set of locations currently in use, issue
the set work locations use statement. The work locations you specify are in
effect for the duration of the session.

For details about configuring your installation to improve the performance of
sorting, see the Database Administrator Guide.

Set

628 SQL Reference Guide

Update_Rowcount

The set update_rowcount statement specifies the nature of the value returned
by the inquire_sql(rowcount) statement. Valid options are:

 Changed - Inquire_sql(rowcount) returns the number of rows changed by
the last query.

 Qualified - Inquire_sql(rowcount) returns the number of rows that
qualified for change by the last query. Qualified is the default setting.

For example, for the following table:

column1 column2 column3

Jones 000 green

Smith 000 green

Smith 000 green

and the following query:

update test_table set column1 = 'Jones'
 where column2 = 000 and column3 = 'green';

The DBMS Server, for reasons of efficiency, does not actually update the first
row because column1 already contains Jones; however, the row does qualify
for updating by the query.

For the preceding query, if the update_rowcount option is set to changed,
inquire_sql(rowcount) returns 2 (the number of rows actually changed), but if
the update_rowcount option is set to qualified, inquire_sql(rowcount) returns 3
(the number of rows that qualified to be changed).

To determine the setting for the update_rowcount option, issue the select
dbmsinfo('update_rowcnt') statement.

Set

Using SQL Statements 629

Set Session

The set session statement cannot be issued within a transaction. The set
session statement must be issued before a transaction commences and the
settings apply until that session is completed.

Ingres supports these levels of isolation as defined by the ANSI/ISO SQL92
standard:

Isolation Level Description

READ UNCOMMITTED This level is equivalent to what is commonly known
as readlock=nolock. Isolation level must be specified
for an entire transaction.

READ COMMITED This isolation level always sees committed data
because data is locked before being read. The lock
remains in effect until the cursor is positioned to the
next page/row or closed. However, if any data on the
current item of the cursor is changed, the lock is held
until the transaction commits. When acquiring a lock
on a page/row, Ingres releases the previous
page/row if the previous page/row was not updated.

REPEATABLE READ With this isolation level, data is always locked before
being read. Locks are released only on nonqualifying
data. All other locks are held until the end of the
transaction.

SERIALIZABLE Locks are required on all data before being read. No
locks are released until the transaction ends.

SET SESSION
AUTHORIZATION
<username>

Allows a privileged user to alter their effective user
within a session. Requires security or dbadmin
privileges. Effective user immediately becomes the
stipulated username.

Set

630 SQL Reference Guide

REAREAD WRITE is specified, the level of isolation is READ_COMMITTED,
REPEATABLE_READ, or SERIALIZABLE.

Note: This is an ANSI rule, which Ingres does not enforce.

If session access mode is not specified and level of isolation is
READ_UNCOMMITTED, READ ONLY is implicit. Otherwise, READ WRITE is
implicit.

When a session access mode of READ ONLY is in effect, database modification
(insert, update, delete, load, and DDL operations) is disallowed, and an
SQLSTATE of 25000 (invalid session state) is returned. Temporary tables are
immune to this test and are always writable.

When a READ_ONLY session is begun, it registers itself with the logging
system and is allowed to proceed even when a ckpdb is pending against the
session's database.

Note: The access mode of a session has no effect on the locking mode of the
session.

Set Transaction

The set transaction statement cannot be issued within a transaction. The set
transaction statement must be issued before a transaction commences and the
settings last only until that transaction is completed.

Ingres supports these levels of isolation as defined by the ANSI/ISO SQL92
standard:

Isolation Level Description

READ UNCOMMITTED This level is equivalent to what is commonly
known as readlock=nolock. Isolation level must
be specified for an entire transaction.

READ COMMITTED This isolation level always sees committed data
because data is locked before being read. The
lock remains in effect until the cursor is
positioned to the next page/row or closed.
However, if any data on the current item of the
cursor is changed, the lock is held until the
transaction commits. When acquiring a lock on a
page/row, Ingres releases the previous
page/row if the previous page/row was not
updated.

Set

Using SQL Statements 631

Isolation Level Description

REPEATABLE READ With this isolation level, data is always locked
before being read. Locks are released only on
nonqualifying data. All other locks are held until
the end of the transaction.

SERIALIZABLE Locks are required on all data before being read.
No locks are released until the transaction ends.

If READ WRITE is specified, the level of isolation is READ_COMMITTED,
REPEATABLE_READ, or SERIALIZABLE.

Note: This is an ANSI rule, which Ingres does not enforce.

If transaction access mode is not specified and level of isolation is
READ_UNCOMMITTED, READ ONLY is implicit. Otherwise, READ WRITE is
implicit.

When a transaction access mode of READ ONLY is in effect, database
modification (insert, update, delete, load, and DDL operations) is disallowed,
and an SQLSTATE of 25000 (invalid transaction state) is returned. Temporary
tables are immune to this test and are always writable.

When a READ_ONLY transaction is begun, it registers itself with the logging
system and is allowed to proceed even when a ckpdb is pending against the
transaction's database.

Note that the access mode of a transaction has no effect on the locking mode
of the transaction.

Set unicode_substitution [<substitution character>] and Set
nounicode_substitution

When a Unicode value is being coerced into local character set which has no
equivalent character for the Unicode value an error explaining that such
coercion is not possible, is returned by default.

If unicode_substitution is set for the session then instead of returning the
error such unmapped code points will be replaced with a designated
substitution character as assigned in the mapping table for the character set.
The substitution character is used from the default subchar value specified in
the mapping file. To override this value provide a character value for
substitution character with this statement.

Set nounicode_substitution in the session will revert to the default behavior.

Set

632 SQL Reference Guide

Related Statements: Set

For related information on the Set SQL statement, see the following SQL
statement descriptions in this chapter:

Commit (see page 292)

Create Table (see page 369)

Grant (privilege) (see page 480)

Examples: Set

The following are Set SQL statement examples:

1. Create three tables with journal logging enabled and one without.

set journaling;
create table withlog1 (...);
create table withlog2 (...);
set nojournaling;
create table withlog3 (...) with journaling;
create nolog1 (...);

2. Create a few tables with different structures.

create table a as ...;/* heap */
set result_structure hash;
create table b as select id ...;/* hash on 'id' */
set result_structure heap;
create table d as select id ...; /* heap again */

3. Set lockmode parameters for the current session. Tables accessed after
executing this statement are governed by these locking behavior
characteristics.

set lockmode session where level = page,
 readlock = nolock,
 maxlocks = 50, timeout = 10;

4. Set the lockmode parameters explicitly for a particular table.

set lockmode on employee
 where level = table, readlock = exclusive,
 maxlocks = session, timeout = 0;

5. Reset your session default locking characteristics to the system defaults.

set lockmode session where level = system,
 readlock = system,
 maxlocks = system, timeout = system;

6. Switch sessions in a multi-session application.

set session connection personnel;

Set_sql

Using SQL Statements 633

7. Set the session description to 'Payroll App: Generating invoices'.

set session
 with description = 'payroll app: generating invoices';

8. Set the session priority to 5 below the normal base priority.

set session with priority = -5

9. Restore the initial session priority.

set session with priority = initial;

10. Changes the session role to clerk.

set role clerk with password='clerkpassword';

Set_sql
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Set_sql statement specifies runtime options for the current session. Use
set_sql to switch sessions in a multiple session application, specify whether
local or generic errors are returned to a session, change the default behavior
when a connection error is experienced, or set trace functions. To determine
the settings for the current session, use the inquire_sql statement.

Set_sql can be used to override II_EMBED_SET. For information about
II_EMBED_SET, see the System Administrator Guide.

This table lists the valid objects and values for the Set_sql statement:

Object Data Type Description

dbeventdisplay Integer Enables or disables the display of events as
they are queued to an application. Specify
1 to enable display, 0 to disable display.

dbeventhandler function
pointer

Specifies a user-defined routine to be
called when an event notification is queued
to an application. The event handler must
be specified as a function pointer.

Dbmserror Integer Sets the value of the error return variable
dbmserror.

errorhandler function
pointer

Specifies a user-defined routine to be
called when an SQL error occurs in an
embedded application. The error handler
must be specified as a function pointer.

Set_sql

634 SQL Reference Guide

Object Data Type Description

Errorno Integer Sets the value of the error return variable
errorno.

Errortype character
string

Specifies the type of error number
returned to errorno and sqlcode. Value can
be either genericerror, specifying generic
error numbers or dbmserror, specifying
local DBMS Server error numbers. Generic
error numbers are returned by default. For
information about the interaction of local
and generic errors, see the chapter
“Transactions and Error Handling.”

Gcafile character
string

Specifies an alternate text file to which the
DBMS Server writes GCA information. The
default filename is iiprtgca.log. To enable
this feature, use the set_sql printgca
option.

If a directory or path specification is
omitted, the file is created in the current
default directory.

messagehandler function
pointer

Specifies a user-defined routine to be
called when a database procedure returns
a message to an application. The message
handler must be specified as a function
pointer.

prefetchrows Integer Specifies the number of rows the DBMS
Server buffers when fetching data for
readonly cursors. Valid arguments are:

� 0 (default) - The DBMS calculates the
optimum number of rows to prefetch.

� 1 - Disables prefetching.

� n: (positive integer) - Specifies the
number of rows the DBMS prefetches.

For details, see the chapter “Embedded
SQL.”

Printgca Integer Turns the printgca debugging feature on or
off. Printgca prints all communications
(GCA) messages from the application as it
executes (by default, to the iiprtgca.log file
in the current directory). Specify 1 to turn
the feature on or 0 to turn the feature off.

Set_sql

Using SQL Statements 635

Object Data Type Description

Printqry Integer Turns the printqry debugging feature on or
off. Printqry prints all query text and
timing information from the application as
it executes (by default to the iiprtqry.log
file in the current directory). Specify 1 to
turn the feature on or 0 to turn the feature
off.

Printtrace Integer Enables or disables trapping of DBMS
server trace messages to a text file (by
default, iiprttrc.log). Specify 1 to enable
trapping of trace output, 0 to disable
trapping.

programquit Integer Specifies whether the DBMS Server aborts
on the following errors:

� An application issues a query, but is
not connected to a database

� The DBMS Server fails

� Communications services fail

Specify 1 to abort on these conditions

Qryfile character
string

Specifies an alternate text file to which the
DBMS Server writes query information. The
default filename is iiprtqry.log. To enable
this feature, use the set_sql printqry
option.

If a directory or path specification is
omitted, the file is created in the current
default directory.

Savequery Integer Enables or disables saving of the text of
the last query issued. Specify 1 to enable,
0 to disable. To obtain the text of the last
query, issue the
inquire_sql(:query=querytext) statement.
Use the inquire_sql(:status=savequery)
statement to determine whether saving is
enabled.

Session Integer Sets the current session. Value can be any
session identifier associated with an open
session in the application.

Set_sql

636 SQL Reference Guide

Object Data Type Description

Tracefile character
string

Specifies an alternate text file to which the
DBMS Server writes tracepoint
information; the default filename is
iiprttrc.log. To enable this feature, use the
set_sql printtrace option.

If a directory or path specification is
omitted, the file is created in the current
default directory.

Issuing the set_sql (session = none) statement results in the state being
identical to prior to the first connect statement or following a disconnect
statement: no current session.

The Set_sql SQL statement has the following format:

exec sql set_sql (object = value {, object = value})
exec sql set_sql (session = none)

Related Statements: Set_sql

For related information on the Set_sql SQL statement, see Inquire_sql (see
page 508).

Update

Using SQL Statements 637

Update
Valid in: Interactive sessions (SQL), embedded programs (ESQL), and
database procedures (DB Proc).

Permission required: You must own the table or have update privilege. If the
statement contains a where clause that specifies columns of the table being
updated, you must have both select and update permissions; otherwise,
update permission alone is sufficient.

The Update statement replaces the values of the specified columns by the
values of the specified expressions for all rows of the table that satisfy the
search_condition. For a discussion of search conditions, see the chapter
“Elements of SQL Statements.” If a row update violates an integrity constraint
on the table, the update is not performed. For details about integrity
constraints, see Create Table (see page 369) in this chapter.

table_name specifies the table for which the constraint is defined. A correlation
name (corr_name) can be specified for the table for use in the
search_condition. For a definition of correlation names and discussion of their
use, see the chapter “Overview of SQL.”

The expressions in the set clause can use constants or column values from the
table being updated or any tables listed in the from clause.

If a column name specifies a numeric column, its associated expression must
evaluate to a numeric value. Similarly, if a column name represents a
character type, its associated expression must evaluate to a character type.

The result of a correlated aggregate cannot be assigned to a column. For
example, the following update statement is invalid:

update mytable from yourtable

 set mytable.mycolumn = max(yourtable.yourcolumn);

To assign a null to a nullable column, use the null constant.

Note: To update long varchar or long byte columns, specify a datahandler
clause in place of the host language variable in the set clause. For details
about data handler routines, see the chapter “Embedded SQL” and the
Embedded SQL Companion Guide. The syntax for the datahandler clause is as
follows:
datahandler(handler_routine ([handler_arg]))[:indicator_var]

Note: If II_DECIMAL is set to comma, be sure that when SQL syntax requires
a comma (such as a list of table columns or SQL functions with several
parameters), that the comma is followed by a space. For example:
select col1, ifnull(col2, 0), left(col4, 22) from t1:

Update

638 SQL Reference Guide

The Update statement has the following format:

Interactive version:

update [schema.]table_name [corr_name]
 [from [schema.]table_name [corr_name]
 { , [schema.]table_name [corr_name]}]
 set column_name = expression {, column_name = expression}
 [where search_condition];

Embedded non-cursor version:

exec sql [repeated] update [schema.]table_name [corr_name]
 [from [schema.]table_name [corr_name]
 { , [schema.]table_name [corr_name]}]
 set column = expression {, column = expression}
 [where search_condition];

Embedded cursor version:

exec sql update [schema.]table_name
 set column = expression {, column = expression}
 where current of cursor_name;

Embedded Usage: Update

Host language variables can only be used within expressions in the set clause
and the search_condition. (Variables used in search_conditions must denote
constant values and cannot represent names of database columns or include
any operators.) A host string variable can also replace the complete search
condition, as when it is used with the Ingres forms system query mode.

The non-cursor update can be formulated as a repeated query by using the
keyword repeated. Doing so reduces the overhead required to run the same
update repeatedly within your program. The repeated keyword directs the
DBMS Server to save the query execution plan when the update is first
executed.

This encoding can account for significant performance improvements on
subsequent executions of the same update. The repeated keyword is available
only for non-cursor updates; it is ignored if used with the cursor version.
Repeated update cannot be specified as a dynamic SQL statement.

If your statement includes a dynamically constructed search_condition, that is,
if the complete search_condition is specified by a host string variable, do not
use the repeated option to change the search_condition after the initial
execution of the statement. The saved execution plan is based on the initial
value of the search_condition and any changes to search_condition are
ignored. This rule does not apply to simple variables used in
search_conditions.

Update

Using SQL Statements 639

Cursor Updates

The cursor version of update is similar to the interactive update, except for the
where clause. The where clause, required in the cursor update, specifies that
the update occur to the row the cursor currently points to. If the cursor is not
pointing to a row, as is the case immediately after an open or delete
statement, a runtime error message is generated indicating that a fetch must
first be performed. If the row the cursor is pointing to has been deleted from
the underlying database table (as the result, for example, of a non-cursor
delete), no row is updated and the sqlcode is set to 100. Following a cursor
update, the cursor continues to point to the same row.

Two cursor updates not separated by a fetch causes the same row to be
updated twice if the cursor was opened in the direct update mode. If the
cursor was opened in deferred update mode, more than one update cannot be
issued against a row, and the update cannot be followed by a delete statement
on the same row. Attempting to do either results in an error indicating an
ambiguous update operation.

If the table was created with no duplicate rows allowed, the DBMS Server
returns an error if attempt is made to insert a duplicate row.

In performing a cursor update, make sure that certain conditions are met:

 A cursor must be declared in the same file in which any update statement
referencing that cursor appears. This applies also to any cursor referenced
in a dynamic update statement string.

 A cursor name in a dynamic update statement must be unique among all
open cursors in the current transaction.

 The cursor stipulated in the update must be open before the statement is
executed.

 The update statement and the from clause in the cursor's declaration must
see the same database table.

 The columns in the set clause must have been declared for update at the
time the cursor was declared.

 Host language variables can be used only for the cursor names or for
expressions in the set clause.

When executing a cursor update dynamically, using the prepare statement,
the cursor must be open before the cursor update statement can be prepared.
The prepared statement remains valid while the cursor is open. If the named
cursor is closed and reopened, re-prepare the corresponding update
statement. If an attempt is made to execute the update statement associated
with the previously open cursor, the DBMS Server issues an error.

Update

640 SQL Reference Guide

Both the commit and rollback statements implicitly close all open cursors. A
common programming error is to update the current row of a cursor, commit
the change, and continue in a loop to repeat the process. This process fails
because the first commit closes the cursor.

