
Smedley's
Guide

To
Database

Procedures

© 2007 Ingres Corporation (Ingres). All trademarks, trade names, services marks and logos referenced herein belong to their respective companies

What are Database Procedures?

 Code stored in the database
 Executed in the server
 Pre-compiled
 Executable code is a single transaction
 Composed of SQL statements
 Referenced objects must exist at create time
 Associated with database rules

Why Use Database Procedures?

 Performance
 Better than “repeated” SQL
 Reduced client/server communication
 Flexibility
 Easier to change
 Reusability, reduced coding time
 Integrity constraints, business rules

Why Use Database Procedures?

 Controls access to database objects
– Only procedure owner requires privileges
– Users only require execute on the procedure
– Users do not require access to DBP objects

 Security is easier to manage
– Data only changed via procedures
– Less privileges
– Easier still with roles and groups

What Not to Put in a DBP

 Unnecessary and complex code
 Unnecessary Variables
 Transaction control

– Commit
– Rollback

 Front-end work
– Formatting data
– Retry logic

Database Procedures Execution

 Called - 3GL or 4GL applications
 Executed - Interactive SQL
 Executed - database procedures
 Invoked - database rules

Parameter Passing

 By default Parameter passed BYVALUE
 Parameters can be passed BYREF
 Parameters can be passed

– IN
• The default mode
• Equivalent to BYVALUE

– OUT and INOUT
• Equivalent to BYREF

Example in, out, inout
create procedure factorial_n

(inout n integer, inout fac integer)
as
begin
 if (n <= 0) then

return;
endif;

 fac = fac * n;
 n = n – 1;
 execute procedure factorial_n

(n = n, fac = fac);
 return;
end;

execute procedure factorial_n
(n = 6, fac = 1);

Locking Strategy

 Locks taken when procedure starts
 Locks taken on all tables referenced
 No processing unless all locks in place
 Retakes locks after commit or rollback
 When an error rolls back to beginning of

procedure

Debugging, Testing and Sizing

 Line numbers
 Sizing
 Message statement

Procedure: get_my_airlines

create procedure get_my_airlines(alname nvarchar(60))
result row(nchar(3) not null, nchar(3) not null,
nvarchar(60) not null) as declare iatacode nchar(3);

icaocode nchar(3);
name nvarchar(60);
begin for select al_iatacode, al_icaocode, al_name into

:iatacode, :icaocode, :name from "smejo01". airline where
al_name like :alname do return row (:iatacode,
:icaocode, :name);

endfor;
end;

Query Execution Plans

 Created when procedure is
– Created
– Loaded into server

 Stored in the Query Storage Facility
 QEP not based on full statistics

– Max and Min statistics used in optimization

How Big is a QEP?

register table imp_qsf_dbp (
server varchar(64) not null not default is 'SERVER',
dbp_index integer4 not null not default is 'exp.qsf.qso.dbp.index',
dbp_name varchar(60) not null not default is 'exp.qsf.qso.dbp.name',
dbp_owner varchar(24) not null not default is 'exp.qsf.qso.dbp.owner',
dbp_size integer4 not null not default is 'exp.qsf.qso.dbp.size',
dbp_dbid integer4 not null not default is 'exp.qsf.qso.dbp.udbid',
dbp_usage_count integer4 not null not default is 'exp.qsf.qso.dbp.usage‘
)
as import from 'tables'
with dbms = ima,
structure = unique sortkeyed,
key = (server, dbp_index)

Row Producing Procedure

 Must be called from an ESQL program
 Can return zero or more rows
 Row is defined by the Result Row clause
 The value returned in each “column” can be

– A local variable
– Parameter of the procedure
– A constant

Example – Row Producing Procedure

Exec sql begin declare;
 int empid;
 int sales_rank;
 float sales_tot;
 …
 exec sql end declare;
 …
 exec sql execute procedure emp_sales_rank
 result row (:sales_rank, :empid, :tot_sales);
 exec sql begin;
 …
 exec sql end;
 …

Example – Row Producing Procedure
create procedure emp_sales_rank result row (int, int, money) as
declare
 sales_tot money;
 empid int;
 sales_rank int;
begin
 sales_rank = 0;
 for

select e.empid, sum(s.sales) as sales_sum
 into :empid, :sales_tot

 from employee e, sales s
 where e.job = ‘sales’

and e.empid = s.empid
 group by e.empid

order by sales_sum desc
 do
 sales_rank = sales_rank + 1;
 return row (:sales_rank, :empid, :tot_sales);
 endfor;
end

Error Behaviour

 Procedure is not terminated
 All statements in the procedure up to the point of the

error are rolled back
 Error is returned and iierrornumber is set
 Continues execution with the statement following the

statement that caused the error
 Parameters passed by reference are not updated
 The error is returned to the application in

– SQLSTATE
– SQLCODE
– errorno

Row Counts and Errors

 iirowcount
– Contains the number of rows affected by the last

executed SQL statement
 iierrornumber

– Contains the error number associated with the
execution of a database procedure statement.

