
Smedley's
Guide

To
Database

Procedures

© 2007 Ingres Corporation (Ingres). All trademarks, trade names, services marks and logos referenced herein belong to their respective companies

What are Database Procedures?

 Code stored in the database
 Executed in the server
 Pre-compiled
 Executable code is a single transaction
 Composed of SQL statements
 Referenced objects must exist at create time
 Associated with database rules

Why Use Database Procedures?

 Performance
 Better than “repeated” SQL
 Reduced client/server communication
 Flexibility
 Easier to change
 Reusability, reduced coding time
 Integrity constraints, business rules

Why Use Database Procedures?

 Controls access to database objects
– Only procedure owner requires privileges
– Users only require execute on the procedure
– Users do not require access to DBP objects

 Security is easier to manage
– Data only changed via procedures
– Less privileges
– Easier still with roles and groups

What Not to Put in a DBP

 Unnecessary and complex code
 Unnecessary Variables
 Transaction control

– Commit
– Rollback

 Front-end work
– Formatting data
– Retry logic

Database Procedures Execution

 Called - 3GL or 4GL applications
 Executed - Interactive SQL
 Executed - database procedures
 Invoked - database rules

Parameter Passing

 By default Parameter passed BYVALUE
 Parameters can be passed BYREF
 Parameters can be passed

– IN
• The default mode
• Equivalent to BYVALUE

– OUT and INOUT
• Equivalent to BYREF

Example in, out, inout
create procedure factorial_n

(inout n integer, inout fac integer)
as
begin
 if (n <= 0) then

return;
endif;

 fac = fac * n;
 n = n – 1;
 execute procedure factorial_n

(n = n, fac = fac);
 return;
end;

execute procedure factorial_n
(n = 6, fac = 1);

Locking Strategy

 Locks taken when procedure starts
 Locks taken on all tables referenced
 No processing unless all locks in place
 Retakes locks after commit or rollback
 When an error rolls back to beginning of

procedure

Debugging, Testing and Sizing

 Line numbers
 Sizing
 Message statement

Procedure: get_my_airlines

create procedure get_my_airlines(alname nvarchar(60))
result row(nchar(3) not null, nchar(3) not null,
nvarchar(60) not null) as declare iatacode nchar(3);

icaocode nchar(3);
name nvarchar(60);
begin for select al_iatacode, al_icaocode, al_name into

:iatacode, :icaocode, :name from "smejo01". airline where
al_name like :alname do return row (:iatacode,
:icaocode, :name);

endfor;
end;

Query Execution Plans

 Created when procedure is
– Created
– Loaded into server

 Stored in the Query Storage Facility
 QEP not based on full statistics

– Max and Min statistics used in optimization

How Big is a QEP?

register table imp_qsf_dbp (
server varchar(64) not null not default is 'SERVER',
dbp_index integer4 not null not default is 'exp.qsf.qso.dbp.index',
dbp_name varchar(60) not null not default is 'exp.qsf.qso.dbp.name',
dbp_owner varchar(24) not null not default is 'exp.qsf.qso.dbp.owner',
dbp_size integer4 not null not default is 'exp.qsf.qso.dbp.size',
dbp_dbid integer4 not null not default is 'exp.qsf.qso.dbp.udbid',
dbp_usage_count integer4 not null not default is 'exp.qsf.qso.dbp.usage‘
)
as import from 'tables'
with dbms = ima,
structure = unique sortkeyed,
key = (server, dbp_index)

Row Producing Procedure

 Must be called from an ESQL program
 Can return zero or more rows
 Row is defined by the Result Row clause
 The value returned in each “column” can be

– A local variable
– Parameter of the procedure
– A constant

Example – Row Producing Procedure

Exec sql begin declare;
 int empid;
 int sales_rank;
 float sales_tot;
 …
 exec sql end declare;
 …
 exec sql execute procedure emp_sales_rank
 result row (:sales_rank, :empid, :tot_sales);
 exec sql begin;
 …
 exec sql end;
 …

Example – Row Producing Procedure
create procedure emp_sales_rank result row (int, int, money) as
declare
 sales_tot money;
 empid int;
 sales_rank int;
begin
 sales_rank = 0;
 for

select e.empid, sum(s.sales) as sales_sum
 into :empid, :sales_tot

 from employee e, sales s
 where e.job = ‘sales’

and e.empid = s.empid
 group by e.empid

order by sales_sum desc
 do
 sales_rank = sales_rank + 1;
 return row (:sales_rank, :empid, :tot_sales);
 endfor;
end

Error Behaviour

 Procedure is not terminated
 All statements in the procedure up to the point of the

error are rolled back
 Error is returned and iierrornumber is set
 Continues execution with the statement following the

statement that caused the error
 Parameters passed by reference are not updated
 The error is returned to the application in

– SQLSTATE
– SQLCODE
– errorno

Row Counts and Errors

 iirowcount
– Contains the number of rows affected by the last

executed SQL statement
 iierrornumber

– Contains the error number associated with the
execution of a database procedure statement.