If the statement does not update any rows, the sqlcode of the SQLCA is set to
100. The sqlerrd(3) of the SQLCA indicates the number of rows updated by the
statement.

Locking: Update

The Update SQL statement acquires page locks for each row in the table that
is evaluated against the where clause.

Related Statements: Update

For related information on the Update SQL statement, see the following SQL
statement descriptions in this chapter:

Delete (see page 427)

Insert (see page 517)

Select (interactive) (see page 582)

Update

Using SQL Statements 641

Examples: Update

The following examples demonstrate how to replace the values of the specified
columns by the values of the specified expressions for all rows of the table
that satisfy the search_condition:

1. Give all employees who work for Smith a 10% raise.

update emp
 set salary = 1.1 * salary
 where dept in
 (select dno
 from dept
 where mgr in
 (select eno
 from emp
 where ename = 'Smith'));

2. Set all salaried people who work for Smith to null.

update emp
 set salary = null
 where dept in
 (select dno
 from dept
 where mgr in
 (select eno
 from emp
 where ename = 'Smith'));

3. Update the salary of all employees having names that begin with “e,”
using the value for a standard raise in the table dept.

update employee e
 from dept d
 set salary = d.std_raise * e.salary
 where e.name like 'e%' and d.dname = e.dname

Whenever

642 SQL Reference Guide

Whenever
Valid in: Embedded programs (ESQL).

Permission required: All users.

The Whenever statement enables your application to handle error and
exception conditions arising from embedded SQL database statements. The
whenever statement directs the DBMS Server to perform the specified action
when the specified condition occurs. An SQLCA must be included in your
program; the whenever statement detects conditions by checking SQLCA
variables.

After a whenever has been declared, it remains in effect until another
whenever is specified for the same condition. The whenever statement has
lexical (as opposed to logical) scope. For details, see the chapter “Transactions
and Error Handling.”

Whenever statements can be repeated for the same condition and can appear
anywhere after the include sqlca statement.

The Whenever statement has the following format:

exec sql whenever condition action;

condition

Can be any of the following:

Sqlwarning-Indicates that the last embedded SQL database
statement produced a warning condition. The sqlwarn0 variable of the
SQLCA is set to W.

Sqlerror-Indicates that an error occurred as a result of the last
embedded SQL database statement. The sqlcode of the SQLCA is set
to a negative number.

Sqlmessage-Indicates that a message statement in a database
procedure has executed. The sqlcode variable of the SQLCA is set to
700. If the database procedure is invoked by a rule, message
statements issued by the database procedure do not set sqlcode, and
the sqlmessage condition does not occur.

not found-Indicates that a select, fetch, update, delete, insert, copy,
create index, or create as...select statement affected no rows. The
sqlcode variable of the SQLCA is set to 100.

Dbevent-Indicates that an event has been raised. The sqlcode
variable of the SQLCA is set to 710. This condition occurs only for
events that the application is registered to receive.

Whenever

Using SQL Statements 643

The following table lists valid actions:

Action Description

Continue Continue execution with the next executable statement. If
a fatal error occurs, an error message is printed and the
program aborts.

Stop Display an error message and terminate. If the program is
connected to a database when the condition occurs, the
program disconnects from the database without
committing pending updates. In response to an error or a
message statement inside a database procedure, stop
terminates the database procedure. There is no way to
determine which procedure statements have been
executed when the database procedure is terminated in
this way. The stop action cannot be specified for the not
found condition.

Goto label Transfer control to the specified label (same as a host
language go to statement). The label (or paragraph name,
in COBOL) must be specified using the rules of your host
language. (The keyword goto can also be specified as go
to). When specified as the response to an error or a
message statement inside a database procedure, goto
terminates the procedure when the action is performed.
You cannot determine which database procedure
statements have been executed when the procedure has
been terminated in this way.

call procedure Call the specified procedure (in COBOL, perform the
specified paragraph). The procedure must be specified
according to the conventions of the host language. No
arguments can be passed to the procedure. To direct the
program to print any error or warning message and
continues with the next statement, specify call sqlprint.
(Sqlprint is a procedure provided by Ingres, not a user-
written procedure.)

Whenever

644 SQL Reference Guide

If the call action is taken in response to an error or a message statement
inside a database procedure, another Ingres tool cannot be called. The called
procedure cannot issue any database statements, because a database
procedure continues to execute when a call action is specified. The called
procedure can issue any forms statements that do not access the database. Do
not issue form statements that access the database; for example, do not enter
a display loop containing a select statement, or issue the forminit statement.

When the message statement is issued from a database procedure that
executes as a result of a rule firing, the DBMS Server displays the message
text and continues program execution, even if a whenever sqlmessage
statement is in effect. All messages are displayed and are not returned
through the SQLCA.

If your program does not include an SQLCA (and therefore no whenever
statements), the DBMS Server displays all errors. If your program includes an
SQLCA, the DBMS Server continues execution (and does not display errors) for
all conditions for which you do not issue a whenever statement.

To override the continue default and direct the DBMS Server to display errors
and messages, set II_EMBED_SET to sqlprint. For information about
II_EMBED_SET, see the System Administrator Guide.

The program's condition is automatically checked after each embedded SQL
database statement or each database procedure statement. If one of the
conditions has become true, the action specified for that condition is taken. If
the action is goto, the label must be within the scope of the statements
affected by the whenever statement at compile time.

An action specified for a condition affects all subsequent embedded SQL source
statements until another whenever is encountered for that condition.

The embedded SQL preprocessor does not generate any code for the whenever
statement. Therefore, in a language that does not allow empty control blocks,
(for example, COBOL does not allow empty IF blocks), the whenever
statement must not be the only statement in the block.

To avoid infinite loops, the first statement in an error handling routine must be
a whenever continue that turns off error handling for the condition that caused
the error. For example:
exec sql whenever sqlerror goto error_label;

exec sql create table worktable

 (workid integer2, workstats varchar(15));

 ...

process data;

 ...

Whenever

Using SQL Statements 645

error_label:

 exec sql whenever sqlerror continue;

 exec sql drop worktable;

 exec sql disconnect;

If the error handling block did not specify continue for condition sqlerror and
the drop statement caused an error, at runtime the program loops infinitely
between the drop statement and the label, error_label.

Embedded Usage: Whenever

Host language variables cannot be used in an embedded Whenever SQL
statement.

Locking: Whenever

In general, the Whenever SQL statement has no impact. However, if the
specified action is stop, any locks held are dropped because this action
terminates execution of the program.

Related Statements: Whenever

For related information on the Whenever SQL statement, see Create Procedure
(see page 338) in this chapter.

Whenever

646 SQL Reference Guide

Examples: Whenever

The following examples describe how to enable your application to handle
error and exception conditions arising from embedded SQL database
statements.

1. During program development, print all errors and continue with next
statement.

exec sql whenever sqlerror call sqlprint;

2. During database cursor manipulation, close the cursor when no more rows
are retrieved.

exec sql open cursor1;
 exec sql whenever not found goto close_cursor;

 loop until whenever not found is true
 exec sql fetch cursor1
 into :var1, :var2;
 print and process the results;
 end loop;

 close_cursor:
 exec sql whenever not found continue;
 exec sql close cursor1;

3. Stop program upon detecting an error or warning condition.

exec sql whenever sqlerror stop;
 exec sql whenever sqlwarning stop;

4. Reset whenever actions to default within an error handling block.

error_handle:
 exec sql whenever sqlerror continue;
 exec sql whenever sqlwarning continue;
 exec sql whenever not found continue;
 ...
 handle cleanup;
 ...

5. Always confirm that the connect statement succeeded before continuing.

exec sql whenever sqlerror stop;
 exec sql connect :dbname;
 exec sql whenever sqlerror continue;

6. Ignore all messages originating in a database procedure. This is useful
when you want to suppress informational messages when providing a
production application.

exec sql whenever sqlmessage continue;
 ...
 exec sql execute procedure proc1;

While - Endwhile

Using SQL Statements 647

While - Endwhile
Valid in: Embedded programs (ESQL).

Permission required: Anyone with permission to create procedures.

The While - Endwhile statement defines a program loop. This statement can
only be used inside a database procedure.

The Boolean expression (boolean_expr) must evaluate to true or false. A
Boolean expression can include comparison operators (' =',' >', and so on) and
these logical operators:

 And

 Or

 Not

The statement list can include any series of legal database procedure
statements, including another while statement.

As long as the condition represented by the Boolean expression remains true,
the series of statements between do and endwhile is executed. The condition
is tested only at the start of each loop. If values change inside the body of the
loop so as to make the condition false, execution continues for the current
iteration of the loop, unless an endloop statement is encountered.

The endloop statement terminates a while loop. When endloop is encountered,
the loop is immediately closed, and execution continues with the first
statement following endwhile. For example:

while condition_1 do
 statement_list_1
 if condition_2 then
 endloop;
 endif;
 statement_list_2
endwhile;

In this case, if condition_2 is true, statement_list_2 is not executed in that
pass through the loop, and the entire loop is closed. Execution resumes at the
statement following the endwhile statement.

A while statement can be labeled. The label enables the endloop statement to
break out of a nested series of while statements to a specified level. The label
precedes while and is specified by a unique alphanumeric identifier followed by
a colon, as in the following:
A: while...

While - Endwhile

648 SQL Reference Guide

The label must be a legal object name. For details, see the chapter “Overview
of SQL.” The endloop statement uses the label to indicate which level of
nesting to break out of. If no label is specified after endloop, only the
innermost loop currently active is closed.

The following example illustrates the use of labels in nested while statements:
label_1: while condition_1 do
 statement_list_1
label_2: while condition_2 do
 statement_list_2
 if condition_3 then
 endloop label_1;
 elseif condition_4 then
 endloop label_2;
 endif;
 statement_list_3
 endwhile;
 statement_list_4
 endwhile;

In this example, there are two possible breaks out of the inner loop. If
condition_3 is true, both loops are closed, and control resumes at the
statement following the outer loop. If condition_3 is false but condition_4 is
true, the inner loop is exited and control resumes at statement_list_4.

If an error occurs during the evaluation of a while statement, the database
procedure terminates and control returns to the calling application.

The While -Endwhile statement has the following format:

[label:] while boolean_expr do
 statement; {statement;}
 endwhile;

While - Endwhile

Using SQL Statements 649

Example: While - Endwhile

In the following While-Endwhile SQL statement example, this database
procedure, delete_n_rows, accepts as input a base number and a number of
rows. The specified rows are deleted from the table “tab,” starting from the
base number. If an error occurs, the loop terminates:

create procedure delete_n_rows
 (base integer, n integer) as
declare
limit integer;
 err integer;
begin
 limit = base + n;
 err = 0;
 while (base < limit) do
 delete from tab where val = :base;
 if iierrornumber > 0 then
 err = 1;
 endloop;
 endif;
 base = base + 1;
 endwhile;
 return :err;
end

Keywords 651

Appendix A: Keywords

This appendix lists Ingres keywords and indicates the contexts in which they
are reserved, enabling you to avoid assigning object names that conflict with
reserved words. In addition to the explicit keywords, all identifiers starting
with the letters ii are reserved for Ingres system catalogs.

The keywords in these lists do not necessarily correspond to supported Ingres
features. Some words are reserved for future or internal use, and some words
are reserved to provide backward compatibility with older features.

Single Word Keywords
Reserved single word keywords are listed in the following table.

Abbreviations used:

 ISQL (Interactive SQL)—keywords reserved by the DBMS

 ESQL (Embedded SQL)—keywords reserved by the SQL preprocessors

 IQUEL (Interactive QUEL)—keywords reserved by the DBMS

 EQUEL (Embedded QUEL)—keywords reserved by the QUEL preprocessors

 4GL—keywords reserved in the context of SQL or QUEL in Ingres 4GL
routines

Note: The ESQL and EQUEL preprocessors also reserve forms statements. For
details about forms statements, see the Forms-based Application Development
Tools User Guide.

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

abort * * * * * *

activate * *

add * * *

addform * *

after * *

all * * * *

alter * *

Single Word Keywords

652 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

and * * * *

any * * * * *

append * * *

array *

as * * * * *

asc * *

asymmetric * *

at * * * * * *

authorization * *

avg * * * * *

avgu * * *

before * *

begin * * * * *

between * * *

breakdisplay * *

by * * * * *

byref * * *

cache * * *

call * * * *

callframe * *

callproc * * *

cascade * *

case * * *

cast *

check * * *

clear * * * *

clearrow * * * *

close * * *

coalesce *

Single Word Keywords

Keywords 653

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

collate * *

column * * * *

command * *

comment *

commit * *

commited * * *

connect *

constraint * * *

continue * *

copy * * * * * *

copy_from *

copy_into *

count * * * * *

countu * * *

create * * * * * *

current * *

current_user *

currval * * *

cursor * *

cycle * * *

datahandler *

declare * * * *

default * * * *

define * * *

delete * * * * * *

deleterow * * * *

desc *

describe * *

descriptor *

Single Word Keywords

654 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

destroy * * *

direct * *

disable *

disconnect *

display * * * *

distinct * * *

distribute *

do * * *

down * *

drop * * *

else * * *

elseif * * *

enable *

end * * * * * *

end-exec *

enddata * *

enddisplay * *

endfor * * *

endforms * *

endif * * *

endloop * * * * *

endrepeat * * *

endretrieve *

endselect *

endwhile * * *

escape * *

except *

exclude *

excluding * *

Single Word Keywords

Keywords 655

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

execute * * *

exists * * *

exit * * *

fetch * *

field * *

finalize * *

first * * *

for * * * * *

foreign * *

formdata * *

forminit * *

forms * *

from * * * * * *

full * * *

get *

getform * *

getoper * *

getrow * *

global * * *

goto *

grant * * *

granted * *

group * * *

having * * *

help * * *

help_forms * *

help_frs * *

helpfile * * * *

identified * *

Single Word Keywords

656 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

if * * *

iimessage * *

iiprintf * *

iiprompt * *

iistatement *

immediate * * * *

import *

in * * * * *

include * *

increment * * *

index * * * * * *

indicator *

ingres *

initial_user * *

initialize * * * *

inittable * * * *

inner * *

inquire_equel *

inquire_forms * *

inquire_frs * *

inquire_ingres * * * *

inquire_sql * *

insert * * *

insertrow * * * *

integrity * * * *

intersect *

into * * * * * *

is * * * * * *

isolation * * *

Single Word Keywords

Keywords 657

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

join * *

key * * *

leave * * *

left * *

level * * * *

like * *

loadtable * * * *

local *

max * * * * *

maxvalue * * *

menuitem * *

message * * * * *

min * * * * *

minvalue * * *

mode * *

modify * * * * * *

module *

move *

natural * *

next * * *

nextval * * *

nocache * * *

nocycle * * *

noecho * *

nomaxvalue * * *

nominvalue * * *

noorder * * *

not * * * *

notrim * *

Single Word Keywords

658 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

null * * * * *

nullif *

of * * * * * *

on * * * * *

only * * * * *

open * * *

option *

or * * * *

order * * * * * *

out *

outer * * *

param *

partition *

permit * * * *

prepare * *

preserve * *

primary * *

print * * *

printscreen * * * *

privileges *

procedure * * * *

prompt * * * *

public * *

purgetable * * *

putform * *

putoper * *

putrow * *

qualification * *

raise * *

Single Word Keywords

Keywords 659

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

range * * *

rawpct * * *

read *

redisplay * * * *

references * * *

referencing * *

register * * * * * *

relocate * * * * * *

remove * * * * *

rename *

repeat * * * * *

repeatable * * *

repeated * *

replace * * *

replicate *

restart * * *

restrict * *

result *

resume * * * *

retrieve * * *

return * * *

revoke * * *

right * *

role * *

rollback * * *

row * * *

rows * *

run * *

save * * * * * *

Single Word Keywords

660 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

savepoint * * * * * *

schema * *

screen * * * *

scroll * * * *

scrolldown * *

scrollup * *

section *

select * * *

serializable * * *

session * *

session_user * *

set * * * * * *

set_4gl * *

set_equel *

set_forms * *

set_frs * *

set_ingres * * * *

set_sql * *

sleep * * * *

some * * *

sort * * *

sql *

start * * *

stop *

submenu * *

substring * *

sum * * * * *

sumu * * *

symmetric * *

Single Word Keywords

Keywords 661

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

system * *

system_
maintained

 * * * *

system_user * *

table * *

tabledata * *

temporary * *

then * * * *

to * * * * *

type *

uncommitted * * *

union * * *

unique * * * * * *

unloadtable * * * *

until * * * * * *

up * *

update * * * *

user * * *

using * *

validate * * * *

validrow * * * *

values * * *

view * * * *

when * *

whenever *

where * * * * * *

while * *

with * * * * * *

work * *

Multi Word Keywords

662 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

write * * *

Multi Word Keywords
Reserved multi-word keywords are listed in the following table.