 Reflect the results of the preceding query
 Beware of resetting the value

Return

 Terminates the procedure
 Can return an integer

Message

 Use the SQL message statement to return
messages to users and applications

 Messages from database procedures can be
trapped using

– whenever sqlmessage statement
– set_sql(messagehandler) statement

 Messages from database procedures can
return to the application before the database
procedure has finished executing

Raise Error Statement

 Used to describe database errors and violations of
business rules

 Generates an error
 The Server responds to this error exactly as it does to

any other error
 Returns error number and customised message

– raise error errornumber [errortext]

 errornumber
– Is returned to sqlerrd(1)
– Can be accessed using inquire_sql(dbmserror)

The Wrong Way to Error Check
...

update emp set ...;

rcount = iirowcount;
enumber = iierrornumber;

…

The Right Way to Error Check
...

update emp set ...

select iirowcount, iierrornumber
into rcount, enumber;

…

Another Way to Error Check

update xyz . . . ;

if iierrornumber != 0 then
rollback;
message 17 'Update failed‘;
return -1 ;

endif ;

The Wrong Way to Error Check

update xyz . . . ;
if iierrornumber != 0 then

msg := ’Error updating xyz. ‘
+ ' Error is ‘
+ varchar(iierrornumber);

mno := 1701;
message :mno : msg ;
return iierrornumber ;

endif ;

The Wrong Way to Error Check

if iirowcount != 1 then
msg := 'Bad rowcount updating table xyz'

+ ', expected 1 but got '
+ varchar(iirowcount);

mno := 1702 ;
message :mno :msg ;
return iierrornumber ; /* failure */

endif ;
return 0 ; / * success */

Error Handling

 Simple is best
 Just check iierrornumber and iirowcount
 Error check as first statement in a DBP
 Return status only
 Let front end translate, report, display, log

Select Loop
execute procedure news_sorter;

select * from news_sorted;

Select Loop
create procedure news_sorter
as
declare
 next_id integer; /* next_id is the next id in the sorted table */

brand integer;
news_id integer;
headline varchar(100);
link varchar(150);
desc varchar(100);
entered date;

begin
next_id = 1;
delete from news;

 for

Select Loop

 select brand, news_id, headline, link, desc, entered
 into :brand, :news_id, :headline, :link, :desc, :entered
 from news_orig
 where deleted = 0
 order by brand, news_id

 do
 insert into news_sorted (news_id, brand, news_orig_id,

headline, link, desc, entered)
 values (:next_id, :brand, :news_id, :headline, :link, :desc, :entered);

next_id = next_id + 1;
 endfor;
end;

Session table
declare global temporary table session.news_sorted
 (news_order integer,
 brand integer,
 news_id integer,
 headline varchar(100),
 link varchar (150),
 desc varchar(100),
 entered date)
on commit preserve rows
with norecovery;

modify session.news_sorted to btree unique on news_order;

execute procedure news_sorter(my_news_sorted = session.news_sorted);

select * from session.news_sorted
order by news_order;

Session table
create procedure news_sorter
(my_news_sorted = set of (

news_order integer, /* next_id is the next id in the sorted table */
brand integer,
news_id integer,
headline varchar(100),
link varchar(150),
desc varchar(100),
entered date))

as
declare
 next_id integer; /* next_id is the next id in the sorted table */

w_brand integer;
w_news_id integer;
w_headline varchar(100);
w_link varchar(150);
w_desc varchar(100);
w_entered date;

Session table
begin
 next_id = 1;

delete from my_news_sorted;
 for

 select brand, news_id, headline, link, desc, entered
 into :w_brand, :w_news_id, :w_headline, :w_link, :w_desc, :w_entered
 from news
 order by brand, news_id

 do
 insert into my_news_sorted

 values (:next_id, :w_brand, :w_news_id, :w_headline, :w_link, :w_desc, :w_entered);
 next_id = next_id + 1;

 endfor;
end;

Database
Rules

© 2007 Ingres Corporation (Ingres). All trademarks, trade names, services marks and logos referenced herein belong to their respective companies

Comparison

 Advantages of rules and procedures over
constraints and integrities -

– More complex business rules
– More control in handling violations
– More control in handling errors
– More flexibility in managing changes
– Better use of resources

Things to avoid

 Multiple rules triggered by same action on a
table

 Excessive rules cascading

Error Behaviour for DBP invoked by a rule

 Terminates immediately
 Returns an error
 Statements in the procedure which have been

executed are rolled back
 The statement that fired the rule is rolled back
 NOT the same as an explicit rollback

– just rolls back the statement, not the transactions
 The error is returned to the application in

– SQLSTATE
– SQLCODE
– errorno

Rules

 Set [no]rules statement
 Rules are not fired by

– Copy
– Modify

 Set [no]printrules

Example of Before Rule
create rule state_ins before insert into employee

execute procedure state_ins (
stcode = state_code,
stname = state_name);

create procedure state_ins(in stcode char(2), out stname char(12))
as
begin
 select st_name into :stname from state_codes
 where st_code = :stcode;

 return;
end;

Questions & Answers