 Reflect the results of the preceding query
 Beware of resetting the value

Return

 Terminates the procedure
 Can return an integer

Message

 Use the SQL message statement to return
messages to users and applications

 Messages from database procedures can be
trapped using

– whenever sqlmessage statement
– set_sql(messagehandler) statement

 Messages from database procedures can
return to the application before the database
procedure has finished executing

Raise Error Statement

 Used to describe database errors and violations of
business rules

 Generates an error
 The Server responds to this error exactly as it does to

any other error
 Returns error number and customised message

– raise error errornumber [errortext]

 errornumber
– Is returned to sqlerrd(1)
– Can be accessed using inquire_sql(dbmserror)

The Wrong Way to Error Check
...

update emp set ...;

rcount = iirowcount;
enumber = iierrornumber;

…

The Right Way to Error Check
...

update emp set ...

select iirowcount, iierrornumber
into rcount, enumber;

…

Another Way to Error Check

update xyz . . . ;

if iierrornumber != 0 then
rollback;
message 17 'Update failed‘;
return -1 ;

endif ;

The Wrong Way to Error Check

update xyz . . . ;
if iierrornumber != 0 then

msg := ’Error updating xyz. ‘
+ ' Error is ‘
+ varchar(iierrornumber);

mno := 1701;
message :mno : msg ;
return iierrornumber ;

endif ;

The Wrong Way to Error Check

if iirowcount != 1 then
msg := 'Bad rowcount updating table xyz'

+ ', expected 1 but got '
+ varchar(iirowcount);

mno := 1702 ;
message :mno :msg ;
return iierrornumber ; /* failure */

endif ;
return 0 ; / * success */

Error Handling

 Simple is best
 Just check iierrornumber and iirowcount
 Error check as first statement in a DBP
 Return status only
 Let front end translate, report, display, log

Select Loop
execute procedure news_sorter;

select * from news_sorted;

Select Loop
create procedure news_sorter
as
declare
 next_id integer; /* next_id is the next id in the sorted table */

brand integer;
news_id integer;
headline varchar(100);
link varchar(150);
desc varchar(100);
entered date;

begin
next_id = 1;
delete from news;

 for

Select Loop

 select brand, news_id, headline, link, desc, entered
 into :brand, :news_id, :headline, :link, :desc, :entered
 from news_orig
 where deleted = 0
 order by brand, news_id

 do
 insert into news_sorted (news_id, brand, news_orig_id,

headline, link, desc, entered)
 values (:next_id, :brand, :news_id, :headline, :link, :desc, :entered);

next_id = next_id + 1;
 endfor;
end;

Session table
declare global temporary table session.news_sorted
 (news_order integer,
 brand integer,
 news_id integer,
 headline varchar(100),
 link varchar (150),
 desc varchar(100),
 entered date)
on commit preserve rows
with norecovery;

modify session.news_sorted to btree unique on news_order;

execute procedure news_sorter(my_news_sorted = session.news_sorted);

select * from session.news_sorted
order by news_order;

Session table
create procedure news_sorter
(my_news_sorted = set of (

news_order integer, /* next_id is the next id in the sorted table */
brand integer,
news_id integer,
headline varchar(100),
link varchar(150),
desc varchar(100),
entered date))

as
declare
 next_id integer; /* next_id is the next id in the sorted table */

w_brand integer;
w_news_id integer;
w_headline varchar(100);
w_link varchar(150);
w_desc varchar(100);
w_entered date;

Session table
begin
 next_id = 1;

delete from my_news_sorted;
 for

 select brand, news_id, headline, link, desc, entered
 into :w_brand, :w_news_id, :w_headline, :w_link, :w_desc, :w_entered
 from news
 order by brand, news_id

 do
 insert into my_news_sorted

 values (:next_id, :w_brand, :w_news_id, :w_headline, :w_link, :w_desc, :w_entered);
 next_id = next_id + 1;

 endfor;
end;

Database
Rules

© 2007 Ingres Corporation (Ingres). All trademarks, trade names, services marks and logos referenced herein belong to their respective companies

Comparison

 Advantages of rules and procedures over
constraints and integrities -

– More complex business rules
– More control in handling violations
– More control in handling errors
– More flexibility in managing changes
– Better use of resources

Things to avoid

 Multiple rules triggered by same action on a
table

 Excessive rules cascading

Error Behaviour for DBP invoked by a rule

 Terminates immediately
 Returns an error
 Statements in the procedure which have been

executed are rolled back
 The statement that fired the rule is rolled back
 NOT the same as an explicit rollback

– just rolls back the statement, not the transactions
 The error is returned to the application in

– SQLSTATE
– SQLCODE
– errorno

Rules

 Set [no]rules statement
 Rules are not fired by

– Copy
– Modify

 Set [no]printrules

Example of Before Rule
create rule state_ins before insert into employee

execute procedure state_ins (
stcode = state_code,
stname = state_name);

create procedure state_ins(in stcode char(2), out stname char(12))
as
begin
 select st_name into :stname from state_codes
 where st_code = :stcode;

 return;
end;

Questions & Answers