Abbreviations used:

 ISQL (Interactive SQL)—keywords reserved by the DBMS

 ESQL (Embedded SQL)—keywords reserved by the SQL preprocessors

 IQUEL (Interactive QUEL)—keywords reserved by the DBMS

 EQUEL (Embedded QUEL)—keywords reserved by the QUEL preprocessors

 4GL—keywords reserved in the context of SQL or QUEL in Ingres 4GL
routines

Note: The ESQL and EQUEL preprocessors also reserve forms statements.

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

add privileges *

after field * *

after default * *

alter group * * *

alter location * * *

alter profile *

alter role * * *

alter security_audit * * *

alter sequence * * *

alter table * *

alter user * * *

array of *

Multi Word Keywords

Keywords 663

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

base table structure *

before field * *

begin declare *

begin exclude *

begin transaction * * * * * *

by group *

by role *

by user * *

call on *

call procedure *

class of *

clear array *

close cursor * * *

comment on * * *

connect to *

copy table *

create dbevent * * *

create group * *

create integrity * *

create link * *

create location * * *

create permit * *

create procedure *

create profile *

create role * * *

create rule * * *

create security_alarm * * *

create sequence * * *

create synonym * * *

Multi Word Keywords

664 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

create user * * *

create view * *

cross join * * *

curr value *

current installation *

current value * * *

define cursor *

declare cursor *

define integrity * * *

define link *

define location *

define permit * * *

define qry * * *

define query * *

define view * * *

delete cursor * *

describe form *

destroy integrity * * * *

destroy link * *

destroy permit * * * *

destroy table * *

destroy view *

direct connect * * * *

direct disconnect * * * *

direct execute * *

disable security_audit * * *

disconnect current *

display submenu * *

drop dbevent * * *

Multi Word Keywords

Keywords 665

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

drop domain *

drop group * *

drop integrity * *

drop link * * *

drop location * * *

drop permit * *

drop procedure *

drop profile *

drop role * * *

drop rule * * *

drop security_alarm * * *

drop sequence * * *

drop synonym * * *

drop user * * *

drop view * *

each row *

each statement *

enable security_audit * * *

end transaction * * * * * *

exec sql *

execute immediate *

execute on *

execute procedure *

foreign key * *

for deferred * *

for direct * *

for readonly * *

for retrieve *

for update *

Multi Word Keywords

666 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

from group * *

from role * *

from user * *

full join * *

full outer *

get data *

get dbevent * *

get global *

global temporary *

help all *

help comment *

help integrity * *

help permit * *

help table

help view * *

identified by *

inner join * *

is null *

isolation level * *

left join * *

left outer *

modify table *

next value * * *

no cache * * *

no cycle * * *

no maxvalue * * *

no minvalue * * *

no order * * *

not like * * *

Multi Word Keywords

Keywords 667

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

not null *

on commit * * *

on current *

on database * *

on dbevent * *

on location * *

on procedure *

on sequence *

only where *

open cursor * * *

order by *

primary key * *

procedure returning * *

put data *

raise dbevent * * *

raise error *

read only *

read write *

register dbevent * * *

register table *

register view * *

remote
system_password

 *

remote system_user *

remove dbevent * * *

remove table *

remove view * *

replace cursor * * * *

result row * * *

Multi Word Keywords

668 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

resume entry * *

resume menu * *

resume next * *

resume nextfield *

resume previousfield *

retrieve cursor * * *

right join * *

right outer *

run submenu * *

send userevent *

session group *

session role *

session user *

set aggregate * *

set attribute *

set autocommit * *

set cache * *

set cpufactor * *

set date_format * *

set ddl_concurrency *

set deadlock * *

set decimal * *

set flatten *

set global *

set hash *

set io_trace * *

set j_freesz1 * *

set j_freesz2 * *

set j_freesz3 * *

Multi Word Keywords

Keywords 669

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

set j_freesz4 * *

set j_sortbufsz * *

set jcpufactor *

set joinop * *

set journaling * *

set lock_trace * *

set lockmode * *

set log_trace * *

set logdbevents *

set logging * *

set maxconnect *

set maxcost * *

set maxcpu * *

set maxidle *

set maxio * *

set maxpage * *

set maxquery * *

set maxrow * *

set money_format * *

set money_prec * *

set nodeadlock * *

set noflatten *

set nohash *

set noio_trace * *

set nojoinop * *

set nojournaling * *

set nolock_trace * *

set nolog_trace * *

set nologdbevents *

Multi Word Keywords

670 SQL Reference Guide

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

set nologging * *

set nomaxconnect *

set nomaxcost * *

set nomaxcpu * *

set nomaxidle *

set nomaxio * *

set nomaxpage * *

set nomaxquery * *

set nomaxrow * *

set noojflatten *

set nooptimizeonly * *

set noparallel *

set noprintdbevents *

set noprintqry * *

set noprintrules *

set noqep * *

set norules *

set nosql *

set nostatistics * *

set notrace * *

set
nounicode_substitution

 *

set ojflatten *

set optimizeonly * *

set parallel *

set printdbevents *

set printqry * *

set printrules *

set qbufsize * *

Multi Word Keywords

Keywords 671

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

set qep * *

set query_size * *

set random_seed *

set result_structure * *

set ret_into * *

set role *

set rules *

set session * *

set sortbufsize * *

set sql *

set statistics * *

set trace * *

set transaction *

set
unicode_substitution

 *

set update_rowcount *

set work *

system user *

to group * *

to role * *

to user * *

user authorization *

with null *

with short_remark *

Partition Keywords

672 SQL Reference Guide

Partition Keywords
The following keywords are only keywords in the context of a with partition=
clause. They are the only words treated as keywords in a partition definition
context.

Abbreviations used:

 ISQL (Interactive SQL)—keywords reserved by the DBMS

 ESQL (Embedded SQL)—keywords reserved by the SQL preprocessors

 IQUEL (Interactive QUEL)—keywords reserved by the DBMS

 EQUEL (Embedded QUEL)—keywords reserved by the QUEL preprocessors

 4GL—keywords reserved in the context of SQL or QUEL in Ingres 4GL
routines

Note: The ESQL and EQUEL preprocessors also reserve forms statements.

 SQL

 QUEL

Keyword ISQL ESQL 4GL IQUEL EQUEL 4GL

automatic *

hash *

list *

null *

on *

partition *

range *

to *

values *

with *

Unreserved ANSI/ISO SQL Keywords

Keywords 673

Unreserved ANSI/ISO SQL Keywords
The following keywords are ANSI/ISO standard keywords that are currently
not reserved in Ingres SQL or Ingres Embedded SQL. Avoid using the following
keywords in your naming conventions:

 absolute

 action

 allocate

 are

 asensitive

 assertion

 symmetric

 atomic

 bit

 bit_length

 both

 called

 cardinality

 cascaded

 cast

 catalog

 char

 char_length

 character

 character_length

 coalesce

 collate

 collation

 collect

 condition

 connection

 constraints

 convert

 corr

Unreserved ANSI/ISO SQL Keywords

674 SQL Reference Guide

 corresponding

 cross

 cube

 current_date

 current_default_transform_group

 current_path

 current_role

 current_time

 current_timestamp

 date

 day

 deallocate

 dec

 decimal

 deferrable

 deferred

 deref

 deterministic

 diagnostics

 domain

 double

 dynamic

 each

 element

 every

 except

 exception

 exec

 external

 extract

 false

 filter

 float

Unreserved ANSI/ISO SQL Keywords

Keywords 675

 found

 free

 function

 fusion

 go

 grouping

 hold

 hour

 identity

 initially

 inout

 input

 insensitive

 int

 integer

 intersect

 intersection

 intersects

 interval

 language

 large

 last

 lateral

 leading

 ln

 localtime

 localtimestamp

 lower

 match

 member

 merge

 method

 minute

Unreserved ANSI/ISO SQL Keywords

676 SQL Reference Guide

 mod

 modifies

 month

 multiset

 names

 national

 nchar

 new

 no

 none

 normalize

 nullif

 numeric

 octet_length

 old

 output

 over

 overlaps

 overlay

 pad

 parameter

 partial

 partition

 position

 precision

 prior

 rank

 reads

 real

 recursive

 ref

 relative

 release

Unreserved ANSI/ISO SQL Keywords

Keywords 677

 returns

 rollup

 row_number

 scope

 search

 second

 sensitive

 similar

 size

 smallint

 space

 specific

 specifictype

 sqlcode

 sqlerror

 sqlexception

 sqlstate

 sqlwarning

 static

 submultiset

 symmetric

 tablesample

 time

 timestamp

 timezone_hour

 timezone_minute

 trailing

 transaction

 translate

 translation

 treat

 trigger

 trim

Unreserved ANSI/ISO SQL Keywords

678 SQL Reference Guide

 true

 uescape

 unknown

 unnest

 upper

 usage

 value

 varchar

 varying

 width_bucket

 window

 within

 without

 year

 zone

Terminal Monitors 679

Appendix B: Terminal Monitors

Terminal monitors interactively enter, edit, and execute individual queries or
files containing queries. Terminal monitors also allow operating system level
commands to be executed.

Windows: Ingres character-based utilities like Terminal Monitor will display
characters correctly only if run under the supplied Ingres command prompt,
which has the correct code page and font settings.

UNIX: Ingres character-based utilities like Terminal Monitor will display
characters correctly only if the console window on which they are run has the
correct code page set, which must match the character set value set in
II_CHARSETxx for the database.

Terminal Monitor Releases
There are two releases of the Terminal Monitor:

 Forms-based release

 Line-based release

This appendix describes the line-based release, and includes instructions on
how to invoke the Terminal Monitor and issue queries interactively.

For information about the forms-based release of the Terminal Monitor, see
the Character-Based Querying and Reporting Tools User Guide.

Terminal Monitor Releases

680 SQL Reference Guide

How Terminal Monitors Are Accessed

To access terminal monitors, you must type the following command at the
operating system prompt:

sql [flags]

This sql command accepts a variety of flags that define how the Terminal
Monitor and the DBMS Server operate during your session.

The following is a list of available flags and their descriptions:

-a

Disables the autoclear function. This means that the query buffer is never
automatically cleared; it is as if the \append command was inserted after
every \go. This flag requires the query buffer to be cleared using \reset
after every query.

-d

Turns off the display of the dayfile (a text file that displays when the
Terminal Monitor is invoked).

-s

Suppresses status messages. All messages except error messages are
turned off, including login and logout messages, the dayfile, and prompts.

-vX

Sets the column separator to the character specified by X. The default is
the vertical bar (|).

-P password

Defines the user password.

-Rrole-name role-password

Defines the role name and optional role password. Separate the name and
password with a slash (/).

-history_recall

Invokes the terminal monitor with history recall functionality. The recall
functionalities include the following:

left- and right- arrow

Browses the line entered.

Backspace

Erases a character to the left of the cursor.

Up- and Down- arrow

Retrieves the history of the commands typed in this session.

Terminal Monitor Releases

Terminal Monitors 681

Ctrl+ U

Erases the line.

Ctrl + K

Erases the line from the cursor to the end.

Note: The history recall feature is only available on Linux platforms.

Terminal Monitor Query Buffering

In the Terminal Monitor, each query that is typed is placed in a query buffer,
rather than executed immediately. The queries are executed when the
execution command (\go or \g) is typed. The results, by default, appear on
your terminal.

For example, assume you have a table called, employee, that lists all
employees in your company. If you want to see a list of those employees who
live in a particular city (cityA), enter the following statement:

select name from employee where city=cityA
\g

The query is placed in the query buffer and executed when you enter \g. The
returned rows display on your terminal. (If you type \g twice, your query is
executed twice.)

Several other operations can also be performed on the query buffer, including:

 Editing the contents.

 Printing the contents.

 Writing the contents to another file.

After a \go command the query buffer is cleared if another query is typed in,
unless a command that affects the query buffer is typed first. Commands that
retain the query buffer contents are:

\append or \a
\edit or \e
\print or \p
\bell
\nobell

For example, typing:

help parts
\go
select * from parts

Terminal Monitor Releases

682 SQL Reference Guide

results in the query buffer containing:

select * from parts

Whereas, typing:

help parts
\go
\print
select * from parts

results in the query buffer containing:

help parts
select * from parts

This feature can be overridden by executing the \append command before
executing the \go command, or by specifying the -a flag when issuing the sql
command to begin your session.

Terminal Monitor Commands

Terminal Monitor commands can manipulate the contents of the query buffer
or your environment. Unlike the SQL statements that are typed into the
Terminal Monitor, terminal monitor commands are executed as soon as the
Return key is pressed.

All Terminal Monitor commands must be preceded with a backslash (\). If a
backslash is entered literally, it must be enclosed in quotes. For example, the
following statement inserts a backslash into the Test table:

insert into test values(’\’)\g

Some Terminal Monitor commands accept a file name as an argument. These
commands must appear alone on a single line. The Terminal Monitor interprets
all characters appearing on the line after such commands as a file name.
Those Terminal Monitor commands that do not accept arguments can be
stacked on a single line. For example:

\date\go\date

returns the date and time before and after execution of the current query
buffer.

Terminal Monitor commands include:

\r or \reset

Erases the entire query (reset the query buffer). The former contents of
the buffer are lost and cannot be retrieved.

Terminal Monitor Releases

Terminal Monitors 683

\p or \print

Prints the current query. The contents of the buffer are printed on the user
terminal.

Windows and UNIX:

\e or \ed or \edit or \editor [filename]

Enter the text editor of the operating system (designated by the startup
file). Use the appropriate editor exit command to return to the Terminal
Monitor. If no file name is given, the current contents of the query buffer
are sent to the editor, and upon return, the query buffer is replaced with
the edited query. If a file name is given, the query buffer is written to that
file. On exit from the editor, the file contains the edited query, but the
query buffer remains unchanged.

VMS:

Enter the text editor. See the VAX EDT Editor Manual. Use the EDT
command exit or the sequence of commands, write followed by quit, to
return to the Terminal Monitor. If no file name is given, the current
contents of the query buffer are sent to the editor, and upon return, the
query buffer is replaced with the edited query. If a file name is given, the
query buffer is written to that file, and on exit from the editor, the file
contains the edited query, but the workspace remains unchanged

\g or \go

Processes the current query. The contents of the buffer are transmitted to
the DBMS Server and run.

\time or \date

Prints the current time and date.

\a or \append

Appends to the query buffer. Typing \append after completion of a
query overrides the auto-clear feature and guarantees that the query
buffer is not reset until executed again.

UNIX:

 \s or \sh or \shell

Escape to the UNIX shell (command line interpreter). Pressing Ctrl+D
exits the shell and returns to the Terminal Monitor.

VMS:

 \s or \sh or \shell

Escape to the command line interpreter to execute VMS commands.
The VAX command line interpreter (DCL) is initiated. Subsequently,
typing the logout command exits DCL and returns to the Terminal
Monitor.

Terminal Monitor Releases

684 SQL Reference Guide

\q or \quit

Exits the Terminal Monitor

\cd or \chdir dir_name

Changes the working directory of the monitor to the named directory.

\i or \include or \read filename

Reads the named file into the query buffer. Backslash characters in the file
are processed as they are read.

\w or \write filename

Writes the contents of the query buffer to the named file.

\script [filename]

Write/stops writing the subsequent SQL statements and their results to the
specified file. If no file name is supplied with the \script command, output
is logged to a file called script.ing in the current directory.

The \script command toggles between logging and not logging your
session to a file. If a file name is supplied on the \script command that
terminates logging to a file, the file name is ignored.

This command can be used to save result tables from SQL statements for
output. The \script command in no way impedes the terminal output of
your session.

\suppress and \nosupress

Tells the Terminal Monitor to suppress/not suppress the printing of the
resulting data that is returned from the query

\bell and \nobell

Tells the Terminal Monitor to include (\bell) or not to include (\nobell) a
bell (that is, Ctrl+G) with the continue or go prompt. The default is
\nobell.

\[no]continue

Tells the Terminal Monitor to continue statement processing on error or
not to continue (nocontinue). In either case, the error message displays.
The command can be abbreviated to \co (\continue) or \noco
(\nocontinue). The default action is to continue. This command can be
used to change that behavior. The default can also be changed by setting
II_TM_ON_ERROR. For information about II_TM_ON_ERROR, see the
Database Administrator Guide.

Terminal Monitor Releases

Terminal Monitors 685

Terminal Monitor Messages and Prompts

The Terminal Monitor has a variety of messages to keep you informed of its
status and that of the query buffer.

When logging in, the Terminal Monitor prints a login message that tells the
release number and the login time. Following that message, the dayfile
appears.

When the Terminal Monitor is ready to accept input and the query buffer is
empty, the message go appears. The message, continue, appears instead if
there is something in the query buffer.

The prompt >>editor indicates that you are in the text editor.

Terminal Monitor Character Input and Output

When non-printable ASCII characters are entered through the Terminal
Monitor, the Terminal Monitor replaces these characters with blanks.
Whenever this occurs, the Terminal Monitor displays the message:

Non-printing character nnn converted to blank

where nnn is replaced with the actual character.

For example, if you enter the statement:

insert into test values(’^La’)

the Terminal Monitor converts the ^L to a blank before sending it to the DBMS
Server and displays the message described above.

To insert non-printing data into a char or varchar field, specify the data as a
hexadecimal value. For example:

insert into test values (x’07’);

This feature can be used to insert a newline character into a column:

insert into test values (’Hello world’+x’0a’);

This statement inserts ’Hello world\n’ into the test table.

Terminal Monitor Releases

686 SQL Reference Guide

On output, if the data type is char or varchar, any binary data are shown as
octal numbers (\000, \035, and so on.). To avoid ambiguity, any backslashes
present in data of the char or varchar type are displayed as double
backslashes. For example, if you insert the following into the test table:

insert into test values(’\aa’)

when you retrieve that value, you see:

\\aa

Implementation of the Help Statement

The terminal monitor implements the Help SQL statement. The Help statement
displays information about a variety of SQL statements and features. For a
complete list of help options, see Help in the chapter “SQL Statements.”

Aborting the Editor (VMS only)
Important!: In VMS environments, do not type Ctrl+Y and Ctrl+C while
escaped to an editor (unless the editor assigns its own meaning to Ctrl+C)
or VMS. VMS does not properly signal these events to the initiating
process.

SQL Statements from Earlier Releases of Ingres 687

Appendix C: SQL Statements from Earlier
Releases of Ingres

This appendix lists SQL statements from earlier releases of Ingres that are no
longer necessary. While these statements are still supported, they are
considered obsolete. For descriptions of statements currently supported and
recommended, see the chapter “SQL Statements.”

Substitute Statements
The following table shows which new statements to substitute for the old
statements in this appendix:

Old Statement New Statement

abort rollback

begin transaction no equivalent statement

create permit grant

drop permit revoke

end transaction commit

inquire_ingres inquire_sql

relocate modify

set_ingres set_sql

Abort Statement

688 SQL Reference Guide

Abort Statement
The abort statement, when used without the optional to savepoint_name
clause, allows the user to terminate an in-progress multi-statement
transaction (MST) at any time before the transaction is committed with an
explicit end transaction statement. The abort statement causes all database
changes effected by the MST to be undone and terminates the MST.

You also have the option of aborting part of a transaction to a pre-declared
savepoint. The abort statement with the optional to savepoint_name clause
undoes the database effects of all statements in the MST that follow the
declaration of the named savepoint. Following an abort to savepoint_name,
the MST remains in progress, and new statements can be added to the MST in
the normal fashion. Repeated aborts can be executed to the same savepoint.

This statement has the following format:

abort [to savepoint_name]

Note: When executing an abort to a given savepoint, all savepoints declared
after the named savepoint are nullified.

Begin Transaction (see page 689)

End Transaction (see page 693)

Example: Abort Transaction

The following example begins a transaction, executes some SQL statements,
and aborts the transaction before committing the database changes:

begin transaction;
insert into emp (name, sal, bdate)
 values ('Jones,Bill', 100000, 1814);
insert into emp (name, sal, bdate)
 values ('Jones,Bill', 100000, 1714);
abort; \g
/* undoes both inserts; table is unchanged */

Begin Transaction Statement

SQL Statements from Earlier Releases of Ingres 689

Example: Partial Abort

The following example begins a transaction, establishes savepoints, and does a
partial abort of the MST:

begin transaction;
insert into emp (name, sal, bdate)
 values ('Jones,Bill', 100000, 1945);
savepoint setone;
insert into emp (name, sal, bdate)
 values ('Smith,Stan', 50000, 1911);
savepoint 2; \g
/* undoes second insert; deactivates savepoint 2 */
abort to setone; \g
insert into emp (name, sal, bdate)
 values ('Smith,Stan', 50000, 1948);
abort to setone; \g
end transaction; \g
/* only the first insert is committed */

Begin Transaction Statement
The begin transaction SQL statement declares the beginning of a multi-
statement transaction (MST). MSTs contain one or more SQL statements to be
processed as a single, indivisible database action. Many SQL statements are
allowed within an MST; others, however, are not. The phrase, within an MST,
is strictly defined to indicate statements appearing between an initial begin
transaction statement and a final end transaction statement.

After beginning an MST with begin transaction, the MST can be terminated by
either committing or aborting the transaction. Use the end transaction
statement to commit the MST and the abort statement to undo the MST.
Ingres automatically aborts the MST in cases of deadlock.

Note: Set lockmode is not permitted within an MST. Begin transaction and end
transaction are not allowed to be nested within an MST.

This statement has the following format:

begin transaction

Transactions (see page 191)

Begin Transaction Statement

690 SQL Reference Guide

Example: Begin a Multi-Statement Transaction and Commit Updates

The following example begins an MST, executes SQL statements, and commits
the updates to the database:

begin transaction;
insert into emp (name, sal, bdate)
 values ('Jones,Bill', 10000, 1914);
insert into emp (name, sal, bdate)
 values ('Smith,Stan', 20000, 1948);
end transaction; \g
/* commits both inserts to table */

Example: Begin a Multi-Statement Transaction and Abort

The following example begins an MST, executes SQL statement, and aborts
the transaction, thus canceling the updates:

begin transaction;
insert into emp (name, sal, bdate)
 values ('Jones,Bill', 1000000, 1814);
insert into emp (name, sal, bdate)
 values ('Wrong,Tony', 150, 2021);
abort; \g
/* undoes both inserts; table is unchanged */

Create Permit Statement

SQL Statements from Earlier Releases of Ingres 691

Create Permit Statement
The Create Permit SQL statement defines permissions for a table or view.

This statement has the following format:

create permit oplist on | of | to tablename[corr_name]

[(columnname {, columnname})] to user_name

optlist

Is a comma-separated list of operations. These operations include the
following:

 select

 update

 delete

 insert

 all

columnname

Can only be specified when the oplist value is update.

user_name

Specifies the login name of a user or the word, all (meaning all users in
this argument).

By default, the owner of the table has permission to perform all operations on
the table.

Note: Permits created on a table must be grant-compatible to allow a user to
access the table. Grant-compatible means that the text of the create permit
statement can be expressed as a grant statement without any loss of
information. The syntax of create permit presented above is grant-compatible.
However, permits created with the create permit syntax documented prior to
Release 6 may not be grant-compatible.

Example: Create Permit

The following example allows a user, Mildred, to select data from the employee
table:

create permit select of employee to mildred;

Drop Permit

692 SQL Reference Guide

Drop Permit
Permission: You must own a table, view, database event, or procedure to drop
a permission on it.

The Drop Permit statement removes permissions on tables, views, database
events, and procedures.

This statement has the following format:

For tables and views:

[exec sql] drop permit on table_name

all | integer {, integer};

For procedures:

[exec sql] drop permit on procedure proc_name

all | integer {, integer};

For events:

[exec sql] drop permit on dbevent event_name

all | integer {, integer};

If the keyword all is used, Ingres removes all permissions defined on the
specified table, view, database event, or procedure. To remove individual
permissions, use the integer list. To obtain the integer values associated with
specific permissions, use the help permit statement.

Note: Permits cannot be dropped if there are dependent objects (views or
database procedures) or permits. In this case, revoke...cascade must be used.

Embedded Usage: Drop Permit

In an embedded Usage SQL statement, no portion of the drop permit syntax
can be replaced with host language variables.

Locking: Drop Permit

The Drop Permit SQL statement takes an exclusive lock on the base table and
on pages in the iipermits system catalog.

End Transaction Statement

SQL Statements from Earlier Releases of Ingres 693

Example: Drop Permit

The following example drops all permissions on job:

drop permit on job all;

In an application, drop the second permission on procedure addemp:

exec sql drop permit on procedure addemp 2;

End Transaction Statement
The end transaction SQL statement terminates an in-progress multi-statement
transaction (MST) and commit its updates, if any, to the database. This
statement causes all database updates effected by the MST to become
available to other user transactions. After committing an MST with end
transaction, the MST is terminated, the MST can no longer be aborted, and all
its savepoints are nullified.

This statement has the following format:

end transaction

Example: End Transaction

The following example begins an MST, executes some SQL statements, and
commits the updates to the database:

begin transaction;
insert into emp (name, sal, bdate)
 values ('Jones,Bill', 10000, 1914);
insert into emp (name, sal, bdate)
 values ('Smith,Stan', 20000, 1948);
end transaction; \g/* commits new rows to table */

Inquire_ingres Statement
The inquire_ingres SQL statement returns diagnostic information about the
last database statement that was executed. Inquire_ingres and inquire_sql are
synonymous.

This statement has the following format:

exec sql inquire_ingres (variable = object {, variable = object})

Relocate Statement

694 SQL Reference Guide

Relocate Statement
The relocate SQL statement is used to relocate tables. This statement moves a
table from its current location to the area corresponding to the specified
locationname. All indexes, views, and protections for the table remain in force
and valid regardless of the location of the table.

Note: The relocate statement must be used when the current disk of the table
becomes too full.

This statement has the following format:

relocate tablename to locationname

locationname

Refers to the area in which the new table is created. The location name
must be defined on the system, and the database must have been
extended to the corresponding area.

Note: Tablename and locationname must be string constants if this statement
is used in an embedded program. Host language variables cannot be used to
represent either.

Example: Relocate

The following example relocates the employee table to the area defined by the
remote_loc locationname:

relocate employee to remote_loc;

Set_ingres Statement

SQL Statements from Earlier Releases of Ingres 695

Set_ingres Statement
Permission required: All users.

The set_ingres SQL statement switches sessions in a multiple session
application, specify which type of DBMS server error is returned to an
application, change the default behavior when a connection error is
experienced, and set trace functions.

Set_ingres can be used to override II_EMBED_SET if it is defined. For
example, you can issue a set_ingres statement with the errortype object to
override the error type default defined by II_EMBED_SET. Similarly, setting
printqry or printgca can override the defaults defined by II_EMBED_SET. For
more information about II_EMBED_SET, see the Database Administrator
Guide.

This statement has the following format:

exec sql set_ingres (object = value {, object = value})

Note: This statement must be terminated according to the rules of your host
language.

SQLSTATE Values and Generic Error Codes 697

Appendix D: SQLSTATE Values and
Generic Error Codes

This appendix lists SQLSTATE values, Ingres generic error codes, and maps
generic error codes to SQLSTATE values.

SQLSTATE Values
SQLSTATE is the ANSI/ISO Entry SQL-92-compliant method for returning
errors to applications. The following table lists the values returned in
SQLSTATE. An asterisk in the Ingres Only column indicates a value that is
specified by ANSI as vendor-defined.

Note: The first two characters of the SQLSTATE are a class of errors and the
last three a subclass. The codes that end in 000 are the names of the class.

SQLSTATE Ingres
Only

Description

00000 Successful completion

01000 Warning

01001 Cursor operation conflict

01002 Disconnect error

01003 Null value eliminated in set function

01004 String data, right truncation

01005 Insufficient item descriptor areas

01006 Privilege not revoked

01007 Privilege not granted

01008 Implicit zero-bit padding

01009 Search condition too long for information schema

0100A Query expression too long for information schema

01500 * LDB table not dropped

01501 * DSQL update or delete affects entire table

02000 No data

SQLSTATE Values

698 SQL Reference Guide

SQLSTATE Ingres
Only

Description

07000 Dynamic SQL error

07001 Using clause does not match dynamic parameter
specification

07002 Using clause does not match target specification

07003 Cursor specification cannot be executed

07004 Using clause required for dynamic parameters

07005 Prepared statement not a cursor specification

07006 Restricted data type attribute violation

07007 Using clause required for result fields

07008 Invalid descriptor count

07009 Invalid descriptor index

07500 * Context mismatch

08000 Connection exception

08001 SQL-client unable to establish SQL-connection

08002 Connection name in use

08003 Connection does not exist

08004 SQL-server rejected establishment of SQL-
connection

08006 Connection failure

08007 Transaction resolution unknown

08500 * LDB is unavailable

0A000 Feature not supported

0A001 Multiple server transactions

0A500 * Invalid query language

21000 Cardinality violation

22001 String data, right truncation

22002 Null value, no indicator parameter

22003 Numeric value out of range

22005 Error in assignment

22007 Invalid datetime format

SQLSTATE Values

SQLSTATE Values and Generic Error Codes 699

SQLSTATE Ingres
Only

Description

22008 Datetime field overflow

22009 Invalid time zone displacement value

22011 Substring error

22012 Division by zero

22015 Interval field overflow

22018 Invalid character value for cast

22019 Invalid escape character

22021 Character not in repertoire

22022 Indicator overflow

22023 Invalid parameter value

22024 Unterminated C string

22025 Invalid escape sequence

22026 String data, length mismatch

22027 Trim error

22500 * Invalid data type

23000 Integrity constraint violation

24000 Invalid cursor state

25000 Invalid transaction state

26000 Invalid SQL statement name

27000 Triggered data change violation

28000 Invalid authorization specification

2A000 Syntax error or access rule violation in direct SQL
statement

2A500 * Table not found

2A501 * Column not found

2A502 * Duplicate object name

2A503 * Insufficient privilege

2A504 * Cursor not found

2A505 * Object not found

2A506 * Invalid identifier

SQLSTATE Values

700 SQL Reference Guide

SQLSTATE Ingres
Only

Description

2A507 * Reserved identifier

2B000 Dependent privilege descriptors still exist

2C000 Invalid character set name

2D000 Invalid transaction termination

2E000 Invalid connection name

33000 Invalid SQL descriptor name

34000 Invalid cursor name

35000 Invalid condition number

37000 Syntax error or access rule violation in SQL
dynamic statement

37500 * Table not found

37501 * Column not found

37502 * Duplicate object name

37503 * Insufficient privilege

37504 * Cursor not found

37505 * Object not found

37506 * Invalid identifier

37507 * Reserved identifier

3C000 Ambiguous cursor name

3D000 Invalid catalog name

3F000 Invalid schema name

40000 Transaction rollback

40001 Serialization failure

40002 Integrity constraint violation

40003 Statement completion unknown

42000 Syntax error or access rule violation

42500 * Table not found

42501 * Column not found

42502 * Duplicate object name

42503 * Insufficient privilege

SQLSTATE Values

SQLSTATE Values and Generic Error Codes 701

SQLSTATE Ingres
Only

Description

42504 * Cursor not found

42505 * Object not found

42506 * Invalid identifier

42507 * Reserved identifier

44000 With check option violation

50000 * Miscellaneous Ingres-specific errors

50001 * Invalid duplicate row

50002 * Limit has been exceeded

50003 * Resource exhausted

50004 * System configuration error

50005 * Enterprise Access product-related error

50006 * Fatal error

50007 * Invalid SQL statement id

50008 * Unsupported statement

50009 * Database procedure error raised

5000A * Query error

5000B * Internal error

5000D * Invalid cursor name

5000E * Duplicate SQL statement id

5000F * Textual information

5000G * Database procedure message

5000H * Unknown/unavailable resource

5000I * Unexpected LDB schema change

5000J * Inconsistent DBMS catalog

5000K * SQLSTATE status code unavailable

5000L * Protocol error

5000M * IPC error

HZ000 Remote Database Access

Generic Error Codes

702 SQL Reference Guide

Generic Error Codes
Generic error codes are error codes that map to DBMS-specific errors returned
both by Ingres and by the DBMS to which Ingres provides Enterprise Access
products. If your application must interact with both Ingres databases and
non-Ingres databases (through Enterprise Access products), your application
must check SQLSTATE or generic errors to remain portable.

The following table lists and explains generic error codes:

Error Code Message Explanation

+00050 Warning message The request was successfully
completed, but a warning was issued.

+00100 No more data A request for data was processed, but
either no data or no more data fitting
the requested characteristics was
found.

00000 Successful completion The request completed normally with
no errors or unexpected conditions
occurring.

-30100 Table not found A table referenced in a statement
doesn’t exist or is owned by another
user. This error can also be returned
concerning an index or a view.

-30110 Column not known or
not in table

A column referenced in a statement is
not found.

-30120 Unknown cursor An invalid or unopened cursor name
or identifier was specified or
referenced in a statement.

-30130 Other database object
not found

A database object other than a table,
view, index, column or cursor was
specified or referenced in a
statement, but is not identified or
located. This applies to a database
procedure, a grant or permission, a
rule, or other object.

-30140 Other unknown or
unavailable resource

A resource, of a type other than one
mentioned above, is either not known
or unavailable for the request.

-30200 Duplicate resource
definition

An attempt to define a database
object (such as a table) was made,
but the object already exists.

Generic Error Codes

SQLSTATE Values and Generic Error Codes 703

Error Code Message Explanation

-30210 Invalid attempt to
insert duplicate row

A request to insert a row was
refused; the table does not accept
duplicates, or there is a unique index
defined on the table.

-31000 Statement syntax error The statement just processed had a
syntax error.

-31100 Invalid identifier An identifier, such as a table name,
cursor name or identifier, procedure
name, was invalid because it
contained incorrect characters or
been too long.

-31200 Unsupported query
language

A request to use an unrecognized or
unsupported query language was
made.

-32000 Inconsistent or
incorrect query
specification

A query, while syntactically correct,
was logically inconsistent, conflicting
or otherwise incorrect.

-33000 Runtime logical error An error occurred at runtime. An
incorrect specification was made, an
incorrect host variable value or type
was specified or some other error not
detected until runtime was found.

-34000 Not privileged/
restricted operation

An operation was rejected because
the user did not have appropriate
permission or privileges to perform
the operation, or the operation was
restricted (for example, to a certain
time of day) and the operation was
requested at the wrong time or in the
wrong mode.

-36000 System limit exceeded A system limit was exceeded during
query processing, for example,
number of columns, size of a table,
row length, or number of tables in a
query.

-36100 Out of needed resource The system exhausted, or did not
have enough of, a resource such as
memory or temporary disk space
required to complete the query.

-36200 System configuration
error

An error in the configuration of the
system was detected.

Generic Error Codes

704 SQL Reference Guide

Error Code Message Explanation

-37000 Communication/
transmission error

The connection between the DBMS
and the client failed.

-38000 Error within an
Enterprise Access
product

An error occurred in an Enterprise
Access product or DBMS interface.

-38100 Host system error An error occurred in the host system.

-39000 Fatal error - session
terminated

A severe error occurred which has
terminated the session with the DBMS
or the client.

-39100 Unmappable error An error occurred which is not
mapped to a generic error.

-40100 Cardinality violation A request tried to return more or
fewer rows than allowed. This usually
occurs when a singleton select
request returns more than one row,
or when a nested subquery returns an
incorrect number of rows.

-402dd Data exception A data handling error occurred. The
subcode dd defines the type of error.

-40300 Constraint violation A DBMS constraint, such as a
referential integrity or the check
option on a view was violated. The
request was rejected.

-40400 Invalid cursor state An invalid cursor operation was
requested; for example, an update
request was issued for a read-only
cursor.

-40500 Invalid transaction
state

A request was made that was invalid
in the current transaction state. For
example, an update request was
issued in a read-only transaction, or a
request was issued improperly in or
out of a transaction.

-40600 Invalid SQL statement
identifier

An identifier for an SQL statement,
such as a repeat query name, was
invalid.

-40700 Triggered data change
violation

A change requested by a cascaded
referential integrity change was
invalid.

Generic Error Codes

SQLSTATE Values and Generic Error Codes 705

Error Code Message Explanation

-41000 Invalid user
authorization identifier

An authorization identifier, usually a
user name, was invalid.

-41200 Invalid SQL statement Unlike generic error -31000
(statement syntax error), this was a
recognized statement that is either
currently invalid or unsupported.

-41500 Duplicate SQL
statement identifier

An identifier for an SQL statement,
such as a repeat query name, was
already active or known.

-49900 Serialization failure
(Deadlock)

Any one of several errors occurred for
example, (deadlock, timeout, forced
abort, log file full) that caused the
query to be rejected. If the
transaction is rejected, it is rolled
back except in the case of a timeout.
(Check SQLWARN6 in the SQLCA
structure.) The query or transaction
can be resubmitted.

Generic Error Data Exception Subcodes

The following table lists subcodes returned with generic error
-402 (generic errors -40200 through -40299):

Subcode Description

00 No subcode

01 Character data truncated from right

02 Null value, no indicator variable specified

03 Exact numeric data, loss of significance (decimal overflow)

04 Error in assignment

05 Fetch orientation has value of zero

06 Invalid date or time format

07 Date/time field overflow

08 Reserved

09 Invalid indicator variable value

10 Invalid cursor name

SQLSTATE and Equivalent Generic Errors

706 SQL Reference Guide

Subcode Description

15 Invalid data type

20 Fixed-point overflow

21 Exponent overflow

22 Fixed-point divide

23 Floating point divide

24 Decimal divide

25 Fixed-point underflow

26 Floating point underflow

27 Decimal underflow

28 Other unspecified math exception

SQLSTATE and Equivalent Generic Errors
The following table lists the correspondence between SQLSTATE values and
Ingres generic errors:

SQLSTATE Generic Error

00000 E_GE0000_OK

01000 E_GE0032_WARNING

01001 E_GE0032_WARNING

01002 E_GE0032_WARNING

01003 E_GE0032_WARNING

01004 E_GE0032_WARNING

01005 E_GE0032_WARNING

01006 E_GE0032_WARNING

01007 E_GE0032_WARNING

01008 E_GE0032_WARNING

01009 E_GE0032_WARNING

0100A E_GE0032_WARNING

01500 E_GE0032_WARNING

01501 E_GE0032_WARNING

SQLSTATE and Equivalent Generic Errors

SQLSTATE Values and Generic Error Codes 707

SQLSTATE Generic Error

02000 E_GE0064_NO_MORE_DATA

07000 E_GE7D00_QUERY_ERROR

07001 E_GE7D00_QUERY_ERROR

07002 E_GE7D00_QUERY_ERROR

07003 E_GE7D00_QUERY_ERROR

07004 E_GE7D00_QUERY_ERROR

07005 E_GE7D00_QUERY_ERROR

07006 E_GE7D00_QUERY_ERROR

07007 E_GE7D00_QUERY_ERROR

07008 E_GE7D00_QUERY_ERROR

07009 E_GE7D00_QUERY_ERROR

07500 E_GE98BC_OTHER_ERROR

08000 E_GE98BC_OTHER_ERROR

08001 E_GE98BC_OTHER_ERROR

08002 E_GE80E8_LOGICAL_ERROR

08003 E_GE80E8_LOGICAL_ERROR

08004 E_GE94D4_HOST_ERROR

08006 E_GE9088_COMM_ERROR

08007 E_GE9088_COMM_ERROR

08500 E_GE75BC_UNKNOWN_OBJECT

0A000 E_GE98BC_OTHER_ERROR

0A001 E_GE98BC_OTHER_ERROR

0A500 E_GE79E0_UNSUP_LANGUAGE

21000 E_GE9CA4_CARDINALITY

22000 E_GE9D08_DATAEX_NOSUB

22001 E_GE9D09_DATAEX_TRUNC

22002 E_GE9D0A_DATAEX_NEED_IND

22003 E_GE9D0B_DATAEX_NUMOVR

22003 E_GE9D1C_DATAEX_FIXOVR

22003 E_GE9D1D_DATAEX_EXPOVR

SQLSTATE and Equivalent Generic Errors

708 SQL Reference Guide

SQLSTATE Generic Error

22003 E_GE9D21_DATAEX_FXPUNF

22003 E_GE9D22_DATAEX_EPUNF

22003 E_GE9D23_DATAEX_DECUNF

22003 E_GE9D24_DATAEX_OTHER

22005 E_GE9D0C_DATAEX_AGN

22007 E_GE9D0F_DATAEX_DATEOVR

22008 E_GE9D0E_DATAEX_DTINV

22009 E_GE9D0F_DATAEX_DATEOVR

22011 E_GE80E8_LOGICAL_ERROR

22012 E_GE9D1E_DATAEX_FPDIV

22012 E_GE9D1F_DATAEX_FLTDIV

22012 E_GE9D20_DATAEX_DCDIV

22012 E_GE9D24_DATAEX_OTHER

22015 E_GE9D0F_DATAEX_DATEOVR

22018 E_GE7918_SYNTAX_ERROR

22019 E_GE7918_SYNTAX_ERROR

22021 E_GE9D08_DATAEX_NOSUB

22022 E_GE9D11_DATAEX_INVIND

22023 E_GE9D08_DATAEX_NOSUB

22024 E_GE98BC_OTHER_ERROR

22025 E_GE7918_SYNTAX_ERROR

22026 E_GE9D08_DATAEX_NOSUB

22027 E_GE7918_SYNTAX_ERROR

22500 E_GE9D17_DATAEX_TYPEINV

23000 E_GE9D6C_CONSTR_VIO

24000 E_GE9DD0_CUR_STATE_INV

25000 E_GE9E34_TRAN_STATE_INV

26000 E_GE75B2_NOT_FOUND

27000 E_GE9EFC_TRIGGER_DATA

28000 E_GEA028_USER_ID_INV

SQLSTATE and Equivalent Generic Errors

SQLSTATE Values and Generic Error Codes 709

SQLSTATE Generic Error

2A000 E_GE7918_SYNTAX_ERROR

2A500 E_GE7594_TABLE_NOT_FOUND

2A501 E_GE759E_COLUMN_UNKNOWN

2A502 E_GE75F8_DEF_RESOURCE

2A503 E_GE84D0_NO_PRIVILEGE

2A504 E_GE75A8_CURSOR_UNKNOWN

2A505 E_GE75B2_NOT_FOUND

2A506 E_GE797C_INVALID_IDENT

2A507 E_GE797C_INVALID_IDENT

2B000 E_GE7D00_QUERY_ERROR

2C000 E_GE7918_SYNTAX_ERROR

2D000 E_GE9E34_TRAN_STATE_INV

2E000 E_GE797C_INVALID_IDENT

33000 E_GE75BC_UNKNOWN_OBJECT

34000 E_GE75A8_CURSOR_UNKNOWN

35000 E_GE7D00_QUERY_ERROR

37000 E_GE7918_SYNTAX_ERROR

37500 E_GE7594_TABLE_NOT_FOUND

37501 E_GE759E_COLUMN_UNKNOWN

37502 E_GE75F8_DEF_RESOURCE

37503 E_GE84D0_NO_PRIVILEGE

37504 E_GE75A8_CURSOR_UNKNOWN

37505 E_GE75B2_NOT_FOUND

37506 E_GE797C_INVALID_IDENT

37507 E_GE797C_INVALID_IDENT

3C000 E_GE9DD0_CUR_STATE_INV

3D000 E_GE98BC_OTHER_ERROR

3F000 E_GE797C_INVALID_IDENT

40000 E_GE98BC_OTHER_ERROR

40001 E_GEC2EC_SERIALIZATION

SQLSTATE and Equivalent Generic Errors

710 SQL Reference Guide

SQLSTATE Generic Error

40002 E_GE9D6C_CONSTR_VIO

40003 E_GE9088_COMM_ERROR

42000 E_GE7918_SYNTAX_ERROR

42500 E_GE7594_TABLE_NOT_FOUND

42501 E_GE759E_COLUMN_UNKNOWN

42502 E_GE75F8_DEF_RESOURCE

42503 E_GE84D0_NO_PRIVILEGE

42504 E_GE75A8_CURSOR_UNKNOWN

42505 E_GE75B2_NOT_FOUND

42506 E_GE797C_INVALID_IDENT

42507 E_GE797C_INVALID_IDENT

44000 E_GE7D00_QUERY_ERROR

50000 E_GE98BC_OTHER_ERROR

50001 E_GE7602_INS_DUP_ROW

50002 E_GE8CA0_SYSTEM_LIMIT

50003 E_GE8D04_NO_RESOURCE

50004 E_GE8D68_CONFIG_ERROR

50005 E_GE9470_GATEWAY_ERROR

50006 E_GE9858_FATAL_ERROR

50007 E_GE9E98_INV_SQL_STMT_ID

50008 E_GEA0F0_SQL_STMT_INV

50009 E_GEA154_RAISE_ERROR

5000A E_GE7D00_QUERY_ERROR

5000B E_GE98BC_OTHER_ERROR

5000C E_GE9D0D_DATAEX_FETCH0

5000D E_GE9D12_DATAEX_CURSINV

5000E E_GEA21C_DUP_SQL_STMT_ID

5000F E_GE98BC_OTHER_ERROR

5000H E_GE75BC_UNKNOWN_OBJECT

5000I E_GE98BC_OTHER_ERROR

SQLSTATE and Equivalent Generic Errors

SQLSTATE Values and Generic Error Codes 711

SQLSTATE Generic Error

5000J E_GE98BC_OTHER_ERROR

5000K E_GE98BC_OTHER_ERROR

5000L E_GE9088_COMM_ERROR

5000M E_GE9088_COMM_ERROR

HZ000 E_GE9088_COMM_ERROR

ANSI Compliance Settings 713

Appendix E: ANSI Compliance Settings

This appendix lists the settings required to operate in compliance with
ANSI/ISO Entry SQL-92 and the corresponding Ingres defaults. To determine
the setting in effect, use dbmsinfo.

For details about dbmsinfo, see Status Information (see page 204).

Case sensitivity for delimited identifiers is specified when the database is
created. For details about createdb, see the Command Reference Guide and
the System Administrator Guide.

Query flattening and default cursor mode options are specified when the DBMS
Server is configured and started. For details about server configuration and
start-up, see the Getting Started guide.

Configuration-By-Forms Settings
If Configuration-By-Forms (cbf) is used to configure the installation, select the
Preferences menu item and set the ISO_ENTRY_SQL-92 parameter to ON. This
setting ensures ANSI/ISO-compliant behavior for the following areas:

 Case sensitivity of identifiers (all types)

 Default cursor mode

 Query flattening

Case Sensitivity for Identifiers

The ANSI Entry SQL-92 standard specifies how case is handled for identifiers
(names of tables, for example). Identifiers can be quoted or unquoted (regular
or delimited).

Regular and Delimited Identifiers (see page 31)

Configuration-By-Forms Settings

714 SQL Reference Guide

Regular Identifiers

ANSI/ISO Entry SQL-92

Regular identifiers are treated as upper case:

dbsminfo('db_name_case') returns UPPER.

Ingres Default

Regular identifiers are treated as lower case:

dbsminfo('db_name_case') returns LOWER.

Delimited Identifiers

ANSI/ISO Entry SQL-92

Delimited identifiers are case-sensitive:

dbsminfo('db_delimited_case') returns MIXED.

Ingres Default

Delimited identifiers are not case-sensitive:

dbsminfo('db_delimited_case') returns LOWER.

User Names

ANSI/ISO Entry SQL-92

User names are treated as upper case:

dbsminfo('db_real_user_case') returns UPPER.

Ingres Default

User names are treated as lower case:

dbsminfo('db_real_user_case') returns LOWER.

Configuration-By-Forms Settings

ANSI Compliance Settings 715

Default Cursor Mode

The ANSI Entry SQL-92 standard specifies the default mode for cursors. For
details, see Data Manipulation with Cursors (see page 143) .

ANSI/ISO Entry SQL-92

Direct mode:

dbsminfo('db_direct_update') returns Y

dbsminfo('db_deferred_update') returns N

Ingres Default

Deferred mode:

dbsminfo('db_direct_update') returns N

dbsminfo('db_deferred_update') returns Y

Query Flattening

The ANSI Entry SQL-92 standard specifies that query flattening is not
performed. By default, Ingres uses query flattening to improve the
performance of queries.

ANSI/ISO Entry SQL-92

No Flattening:

dbsminfo('flatten_singleton') returns N

dbsminfo('flatten_aggregate') returns N

Ingres Default

Flattening used to optimize queries, including queries involving aggregate
subselects or singleton subselects:

dbsminfo('flatten_singleton') returns Y

dbsminfo('flatten_aggregate') returns Y

Connection Flags

716 SQL Reference Guide

Connection Flags
Connection flags (also referred to as SQL Option flags) are specified on the
command line when invoking an Ingres operating system level command or
user-written application that connects to a database. For details about other
connection flags, see the description of the sql command in the Command
Reference Guide and in the System Administrator Guide.

The ANSI standard specifies DBMS behavior when string truncation and
numeric overflow occur. To specify handling of these conditions, use the
connection flags described in the following sections.

-string_truncation Connection Flag

The -string_truncation connection flag specifies how the DBMS handles
attempts to write a character string to a table column that is too short to
contain it (in an Insert, Update, Copy, or Create Table...as Select SQL
statement). For details about this connection flag, see String Truncation Errors
(see page 77).

ANSI/ISO Entry SQL-92

Specify -string_truncation=fail. If string truncation occurs, the statement
that attempted to write the string fails and an error is returned.

Ingres Default

Omit flag or specify -string_truncation=ignore. By default, the string is
truncated to fit into the column, the statement succeeds, and no error is
iss.

-numeric_overflow Connection Flag

The -numeric_overflow connection flag specifies how the DBMS handles
attempts to write numeric values that are outside the range of values
supported by the data type of the receiving column (overflow and underflow).

The -numeric_overflow connection flag specifies behavior for integer, decimal,
and floating point columns. For details about this connection flag, see
Specifying Error Handling for Arithmetic Errors (see page 84) in the chapter
“Understanding the Elements of SQL Statements.”

ANSI/ISO Entry SQL-92 and Ingres Default

Specify -numeric_overflow=fail (or omit this flag). If numeric overflow or
underflow occurs, the statement that attempted to write the value fails
and an error is issued. (This is the Ingres default behavior.)

ESQL Preprocessor Flags

ANSI Compliance Settings 717

ESQL Preprocessor Flags
To specify ANSI-compliant behavior when creating embedded SQL programs,
use the following flags when invoking the Ingres embedded SQL preprocessor.
For details about the preprocessor, see the Embedded SQL Companion Guide.

-wsql ESQL Preprocessor Flag

The -wsql ESQL preprocessor flag directs the preprocessor to issue warnings
when it detects SQL statements that do not comply with ANSI/ISO Entry SQL-
92.wsql flag ANSI/ISO standard:handling non-compliant SQL statements flags,
ESQL preprocessor:wsql

ANSI/ISO Entry SQL-92

Specify -wsql=entry_sql92.

Ingres Default

By default, the preprocessor does not issue warnings when it detects non-
compliant SQL statements.

-blank_pad ESQL Preprocessor Flag

The -blank_pad ESQL preprocessor flag specifies how values are padded with
blanks when selecting values from character columns into host string
variables. This flag has no effect in host languages that do not support
variable-length character data (for example, Fortran).

ANSI/ISO Entry SQL-92

Specify -blank_pad. The host variable is padded with blanks to its declared
size. For example, if you select a value from a column defined as char(5)
into a 10-byte character variable, the host variable is padded with blanks
to its full length of 10 bytes.

Ingres Default

By default, the receiving variable is padded with blanks to the width of the
column from which data is selected. This flag affects the results of the
following SQL statements:

 execute immediate

 execute procedure

 fetch

 get data

 inquire_sql

 select

ESQL Preprocessor Flags

718 SQL Reference Guide

-sqlcode

The -sqlcode ESQL preprocessor flag incorporates the declaration required for
the ANSI standard SQLCODE status variable. For details about SQLCODE, see
SQLCODE and SQLSTATE in the chapter "Working with Transactions and Error
Handling" and the ANSI standard. SQLCODE is a deprecated ANSI feature -
SQLSTATE is the recommended status variable. For details, see the Embedded
SQL Companion Guide.

ANSI/ISO Entry SQL-92

Specify -sqlcode if your program declares SQLCODE outside of an SQL
declare section. This flag is optional if your source code declares
SQLCODE in a declare section. To see SQLCODE, your source code must
also contain an include sqlca statement. (Some host languages require the
-sqlcode flag regardless of where SQLCODE is declared. For details, see
the Embedded SQL Companion Guide.)

 Ingres Default

There is no default. Ingres provides other proprietary methods for
checking program status and error conditions. For details, see the chapter
"Working with Transactions and Error Handling." If your source code
declares a variable named SQLCODE that is not intended to be used for
the ANSI status variable, specify the - nosqlcode flag to prevent Ingres
from writing ANSI status information into the variable.

-check_eos (C only)

The -check_eos ESQL preprocessor flag directs the ESQL preprocessor to
include code that ensures that all char strings inserted into a database are
terminated with a null character (\0). By default, no checking is performed.
Checking is performed only for char strings declared as arrays, and is not
performed for strings declared as string pointers.

ANSI/ISO Entry SQL-92

Specify -check_eos. If your ESQL/C application attempts to insert a string
that is not null-terminated, the DBMS returns an error (SQLSTATE 22024).

Ingres Default

No checking is performed.

Index 719

Index

- - (double hyphen), comment delimiter • 35

'
' (single quotation mark) pattern matching •

123

(number sign), object names • 30

$
$ (dollar sign)

currency displays • 58
object names • 30

%
% (percent sign) pattern matching • 123

(
() (parentheses), precedence of arithmetic

operations • 71

*
* (asterisk)

count (function) • 112
exponentiation • 71
multiplication • 71

.

. (period), decimal indicator • 66

/
/ (slash)

comment indicator (with asterisk) • 35
division • 71

?
? (question mark) parameter indicator • 457,

547

@
@ (at sign), object names • 30

[
[] (square brackets) pattern matching • 123

\
\ (backslash) pattern matching • 123

_
_ (underscore)

object names • 30
_ (underscore) pattern matching • 123
_date (function) • 101
_date4 (function) • 101
_time (function) • 101

+
+ (plus sign), addition • 71

=
= (equals sign)

comparison operator • 72

A
a (terminal monitor command) • 682
aborting

abort (statement) • 688
distributed transactions • 200
transactions • 197, 296, 457
with savepoint • 193

abs (function) • 94
absolute function • 94
add disk pages • 524
aggregate functions

data selection • 584
described • 109
expressions • 119

aggregates, nulls • 69
allocation option • 394
alter (statement)

group • 258
profile • 261
sequence • 271
user • 348

and (logical operator) • 127
ANSI/ISO standard

720 SQL Reference Guide

case handling of identifiers • 713
connection flags • 716
default mode for cursors • 715
delimited identifiers • 31
ESQL preprocessor flags • 717
handling non-compliant SQL statements •

717
query flattening • 715
settings for compliance • 713
settings for Configuration-By-Forms • 713

any-or-all (predicate) • 125
append (terminal monitor command) • 682
arctangent function • 94
arithmetic

dates • 84
expressions • 71
operations • 81
operators • 71

as (clause) • 395
assignment operations

character string • 76
date • 79
described • 75
logical keys • 80
null • 80
numeric • 78

atan (function) • 94
automatically recreate index • 524
avg (function) • 109

B
begin transaction (statement) • 689
bell (terminal monitor command) • 682
between (predicate) • 124
binary functions • 110
binary operators • 71
bit-wise functions • 107
blank_pad flag • 717
blanks

c data type • 42
char data type • 43
padding • 95
trailing • 95, 123

btree (storage structure) • 524, 613
buffer cache priority • 524
byte (data type) • 61

data type return code • 158
byte (function) • 88
byte varying (data type) • 61

C
c (function) • 88
c data type (Ingres) • 42
C2 security • 562, 563, 567
C2security • 40
case

character strings • 31, 34
lowercase (function) • 95
names • 31
uppercase (function) • 95

cbtree (storage structure) • 613
cd (terminal monitor command) • 682
changing

locations • 260
profile • 261

char (data type) • 43
data type return code • 158

char (function) • 88
character data

assignment • 76
comparing • 43
SQL • 42, 76, 95

charextract (function) • 95
chash (storage structure) • 613
chdir (terminal monitor command) • 682
cheap (storage structure) • 613
cheapsort (storage structure) • 613
check uniqueness • 524
check_eos flag • 718
checkpoints, files • 260, 335
cisam (storage structure) • 613
clauses, escape • 123
column constraint • 383
columns (in tables)

aggregate functions • 109
expressions • 119

comments
SQL • 35
tables • 290
variable declaration section • 426

comparison (predicate) • 122
comparison operator

<> (angle brackets) • 72
> < (greater/less than symbol) • 72

comparison operators, predicates • 127
comparisons, nulls • 69
compression

indexes • 329
computation, logarithms • 94

Index 721

concat (function) • 95
constants

hex • 65
list of SQL • 67
now • 51
null • 68
today • 51

constraints
adding/removing • 369
column_constraint • 383
column-level • 385
described • 377
integrity • 238
permit • 691
table_constraint • 383
table-level • 385
unique • 330

conversion, character data • 76
copy (statement)

constraints • 377
logical keys • 61

copying
error detection • 314

correlation names
queries • 36
subqueries • 129

cos (function) • 94
cosine function • 94
count (aggregate function) • 112
create (statement)

dbevent • 248
permit • 691

creating
database events • 248
roles • 261

Ctrl+C (key) • 195, 686
current value for operator • 121
current_user constant • 67
currval operator • 121
cursor

capabilities • 154
database • 26
declare cursor (statement) • 145
deleting rows • 149
dynamic SQL • 176
fetch (statement) • 147
open cursor (statement) • 145
positioning • 151
prefetching and readonly cursors • 146

select loops vs • 154, 605
updating rows • 148

D
data handlers

described • 178
execute (statement) • 457
execute immediate (statement) • 461
fetch (statement) • 472
insert (statement) • 517
select (statement) • 604
update (statement) • 637

data types
byte • 61
byte varying • 61
c (Ingres) • 42
char • 43, 76
character • 42
compatibility • 75
conversion functions (list) • 88
date • 51
decimal • 48, 83, 94, 115
ESQL return codes (list) • 158
floating point • 49
host languages • 135
integer • 48
list of SQL • 41
logical key • 59
long byte • 62
long varchar • 45, 95, 142, 178, 457, 461,

472, 517, 604, 637
money • 58
text • 44, 76
Unicode • 47
user-defined • 304, 374
varchar • 44, 76

database events
described • 245
obtaining status information • 510, 620,

633, 642
register dbevent (statement) • 560
remove event (statement) • 566
security logging • 452
user-defined handlers • 224, 251, 253, 254,

633
database objects

naming • 30
database procedures

described • 229

722 SQL Reference Guide

messages • 224, 510, 642
rules • 229, 236, 338
security logging • 452

databases
aborting transactions • 688
connecting to programs • 240
transactions • 191, 689, 693
updating • 689, 693

DataDefinitionLanguage(DDL) • 25
DataManipulationLanguage(DML) • 25
date (data type) • 51

arithmetic operations • 84
assignment • 79
data type return code • 158
date_part (function) • 101
date_trunc (function) • 101
display formats • 57
formats (list) • 51
functions • 101
input formats • 51
interval (function) • 101
intervals • 55
now constant • 67

date (function) • 88, 101
date_gmt (function) • 101
dates

(terminal monitor command) • 682
selecting current/system • 205

DBMS
aborting transactions and statements • 196
commit (statement) • 193
control statements • 193
error handling • 216
rollback (statement) • 193
savepoints • 193
status information • 204
transactions • 191
two phase commit (described) • 197

dbmsinfo (function)
described • 205
list of request names • 205

dclgen declaration generator (utility) • 138,
506

deadlock, handling • 225
decimal (data type) • 48, 83, 94, 115

data type return code • 158
decimal (function) • 88
declarations

declare cursor (statement) • 145

defaults
storage structures • 535, 613

deferred mode, cursor updates • 413
deleting

rows • 149
table space recovery • 427

delimited identifiers • 31
delimiters, create schema (statement) • 359
describe (statement) • 163, 171
destroying

permits • 692
direct mode, cursor updates • 149, 413
display internal table data structure • 524
distributed databases

transactions • 296
distributed transactions, aborting • 200
DMY format (dates) • 51
dow (function) • 88
drop (statement)

dbevent • 255
permit • 692
rule • 446

dump files • 260, 335
dynamic SQL long varchar (data type) • 179

E
edit (terminal monitor command) • 682
effective user • 67
Embedded SQL

include (statement) • 136
preprocessor errors • 135
sample program • 133
SQLCA • 133
variables • 134

EmbeddedSQL
overview • 26

end transaction (statement) • 693
endquery (statement) • 510
error handling

aborting distributed transactions • 200
copy (statement) • 314
data handlers • 179
database connections • 240
database procedure • 233
deadlock • 225
errorno flag • 510
errortext (constant) • 510
generic errors • 702
iierrornumber • 234

Index 723

iirowcount • 234
numeric overflow/underflow • 84
SQLCA • 220, 642
SQLCODE • 215
SQLSTATE • 147, 216, 254, 706
string truncation • 142
user-defined handlers • 223, 633
whenever (statement) • 221

errors, numeric • 78
escape (clause), like (predicate) • 123
exchange nodes • 620
exec 4gl (statement) • 189
exec sql (keyword) • 132
execute (statement) • 162, 166
execute immediate (statement)

described • 161
execute database procedures • 231
executing non-select statements • 165
executing select statements • 175

exists (predicate) • 127
exp (function) • 94
expiration date (tables) • 369
exponential function • 94
exponential notation • 67
expressions

case • 120
definition of • 119
sequence • 121

F
flags, connection

numeric_overflow • 716
string_truncation • 716

flags, ESQL preprocessor
blank_pad • 717
check_eos • 718
sqlcode • 718
wsql • 717

float (data type)
data type return code • 158

float4 (function) • 88
float8 (function) • 88
floating point

conversion • 81
data types • 49
range • 49

forms,applications • 26
functions

abs • 94

aggregate • 109, 110
atan • 94
avg • 109
binary • 110
bit-wise • 107
cos • 94
date • 101
exp • 94
Hash • 107
log • 94
max • 109
min • 109
mod • 94
numeric (list) • 94
random number • 108
scalar • 87
sin • 94
sqrt • 94
string • 95
substring • 95
sum • 109
unary • 109
UUID • 115

G
g (terminal monitor command) • 682
generic errors

described • 216
list • 702
raise error (statement) • 556

German format (dates) • 51
get dbevent (statement) • 251, 253
go (terminal monitor command) • 681, 682
grant (statement) • 480, 496
grant option • 493
group by (clause) • 113, 582
group identifiers

assigning • 261, 345

H
Hash

functions • 107
hash (storage structure) • 524, 613
having (clause) • 127, 582
heap (storage structure) • 524, 613
heapsort (storage structure) • 524, 613
hex (function) • 88
host language • 138
hostlanguage • 26

724 SQL Reference Guide

I
i (terminal monitor command) • 682
ifnull (function) • 114
II_DATE_FORMAT • 54
in (predicate) • 125
include (statement)

described • 136
SQLDA • 157

include (terminal monitor command) • 682
indexes

building parallel • 326, 330
compression • 329
storage structure • 326
unique • 330

indicator variables
character data retrieval • 142
ESQL • 138

initial_user constant • 67
inquire_ingres (statement) • 693
inquire_sql (statement)

database events • 251
described • 211
error checking • 224, 236

insert (statement) • 178
int1 (function) • 88
int2 (function) • 88
int4 (function) • 88
integer

data types • 48
literals • 66
range • 48

integer (data type)
data type return code • 158

integrity
constraints and nulls • 70
constraints and rules • 238

interrupts • 195
interval (function) • 101
isam (storage structure) • 524, 613
ISO format (dates) • 51
ISO standard

keywords • 673
ISQL

overview • 26

J
journaling • 612

enabling/disabling • 391, 612
journals, files • 260, 335

K
keyboard Ctrl key • 195, 686
keywords

ISO • 673
single • 651

KnowledgeManagementExtension
described • 29

L
labels, Embedded SQL • 132
languages, host • 138
languages,host • 26
left (function) • 95
length (function) • 95
like (predicate) • 123
limits

ANSI identifiers • 32
connection name length • 240
cursor name length • 145
data handlers • 179
database event text length • 249
database name length • 30
float data type • 63
integer data • 48
length of connection name • 294
length of long varchar columns • 43
logical operators in queries • 73
long varchar length • 180
nested rules • 238
number of columns in rules • 352
number of columns in tables • 369
number of columns in unique constraint •

378
number of flags in connect statement • 294
number of results columns • 431
number of tables in a query • 36
number of tables in queries • 587
object name length • 30
object names • 30
prepared statement name length • 162
row length • 42
row width • 369

literals
floating point • 67
integer • 66
numeric • 66
string • 65

local errors • 216, 556
locate (function) • 95

Index 725

locations
changing • 260
security logging • 452

locking
level • 614
set lockmode (statement) • 614
timeout • 614
when granting privileges • 494

log (function) • 94
logarithmic function • 94
logging

database events • 621
file • 556

logical key (data type) • 59
assignment • 80
inquiring about • 510
restrictions • 316, 374, 517

logical operators, SQL • 127
logically inconsistent table • 524
long byte (data type) • 62

data type return code • 158
long varchar (data type) • 45

data type return code • 158
datahandler clause • 457, 461, 472, 517,

604, 637
datahandler routines • 178
long_varchar (function) • 88
restriction for predicates • 122
restriction on keys • 323
restrictions for string functions • 95
string truncation • 142

long_byte (function) • 88
loops

host language • 147
lowercase (function) • 95

M
max (function) • 109
maxpages (clause) • 535
MDY format (dates) • 51
message (statement)

database procedures • 236
inquire_sql(messagenumber) • 510
whenever sqlmessage (statement) • 642

messagenumber (constant) • 510
messages, user-defined handlers • 224, 633
messagetext (constant) • 510
min (function) • 109
minpages (clause) • 535

mod (function) • 94
modulo arithmetic • 94
money (data type) • 58

data type return code • 158
money (function) • 88
move data • 524
multinational format (dates) • 51
multiple sessions

described • 239
inquire_sql • 510
sample program • 243

multi-statement transactions (MST) • 191,
192, 377, 614, 688, 689, 693

N
naming

case • 31
correlation names • 36
database objects • 30

nchar (function) • 88
nesting

queries • 129
rules • 238

next value for operator • 121
nextval operator • 121
nobell (terminal monitor command) • 682
not (logical operator) • 127
not null column format • 375
notrim (function) • 95
now date constant • 51, 67
null constant • 67
null indicators • 138, 472
null values

SQL • 127
nullability

ifnull (function) • 114
is null (predicate) • 127
table columns • 68

nulls
aggregate functions • 69, 109
assignment • 80
integrity constraints • 70
null constant • 67
SQL • 68

numeric (data type)
assignment • 78
errors • 84
functions (list) • 94
range and precision • 48

726 SQL Reference Guide

truncation • 78
numeric_overflow flag • 716
-numeric_overflow flag • 84
nvarchar (function) • 88

O
object names

restrictions and limits • 30
object_key (function) • 88
ObjectManagementExtension(OME) • 39
online modification • 524, 540
open cursor (statement) • 145
operations

arithmetic • 81
assignment • 75

operators
arithmetic • 71
current value for • 121
currval • 121
logical • 127
next value for • 121
nextval • 121

or (logical operator) • 73, 127
overflow, numeric • 84

P
p (terminal monitor command) • 682
pad (function) • 95
parallel index

building • 330
syntax • 326

parallel query • 620
partial transaction aborts • 193
partitioning table • 524, 540
patterns, matching • 123
permissions

database procedures • 231, 692
rules • 238

permits
constraints • 691
create permit (statement) • 691
destroying • 692

physically inconsistent table • 524
precision

decimal (data type) • 48, 83, 115
floating point • 49

predicates
any-or-all • 125
comparison • 122

exists • 127
in • 125
is null • 127
like • 123

prefetching
inquire_sql (statement) • 510
readonly cursors • 146
set_sql (statement) • 633

prepare (statement) • 162, 166
printing, print (terminal monitor command) •

682
privileges

database • 485
database event • 489
database events • 255
database procedure • 489
database sequences • 490
examples of • 495
grant all option • 491
granting • 480
granting to another ID • 493
subject privileges • 261, 345, 348, 400

programquit (constant) • 225, 510, 633
programs

suspending execution • 225, 642

Q
QUEL

keywords • 651
queries

nested • 129
optimizing • 73
repeat • 450, 519, 547, 605, 638
subqueries • 129

query optimizer • 620

R
r (terminal monitor command) • 682
raise dbevent (statement) • 249
raise error (statement) • 236, 238
random number • 621

functions • 108
random number functions, list • 108
read (terminal monitor command) • 682
readonly table • 524
reconstruct (storage structure) • 524
recovery, journaling • 391
register dbevent (statement) • 250
register table (statement) • 562

Index 727

relocate (statement) • 694
relocate table • 524
remove dbevent (statement) • 254, 566
repeat queries

effect of drop synonym statement • 450
insert (statement) • 519
restriction for select statement • 167
restrictions in dynamic statements • 547
select (statement) • 605
update (statement) • 638

reserved words
single • 651

reset (terminal monitor command) • 682
resource

security logging • 433
restrictions

aggregate functions in expressions • 119
C2 security log • 563
characters in delimited identifiers • 32
check constraints • 379
column default values • 374
connection name length • 240
copy (statement) • 316
copying logical keys • 61
cursor deletes • 429
cursor name length • 145
cursor updates • 639
data handlers • 179
database events on VMS clusters • 245
database procedure parameters • 466
database procedures • 231
delimiters in create schema (statement) •

359
dynamic SQL statement name length • 547
enable security_audit statement in

transactions • 269, 452
execute immediate (statement) • 461
get dbevent statement in database

procedures • 479
identifiers for database objects • 32
into clause in ISQL • 467
lockmode • 614
logical key (data type) • 61, 316, 374, 395,

517
logical keys and nulls • 114
logical operators in queries • 73
long byte columns • 62
long varchar and predicates • 122
long varchar columns • 46, 323

long varchar length • 42
maximum length of a default value • 374
nested rules • 238
number of columns in an index • 323
number of columns in rules • 352
number of results columns • 431
number of tables in a query • 36
number of tables in queries • 587
object names • 30
prepared statement name length • 162
referential constraints • 380
repeat queries • 167, 519
repeated queries in database procedures •

338
revoking database privileges • 574
row width • 369
set autocommit (statement) in transactions

• 612
set logging (statement) • 626
set session with on_error (statement) in

transactions • 622
statements in dynamic SQL • 547
string functions and long varchar • 95
switching sessions • 241
temporary tables • 423
two phase commit on VMS cluster • 197
unions • 593
unique indexes in queries • 330
updating views • 405

right (function) • 95
role

access to • 496
role identifiers

creating • 261
rollback (statement) • 193
rollforward table level • 524
rounding, money (data type) • 58
rows (in tables)

counting • 112
deleting • 149
retrieving • 510
rowcount • 510
security logging • 433
updating • 148

rules
database procedures • 338
described • 238
RULE_DEPTH • 238

728 SQL Reference Guide

S
s (terminal monitor command) • 682
scalar functions • 87
scale, decimal (data type) • 48
script (terminal monitor command) • 682
search conditions, SQL • 127
security

C2compliance • 40
register table (statement) • 562

select (statement)
database procedures • 338
datahandler clause • 178
dynamic SQL • 167
query evaluation • 594
select loop • 154, 455, 603

Select(statement)
embedded • 26

semicolon statement terminator • 36
sequence expressions • 121
session role • 620
session_user constant • 67
set autocommit (statement) • 612
set role option

changing • 620
set_ingres (statement) • 695
sh (terminal monitor command) • 682
shell (terminal monitor command) • 682
shift (function) • 95
shrink btree index • 524
sin (function) • 94
sine function • 94
size (function) • 95
soundex (function) • 95
SQL

advanced techniques • 155
data types • 41
descriptor area (SQLDA) • 155
dynamic • 155
keywords • 651
names • 30
overview • 25
run-time information • 693
SQLVAR • 172
statements/commands from earlier releases

• 687
SQLCA (SQL Communications Area)

database events • 254
deleted rows • 428
described • 212

error handling • 510, 519, 556, 604, 606
include (statement) • 506
multiple sessions • 242
row determination • 455, 472, 540, 639
whenever (statement) • 642

sqlcode (variable) • 212
sqlcode flag • 718
SQLDA (SQL Descriptor Area)

describe (statement) • 431
described • 155
execute (statement) • 457
execute immediate (statement) • 461
execute procedure (statement) • 467
fetch (statement) • 472
include (statement) • 506

SQLSTATE error handling • 706
sqrt (function) • 94
square root function • 94
squeeze (function) • 95
statement terminators • 36
status information

dbmsinfo (function) • 205
inquire_sql (statement) • 211

storage structures
indexes • 326

string_truncation flag • 716
-string_truncation flag • 77
strings

c (function) • 95
char (function) • 95
concat (function) • 95
functions • 95
functions (list) • 95
left (function) • 95
length (function) • 95
literals • 65
locate (function) • 95
lowercase (function) • 95
notrim (function) • 95
padding • 95
right (function) • 95
shift (function) • 95
size (function) • 95
soundex (function) • 95
SQL • 42
squeeze (function) • 95
substring (function) • 95
text (function) • 95
trim (function) • 95

Index 729

truncation • 77
uppercase (function) • 95
varchar (function) • 95
varying length • 44

structure, variables • 137
subject privileges • 261, 345, 348, 400
substring (function) • 95
sum (function) • 109
Sweden/Finland format (dates) • 51
system_user constant • 67

T
t (terminal monitor command) • 682
table constraint • 383
table partitioning • 524, 540
table_key (function) • 88
tables

expiration • 369
relocating • 694
security logging • 452

Terminal Monitor
described • 679

text (data type) • 44
text (function) • 88
time

display format • 57
functions • 101
ime (terminal monitor command) • 682
interval (function) • 101
intervals • 56
selecting current/system • 205

timeout • 195
today date constant • 51, 67
transactions

aborting • 622, 688
begin transaction (statement) • 689
commit (statement) • 193
control statements • 193
distributed • 296
end transaction (statement) • 693
management • 191
multi-statement (MST) • 688, 689, 693
rolling back • 193
savepoints • 193
transaction (constant) • 510

trim (function) • 95
truncate table • 524
truncation

character data • 142

data conversion • 95
dates • 101
numeric assignment • 78
string • 77

truth functions • 127
two phase commit

description • 197

U
UDTs (user-defined data types) • 304, 374
unary functions • 109
unary operators • 71
unhex (function) • 88
Unicode

data types • 47
unique

clause • 323, 326
indexes • 330

Universal Unique Identifier (UUID) • 115
update (statement)

datahandler clause • 178
uppercase (function) • 95
US format (dates) • 51
user

constant • 67
effective user • 67
security logging • 452

UUID (function) • 115

V
varbyte (function) • 88
varchar (data type) • 44

data type return code • 158
varchar (function) • 88
variable declarations

host languages • 135
variables

host language • 134
null indicator • 138
structure • 137

views
ownership • 405
security logging • 452

W
w (terminal monitor command) • 682
warnings

role passwords • 265
set nologging and performance • 626

730 SQL Reference Guide

set norules and constraints • 238, 617
whenever (statement)

database events • 253
described • 221
example • 133

where (clause) • 127, 582
wild card characters

help (statement) • 500
select (statement) • 584

with (clause) • 300
with null column format • 375
with_clause options

allocation • 394
work files • 260, 335
write (terminal monitor command) • 682
wsql flag • 717

Y
YMD format (dates) • 51

	Bookshelf
	Ingres SQL Reference Guide
	Contents
	1: Introducing the SQL Reference Guide
	Audience
	Enterprise Access Compatibility
	System-specific Text in This Guide
	Terminology Used in This Guide
	Syntax Conventions Used in This Guide

	2: Introducing SQL
	SQL Functionality
	Types of SQL Statements
	SQL Releases
	Interactive SQL
	Line-Based Terminal Monitors
	Forms Based Terminal Monitor

	Embedded SQL
	Embedded SQL Support
	How Embedded SQL Differs From Interactive SQL

	SQL Naming and Statement Rules
	Object Naming Rules
	Regular and Delimited Identifiers
	Restrictions on Identifiers
	Case Sensitivity of Identifiers
	Comment Delimiters

	Statement Terminators
	Correlation Names
	Correlation Names Rules

	Database Procedures
	Database Procedure Creation
	Determine Settings for a Database

	Object Management Extension
	ANSI Compliance
	OpenSQL
	Security Levels

	3: Introducing SQL Data Types
	SQL Data Types
	Character Data Types
	C Data Types
	Char Data Types
	Text Data Types
	Varchar Data Types
	Long Varchar Data Types

	Unicode Data Types
	Numeric Data Types
	Integer Data Types
	Decimal Data Types
	Floating Point Data Types

	Abstract Data Types
	Date Data Types
	Money Data Types
	Logical Key Data Types

	Binary Data Types
	Byte Data Types
	Byte Varying Data Types
	Long Byte Data Types

	Storage Formats of Data Types
	Literals
	String Literals
	Hexadecimal Representation
	Quotes within Strings

	Numeric Literals
	Integer Literals
	Decimal Literals
	Floating Point Literals

	SQL Constants
	Nulls
	Nulls and Comparisons
	Nulls and Aggregate Functions
	Nulls and Integrity Constraints

	4: Understanding the Elements of SQL Statements
	SQL Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	SQL Operations
	String Concatenation Operations
	Assignment Operations
	Rules of Assignment Operations
	Compatibility of Character String Data Types
	Compatibility of Date and String Data Types
	Compatibility of Numeric Data Types
	Compatibility of Table Keys
	Character String
	String Truncation Errors
	Numeric
	Date
	Types of Logical Keys
	Null Value Assignment

	Arithmetic Operations
	Default Type Conversion
	Arithmetic Operations on Decimal Data Types
	Specify Error Handling for Arithmetic Errors
	Date Arithmetic
	Comparing Dates

	SQL Functions
	Scalar Functions
	Data Type Conversion Functions
	Numeric Functions
	String Functions
	Date Functions
	Bit-wise Functions
	Hash Functions
	Random Number Functions

	Aggregate Functions
	Unary Aggregate Functions
	Binary Aggregate Functions
	Count(*) Function
	Aggregate Functions and Decimal Data
	Group By Clause with Aggregate Functions
	Restrictions on the Use of Aggregate Functions

	Ifnull Function
	Ifnull Result Data Types
	Ifnull and Decimal Data

	Universal Unique Identifier (UUID)
	Benefits of Using a UUID
	UUID Format
	SQL Functions for UUID Implementation
	UUID Usage

	Expressions in SQL
	Case Expressions
	Sequence Expressions

	Predicates in SQL
	Comparison Predicate
	Like Predicate
	Between Predicate
	In Predicate
	Any-or-All Predicate
	Exists Predicate
	Is Null Predicate

	Search Conditions in SQL Statements
	Subqueries

	5: Working with Embedded SQL
	Embedded SQL Statements
	How Embedded SQL Statements are Processed
	General Syntax and Rules of an Embedded SQL Statement
	Structure of an Embedded SQL Program
	Host Language Variables in Embedded SQL
	Variable Declarations
	Include Statement
	Variable Usage
	Variable Structures
	Dclgen Utility
	Indicator Variables
	Indicator Variable Declaration
	Null Indicators and Data Retrieval
	Using Null Indicators to Assign Nulls
	Indicator Variables and Character Data Retrieval

	Null Indicator Arrays and Host Structures

	Data Manipulation with Cursors
	Example: Cursor Processing
	Cursor Declarations
	Open Cursors
	Readonly Cursors
	Open Cursors and Transaction Processing
	Fetch Data From Cursor
	Fetch Rows Inserted by Other Queries
	Using Cursors to Update Data
	Cursor Modes

	Cursor Position for Updates
	Delete Data Using Cursors
	Example: Updating and Deleting with Cursors

	Closing Cursors
	Summary of Cursor Positioning
	Dynamically Specifying Cursor Names

	Cursors versus Select Loops

	Dynamic Programming
	SQLDA
	Structure of the SQLDA
	Including the SQLDA in a Program
	Describe Statement and SQLDA
	Data Type Codes

	Using Clause
	Dynamic SQL Statements
	Execute Immediate Statement
	Prepare and Execute Statements
	Describe Statement

	Execute a Dynamic Non-select Statement
	Using Execute Immediate to Execute a Non-select Statement
	Preparing and Executing a Non-select Statement

	Execute a Dynamic Select Statement
	Unknown Result Column Data Types
	How Unknown Result Column Data Types are Handled
	Prepare and Describe Select Statements
	Sqlvar Elements

	Select Statement with Execute Immediate
	Retrieve Results Using Cursors

	Data Handlers for Large Objects
	Errors in Data Handlers
	Restrictions on Data Handlers
	Large Objects in Dynamic SQL
	Length Considerations
	Data Handlers in Dynamic SQL

	Example: PUT DATA Handler
	Example: GET DATA Handler
	Example: Dynamic SQL Data Handler

	Ingres 4GL Interface

	6: Working with Transactions and Handling Errors
	Transactions
	How Transactions Work
	How Consistency is Maintained During Transactions
	How Commit and Rollback Process Works
	Individual Commits
	How to Determine if You Are in a Transaction

	Statements Used to Control Transactions
	How Transaction Control Works
	Savepoints on Multi Statement Transactions
	Interrupt Handling
	Abort Policy for Transactions and Statements
	How to Direct the DBMS to Rollback an Entire Transaction or Statement
	Effects of Aborted Transactions

	Two Phase Commit
	Statements that Support Two Phase Commit
	Coordinator Applications for a Two Phase Commit
	Manual Termination of a Distributed Transaction
	Example: Using Two-Phase Commit

	Status Information
	session_priv Function
	dbmsinfo Function
	Valid Request Names for dbmsinfo Function

	inquire_sql Function
	Information Provided by the inquire_sql Function

	SQL Communications Area (SQLCA)
	Variables that Compose SQLCA

	SQLCODE and SQLSTATE
	SQLCODE Variable
	SQLSTATE Variable

	Error Handling
	Types of Error Codes
	Understand Error Messages
	Display of Error Messages
	Error Handling in Embedded Applications
	Error Information from SQLCA
	SQLSTATE
	Error Trapping Using Whenever Statement
	Define Error Handling Functions
	Other Types of Handlers
	Error Information from Inquire Statements

	How to Specify Program Termination When Errors Occur
	Deadlocks
	Example: Handling Deadlocks When Transactions Do Not Contain Cursors
	Example: Handling Deadlocks with One Cursor
	Example: Handling Deadlocks with Two Cursors

	7: Understanding Database Procedures, Sessions, and Events
	Benefits of Database Procedures
	How Database Procedures are Executed
	Database Procedure Invocation
	Contents of Database Procedures
	Permissions on Database Procedures
	Methods of Executing Procedures
	Parameter Passing in Database Procedures
	Row Producing Procedures
	Format of Row Producing Procedures

	Effects of Errors in Database Procedures
	iierrornumber and iirowcount Variables
	Raise Error Statement

	Messages from Database Procedures
	Message Handling Using the Whenever Statement
	Messages Handling Using User-Defined Handler Routines

	Rules
	Multiple Session Connections
	Multiple Sessions
	Session Identification
	Session Switching
	Disconnection of Sessions
	Status Information in Multiple Sessions
	Multiple Sessions and the DBMS Server
	Example: Two Open Sessions
	Examples: Session Switching

	Database Events
	Example: Database Events in Conjunction with Rules
	Database Event Statements
	Create a Database Event
	Raise a Database Event
	Register Applications to Receive a Database Event
	Receive a Database Event
	Process Database Events
	Get Dbevent Statement
	Whenever Dbevent Statement
	User-Defined Database Event Handlers
	Remove a Database Event Registration
	Drop a Database Event
	Privileges and Database Events
	Trace Database Events

	8: Using SQL Statements
	Star Statements
	Alter Group
	Embedded Usage: Alter Group
	Locking: Alter Group
	Related Statements: Alter Group
	Examples: Alter Group

	Alter Location
	Embedded Usage: Alter Location
	Locking: Alter Location
	Related Statements: Alter Location
	Examples: Alter Location

	Alter Profile
	Embedded Usage: Alter Profile
	Locking: Alter Profile
	Related Statements: Alter Profile
	Examples: Alter Profile

	Alter Role
	Embedded Usage: Alter Role
	Locking: Alter Role
	Related Statements: Alter Role
	Examples: Alter Role

	Alter Security_Audit
	Embedded Usage: Alter Security_Audit
	Related Statements: Alter Security_Audit
	Examples: Alter Security_Audit

	Alter Sequence
	Locking: Alter Sequence
	Related Statements: Alter Sequence
	Examples: Alter Sequence

	Alter Table
	Constraint Specifications: Alter Table
	Named Constraints: Alter Table
	Restrict and Cascade

	Embedded Usage: Alter Table
	Locking: Alter Table
	Related Statements: Alter Table
	Examples: Alter Table

	Alter User
	Embedded Usage: Alter User
	Locking: Alter User
	Related Statements: Alter User
	Examples: Alter User

	Begin Declare
	Related Statements: Begin Declare
	Example: Begin Declare

	Call
	Examples: Call

	Close
	Embedded Usage: Close
	Locking: Close
	Related Statements: Close
	Example: Close

	Comment On
	Embedded Usage: Comment On
	Locking: Comment On
	Related Statements: Comment On
	Examples: Comment On

	Commit
	Embedded Usage: Commit
	Locking: Commit
	Performance: Commit
	Related Statements: Commit
	Example: Commit

	Connect
	Connecting with Distributed Transactions
	Creating Multiple Sessions
	Using Session Identifiers
	Using Connection Names

	Locking: Connect
	Related Statements: Connect
	Examples: Connect

	Copy
	Binary Copying
	Bulk Copying
	row_estimate Option
	Data File Format versus Table Format

	Column Formats
	Storage Format
	Delimiters
	With Null Clause

	Filename Specification
	VMS File Types

	With Clause Options
	on_error
	error_count
	Log
	Rollback

	Locking: Copy
	Restrictions and Considerations: Copy
	Related Statements: Copy
	Example: Copy

	Create Dbevent
	Embedded Usage: Create Dbevent
	Locking: Create Dbevent
	Related Statements: Create Dbevent

	Create Group
	Embedded Usage: Create Group
	Locking: Create Group
	Related Statements: Create Group
	Examples: Create Group

	Create Index
	Parameters: Create Index
	Index Storage Structure
	Unique Indexes
	Effect of the Unique_Scope Option on Updates
	Index Location
	Parallel Index Building

	Embedded Usage: Create Index
	Locking: Create Index
	Related Statements: Create Index
	Examples: Create Index

	Create Integrity
	Embedded Usage: Create Integrity
	Locking: Create Integrity
	Performance: Create Integrity
	Related Statements: Create Integrity
	Examples: Create Integrity

	Create Location
	Embedded Usage: Create Location
	Locking: Create Location
	Related Statements: Create Location
	Examples: Create Location

	Create Procedure
	Nullability and Default Values for Parameters
	Set Of Parameters
	Embedded Usage: Create Procedure
	Related Statements: Create Procedure
	Examples: Create Procedure

	Create Profile
	Embedded Usage: Create Profile
	Locking: Create Profile
	Related Statements: Create Profile
	Examples: Create Profile

	Create Role
	Embedded Usage: Create Role
	Locking: Create Role
	Related Statements: Create Role
	Examples: Create Role

	Create Rule
	Row and Statement Level Rules
	Database Procedures

	Embedded Usage: Create Rule
	Locking: Create Rule
	Related Statements: Create Rule
	Examples: Create Rule

	Create Schema
	Embedded Usage: Create Schema
	Locking: Create Schema
	Related Statements: Create Schema
	Example: Create Schema

	Create Security_Alarm
	Embedded Usage: Create Security_Alarm
	Locking: Create Security_Alarm
	Related Statements: Create Security_Alarm
	Examples: Create Security_Alarm

	Create Sequence
	Sequence_Options Specification
	As Option
	Start With Option
	Restart With Option
	Increment By Option
	Maxvalue Option
	No Maxvalue/NoMaxvalue Option
	Minvalue Option
	No Minvalue/NoMinvalue Option
	Cache Option
	No Cache/NoCache Option
	Cycle Option
	No Cycle/NoCycle Option
	[No]Order Option

	Locking: Create Sequence
	Related Statements: Create Sequence
	Examples: Create Sequence

	Create Synonym
	Embedded Usage: Create Synonym
	Locking: Create Synonym
	Related Statements: Create Synonym
	Examples: Create Synonym

	Create Table
	Column Specifications
	Column Defaults and Nullability
	Default Values
	Nullability
	System_Maintained Logical Keys

	Constraints
	Unique Constraint
	Check Constraint
	Referential Constraint
	Primary Key Constraints

	Constraint Index Options
	No Index Option
	Index = Base Table Structure Option
	Index = Index_Name Option

	Column-Level Constraints and Table-Level Constraints
	Constraints and Integrities
	Partitioning Schemes
	Syntax

	With_Clause Options
	Location
	(No)journaling
	(No)duplicates
	Page_size
	Security_Audit
	Security_Audit_Key
	Partition=
	Nopartition

	Create Table...as Select Options
	Using Create Table...as Select
	Embedded Usage: Create Table
	Locking: Create Table
	Related Statements: Create Table
	Examples: Create Table

	Create User
	Embedded Usage: Create User
	Locking: Create User
	Related Statements: Create User
	Examples: Create User

	Create View
	With Check Option Clause
	Embedded Usage: Create View
	Locking: Create View
	Related Statements: Create View
	Examples: Create View

	Declare
	Related Statements: Declare
	Example: Declare

	Declare Cursor
	Cursor Updates
	Cursor Modes
	Embedded Usage: Declare Cursor
	Locking: Declare Cursor
	Related Statements: Declare Cursor
	Examples: Delete Cursor

	Declare Global Temporary Table
	Embedded Usage: Declare Global Temporary Table
	Restrictions: Declare Global Temporary Table
	Related Statements: Declare Global Temporary Table
	Examples: Declare Global Temporary Table

	Declare
	Related Statements: Declare
	Example: Declare

	Declare Table
	Example: Declare Table

	Delete
	Embedded Usage: Delete
	Non-Cursor Delete
	Cursor Delete

	Locking: Delete
	Related Statements: Delete
	Example: Delete

	Describe
	Related Statements: Describe

	Disable Security_Audit
	Embedded Usage: Disable Security_Audit
	Locking: Disable Security_Audit
	Related Statements: Disable Security_Audit
	Example: Disable Security_Audit

	Disconnect
	Locking: Disconnect
	Related Statements: Disconnect
	Examples: Disconnect

	Drop
	Embedded Usage: Drop
	Locking: Drop
	Related Statements: Drop
	Examples: Drop

	Drop Dbevent
	Embedded Usage: Drop Dbevent
	Related Statements: Drop Dbevent
	Example: Drop Location

	Drop Group
	Embedded Usage: Drop Group
	Locking: Drop Group
	Related Statements: Drop Group
	Examples: Drop Group

	Drop Integrity
	Embedded Usage: Drop Integrity
	Related Statements: Drop Integrity
	Examples: Drop Integrity

	Drop Location
	Embedded Usage: Drop Location
	Locking: Drop Location
	Related Statements: Drop Location

	Drop Procedure
	Embedded Usage: Drop Procedure
	Related Statements: Drop Procedure
	Example: Drop Procedure

	Drop Profile
	Locking: Drop Profile
	Related Statements: Drop Profile
	Example: Drop Profile

	Drop Role
	Embedded Usage: Drop Role
	Locking: Drop Role
	Related Statements: Drop Role
	Example: Drop Role

	Drop Rule
	Embedded Usage: Drop Rule
	Related Statements: Drop Rule
	Example: Drop Rule

	Drop Security_Alarm
	Embedded Usage: Drop Security_Alarm
	Locking: Drop Security_Alarm
	Related Statements: Drop Security_Alarm
	Examples: Drop Security_Alarm

	Drop Sequence
	Locking: Drop Sequence
	Related Statements: Drop Sequence
	Examples: Drop Sequence

	Drop Synonym
	Embedded Usage: Drop Synonym
	Locking: Drop Synonym
	Related Statements: Drop Synonym
	Example: Drop Synonym

	Drop User
	Embedded Usage: Drop User
	Locking: Drop User
	Related Statements: Drop User
	Example: Drop User

	Enable Security_Audit
	Embedded Usage: Enable Security_Audit
	Locking: Enable Security_Audit
	Related Statements: Enable Security_Audit
	Example: Enable Security_Audit

	Enddata
	Examples: Enddata

	End Declare Section
	Related Statements: End Declare Section

	Endselect
	Locking: Endselect
	Related Statements: Endselect
	Example: Endselect

	Execute
	Locking: Execute
	Related Statements: Execute
	Examples: Execute

	Execute Immediate
	Locking: Execute Immediate
	Related Statements: Execute Immediate
	Examples: Execute Immediate

	Execute Procedure
	Passing Parameters - Non-Dynamic Version
	Passing Parameters - Dynamic Version
	Temporary Table Parameter
	Limitations of Temporary Table Parameter

	Execute Procedure Loops
	Locking: Execute Procedure
	Related Statements: Execute Procedure
	Examples: Execute Procedure

	Fetch
	Readonly Cursors and Performance
	Related Statements: Fetch
	Examples: Fetch

	For-EndFor
	Example: For-EndFor

	Get Data
	Related Statements: Get Data

	Get Dbevent
	Related Statements: Get Dbevent

	Grant (privilege)
	Types of Privileges
	Table Privileges
	Table Privileges for Views
	Database Privileges
	Database Procedure Privileges
	Database Event Privileges
	Database Sequence Privileges

	Privilege Defaults
	Grant All Privileges Option
	Installation and Database Privileges
	Other Privileges
	Granting All Privileges on Views

	Grant Option Clause
	Embedded Usage: Grant (privilege)
	Locking: Grant (privilege)
	Related Statements: Grant (privilege)
	Examples: Grant (privilege)

	Grant (role)
	Related Statements: Grant (role)
	Example: Grant (role)

	Help
	Help Options
	Wildcards and Help
	Locking: Help
	Related Statements: Help
	Examples: Help

	If-Then-Else
	If Statement
	If...Then Statement
	If...Then...Elseif Statement
	Nesting IF Statements
	Example: If-Then-Else

	Include
	Related Statements: Include
	Examples: Include

	Inquire_sql
	Inquiring About Logical Keys
	Inquiring About Database Events
	Types of Inquiries
	Related Statements: Inquire_sql
	Examples: Inquire_sql

	Insert
	Embedded Usage: Insert
	Repeated Queries
	Error Handling
	Locking: Insert
	Related Statements: Insert
	Examples: Insert

	Message
	Related Statements: Message
	Examples: Message

	Modify
	Storage Structure Specification
	Modify...to Reconstruct
	Modify...to Merge
	Modify...to Relocate
	Modify...to Reorganize
	Modify...to Truncated
	Modify...to Add_extend
	Modify...with Blob_extend
	Modify...to Phys_consistent|Phys_inconsistent
	Modify...to Log_consistent|Log_inconsistent
	Modify...to Table_recovery_allowed|Table_recovery_disallowed
	Modify…to Unique_scope = Statement|Row
	Modify…to [No]Readonly
	Modify…to Priority=n
	With Clause Options
	Fillfactor, Minpages, and Maxpages
	Leaffill and Nonleaffill
	Allocation Option
	Extend
	Compression
	Location
	Unique_scope
	(No)persistence Option
	Page_size
	NopartitionPartition=
	Concurrent_updates

	Embedded Usage: Modify
	Locking: Modify
	Related Statements: Modify
	Examples: Modify

	Open
	Locking: Open
	Related Statements: Open
	Examples: Open

	Prepare
	Related Statements: Prepare
	Example: Prepare

	Prepare to Commit
	Related Statements: Prepare to Commit
	Example: Prepare to Commit

	Put Data
	Related Statements: Put Data

	Raise Dbevent
	Embedded Usage: Raise Dbevent
	Related Statements: Raise Dbevent

	Raise Error
	Related Statements: Raise Error
	Example: Raise Error

	Register Dbevent
	Embedded Usage: Register Dbevent
	Related Statements: Register Dbevent

	Register Table
	Security Log Files
	With Clause Options
	Embedded Usage: Register Table
	Locking: Register Table
	Related Statements: Register Table
	Example: Register Table

	Remove Dbevent
	Related Statements: Remove Dbevent

	Remove Table
	Embedded Usage: Remove Table
	Locking: Remove Table
	Related Statements: Remove Table
	Example: Remove Table

	Return
	Example: Return

	Return Row
	Related Statements: Return Row
	Example: Return Row

	Revoke
	Revoking Grant Option
	Restrict versus Cascade
	Embedded Usage: Revoke
	Locking: Revoke
	Related Statements: Revoke
	Examples: Revoke

	Rollback
	Embedded Usage: Rollback
	Locking: Rollback
	Performance: Rollback
	Related Statements: Rollback

	Save
	Embedded Usage: Save
	Locking: Save
	Example: Save

	Savepoint
	Embedded Usage: Savepoint
	Related Statements: Savepoint
	Example: Savepoint

	Select (interactive)
	Select Statement Clauses
	Select
	From
	Where
	Group By
	Having
	Order By
	Union

	Query Evaluation
	Specifying Tables and Views
	Joins
	Join Relationships
	Subselects

	ANSI/ISO Join Syntax
	Examples: Select (interactive)

	Select (embedded)
	Non-Cursor Select
	Select Loops
	Retrieving Values into Host Language Variables
	Retrieving Long Varchar and Long Byte Values
	Host Language Variables in Union Clause
	Repeated Queries
	Cursor Select
	Error Handling
	Embedded Usage: Select (embedded)
	Related Statements: Select (embedded)
	Examples: Select (embedded)

	Set
	Embedded Usage: Set
	Autocommit
	[No]Lock_Trace
	[No]Journaling
	Result_Structure
	Lockmode
	[No]Printqry Option
	[No]Qep Option
	Joinop [No]Timeout
	Joinop [No]Greedy
	[No]Rules Option
	[No]Printrules
	[No]Maxcost
	[No]Maxcpu
	[No]Maxio
	[No]Maxpage
	[No]Maxquery
	[No]Maxrow
	[No]Maxidle Option
	[No]Maxconnect Option
	[No]Parallel
	Set Role
	[No]Printdbevents Option
	[No]Logdbevents Option
	Random_seed
	Session with Add Privileges
	Session with Drop Privileges
	Session with On_error
	Session with On_user_error
	Session with [No]Description
	Session with Priority
	Session with [No]Privileges
	Session with on_logfull
	[No]Logging
	Set Nologging
	Set Logging

	[No]Optimizeonly
	Connection
	Work Locations
	Update_Rowcount
	Set Session
	Set Transaction
	Set unicode_substitution [<substitution character>] and Set nounicode_substitution
	Related Statements: Set
	Examples: Set

	Set_sql
	Related Statements: Set_sql

	Update
	Embedded Usage: Update
	Cursor Updates
	Locking: Update
	Related Statements: Update
	Examples: Update

	Whenever
	Embedded Usage: Whenever
	Locking: Whenever
	Related Statements: Whenever
	Examples: Whenever

	While - Endwhile
	Example: While - Endwhile

	A: Keywords
	Single Word Keywords
	Multi Word Keywords
	Partition Keywords
	Unreserved ANSI/ISO SQL Keywords

	B: Terminal Monitors
	Terminal Monitor Releases
	How Terminal Monitors Are Accessed
	Terminal Monitor Query Buffering
	Terminal Monitor Commands
	Terminal Monitor Messages and Prompts
	Terminal Monitor Character Input and Output
	Implementation of the Help Statement
	Aborting the Editor (VMS only)

	C: SQL Statements from Earlier Releases of Ingres
	Substitute Statements
	Abort Statement
	Example: Abort Transaction
	Example: Partial Abort

	Begin Transaction Statement
	Example: Begin a Multi-Statement Transaction and Commit Updates
	Example: Begin a Multi-Statement Transaction and Abort

	Create Permit Statement
	Example: Create Permit

	Drop Permit
	Embedded Usage: Drop Permit
	Locking: Drop Permit
	Example: Drop Permit

	End Transaction Statement
	Example: End Transaction

	Inquire_ingres Statement
	Relocate Statement
	Example: Relocate

	Set_ingres Statement

	D: SQLSTATE Values and Generic Error Codes
	SQLSTATE Values
	Generic Error Codes
	Generic Error Data Exception Subcodes

	SQLSTATE and Equivalent Generic Errors

	E: ANSI Compliance Settings
	Configuration-By-Forms Settings
	Case Sensitivity for Identifiers
	Regular Identifiers
	Delimited Identifiers
	User Names

	Default Cursor Mode
	Query Flattening

	Connection Flags
	-string_truncation Connection Flag
	-numeric_overflow Connection Flag

	ESQL Preprocessor Flags
	-wsql ESQL Preprocessor Flag
	-blank_pad ESQL Preprocessor Flag
	-sqlcode
	-check_eos (C only)

	Index

